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Abstract— This paper proposes a spherical 3D Smith Chart 

suitable for representing both active and passive microwave 
circuits. Using the mathematical concept of the Riemann sphere, 
the extended reflection coefficient plane is transformed into the 
surface of the unit sphere. Since the proposed Smith Chart 
compiles the whole complex plane, all possible loads are included. 
A simple graphic tool is thus obtained that successfully unifies 
active and passive circuits. In addition, lossy lines with complex 
characteristic impedances can also be represented. The letter 
presents the 3D Smith Chart, provides its main governing 
equations, and also enumerates its more important properties. 

 
Index Terms— Smith Chart, transmission lines, immittance, 

reflection coefficient, active circuits, lossy circuits. 
 

I. INTRODUCTION 
NE of the more useful and widely known microwave tools 
is the Smith Chart [1]. This graphic chart proposed in the 

late 30s has survived the advent of personal computers and 
computer aided design (CAD) tools, since it provides an 
excellent visual insight of microwave problems. Its simplicity 
and beauty are inherited from the mathematical properties of 
Möbius transformations, also related to geometrical art [2]. 

To have a finite and practical size, the Smith Chart is 
constrained to the unit circle. Hence, loads with reflection 
coefficient magnitude greater than 1 cannot be plotted. These 
loads often appear in active circuits [3] and in lossy 
transmission lines with complex characteristic impedances [4]. 

A spherical 3D Smith Chart has been recently proposed to 
overcome these limitations [5]. The heuristic approach in [5], 
however, does not include mathematical support necessary to 
move from the conceptual idea to a practical tool. Although a 
new theory has been reported [6], the resulting representation  
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Fig. 1. Reflection coefficient plane with some transformed constant resistance 
(continuous lines) and reactance (dashed lines) circumferences by using (1). 
The Smith Chart boundary is drawn with a thick line. A shaded stability circle 
partly outside the unit circle is also plotted in both the ρ-plane and the z-plane. 
 
distorts the constant resistance and reactance circumferences 
into ellipses in the reflection coefficient plane, and also results 
in complicated transforming equations, making very difficult 
the visual and intuitive interpretation of microwave problems. 

In this letter, a new theory based on the mathematical 
concept of the Riemann sphere is presented. A simpler 
representation able to keep the shape of the planar Smith Chart 
is thus obtained. In addition, the resulting 3D chart has many 
practical properties than can provide a better insight into the 
problem and ease the task of microwave engineers. 

II. PLANAR SMITH CHART AND MÖBIUS TRANSFORMATIONS 
In the extended complex plane, that includes the point at 

infinity { }( )∪ ∞ , any Möbius transformation is an inversive 
transformation with very interesting properties. They provide 
a conformal mapping, transform generalized circles (i.e., finite 
radius circles and infinite lines) into generalized circles, map 
points symmetric to a circle into points also symmetric to their 
image circle, and there is a unique Möbius transformation that 
maps any three points to any other three points [7]. 

The relationship between the normalized impedance z and 
the reflection coefficient ρ can be represented by means of 
Möbius transformations for a wide range of transmission lines 
[8]. This transformation, in the case of reciprocal lines of 
characteristic impedance 0Z , takes the known form 

 

0
1 ; j .
1

z z r x Z Z
z

ρ −
= = + =

+
 (1) 
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Fig. 2. Stereographic projection from the reflection coefficient plane to the 
unit sphere surface using the sphere south pole. Point inside the unit circle in 
(a) and outside in (b). 

 
From (1) it can be concluded that impedances with positive 

normalized resistance r map in the unit circle (with the zero 
resistance loads placed on its circumference), whereas loads 
with negative r are placed outside the unit circle. It can also be 
proven that the z-plane unit circle 1z =  is mapped to the      
ρ-plane imaginary axis. 

Although the Möbius transformation (1) spans the whole z 
and ρ extended complex planes, the classic planar Smith Chart 
only considers the 1ρ ≤  region. This region contains the 
more common loads in practice. There are some applications, 
however, where loads placed outside the unit circumference 
can appear, such as the stability analysis and design of 
amplifiers and oscillators [3]. They also can arise in lossy 
transmission lines with complex 0Z , where even passive loads 
can have normalized impedances with negative real part. 

Fig. 1 depicts the conformal transformation (1) in the         
ρ-plane, including some constant resistance and reactance 
circumferences. A stability circle partly outside the region 
considered in the planar Smith Chart has also been plotted. 
The circle points placed outside the unit circumference 
corresponds to negative resistance loads in the normalized 
impedance z-plane. 

III. 3D SPHERICAL SMITH CHART AND THE RIEMANN SPHERE 
The extended complex ρ-plane includes all the passive and 
active loads, but it is difficult to represent in practice because 
includes the point at infinity. Fortunately, Riemann interpreted 
the numbers in the extended complex plane as points on a 
sphere. Using Ptolemy’s theory on celestial spheres, Riemann 
applied a stereographic projection to perform a one-to-one 
correspondence between the extended complex plane and the 
unity radius sphere (i.e., the unit sphere). 

The spherical Smith Chart proposed in this paper is created 
following these principles, since a stereographic projection of 
the reflection coefficient plane located in the equatorial plane 
is performed by using the sphere south pole. According to this 
projection, the points in the reflection coefficient plane lying 
inside the unit circle are mapped to the northern hemisphere 
(see Fig. 2a). Conversely, the points placed outside this circle 
are moved to the southern hemisphere (see Fig. 2b). Finally, 
the unit circumference points are mapped to themselves. 

