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Abstract

A new fully modal characterisation procedure is proposea@dce the number of unknowns needed
to characterise the ports of an arbitrary H plane device étarggular waveguide, so that no equivalent
currents will be involved in the characterisation of thetpoMoreover, since no currents are needed to
characterise the ports, the weights of the scattered maede unknowns of the resulting system of
equations. This is an important fact, since, to find the wamb@dal weights, a subsequent projection
step is not necessary anymore. The new method is then adeauotswhen compared to other hybrid
alternatives in the literature, not only because the parssalved using fewer unknowns, which is the
main advantage of the proposal, but also because the stgtarameters can be computed directly,

once the system of equations is posed.



. INTRODUCTION

The use of hybrid techniques is not a new idea. In certairasdns, for example when the
problem is big compared to the wavelength of the excitatiois, possible to apply approximate
expressions of Maxwell's equations. These approximateesgons are easier to solve; this is
the case of the geometrical theory of diffraction or the exiftheory of diffraction. The first
attempts of combining several solving techniques include of these asymptotic formulations
and another more rigorous numerical technique [1], [2]. 6Rdg, some works still treat this
topic because it is necessary to employ these asymptotiodppations of Maxwell’s equations
when the problem is really large [3]-[5].

One of the most common techniques employed in developingidiybrmulations is mode-
matching, which is a very fast but not a general approach. ¥ pepular choice to combine
with mode-matching is then the method of moments, which iy wgeneral. For example, in
[6], a hybrid mode-matching and method of moments technigas recently published. This
technique can be applied to solve arbitrarily-shaped problfed through one or more canonical
waveguides, i.e. a waveguide whose modes are known aradlytio [6], the ports of the problem
are characterised by means of a single current formulatioother formulations [7] the ports
are solved using both electric and magnetic currents. Thamthis simplification, the weights of
the scattered modes become unknowns of the resulting systequations; this fact is exploited
to achieve certain efficiency improvement.

In this paper a fully modal characterisation of the ports igppsed, in opposition to the
traditional two currents based approach of [7] or the simgleent based approach of [6]. This
fully modal characterisation of the ports produces smaljstems of equations, so an additional

efficiency improvement is achieved.

[I. PROBLEM FORMULATION

In this section an arbitrarily shaped H plane closed cawgt through several canonical

waveguides (see Fig. 1) is solved using a fully modal charesztion of the ports.



Fig. 1. Base problem.

Obviously, the total reflected field towards mediumcan be expressed in terms of the

regressive modes of the rectangular waveguides that feegdtis
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and the same is valid for the transversal fields, that is
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where

« NN; is the number of modes considered for thih port.

« b,; is the weight associated to tmeth mode emergent through theh port.

. e*/ﬁff’*(:ci,yi) are the regressive auto-vectors for the modes belongingeavaveguide
of the i-th port for the total electric/magnetic field.

. i is the projection matrix over the transversal coordinatethe i-th port.



. é/ﬁf (x;, ;) are the auto-vectors for the modes belonging to the wavegfidhei-th port

for the transversal electric/magnetic field.

If the modes of the cavity were known, the same could be done¢hi® fields of medium
II. The cavity that defines the mediuhd, however, is arbitrarily shaped, so the modes are not
known. Fortunately, it is not necessary to know the mode$efcavity to modally characterise
the ports.

In fact, if superposition is applied, it can be concluded g8everal modal sets can be simulta-
neously used to characterise the problem. Every modal Sequsse, must accomplish by itself
the Maxwell’'s equations inside the cavity.

To see that this is possible the cavity contour has to be broki® pieces and a different
modal set has to be independently assigned to each piecey Elwesen modal set has to be
valid at every point inside the cavity; it has also to be aldefdrce the accomplishment of
arbitrary boundary conditions along its own contour piece.

When all of these modal sets are defined, arbitrary boundamgitons can be forced along
the whole contour of the cavity. If the uniqueness theoreig8applied, it means that any
solution of the problem could be synthesised using a prapeat superposition of these modal
sets.

Clearly, the most difficult part of this procedure is findingappropriate division of the cavity
contour and modal sets associated to each considered cqi¢ue.

