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Abstract 

The objective of this study was to evaluate the operating cost of an anaerobic membrane 

bioreactor (AnMBR) treating sulphate-rich urban wastewater (UWW) at ambient temperature 

(ranging from 17 to 33ºC). To this aim, energy consumption, methane production, and sludge 

handling and recycling to land were evaluated. The results revealed that optimising specific gas 

demand with respect to permeate volume (SGDP) and sludge retention time (for given ambient 

temperature conditions) is essential to maximise energy savings (minimum energy demand: 

0.07 kWh·m-3). Moreover, low/moderate sludge productions were obtained (minimum value: 

0.16 kg TSS·kg-1 CODREMOVED), which further enhanced the overall operating cost of the plant 

(minimum value: €0.011 per m3 of treated water). The sulphate content in the influent UWW 

significantly affected the final production of methane and thereby the overall operating cost. 

Indeed, the evaluated AnMBR system presented energy surplus potential when treating low-

sulphate UWW. 
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1. Introduction  

 

Nowadays, a key issue in global sustainable development is the dependency on fossil 

fuels for electricity production, which represents up to the 80% of the global energy 

consumption [1]. In this respect, electricity consumption is a key element in the overall 

environmental performance of a wastewater treatment plant (WWTP) [2]. Hence, it is 

particularly important to implement new energy-saving technologies that reduce the 

overall energy balance of the WWTP, such as anaerobic membrane bioreactors 

(AnMBRs). This technology focuses on the sustainability benefits of anaerobic 

processes compared to aerobic processes, such as: minimum sludge production due to 

low biomass yield of anaerobic organisms; low energy demand since no aeration is 

required; and methane production that can be used to fulfil process energy requirements 

[3].  

 

Several issues have been recognised elsewhere as potential drawbacks which may affect 

the sustainability of AnMBR technology treating urban wastewater (UWW). One key 

issue is the competition between Methanogenic Archaea (MA) and Sulphate Reducing 

Bacteria (SRB) for the available substrate [4] when there is significant sulphate content 

in the influent, reducing therefore the available COD for methanisation [5]. For urban 

wastewater, which can easily present low COD/SO4–S ratio, this competition can 

critically affect the amount and quality of the biogas produced. Specifically, 2 kg of 

COD are consumed by SRB in order to reduce 1 kg of influent SO4-S (see, for instance, 
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[5]). According to the theoretical methane yield under standard temperature and 

pressure conditions (350 LCH4·kg-1COD), SRB reduces the production of approx. 700 L 

of methane per kg of influent SO4-S (considering reduction of all sulphate to sulphide). 

Therefore, higher biogas productions would be achieved when there is little sulphate 

content in the influent (typical sulphate concentration in UWW fluctuates around 7-17 

mg SO4-S·L-1 [6]). On the other hand, due to the low-growth rate of anaerobic 

microorganism, high sludge retention times (SRTs) are required when operating at low 

temperatures in order to achieve suitable organic matter removal rates, especially for 

low-strength wastewaters like urban ones (typical COD levels below 1 g·L-1 [6]). 

However, as regards filtration process, operating AnMBRs at high SRT may imply 

operating at high mixed liquor total solid (MLTS) levels. This is considered to be one of 

the main constraints on membrane operating because it can result in a high membrane 

fouling propensity and therefore high energy demand for membrane scouring by gas 

sparging [7].  

 

The objective of this study was to evaluate the operating cost of an AnMBR system 

treating sulphate-rich urban wastewater (UWW) at ambient temperature (ranging from 

17 to 33ºC). To this aim, power requirements, energy recovery from methane (biogas 

methane and/or methane dissolved in the effluent), and sludge handling and recycling to 

land were evaluated at different operating conditions. In order to obtain reliable results 

that can be extrapolated to full-scale plants, this study was carried out in an AnMBR 

using industrial-scale hollow-fibre membrane units. This system was operated using 

effluent from the pre-treatment of the Carraixet WWTP (Valencia, Spain).  

