

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.mcm.2012.01.013

http://hdl.handle.net/10251/54660

Elsevier

Bergamaschi, L.; Bru García, R.; Martinez Calomardo, A.; Mas Marí, J.; Putti, M. (2013).
Low-rank update of preconditioners for the nonlinear Richard's equation. Mathematical and
Computer Modelling. 57(7):1933-1941. doi:10.1016/j.mcm.2012.01.013.

Low-rank Update of Preconditioners for the nonlinear Richards
Equation.

L. Bergamaschi(1), R. Bru(2), A. Mart́ınez(1), J. Mas(2), and M. Putti(1)

(1) Department of Mathematical Methods and Models for Scientific Applications University of Padua, via
Trieste 63, 35121 Padova, Italy

e-mail {berga,acalomar,putti}@dmsa.unipd.it,
(2) Instituto de Matemática Multidisciplinar, Departamento de Matemática Aplicada, Universidad Politécnica

de Valencia, Spain, e-mail {rbru,jmasm}@mat.upv.es.
Work supported by the Spanish DGI grant MTM2010-18674

Abstract

Preconditioners for the Conjugate Gradient method are studied to solve the Newton system
with symmetric positive definite (SPD) Jacobian. Following the theoretical work in [4] we start
from a given approximation of the inverse of the initial Jacobian, and we construct a sequence
of preconditioners by means of a low rank update, for the linearized systems arising in the
Picard-Newton solution of the nonlinear discretized Richards equation. Numerical results onto
a very large and realistic test case show that the proposed approach is more efficient, in terms
of iteration number and CPU time, as compared to computing the preconditioner of choice at
every nonlinear iteration.

Keywords: Quasi-Newton method, Krylov iterations, updating preconditioners, inexact
Newton method

1. Introduction

The governing equation for flow in partially saturated porous media, Richards equation,
contains nonlinearities arising from pressure head dependencies in soil moisture and hydraulic
conductivity. For stability reasons an implicit time discretization, requiring evaluation of the
nonlinear coefficients at the current time level, is normally used to solve the equation numerically.
To linearize the resulting discrete system of equations, Newton or Picard iteration is commonly
used, with the Picard scheme being the more popular of the two [17, 14, 8]. The Picard method,
also known as successive approximation or “simple” iteration, is computationally inexpensive
on a per iteration basis, and preserves symmetry of the discrete system of equations.

In this paper we are mainly concerned with the efficient preconditioning of the linear system
arising in the Picard iteration for the solution of a general system of nonlinear equations: F (x) =
0, which is usually written as {

J(xk)sk = −F (xk)
xk+1 = xk + sk

. (1)

We employ the Preconditioned Conjugate Gradient (PCG) method for the solution of the linear
system, so that two nested iterative procedures need to be implemented, the outer iteration
formed by the Newton steps and the inner iterations within the PCG method.

Preprint submitted to Elsevier December 23, 2011

Since in each Newton step a new system has to be solved, we are dealing with the construction
of a sequence of preconditioners Pk ≈ J−1k which are “optimal” in the sense that they would
minimize the constant C of:

‖I − PkJ(xk)‖ ≤ C. (2)

Following the previous work in [4, 5, 6], our aim is to solve the Picard SPD system (1) with the
PCG method, starting with an initial preconditioner, P0, computed from the initial Jacobian,
and to update this preconditioner using low-rank matrices. We have selected P0 to be IC(0) or
AINV [3, 2] as popular representants of factorized direct and inverse based preconditioners. A
sequence of SPD preconditioners Pk can thus be defined by imposing the secant condition, as
used in the implementation of quasi-Newton methods. We choose to work with the BFGS update
as described for instance in [12], and recall the theoretical properties of the preconditioner and
numerical behavior of the resulting scheme.

We stress that our theoretical developments will make our procedure free from the initial
preconditioner choice. If a better performing initial P0 than IC(0) (or AINV) is devised, then
the rank one update formula will improve it, may be even better than it is shown in this paper.