A good starting point could be to treat separately each pert,to break the cavity contour
in port and non-port partsy, and S,, respectively (see Fig. 1). Thef, can be broken again,
and every piece of the contour belonging to each port can parately treated. In other words,
S, can be broken int&}, ... SA, whereA is the number of ports feeding the cavity (see again
Fig. 1).

The ports are always plane, so the most appropriate mod#&drsitese ports is a plane wave
spectrum. The plane wave spectrum, which emanates fromne,pk& physically valid in only
one of the half-spaces that this plane defines [9]. This m#@atsthe position of a given port

has to be chosen so that the entire cavity belongs to theshatfe where the plane spectrum



associated to this port remains physically valid; fortehatthis is always possible.

In order to construct a fully valid plane wave spectrum fag tiih port, with coordinates;,
y; and z;, two different sets of plane waves are necessafy)& plane wave set plus @FY
plane wave set [9]. Fortunately, thanks to the symmetry oécangular waveguide H plane
problem, in this case, only &MY plane wave will be necessary.

The T'MY plane wave has the following expression,
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where
« a{"M5:are arbitrary weights.
« BB+ =
« These modes have physical sense in the cavity since the wevastenuated when grows,
once /3, and g, are fixed, and a propagating solution is not obtaingédpure imaginary).
In addition, if the excitation is constant along and the only non-zero component of its
electric field isE,, the scattered field generated by the arbitrarily shapedycaf Fig. 1 will

show the same properties than the excitation. This hapgengxample, when the cavity is

excited by the fundamental mode of the feeding rectangutareguides. In this casg, must



be equal to zero, and the appropriate plane wave spectrummataaterise the problem is then
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These plane waves can synthesise arbitrary tangentiak feglcevery port so that a given
boundary condition can be forced. The spectrum derived fitmarplane waves of equations (5)
and (6) is continuous, however a discrete spectrum is negsdeliscrete spectrum is obtained
when the field over the whole plane containing the port isqakci Fortunately, it is necessary
to synthesise only an arbitrary field in the region of the pléelonging to the port, while the
fields outside the port surface are not important, so a ds@gectrum can be used to force an
arbitrary contour condition at the port.

To obtain the expressions for the modes, let us analyse destape: synthesising an arbitrary
E,, field using theT' MY wave of (5). Since the port is the region of interest, and aoder
solution is possible, a Fourier seriesapn can be used to synthesise the field. Moreover, since
the port is of sizex in x;, the most attractive possibility is to choose this sizeas the base

period of the Fourier series.

Ly

v
\J  a
Fig. 2. i-th port initial period.
A Fourier series Witrﬁé’”) = 2mm/a will allow us to synthesise an arbitrary function over the

port surface. This Fourier expansion has a high risk, howe@feshowing an undesirable Gibbs’

effect; this is because it is not guaranteed that the syiséperiodic function is continuous.



To ensure continuity, rather than considering the perio#&igf 2, a bigger period, specifically,

a period of sizea, will be used (see Fig. 3).
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Fig. 3. i-th port extended rectangular period.

In order to synthesise such an extended period a Fouriezsserith Bém) = mn/a (m =
—00,...,—1,0,1,...00) has to be used. The shape of the period outside the wantemh refy
Fig. 3, i.e. the interval between zero andis not important; for instance, a period showing
even symmetry (see Fig. 3) can be therefore chosen. Thisswrametry ensures a continuous
periodic field over the plane which contains the port and tifeh& effect will be almost non-

existent. If the Fourier weights for such a period are comgputhena’n ) = af%3~), where

afTA ) and afA ) are the weights of (7) and (8) whe#™ = mr/a. The equality between
the positive exponential and negative exponential weiglotably simplifies the discreté MY

plane wave modes (see (7) and (8))
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where all the constants of (7) and (8) have been groupedhetsihgle plane wave mode weight,

a'tM)., Finally, since the weight has to be considered separatetye following expressions,



the modes can be written definitely as
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Using the modes of (10) an arbitrary tangential electric agnetic field can be synthesised
at the port; it is known from uniqueness [8] that this will b@oagh to successfully accomplish
an arbitrary boundary condition at the port.