 

2. Materials and methods  
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2.1. AnMBR plant description 

 

A semi-industrial AnMBR plant was operated using the effluent of a full-scale WWTP 

pre-treatment. The average AnMBR influent characteristics are shown in Table 1. This 

influent UWW was characterised by a low COD (around 650 mg·L-1) and high sulphate 

concentration (around 105 mg SO4-S·L-1). 

 

The AnMBR plant consists of an anaerobic reactor with a total volume of 1.3 m3 

connected to two membrane tanks (MT1 and MT2) each one with a total volume of 0.8 

m3. Each membrane tank includes one ultrafiltration hollow-fibre membrane 

commercial system (PURON®, Koch Membrane Systems, 0.05 µm pore size, 30 m2 

total filtering area). The filtration process was studied from experimental data obtained 

from MT1 (operated recycling continuously the obtained permeate to the system), 

whilst the biological process was studied using experimental data obtained from MT2 

(operated for the biological process without recycling the obtained permeate). Hence, 

different 20 ºC-standardised transmembrane fluxes (J20) were tested in MT1, without 

affecting the hydraulic retention time (HRT) of the plant. 

 

In addition to conventional membrane operating stages (filtration, relaxation and back-

flushing), two additional stages were considered in the membrane operating mode: 

degasification and ventilation. Further details on this AnMBR can be found in Giménez 

et al. [5] and Robles et al. [8]. 

 

2.2. AnMBR operating conditions 
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The AnMBR plant was operated for around 920 days within a wide range of operating 

conditions for both filtration and biological process.   

 

2.2.1 Filtration process 

 

Five operating scenarios related to filtration process (FP1-FP5) were considered to 

evaluate the energy consumption of the AnMBR plant (see Table 2). As Table 2 shows, 

the main operating conditions in these five scenarios were as follows: transmembrane 

pressure (TMP) during filtration: from 0.09 to 0.35 bar; J20 from 9 to 20 LMH; MLTS 

entering the membrane tank: from 12.5 to 32.5 g·L-1; sludge recycling flow in anaerobic 

reactor and membrane tank (SRFMT and SRFAnR respectively): 2.7 and 1 m3·h-1 

respectively; specific gas demand per square metre of membrane area (SGDm): 

controlled at 0.17 and 0.23 m3·h-1·m-2; and biogas recycling flow to the anaerobic 

reactor (BRFAnR): 1.5 m3·h-1. 

 

2.2.2. Biological process  

 

Variations in SRT and seasonal temperature were studied to account for the dynamics in 

methane and sludge productions over time. During the 920-day experimental period the 

plant was operated at ambient temperature ranging from 17 to 33 ºC and SRT varied 

from 30 to 70 days. Three different experimental scenarios related to biological process 

(BP33°C, SRT 70days, BP22°C, SRT 38days  and BP17°C, SRT 30days) were considered to evaluate the 

energy consumption of the AnMBR plant (see Table 3): (1) a summer period of two 

months of operation resulting in high methane and low sludge productions (BP33°C, SRT 

70days) due to operating at high temperature (33 °C in average) and high SRT (70 days); 
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(2) one year of operation resulting in moderate methane and sludge productions (BP22°C, 

SRT 38days) due to operating at variable temperature (22 °C in average) and moderate SRT 

(38 days); and (3) a winter period of two months of operation resulting in low methane 

and moderate sludge productions (BP17°C, SRT 30days) due to operating at relatively low 

temperature (17.1 °C in average) and moderate SRT (30 days). These three scenarios 

represent boundary (BP33°C, SRT 70days: best conditions; and BP17°C, SRT 30days: worst 

conditions) and average (BP22°C, SRT 38days) of the operating conditions evaluated in the 

plant. 