We show results on a very large realistic test case where the proposed sequence of precondi-
tioners provides an improvement of the iteration number and CPU time as compared to simply
recomputing the preconditioner of choice.

2. The Mathematical Model

Richards equation is commonly used in modeling the flow of water in the unsaturated zone,
and is obtained by combining Darcy’s law with the continuity equation. For practical purposes,
it is convenient to use a pressure head formulation so that the simultaneous simulation of both
fully saturated (Sw = 1) and unsaturated (Sw < 1) conditions is possible [11].

The water flux ~q is governed by the extended form of Darcy’s law [16, 1]:

~q = −KsKr(ψ)~∇ (ψ + z) (3)

where Ks is the saturated hydraulic conductivity tensor, Kr(ψ) is the relative hydraulic conduc-

tivity, ~∇ is the gradient operator, and z is the vertical coordinate directed upward. The mass
conservation equation governing flow in variably saturated porous media is called Richards
equation, and can be written as:

η(Sw)
∂ψ

∂t
+ ~∇ · ~q = f (4)

where η(Sw) = SwSs + φ∂Sw/∂ψ is the general storage term, Sw is the water saturation, Ss is
the elastic storage coefficient, φ is the porosity of the porous medium, t is time, and f represents
the source or sink term. Equation (3) is nonlinear because of the dependency of the relative
conductivity on pressure head, while Equation (4) assumes its nonlinearity in the general storage
term, a function of pressure head through the Sw−ψ relationship. The nonlinear functionsKr(ψ)
and Sw(ψ) in (3) and (4), respectively, can be modeled using different characteristic curves that
are generally determined experimentally for different soils [18]. We use the van Genuchten
expression ([14]) given by:

Sw(ψ) = Swr + (φ− Swr)
[
1 + ψ

ψs

]−m
ψ < 0

Sw(ψ) = 1 ψ ≥ 0
(5)

2

Kr(ψ) = (1 + ψ
ψs

)−5m/2
[
(1 + ψ

ψs
)m −

(
ψ
ψs

)m]2
ψ < 0

Kr(ψ) = 1 ψ ≥ 0
(6)

where Swr is the residual saturation, ψs is the air-entry pressure value, and m is a fitting
parameter.

Initial and boundary conditions have to be specified to complete the mathematical model.
Boundary conditions may be of Dirichlet (prescribed pressure head) or Neuman (prescribed flux)
type. For practical applications, it is necessary to have boundary conditions that vary in time.
In the simulation of rainfall or evaporation, the so called “atmospheric boundary conditions”,
alternation of infiltration and exfiltration may cause the boundary conditions to switch from
Dirichlet to Neuman type, depending on the prevailing flux and pressure head values at the
surface [15].

3. Numerical Procedures

3.1. Governing Equation and Finite Element Models

The partial differential equation describing fluid flow in partially saturated porous media,
Richards equation, is obtained by combining Darcy’s law with the continuity equation [16].
Expressing this equation with pressure head ψ as the dependent variable, t as time, and z as
the vertical coordinate (positive upward) yields

η(ψ)
∂ψ

∂t
= ∇ · (KsKr(ψ)∇(ψ + z)) (7)

where η(ψ) is the general storage term or overall storage coefficient and the hydraulic conduc-
tivity tensor is expressed as a product of the conductivity at saturation, Ks and the relative
conductivity, Kr(ψ). Equation (7) is highly nonlinear due to pressure head dependencies in the
storage and conductivity terms.

To solve equation (7) numerically, a finite element Galerkin discretization in space with
linear basis functions is used. Triangular elements are used in the two-dimensional code, and
tetrahedral elements in three dimensions. With tetrahedra the nonlinear coefficients in the
system integrals are evaluated at the element centroids. A λ-weighted finite difference scheme
is used for time discretization (λ = 0.5, Crank-Nicolson; λ = 1, backward Euler). Discretization
yields the system of nonlinear equations

F (Ψn+1) ≡ A(Ψn+λ)Ψn+λ + P (Ψn+λ)
Ψn+1 −Ψk

∆tn+1 − b(Ψn+λ)− q(tn+λ) = 0 (8)

where Ψn+λ = λΨn+1+(1−λ)Ψk, Ψ is the vector of nodal pressure heads, superscript n denotes
time step, A is the stiffness matrix, P is the storage or mass matrix, b contains the gravitational
gradient component of equation (7), and q contains the specified Darcy flux boundary conditions.