To be more specific, the field at every point of medidm (x,y, z), generated by these plane

wave modes associated to the ports of the cavity can be atdcubs

M
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where

« M is the total number of modes considered at all ports.

. &/hT1 is the electric/magnetic part of the-th 7'M/ plane wave mode.

« d,, is the weight associated to the-th mode.

Until now, the ports,S,, have been characterised, but the conducting part of thiéyca,
have not yet been solved. Unfortunately, the shape of thisgdhe contour it is not known a
priori (it was known that eveng: was plane). Therefore, another strategy has to be usedd® for
the boundary condition oves,, for example, an unknown surface curresit, over S... Finally,
in order to complete the discretisation of the equatione,dlhlrrent,ﬁ, has to be expanded as

sum of certain basis functions; that is, the well-known rodtiof moments [10] is going to be



applied.
— Q —
= Z IqJq (12)
q=1

To pose the problem, the corresponding boundary conditeas the cavity limits have to be
enforced, that is, continuity of electric and magnetic figldhe ports and null tangential electric

field overS.

T;)  dne, (S0 + > LES () (13)
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m=1 q=1
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Q
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where EL'(J)/HE' (J) is the total electric/magnetic field ovet generated by an electric
current.J in the mediumi/ and EZ/(J)/H(J) is the electric/magnetic field tangential £
generated by an electric curretin the medium/ /.

There are, fortunately, some shapes for the conductingpaothat can be solved modally. For
instance, if a certain piece of the conducting contour wasgland if the whole cavity belonged
to the physically valid half-space of an hypotheticallyr@avave spectrum over such plane part
of the contour, the same modes presented before for ef/ecpuld be used to characterise this
conducting and plane part of the contour. This situatiorisas uncommon as one would think.

There are many structures with such plane conducting ssfamiting the cavity, as can be
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seen in the results. Of course, these special parts of thewohave been used to improve the

efficiency of the technique presented in this paper.

[1l. TESTING THE EQUATIONS

To determine the modal coefficients and the weights for thieeats, equations (13)-(15) must
be discretised. They will be projected over a well choseroééest functions distributed along
So = S, US..

Considering that the electric current, has been expanded as a weighted sur afifferent
basis functions, equation (15) should be tested using @l$est functions,, r = 1,2,... R,

R = @, placed alongs..

The rest of test functions will be placed owy. For thei-th port N; modes have been used to
expand the field in the mediuthand M; modes to expand the field in the mediurth Equation
(13) will be therefore projected over a certain set of testfionsiu,;, s = 1,2, ... 5; and equation
(14) over a different set of test functions, t = 1,2,...7;, whereS; = T; = N; = M;. The
same process will be repeated for every port of the problem.

To simplify the notation, it is more convenient to reordee thort dependent parametebs;,
el ht

ni?! 'Yni?

iy anduy; in terms of a single index. Then the indégxwhich refers to the port number
in all the port-dependent parameters, can be eliminatedeXample, if this reordering is applied
to the coefficients of the emergent modgs, the column vectob of N = 224:1 N, elements
can be defined.

-

b bll)"'7bN117"'7b1A7"'7bNAA] (16)

By applying the reordering to the other port dependent e the column vectors andn’
of N elements and the vectomsof S = 321 | S; elements, and of T = > | T; elements can
be defined V = S =1).

Finally, when the equations of (13)-(15) are projected olrese sets of test functions, a system

of equations is obtained. The construction of this matristem is detailed in the appendix. The
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solution of this system providds,, d,,, and I,.

Z1 Z1 713 b E,
?21 §22 ?23 d = ﬁi (17)
Zs =0 Zsp Zs I 0

IV. SCATTERING PARAMETERS COMPUTATION

In (17), the first set of unknowns are the weights for the scattered modes through the
ports towards mediund. Then, in order to compute the scattering parameters, ompigrg for
example, port, has to be excited with a single mode, for examplerthth mode, with unitary

amplitude §,,,; = 1),

Lo &/h),6 (S if k=
gy, — ] ) / (18)
0 rest

thens = b,

A. Direct solution

That can be done if the following matrices are defined,

?ac = _Z33 32 (19)
p— :71 p— p— p—
Zag = Zy(Zio+ Z13Z4c)
e (20)
Xe = Xy (Xoo+ Xo3Z4.)