 

In addition, several simulation scenarios were calculated in order to assess the AnMBR 

performance within the whole range of temperature (17-33 ºC) and SRT (30-70 days) 

evaluated in this study. Simulation results were obtained using the WWTP simulating 

software DESASS [9]. This simulation software features the mathematical model 

BNRM2 [10], which was previously validated using experimental data obtained in the 

AnMBR plant.  Figure 1 shows the resulting effluent COD without including dissolved 

methane concentration (see Figure 1a); total methane production (see Figure 1b); and 

sludge production (Figure 1c) for the different temperature and SRT conditions 

simulated. 

 

2.2.2.1. Influent sulphate concentration 

 

The effect of the influent sulphate on the AnMBR operating cost was also evaluated. As 

mentioned before, the UWW fed to the AnMBR plant was characterised by relatively 

low COD and high sulphate concentrations (see Table 1). Therefore, an important 

fraction of the influent COD was consumed by SRB. To be precise, the sulphate content 
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in the influent was approx. 105 mg S-SO4·L
-1, from which approx. 98% was reduced to 

hydrogen sulphide (around 103 mg S-SO4·L
-1). Therefore, about 206 mg·L-1 of influent 

COD were consumed by SRB. 

 

The results obtained in this study were compared to the theoretical results obtained in an 

AnMBR system treating low-sulphate UWW (10 mg S-SO4·L
-1). To this aim, the 

methane production when treating low-sulphate UWW was calculated on the basis of 

the theoretical methane yield under standard temperature and pressure conditions: 350 

LCH4·kg-1COD. Table 4 shows the theoretical methane production (including both 

biogas methane and methane dissolved in the effluent) obtained for cases BP33°C, SRT 

70days, BP22°C, SRT 38days   and BP17°C, SRT 30days when treating low-sulphate UWW (10 mg S-

SO4·L
-1). The distribution between gas and liquid phase of the produced methane was 

established on the basis of the experimental distribution obtained in the AnMBR plant. 

 

2.3. Analytical monitoring 

 

The following parameters were analysed in mixed liquor and influent stream according 

to Standard Methods [11]: total solids (TS); total suspended solids (TSS); volatile 

suspended solids (VSS); sulphate (SO4-S); nutrients (ammonium (NH4-N) and 

orthophosphate (PO4-P)); and chemical oxygen demand (COD). The methane fraction 

of the biogas was measured using a gas chromatograph equipped with a Flame 

Ionization Detector (GC-FID, Thermo Scientific) in accordance with Giménez et al. [5]. 

The dissolved methane fraction of the effluent was determined in accordance with 

Giménez et al. [12]. AMPTS® (Automatic Methane Potential Test System, Bioprocess 

Control) was employed for evaluating the biochemical methane potential (BMP) of the 
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wasted sludge. Due to the low microbial activity of this sludge, BMP tests were 

inoculated using biomass coming from the anaerobic digester of the Carraixet WWTP. 

VSS and TSS levels in the wasted sludge were measured at the beginning and at the end 

of the BMP test, allowing the percentage of biodegradable volatile suspended solids 

(%BVSS) to be calculated. In this study, the sludge stabilisation criterion was set to 

35% of BVSS. 

 

2.4. Energy balance description  

 

The energy balance of the AnMBR system consisted of: power requirements (W), and 

energy recovery from both biogas methane (Ebiogas) and methane dissolved in the 

effluent (Edissolved methane). The heat energy term (Q) was assumed negligible since the 

process was evaluated at ambient temperature conditions. 

 

Therefore, the AnMBR energy consumption was evaluated in this study assuming the 

following terms: (1) energy consumption when non-capture of methane is considered; 

(2) net energy consumption including energy recovery from biogas methane; and (3) net 

energy consumption including energy recovery from both biogas methane and methane 

dissolved in the effluent.  

 

The equipment considered in the W term consisted of the following: one anaerobic 

reactor feeding pump; one membrane tank sludge feeding pump; one anaerobic reactor 

sludge mixing pump; one permeate pump; one anaerobic reactor biogas recycling 

blower; one membrane tank biogas recycling blower; one rotofilter; and one dewatering 

system. 
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The energy requirements for each of the scenarios evaluated in this study were 

calculated using the simulation software DESASS, which includes a general tool that 

enables calculating the energy consumption of the different units comprising a WWTP. 