The numerical models have the option of using either distributed or lumped mass matrices.
The models can handle a variety of boundary conditions, including atmospheric inputs, seepage
faces, and source/sink terms such as pumping wells.

3.2. Linearization Techniques: Newton and Picard Iteration

Applied to equation (8), the Newton scheme can be written as

J(Ψn+1
k)sk = −F (Ψn+1

k) (9)

3

where sk ≡ Ψn+1
k+1 −Ψn+1

k , k is the iteration index, and

Jij = λAij +
1

∆tn+1Pij +
∑
s

∂Ais
∂ψj

n+1ψs
n+λ

+
1

∆tn+1

∑
s

∂Pis
∂ψj

n+1 (ψs
n+1 − ψns) +

∂bi
∂ψj

n+1 (10)

is the ij-th component of the Jacobian matrix J(Ψn+1).
The Picard scheme may be written as[

λA(Ψn+λ
k) +

1

∆tn+1P (Ψn+λ
k)

]
sk = −f(Ψn+1

k) (11)

Comparing (9) and (11), it is apparent that the Picard scheme can be viewed as an approximate
Newton method. It is well known that under suitable conditions the Newton scheme is quadrat-
ically convergent, while Picard converges only linearly. Another important difference between
the two schemes is that Newton linearization generates a nonsymmetric system matrix, whereas
Picard preserves the symmetry of the original discretization. A final observation to make is that
calculation of the three derivative terms in the Jacobian makes the Newton scheme more costly
and algebraically complex than Picard.

Time step sizes during a transient simulation are dynamically adjusted according to the
convergence behavior of the nonlinear iteration scheme.

4. BFGS-update of preconditioners and convergence analysis

The idea is to start with a preconditioner P0 ≈ J−10 . Let us define yk = F (xk+1) − F (xk)
and recall that sk is the solution of the kth Newton system. Following [4] we can develop a
similar recurrence formula for the preconditioner as

Pk+1 =

(
I − sky

T
k

sTk yk

)
Pk

(
I − yks

T
k

sTk yk

)
+

sks
T
k

sTk yk
· (12)

If the Jacobian matrices are SPD and so is P0, then Pk is also SPD under the condition sTk yk > 0
(see Lemma 4.1.1 in [13]).

It can also be easily proved that the sequence of matrices just defined satisfies the secant
condition: Pk+1yk = sk.

We will prove that ‖I − PkJ(xk)‖ can be tuned to any fixed accuracy by suitable choices of
the initial guess x0 and the initial preconditioner P0. Note that this makes our preconditioner
almost ideal in the sense of (2). Let us denote with Ω an open subset of Rn, we will make the
following standard assumptions on F which we will assume to hold throughout this section.

1. Equation F (x) = 0 has a solution x∗.
2. J(x) : Ω→ Rn×n is Lipschitz continuous with Lipschitz constant γ.
3. J(x∗) is nonsingular.

Moreover, we assume in the sequel that our preconditioner accelerates the Newton systems in
the framework of the Inexact Newton methods [10]. We therefore stop the linear iteration as
soon as the following test is satisfied

‖J(xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖. (13)

If we choose the sequence {ηk} such that for every iteration index k, ηk = O(‖F (xk)‖), then
the following result holds:

4

Proposition 4.1. Define ek = x∗−xk. There exist δ > 0 and r < 1 such that if ‖e0‖ < δ then
‖ek+1‖ ≤ r‖ek‖ for every k.

We define the error vectors ek+1 = x∗ − xk+1, ek = x∗ − xk and the error matrices Ek+1 =
Pk+1 − J(x∗) = Pk+1, Ek = Pk − J(x∗)

−1
. We start with a Lemma whose proof follows from

Theorem 1.2.1 in [12], also known as Banach lemma.