and it is taken into account that, = —?115 andH,; = ?215, wherea is a vector which contains

the weights for the incident modes. Then the generalisetiesitey matrix is

S-_ {ﬂ 27 [Xi— Zd] } 21)

V. COMPARISON AGAINST THE REFERENCE

To compare the technique of [6] and the technique of this pdbe same test functionsg,
v, andd, have to be used; the same basis functiofashave to be used to expand the current

over the conducting limits of the cavity in both methods, adlwso that@;, = @), in Tab. I.
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TABLE |
COST COMPARISON

[6] New method
Num. of elem.  4N? +3Q;N; + Q? 4NZ +3Q2 N, + Q3
Cost of prod.  QIN; + 2Q N} + 3N} Q3Ny + 2Q2 N2 + 3N3

. 2 2
Costofinv. O (Q‘i’ + (1 + ﬁ) Nf’) 0 (Q% + (1 + ﬁ) Ng’)

Due to the fact that the characterisation of the ports is ddfgrent in both methodsy; # Ns;
the comparison requires a more exhaustive analysis.

If simple basis functions, such as pulses, are used to tiserthe currents of [6], more
unknowns will be needed to adequately characterise the gwah using plane wave modes, that
is Ny < N;. The cost of filling the matrices and computing the matrixducts and inversions
will be notably smaller for the method of this paper (see Tab.

If full domain basis functions are used to characterise thitsp for example theos() part
of (10), N; can be reduced, and forced to be almost equalNio In this case, the cost of
the matrix products and inversions is the same for the teci®si compared here. However, the
cost of computing the matrix elements related to the p(ﬁg, ?22 and ?32, will be nearly
prohibitive in the technique of [6]. This is because full dmmbasis functions have been used and
that will imply the solution of large and difficult (singulat many evaluation points) numerical
guadrature rules to compute the port-related matrix elésnén comparison, in the technique
presented in this paper, a single evaluation of a functidhlve enough to compute the same
elements. In short, in this case, the technique of [6] willdtgo slower and, furthermore, very

difficult to implement.

VI. RESULTS

At this point several simple problems will be solved using tlechnique proposed in the
previous sections. Specifically, a 90° bend, several bdvieénds, a 135° bend, a charged T-

junction and two filters of coupled cavities will be analys@dl H-plane problems inside a
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rectangular waveguide); the solutions will be comparedhwdme results found in the literature
[6], [11].

As test and basis functions, a combination of basis and testtibns that facilitate the
computation of the coefficients matrix elements is chosen.

The basis functions will befq = P,y, where P, are rectangular pulses uniformly distributed
along S..

The test functionsy,, will be &, = W,y, with 1V, equal to Dirac’s delta functions uniformly
distributed alongS.. The test functionsii,; and vy;, will be iy, = Ugy and oy, = V(1 X ),
with U,; andV}; also Dirac’s delta functions uniformly distributed alofg, so that the method
has been reduced to a typical point-matching.

The rectangular waveguide modes and the solution of a twmiasional scattering problem
using the method of moments (point-matching) are well dasuted in the literature [10], [12],
[13], so they will not be reproduced here.

As it was mentioned before, to increase the efficiency of élslrtique, the straight conducting
limits of the cavity will be modally characterised, as thetpare. This implies, for example,
that for the 90° bend, the discretisation of Fig. 4(a) willfeplaced by the discretisation of Fig.

4(b). Both alternatives are valid, but the modal one (Figp)@is more efficient.

(a) With currents (b) With modes

Fig. 4. Discretisation for the 90° bend when the straightdemting segments are and are not modally characterised.

To find the solution of the analysed problems, a basis funstaensity equal td00 pulses per
wavelength has been used; in poNs= M; = 20 modes have proven to be enough to provide

accurate results. Or in other words, the scattering paemsetf N; = 20 different modes will
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be found at each port after the method is applied.
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Fig. 5. Discretisation proposed for the devices analyseithigipaper.