 

2.4.1. Power requirements (W) 

 

As proposed by Judd and Judd [13], the energy consumption related to pumps and 

blowers (adiabatic compression), was calculated by applying the corresponding 

theoretical equations (Equations 1, 2 and 3, respectively).  
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where PB is the blower power requirement (adiabatic compression), M (mol·s-1) is the 

molar flow rate of biogas, R (J·mol-1·K-1) is the gas constant for biogas, P1 (atm) is the 

absolute inlet pressure, P2 (atm) is the absolute outlet pressure, Tgas (K) is the biogas 

temperature, α is the adiabatic index and ηblower is the blower efficiency. 

P1 and M were taken from the data obtained in the AnMBR plant; P2 and Tgas were 

calculated by the simulation software; and a value of 0.8 was considered for ηblower as a 

theoretical typical value. 
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where Pg is the power requirement by the general pump, considering both pump 

aspiration and pump impulsion section, calculated from the impulsion volumetric flow 

rate (qimp. in m3·s-1), liquor density (ρliquor in kg·m-3), acceleration of gravity (g in m·s-1), 
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pipe length (L in m), pipe equivalent length of the punctual pressure drops (Leq in m), 

liquor velocity (V in m·s-1), friction factor (f, dimensionless), diameter (d in m), 

difference in height (Z1-Z2, in m) and pump efficiency (ηpump).  

qimp and  ρliquor  were taken from the data obtained in the AnMBR plant; L, Leq, D and  

Z1-Z2 were taken from the dimensions of the AnMBR plant; V and  f were calculated by 

the modelling software; and a value of 0.8 was considered for ηpump as a theoretical 

typical value. 
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    (Equation 3) 

where Pstage is the permeate pump power requirement during filtration, degasification or 

back-flushing calculated from transmembrane pressure (TMPstage in Pa), pump 

volumetric flow rate (qstage in m3·s-1) and pump efficiency (pump).  

TMPstage and qstage were taken from the data obtained in the AnMBR plant 

 

To calculate the net power required by the permeate pump (Ppermeate), the sum of the 

power consumed in the following four membrane operating stages was considered: 

filtration (Pfiltration), back-flushing (Pback-flushing), degasification (Pdegasification) and 

ventilation (Pventilation). Equation 4 was used to calculate the power in filtration, back-

flushing and degasification. Equation 3 was used to calculate the power in ventilation 

since the fluid does not pass through the membrane.  

 

The energy consumption related to the rotofilter was obtained from a catalogue for full-

scale implementation [14].  
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Concerning sludge handling, centrifuges with an average power consumption of 45 

kWh·t-1 TSS [15] were selected in our study as sludge dewatering system. 

 

2.4.2. Energy recovery from methane 

 

Since microturbines can run on biogas, they were selected as combined heat and power 

(CHP) technology [16]. Microturbine-based CHP technology has an overall efficiency 

of around 65.5%, assuming power energy efficiency of about 27% (see Equation 4). 

 

 

3600241000

%%
)(

44






CHPeffciencypowerCHbiogas

biogas

CVCHV
kWW     (Equation 4) 

 

where Wbiogas is the power generated by the Microturbine-based CHP system using 

biogas, Vbiogas (L·d-1) is the biogas volume, %CH4 is the methane percentage and CVCH4 

(KJ·m-3) is the methane calorific power. 

 

It must be said that methane dissolved in the effluent was considered to be captured for 

obtaining power energy by using the Microturbine-based CHP system. Theoretical 

capture efficiency for the dissolved methane of 100% was considered in order to assess 

the maximum energy potential.  