Lemma 4.2. Let ‖ek‖ ≤ δ0 <
1

γ
. Then ‖J−1k − J(x∗)

−1‖ ≤ γδ0
1− γδ0

.

We now state the following important Lemma (whose proof can be found in [4]) which bounds
the norm of Ek+1 in terms of the norm of Ek and ek. In addition, it states that the sequence
of preconditioners constructed with the equation (12) is SPD provided that P0 is SPD.

Lemma 4.3. If Pk is SPD and xk+1 = xk−J−1k F k then there is δ0 such that if 0 < ‖xk−x∗‖ ≤
δ0 and ‖Ek‖ ≤ δ0 then yTs > 0 showing that Pk+1 is SPD. Moreover, for some K > 0,

‖Ek+1‖ ≤ ‖Ek‖+K‖ek‖.

The next result will prove that we can make ‖I − PkJ(xk)‖ as small as required. To this end
we need the following two Lemmas which bound the difference between Pk and J(xk)−1.

Lemma 4.4. Let ‖ek‖ ≤ δ. Then setting E′k+1 = Pk+1 − J−1k+1, and E′k = Pk − J−1k we
have, for some K1 > 0, ‖E′k+1‖ ≤ ‖E′k‖+K1‖ek‖.

Lemma 4.5. For fixed ε > 0, there are δ0, δB such that if ‖e0‖ < δ0 and ‖E′0‖ < δB then
‖E′k‖ < ε, ∀k > 0.

We have just proved that if the initial Newton point x0 is sufficiently close to the solution, and
P0 sufficiently close to J−10 , then E′k can be made as small as desired.

The following theorem establishes that ‖I − PkJk‖ can be made arbitrarily small provided
that ‖e0‖ and ‖E′0‖ are sufficiently small.

Theorem 4.6. For fixed ε1 > 0, there are δ0 and δB such that if ‖e0‖ < δ0 and ‖E′0‖ < δB
then ‖I − PkJk‖ < ε1.

Proof. Using Lemma 4.5 and the Lipschitz continuity of J(x) we have:

‖I − PkJk‖ = ‖
(
J−1k − Pk

)
Jk‖ ≤ ‖Jk‖ · ‖E′k‖ ≤ (1 + γ‖ek−1‖) ε ≤ (1 + γδ0)ε. (14)

If δ0 <
1

2γ
we can choose ε =

2

3
ε1, and δ0, δB as in Lemma 4.5 so that the thesis holds.

5. Implementation of the BFGS preconditioner update

At a certain nonlinear iteration level, k, and given a vector z
(l)
k , we want to compute c =

Pkz
(l)
k , where superscript l indicates the linear iteration index. Let us suppose we compute

an initial preconditioner P0. Then, at the initial nonlinear iteration k = 0, we simply have

c = P0z
(l)
0 .

For k ≥ 0, Pk+1 is given inductively by (12). Application of preconditioner Pk to the vector

z
(l)
k can be performed at the price of 2k dot products and 2k daxpys as depicted in Figure

1 (for k = 1) and in Figure 2 (for a generic k), where αk = sTk yk. Note that the updating
procedure described above, being based on scalar products and daxpy operations, is well suited
to parallelization.

5

a =
sT0 z

(l)
1

α0

w = z
(l)
1 − ay0

w := P0w

b =
yT0 w

α0

c = (a− b)s0 + w

Figure 1: Computation of c = P1z
(l)
1 for the

BFGS preconditioner.

w = z
(l)
k

for r := k − 1 to 0
ar = sTr w/αr
w := w − aryr

end for
c = P0w
for r := 0 to k − 1

b = yTr c/αr
c := c + (ar − b)sr

end for

Figure 2: Computation of c = Pkz
(l)
k for the

BFGS preconditioner.

5.1. Restart

This kind of algorithm suffers from two main drawbacks, namely the increasing cost of
memory for saving yk and sk and the increasing CPU time to apply the preconditioner.