For the beveled bends of Fig. 5(a) and the 135° bend of Fig, 8{b waveguides will have
a width equal toa = 15.799 mm. Three beveled bends will be analysed, with= a/v/2,
a, = 0.98¢ and a, = av/2 (the 90° bend of Fig. 4(b)). On the other hand, for the charged
T-junction of Fig. 5(c), the width of the waveguides will e= 22.86 mm; the values fon
and i will be, § = 0.1 mm andh = 8.8 mm. Finally, the coupling windows of Figs. 5(d)
and 5(e) will be used to analyse two filters of coupled casiti€ improve the efficiency
of the solution, every coupling window will be analysed sapely. Then, all of the coupling
windows will be linked using onlyl1 of the 20 modes (for efficiency) calculated at each port
and the generalised scattering matrix of the whole filtet i@l computed using the procedure
of [14]. In this particular case, the scattering matricespated for each coupling window
must be unavoidably multimodal, since the cascade cannattgately done using monomodal
scattering matrices. First, a filter with rounded £ 3 mm) corners in the coupled cavities (Fig.
5(d)) will be considered . Second, a filter with rounded cmne, = 2 mm) in the coupling

windows (Fig. 5(e)) will be analysed. The dimensions of thter§ are tabulated in Tabs. Il and
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TABLE Il
DIMENSIONS FOR THE FILTER WITH ROUNDED CORNERS IN THE CAVITIE (1. = 3 MM).

l1=10;=9284 mm L;=Lg=9.77 mm a;p, = 19.05 mm
lb=1lg=6344 mm Ly=Ls=11.118 mm a,, = 19.05 mm
I3 =105=58l4mm L3z=1L;=11.273 mm a = 22mm

{4, = 5.738 mm

TABLE 1l
DIMENSIONS FOR THE FILTER WITH ROUNDED CORNERS IN THE COUPLIBIWINDOWS (Tw =2 MM).

lh=10;=8768mm L, =Lg=09.159 mm a; = 19.05 mm

lb =1 =5837Tmm L,=Ls=10.581 mm a,, = 19.05 mm
Is=1l5=4311mm L3=1L,=10.752 mm qa =22 mm
[, =5.235 mm

The meaning of the parameters shown in these tables can bars€e&y. 6

' '

Qin l3 a INt1]| Gout

Y Y

Ly Ly Ly

Fig. 6. Filter of coupled cavities

In Fig. 7, one can see the comparison between the resultmiebttafter applying the technique
developed in the present paper and several results takenthe literature. A good agreement
for both responses can be observed.

In Tab. IV, a summary of solving temporal costs is shown. €hene can see that the cost
of solving these problems is actually smaller than the céstpplying the technique of [6], as
it was advanced in section V.

Not only the generalised scattering matrix of the differstntictures has been computed, but

also the field scattered in response to the incidence agamgtort 1 of the fundamental mode.
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Fig. 7. Comparison of the results with the references.

The graphical representation of the fields for the beveled véth a;, = 0.98¢ at f = 15.8 GHz

can be seen in Fig. 8.
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TABLE IV
SUMMARY OF TEMPORAL COSTS AND NUMBER OF UNKNOWNS CONSIDERED®R EVERY DEVICE USING ANINTEL
CORE2DuUO (3.00 GHz) PROCESSOR WITHA GB OF RAM.

[6] New method
S S
parameters parameters
Unknowns secl/freq. Unknowns secl/freq.
point point
90° bend 294 0.06 120 0.005
135° bend 262 0.04 96 0.004
Bev. bend ¢, = a/v/2) 238 0.03 108 0.004
Bev. bend ¢, = 0.98a) 260 0.04 113 0.004
Filter (r, = 2 mm) 2896 0.64 2004 0.26
Filter (r. = 3 mm) 2756 0.56 2198 0.34
J T
e, I S
(@) By, (b) Ha, (c) H,

Fig. 8. Field inside a beveled bend with= 15.799 mm anda, = 0.98a, when the incidence of fundamental mode against
the port 1 is considered for a frequency equalfte- 15.8 GHz. a) Transversak, b) TransversaH and c) LongitudinalH .