 

2.5. Operating cost assessment 

 

The operating cost analysis was limited in this study to net energy demand, and sludge 

handling and recycling to land.  
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The net energy demand in scenarios FP1-FP5 was evaluated for cases BP33°C, SRT 70days, 

BP22°C, SRT 38days and BP17°C, SRT 30days assuming, as previously mentioned, the following 

terms: (1) non-capture of methane; (2) energy recovery from biogas methane; and (3) 

energy recovery from both biogas methane and methane dissolved in the effluent. The 

energy term considered in this study was €0.138 per kWh (according to the current 

electricity rates and prices in Spain [17]). 

 

Concerning sludge handling and recycling to land, centrifuges require the use of 

polyelectrolyte for proper sludge conditioning. The dose of polyelectrolyte considered 

in our study was 6 kg·t-1 TSS [18], and the assumed polyelectrolyte cost was €2.52 per 

kg Polyelectrolyte [19]. The produced sludge was considered to be used as a fertiliser in 

agricultural land. The assumed cost for sludge recycling to land was €4.81 per t TSS 

[19].  

 

3. Results and discussion  

 

3.1. Overall process performance 

 

Figure 2 shows the 20 ºC-standardised membrane permeability (K20) and the MLTS 

level in the anaerobic sludge fed to the membrane tanks during 920 days of operation. 

Both K20 and MLTS are referred to its daily average value. This experimental period is 

divided into two stages, represented in Table 2 by a horizontal dashed line. Energy 

consumption was firstly evaluated in a period of about 790 days, which was mostly 

operated at sub-critical filtration conditions (scenarios FP1 to FP3). Overall, during this 

stage K20 decreased due to increasing membrane fouling over time (see days 300 to 790 
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in Figure 2). Around day 790 the membranes were chemically cleaned. After this 

chemical cleaning, the energy consumption was evaluated in a period of about 140 days, 

which was operated at critical filtration conditions (scenarios FP4 and FP5). During this 

second stage higher J20 were applied (see days 790 to 920 in Figure 2), making the 

AnMBR performance comparable to full scale aerobic MBRs [13]. 

 

Regarding the biological process, methane production increased significantly when 

operating at both high temperature and high SRT (BP33°C, SRT 70days). To be precise, the 

average experimental methane production was 41.1, 16.8 and 8.5 LCH4·m
-3 for case 

BP33°C, SRT 70days, BP22°C, SRT 38days   and. BP17°C, SRT 30days (see Table 3), respectively. It can 

be considered that an increase in the ambient temperature and/or SRT leads to offset the 

low growth rate of MA [20]. In this respect, simulation results in Figure 1 show 

adequate effluent COD concentrations and increasing methane productions and 

decreasing sludge productions as temperature and/or SRT increases, and reducing 

sludge production as temperature and/or SRT increases, within the range of operating 

conditions evaluated in this study. 

 

Concerning sludge production, low/moderate amounts of sludge were generated. As 

Table 3 shows, the sludge production resulted in 0.16, 0.43 and 0.55 kgTSS·kg-1 

CODREMOVED in average for cases BP33°C, SRT 70days, BP22°C, SRT 38days   and. BP17°C, SRT 30days, 

respectively. The minimum sludge production corresponded to case BP33°C, SRT 70days, 

due to operating at high temperature (33 ºC) and high SRT (70 days). On the other hand, 

the experimentally determined %BVSS resulted in values below 35% within the whole 

range of evaluated operating conditions, which indicated adequate sludge stabilities of 

the wasted sludge. For instance, %BVSS resulted in the highest value (31%) when 
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operating under the most unfavourable conditions evaluated in this study (i.e. BP17°C, SRT 

30days). It is important to highlight that one key sustainable benefit of AnMBR 

technology is that the produced sludge is stabilised and no further digestion is required 

for its disposal on farmland. In addition, sludge production in anaerobic processes is 

expected to be lower than in aerobic processes. 