Note that these drawbacks are common to many iterative schemes, such as for example
sparse (Limited Memory) Broyden implementations. We define kmax the maximum number of
rank two corrections we allow. When the nonlinear iteration counter k is larger than kmax, the
vectors si,yi, i = k mod kmax are replaced with the last computed sk,yk and a new precon-
ditioner P0 is computed. Vectors {si,yi} are stored in a matrix V with n rows and 2 × kmax

columns.

Restarted Newton-BFGS (RNBfgs) Algorithm
Input: x0,F , kmax, nlmax, tol

• kaux := 0, k := 0

• while ‖F (xk)‖ > tol ‖F (x0)‖ and k < nlmax do

1. if kaux = 0 then Compute P0 approximating J−10

else Update Pk from Pk−1 using the columns of V .

2. Solve J(xk)sk = −F (xk) by a Krylov method with precondi-
tioner Pk and tolerance ηk.

3. xk+1 := xk + sk
4. V (∗, 2kaux + 1) := sk, V (∗, 2kaux + 2) := yk,

5. k := k + 1 kaux = k mod kmax

• end while

Output: nlit := k,xk, ‖F (xk)‖

6. Numerical Results

Here we give the numerical performance of our sequence of preconditioners in solving a
realistic test case resulting from e 3d FE discretization of the Richards equation. The simulations

6

were run on a Intel I7 Core 2 QUAD workstation running at 2.4 GHz with 16 Gb RAM. The
CPU times are measured in seconds. In the solution of the systems (1) we employed the PCG
iterative method and stop the iteration whenever the exit test (13) with constant ηk = 10−4

is fulfilled. The nonlinear iteration is stopped whenever ‖F (xk)‖ ≤ 10−8‖F (x0)‖ (i. e. tol =
10−8). In the subsequent tables we report the total number of nonlinear and linear iterations
and CPU time. When kmax = 0 we assume that the initial preconditioner is computed, and not
updated, at each nonlinear iteration.

6.1. Test case description

The test case considers water infiltration from a surface drain into an initially dry soil
connected on one side to a channel. The domain is formed by a flat 50 m×50 m terrain overlying a
2 m deep sandy soil. The drain is simulated using a constant flux Neumann boundary condition,
while the channel is kept at a constant pressure head. No flow boundary conditions are imposed
in all the other parts of the frontier. The sandy soil is characterized by a uniform and isotropic
saturated conductivity value Ks = 10−3 m/s and a porosity φ = 0.3. The van Genuchten
retention curves (5) and (6) are used in the unsaturated zone, with values of the parameters
equal to ψs = −0.8, m = 0.6. The transient simulations have a uniform initial condition of
ψ0 = 0 and are run until steady state is reached. The results of these simulations are shown at
three different times in Figure 3. The steady state is reached by infiltration from the top and
from the channel, as can be seen in the top and middle panel. A phreatic aquifer forms at the
bottom of the domain and the water table (surface at ψ = 0 near the bottom) moves from left
to right until a regular distribution of the pressure gradients is reached.

6.2. Steady-state results

From Table 1 we note that our Restarted Newton BFGS algorithm provides an improvement
in terms of number of iterations, irrespective on the kmax value and on the initial preconditioner.
In almost all the runs there is also a reduction of the CPU time. The iteration number reduction
appears to be monotone with kmax, however high values of this parameter may lead to increased
CPU time due to the increasing cost per iteration.

P0 kmax NLIT LINIT CPU
IC(0) 0 12 1619 98.55
IC(0) 1 12 1522 88.30
IC(0) 2 12 1496 87.22
IC(0) 3 12 1475 88.58
IC(0) no restart 12 1428 82.76
AINV(0.05) 0 12 4075 191.27
AINV(0.05) 1 12 3815 189.77
AINV(0.05) 3 12 3663 191.20
AINV(0.05) 5 12 3577 193.99
AINV(0.02) 0 12 2840 282.12
AINV(0.02) 2 12 2610 244.88
AINV(0.02) 5 12 2519 227.47
AINV(0.02) no restart 12 2481 204.14

Table 1: Number of linear iterations (LINIT) and CPU time for the solution of the Picard-linearized systems
with different initial preconditioners and values of the restart parameter kmax. Steady state case.