VII. CONCLUSION

A new formulation for a hybrid mode-matching and method ofnmeats technique which
modally characterises every port of an arbitrarily shapedty (see Fig. 1) has been developed.
When the ports are characterised using a planar modal g@gparise number of unknowns
in most situations is smaller than in [6]. If more elaborageib functions are used, the number
of unknowns can be comparable, but at a high cost; this isusecd is necessary to evaluate
an important number of numerical integrals in order to fi# timatrices while, in the technique

presented in this paper, this numerical integration do¢sappear. This can be seen in section



18

VI, where the efficiency of the new method is compared with tiethod of [6]. From this
comparison one can conclude that, for a general device, ¢ae method performs, at least,
twice faster, even ten times faster for particular georestri

Finally, it is necessary to remark that the technique preseim this paper has been particu-
larised to analyse arbitrary H plane problems in rectamgubaveguides, but this technique can
be used to solve full three-dimensional problems afteryapglthe appropriate generalisations.
The work presented in this paper for the two-dimensiona¢ @@ be a good starting point to
extend the technique to three-dimensional problems. Theiso and the analysis of the results
of several three-dimensional devices will show if this fofation is able to provide efficiency
improvements comparable to those obtained for the two-dsm@al devices analysed in this

paper.
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APPENDIX

To complete the calculation of the system of equations tiegufrom the discretisation of

(13)-(15), the projection operator which will allow to distise the equations needs to be defined

< R 0(z,y,2) >= //5 7 - iz, y, 2)] dS (22)

wherex - ¥ is the scalar product between the vectgrand v, S can beS, or S.; K is any of
the vectorial test functions that has been defined in settion

Next,the expression for the resulting system of equatiftes applying the method of moments
to (13)-(15) is presented. In order to do that, first the umkmoare organised in a column vector
T

T = (bi,bo, by, diydo, o dag, Iy Doy o+, 1) (23)
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the excitation is stored in another column vectét of sizeBx1, B=N+M+Q = S+T+R

—

= I
< u17 Ez'nc,Sa >

— _»I
< Ug, Einc,Sa

>

— I
< ug, Einc,Sa

>

< 171,H~I

inc,Sq

gine — < Uy, ﬁ'InC,Sa > (24)

1

>

< UT, Hilnc,Sa >
0
R

and finally, aB x B matrix, ?, is defined, whose elements can be grouped in the following

sub-matrices

711(S><N) 712(&'><M) 713(&'><Q)

Nl

721(TxN) 722(Tx M) 723(TxQ) (25)

731(Rx N) 732(Rx M) 733(Rx Q)

. 711(5xN) also can be divided into blocks:
Ell(sl ><N1) e ElA(Sl XNA)
(26)
EAl(SAXNl) Tt EAA(SAXNA)

and only the diagonal blocks will be non-zero. The elemehis diagonal blockfii, can

be computed

el = — < i, el(S) > (27)

ni

with s =1,2,...5;, n=1,2,... N,
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o Zia(sxan)

12— i Te T (S) > (28)

sm

s=1,2,...5, m=1,2,... M andi is the port whichs belongs to.
. 713(S><Q)

A0 =<ty B () > (29)

59

s=1,2,...Sandg=1,2,...Q.

. 721(“]\[) whose elements can also be grouped

ﬁll(Tlle) e ﬁlA(TlxNA)

(30)

ﬁAl(TAle) e FAA(TAXNA)

and a block-diagonal matrix is obtained. The elements obakbin the main diagonaﬁii,
can be computed

WD =< Gy, hE(S1) > (31)

witht=1,2,...T;,n=1,2,...N,.
. 722(TxM)

2 —< G, TRLT(S)) > (32)

tm

t=1,2,...T,m=1,2,... M andi is the port whicht belongs to.

. ?23(T><Q)
vy =< v, HE (T) > (33)

t=1,2,... Tandqg=1,2,...Q.
. ZquNFO, because (15) do not depend ign
L 732(R><M)

230 =< &, g, x €,11(S,) > (34)

€m
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r=12,... Randm=1,2,... M.

o Z33(RxQ)

289 =< @, g, x BT () > (35)

r=1,2,...Randq¢=1,2,...Q.

Finally, the following system of equations can be consg&dct

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

77 = gne (36)
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