This procedure provides a unit Riemann sphere, whose 
surface can be considered as a 3D Smith Chart which includes 
all complex loads. From geometrical considerations, it can be  

 
Fig. 3. 3D spherical Smith Chart obtained after performing the stereographic 
projection. The same constant normalized resistance (continuous lines) and 
reactance (dashed lines) circles plotted in Fig. 1 are shown, which are 
alternatively labeled. The dash-dotted line represents the sphere unitary axes. 

 
inferred that a generic ρ-plane point 

 
j

r ij e ρϕρ ρ ρ ρ= + =  (2) 
 
is mapped into the surface point of the unit sphere given by  
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which can also be expressed in terms of the load normalized 
resistance r and reactance x in the form 

 

( ) ( )2
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1
z r jx z x r

z
= + = −

+
s  (4) 

 
Conversely, a given point ( )s s s, ,x y z=s  in the surface of 

the unit sphere (i.e., satisfying 2 2 2
s s s 1x y z+ + = ) is mapped to  
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in the ρ-plane (i.e., the sphere equatorial plane). 

After performing such a mapping of the extended complex 
ρ-plane, the spherical Smith Chart in Fig. 3 is finally obtained. 
The sphere north pole represents the perfect match point; 
whereas the normalized impedance 1z = −  is located in the 
south pole, being the stereographic projection of the infinite 
reflection coefficient or perfect mismatch. The open circuit is 
the sphere surface point on the positive sx  { }( )or Re ρ  axis 
whereas the short circuit is placed on the negative one. Note 
that all constant reactance and resistance circumferences 
touches the equatorial plane in the open circuit point (1,0,0). 

From the Riemann sphere properties, it can be stated that 
the projection is conformal for an observer inside the sphere,  
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Fig. 4. Constant magnitude circumferences (continuous) and phase meridians 
(dashed) for the reflection coefficient in (a). Constant normalized impedance 
magnitude (continuous) and quality factor circumferences (dashed) in (b). The 
quality factor circumferences are labeled with the angle ψ  between its plane 
and the sy  axis (whose tangent is precisely the circuit quality factor). 
 
as well as generalized circles in the ρ-plane are mapped into 
circles in the sphere surface (where infinite lines in the 
complex ρ-plane are transformed into circles passing the south 
pole) [9]. The sphere in Fig. 3 shows these properties. 

IV. PROPERTIES OF THE 3D SPHERICAL SMITH CHART 
The 3D spherical Smith Chart in Fig. 3 has many useful 

properties. This section summarizes the more relevant ones. 
The position of the different type of loads is considered in 

the first place. The upper hemisphere of the spherical Smith 
Chart is inhabited by the normalized impedances with positive 
real part, whereas the negative resistance loads are mirrored 
on the lower hemisphere. In the equatorial circumference, the 
loads are purely reactive (see Fig. 3). On the other hand, the 
central or Greenwich sphere meridian in the XZ plane contains 
the purely resistive loads. The loads on the left hemisphere 
( s 0y < ) exhibit a normalized capacitive behaviour, whereas 
the inductive circuits are placed on the right one ( s 0y > ). 
Note that the four quadrants in a 2D cut with any plane 
parallel to the YZ plane contain different types of loads. 

In the 3D Smith Chart, the magnitude of the reflection 
coefficient is only related with the sz  coordinate of the sphere 
(see (3)), and the phase of the reflection coefficient is equal to 
the angle of the point with respect to the sx  sphere axis (see 
Fig. 2). As a result, the sphere latitude provides the reflection 
coefficient magnitude and the meridian its phase according to 

 
j s s

s s
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1

z y
z x

ρϕ
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Fig. 4a plots some circumferences with constant reflection 

coefficient magnitude and phase. The reflection coefficient 
magnitude increases from the north pole ( 0ρ = ) to the south 
pole ( ρ = ∞ ), being 1ρ =  in the equatorial plane. 
Interestingly, a movement of length l on the transmission line 
towards generator or load is carried out, respectively, with a 
clockwise or anticlockwise turn of 2 lθ β=  around the sphere 

sz  axis, where β  is the line phase constant (in a lossless line, 
the turn is performed in the same latitude circumference). 

Moreover, the normalized impedance complex magnitude 
z  and angle zϕ  can also be easily obtained from the load 

coordinates in the sphere. From (4) it can be deduced that 
 

2 2 s s
z

s s

1 z, cot( )
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x x
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−
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thus constant sx  circumferences contain the points with the 
same normalized impedance magnitude. On the other hand, 
the circumference in a plane including the sx  axis and 
forming a given angle ψ  with the sy  sphere axis collects the 
loads with a quality factor Q  equal to ( )tan ψ  (see Fig. 4b). 

It can be easily proven that the 3D admittance Smith Chart 
is obtained by altering the sign of the reflection coefficient. 
From a given load, this can be carried out with a 180º rotation 
around the sz  axis (in the same latitude circumference). After 
this rotation, the normalized resistance r and reactance x 
circumferences convert into normalized conductance g and 
susceptance b circumferences. The equations and properties of 
the impedance Smith Chart also hold provided that r and x are 
replaced by g and b, respectively, and the signs of the real and 
imaginary part of the reflection coefficient are changed. 

V. CONCLUSION 
This letter proposes a generalized Smith Chart based on the 

Riemann sphere. Using the concept of extended complex 
plane and inversive geometry, the generalized Smith Chart can 
include all the complex loads in the reflection coefficient 
plane. This leads to a 3D representation with simple governing 
equations and many useful properties, which can be a valuable 
graphic tool to handle microwave problems involving any type 
of loads. 
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