7

Figure 3: Results of the simulations at times t = 3333 seconds (top), t = 6666 seconds (middle), and steady
state (bottom).

8

0 1 2 3 4 5 6 7 8 9 10 11 12
nonlinear iteration number

60

80

100

120

140

160

180

li
n
ea

r
it

er
at

io
n
s

p
er

 n
o
n
li

n
ea

r
it

er
at

io
n

kmax = 0
kmax = 20

Figure 4: Iteration number for IC(0) preconditioner (kmax = 0) and Newton BFGS preconditioner with no restart
(kmax = 20).

The advantage of the proposed preconditioner is particularly evident when the computation
of the initial preconditioner is costly. This is the case of AINV(0.02) (last four rows in Table 1)
where the optimal preconditioner reveals the non restarted Newton-BFGS. Here, the increasing
cost per iteration is counterbalanced by the saved cost of the preconditioner computation. Fi-
nally, we note from Figure 4 that the improvement provided by BFGS update in terms of linear
iterations is observed at (almost) each nonlinear iteration.

6.3. Preliminary results for the transient case

In Table 2 we report our first results of our preconditioner in the solution of the Picard
systems in the transient case. Since the number of iterations does not change very much with
kmax we did not report the CPU times. These preliminary results show once again a (small)
improvement in terms of iteration number from kmax = 0 (that is IC(0) computed and not
updated at every nonlinear iteration) to kmax > 0. Note that the efficiency of the BFGS update
is lower with respect to the steady state case due to the well conditioning of the linearized
systems. This aspect will be analyzed in the next Section 6.4.

P0 kmax timesteps NLIT LINIT
IC(0) 0 22 151 12097
IC(0) 1 22 151 11883
IC(0) 2 22 151 11848
IC(0) no restart 22 151 11822

Table 2: Number of linear iterations (LINIT) for the solution of the Picard-linearized systems with IC(0) as the
initial preconditioner and different values of the restart parameter kmax. Transient case.

6.4. Condition number of the preconditioned matrices.

To better understand the improvement obtained by the proposed acceleration, we report
in Figure 5 the spectral condition number, i. e. the ratio between the largest and the smallest

9

eigenvalue for the preconditioned Jacobians both in the steady state case and – for a few initial
timesteps – in the transient case.

0 1 2 3 4 5 6 7 8 9 10 11 12

nonlinear iteration level

0

1000

2000

3000

4000

5000

co
n
d
it

io
n
 n

u
m

b
er

 o
f

p
re

co
n
d
it

io
n
ed

 J
ac

o
b
ia

n IC(0) (J_k)

BFGS kmax = 1
BFGS kmax = 2
BFGS no restart

0 10 20 30 40

linear system #

0

10

20

30

40

50

co
n
d
it

io
n
 n

u
m

b
er

 o
f

th
e

p
re

co
n
d
it

io
n
ed

 J
ac

o
b
ia

n

IC(0) (J_K)
BFGS kmax = 1

Figure 5: Spectral condition number of the preconditioned Jacobians. In the steady state case (top figure) it
is computed at different nonlinear iteration levels. In the transient case (bottom figure) it is computed for the
initial timesteps.

In the steady state case there is a strong reduction of the condition number provided by
BFGS acceleration which can be up to a factor 4, depending on the nonlinear iteration level. In
the transient case, especially for the initial time steps, where the ∆t values are smaller, there is
only a slight decrease of the condition number of the preconditioned matrices, which results in a
small reduction of the number of iterations as also accounted in Table 2. In fact, our algorithm
adapts the timestep to the nonlinear character of the system, trying to maintain the largest
possible value. To avoid unnecessary iterations, the initially small timestep is increased as time
progresses. Since the condition number of the linearized system matrix is proportional to ∆t,
the results reveal well-conditioning at initial steps, resulting in a reduced efficiency of the BFGS
update. Later timesteps show a behavior similar to the steady state, and are not reported here.