 

3.2. Energy consumption and operating cost of the AnMBR system 

 

3.2.1. Power requirements 

 

Table 5 shows the power requirements of the AnMBR plant for each of the five 

scenarios shown in Table 2 (FP1-FP5). This table also illustrates the weighted average 

distribution for the energy consumption of each particular equipment, i.e. pumps, 

blowers and rotofilter. The dotted line between scenario FP3 and FP4 differentiates the 

scenarios evaluated before and after chemically cleaning the membranes. Comparing 

the different scenarios assessed, it is worth to say that scenarios studied prior to 

chemically cleaning the membranes present higher energy consumptions (0.44, 0.32 and 

0.49 kWh·m-3 for FP1, FP2 and FP3, respectively) than those studied afterwards (0.20 

and 0.19 kWh·m-3 for FP4 and FP5, respectively). This is mainly due to the higher J20 

applied in the second operating stage whilst operating at similar SGDm. Specifically, the 

specific gas demands per permeate volume (SGDP) resulted in the range from 21 to 32 

in scenarios FP1-FP3, decreasing to approx. 14 in scenarios FP4 and FP5. 

 

Figure 3 shows the weighted average distribution for the power requirements in the first 

(scenarios FP1 to FP3 in Table 5) and second operating period (scenarios FP4 and FP5 
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in Table 5). This figure shows that the most important item contributing  the power 

input was the membrane tank biogas recycling blower, representing about two-thirds 

(60-75%) of the total AnMBR power requirements. The next in importance was the 

membrane tank sludge feeding pump, which represented about 15-20% of the total 

AnMBR power requirements. Therefore, the main terms contributing the total AnMBR 

power requirements were related to filtration (representing about 85-90%). This 

highlights the need of optimising filtration in any operating range to improve the 

feasibility of AnMBR technology to treat UWW.  

 

To keep long operating periods without applying membrane chemical cleaning (i.e. 

minimising irreversible fouling problems: first 790 days in Figure 2), low J20 and/or 

high SGDm are required. On the other hand, increasing the chemical cleaning frequency 

allows operating at high J20 and/or low SGDm (i.e. low SGDP), which reduces 

considerably the net energy demand (days 790 to 920 in Figure 2). To be precise, 

scenario FP5 was operated with the lowest SGDP (14.4), resulting in the lowest power 

input (0.19 kWh·m-3). Hence, it is of vital importance to reduce the energy consumption 

by minimising SGDP, which indirectly increases the membrane chemical cleaning 

frequency. Nevertheless, increasing the frequency of membrane chemical cleaning 

means high chemical reagent consumption and may affect the membrane lifetime, 

resulting therefore in an increase in membrane replacement and maintenance costs. 

Therefore, further research is required to evaluate the most suitable AnMBR operating 

strategy from an economical and environmental point of view including not only energy 

consumption but also investment and maintenance costs. 

 

3.2.2. Net energy consumption 
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Figure 4 shows the net energy consumption of the AnMBR for each of the five 

scenarios shown in Table 2 (FP1-FP5). This net energy consumption includes both 

power requirements and energy recovery from methane. As mentioned earlier, each 

scenario (FP1-FP5) was evaluated for three different methane productions (BP33°C, SRT 

70days, BP22°C, SRT 38days   and BP17°C, SRT 30days) and two different levels of energy recovery 

(biogas methane, and biogas methane and methane dissolved in the effluent).  

 

Figure 4 shows considerable reductions in the AnMBR energy demand (in comparison 

with results shown in Table 5) whenever the generated methane is used as energy 

resource. For example, the energy consumption in scenario FP5 was 0.19 kWh·m-3 

when methane was not captured (see Table 5); whilst the net energy demand in scenario 

FP5 decreased to 0.17 kWh·m-3 for case BP17°C, SRT 30days when capturing both the biogas 

methane and the methane dissolved in the effluent. In addition, operating at high 

ambient temperature and/or high SRT further enhances the energy balance of the 

system. For instance, the energy consumption in scenario FP5 could be reduced up to 

0.07 and 0.14 kWh·m-3 when recovering energy from both biogas methane and methane 

dissolved in the effluent for cases BP33°C, SRT 70days and BP22°C, SRT 38days  , respectively 

(see Figure 4b). 