10

7. Conclusions and future developments

A rank-two update sequence of preconditioners has been proposed for accelerating the PCG
method for the solution of the inner linear systems of the inexact Newton-Picard method applied
to the discretized Richards equation. It has been shown that the sequence of the preconditioners
is SPD and that ||I −PkJ(xk)|| remains bounded if the initial vector guess x0 and P0 are close
enough to the exact solution and to the inverse of the Jacobian J−1(x0), respectively.

Our numerical experiments onto large size problems show that this algorithm provides an
improvement of the convergence compared with computing the IC or AINV preconditioners,
and this is particularly efficient for small values of the restart parameter kmax. The proposed
technique has a number of advantages on simply computing a preconditioner of J(xk): (a) it
always reduces the number of iterations, irrespective on the kmax value and on P0; and (b) it
reduces the cost of forming the preconditioner.

As a consequence, we expect that this technique, together with the one developed in [5], could
be particularly effective e. g., in the interior point (IP) solution of constrained optimization
problems, where linearized saddle-point Newton systems are very ill-conditioned toward the
solution and the cost of the preconditioner computation may be prohibitive (see [7]).

Our future work is also aimed at using a more sophisticated preconditioner, such as the BIF
algorithm, recently developed in [9], as well as more dense IC preconditioners based on fill-in
and threshold, as the initial P0, to provide a more important reduction in the iteration number.

8. References

[1] J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979.

[2] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys.,
182 (2002), pp. 418–477.

[3] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric
linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[4] L. Bergamaschi, R. Bru, and A. Mart́ınez, Low-rank update of preconditioners for
the inexact Newton method with SPD jacobian, Mathematical and Computer Modelling, 54
(2011), pp. 1863–1873.

[5] L. Bergamaschi, R. Bru, A. Mart́ınez, and M. Putti, Quasi-Newton preconditioners
for the inexact Newton method, Electronic Trans. Num. Anal., 23 (2006), pp. 76–87.

[6] L. Bergamaschi, R. Bru, A. Mart́ınez, and M. Putti, Quasi-Newton acceleration of
ILU preconditioners for nonlinear two-phase flow equations in porous media, Advances in
Engineering Software, (2012). Published online 4 December 2010.

[7] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in in-
terior point methods for optimization, Comput. Optim. Appl., 28 (2004), pp. 149–171.

[8] L. Bergamaschi and M. Putti, Mixed finite elements and Newton-type linearization for
the solution of Richard’s equation, Int. J. Numer. Methods Engrg., 45 (1999), pp. 1025–
1046.

[9] R. Bru, J. Marin, J. Mas, and M. Tuma, Improved Balanced Incomplete Factorization,
SIAM J. on Matrix Anal. Appl., 31 (2010), pp. 2431–2452.

11

[10] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J.
Num. Anal., 19 (1982), pp. 400–408.

[11] P. A. Forsyth, Y. S. Wu, and K. Pruess, Robust numerical methods for saturated-
unsaturated flow with dry initial conditions in heterogeneous media, Adv. Water Resources,
18 (1995), pp. 25–38.

[12] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia,
1995.

[13] C. T. Kelley, Iterative methods for optimization, vol. 18 of Frontiers in Applied Mathe-
matics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[14] C. Paniconi and M. Putti, A comparison of Picard and Newton iteration in the numer-
ical solution of multidimensional variably saturated flow problems, Water Resour. Res., 30
(1994), pp. 3357–3374.

[15] C. Paniconi and E. F. Wood, A detailed model for simulation of catchment scale sub-
surface hydrologic processes, Water Resour. Res., 29 (1993), pp. 1601–1620.

[16] J. R. Philip, Theory of infiltration, Adv. Hydrosci., 5 (1969), pp. 215–296.

[17] P. J. Ross, Efficient numerical methods for infiltration using Richards’ equation, Water
Resour. Res., 26 (1990), pp. 279–290.

[18] M. T. van Genuchten and D. R. Nielsen, On describing and predicting the hydraulic
properties of unsaturated soils, Ann. Geophys., 3 (1985), pp. 615–628.

12