 

Therefore, operating at high ambient temperature and/or high SRT allows achieving 

significant energy savings whenever the methane generated is captured and used as 

energy resource.  

 

3.2.3. Operating cost 
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Figure 5 shows the operating cost of the AnMBR system including energy recovery 

from methane (biogas methane and methane dissolved in the effluent) and sludge 

handling and recycling to land. As Figure 5 illustrates, the most favourable situation as 

regards operating cost corresponded to case BP33°C, SRT 70days. By way of example, the 

operating cost in scenario FP5 when capturing both the biogas methane and the methane 

dissolved in the effluent was €0.011, €0.027 and €0.032 per m3 of treated water for 

cases BP33°C, SRT 70days, BP22°C, SRT 38days   and BP17°C, SRT 30days, respectively. In this 

respect, savings of up to 64% from winter to summer seasons could be achieved. This 

highlights the feasibility of AnMBR technology to treat UWW in warm climate regions, 

as well as the necessity of optimising SRT for a given ambient temperature to maximise 

methane production and minimise sludge production. 

 

On the other hand, it is worth pointing out the reduction in the operating cost if energy 

is recovered from methane. To be precise, scenario FP5 for case BP33°C, SRT 70days 

resulted in an operating cost of €0.028, €0.017 and €0.011 per m3 of treated water when 

considering non-energy recovery from methane, energy recovery from biogas methane, 

and energy recovery from biogas methane and methane dissolved in the effluent, 

respectively (see Figure 5). 

 

Therefore, the energy recovery from methane enables reducing considerably the 

operating cost of AnMBRs treating sulphate-rich UWW at ambient temperature. This 

highlights the need of developing feasible technologies for capturing the methane 

dissolved in the effluent stream not only to reduce its environmental impact (e.g. due to 
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methane release to the atmosphere from the effluent), but also to enhance the economic 

feasibility of AnMBR technology. 

 

As previously commented, several simulation scenarios were calculated in order to 

assess the AnMBR performance within the whole range of temperature and SRT 

evaluated in this study. Figure 6 shows the simulation results regarding the theoretical 

influence of temperature and SRT on the AnMBR operating cost (when treating 

sulphate-rich UWW), including energy recovery from methane (biogas methane and 

methane dissolved in the effluent) and sludge handling and recycling to land. 

Specifically, this study shows the results obtained for three SGDP levels (22.3, 33.4 and 

14.4) corresponding to scenarios FP2, FP3 and FP4, respectively. As shown in Figure 6, 

from a biological process perspective, the operating cost is reduced when temperature 

and/or SRT increase; whilst, from a filtration process perspective, the operating cost is 

reduced when SGDp decreases. 

 

3.3 Effect of influent sulphate content on AnMBR operating cost  

 

As mentioned before, Table 4 shows the total volume of methane produced (including 

both biogas methane and methane dissolved in the effluent) for the cases referred as 

BP33°C, SRT 70days, BP22°C, SRT 38days   and BP17°C, SRT 30days when treating low-sulphate UWW 

(10 mg S-SO4·L
-1). Similar to treating high-sulphate UWW, methane production 

increases significantly when operating at high ambient temperature and/or high SRT 

(BP33°C, SRT 70days). When treating low-sulphate UWW, since a little amount of COD is 

consumed by SRB, the amount of influent COD transformed into methane increases 

significantly compared to treating high-sulphate UWW (see Table 4 and Table 3).  
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Figure 7 illustrates the operating cost of the AnMBR system when treating low-sulphate 

UWW. As Figure 7 shows, a significant decrease in the AnMBR operating cost could 

be achieved when treating low-sulphate UWW in comparison with treating high-

sulphate UWW. For instance, for scenario FP5 and case BP33°C, SRT 70days, the operating 

cost could be reduced from €0.017 per m3 (see Figure 5c) to €0.001 per m3 (see Figure 

7c) when recovering energy from biogas methane. This highlights the possibility of 

improving the feasibility of AnMBR technology when treating low/non sulphate-loaded 

wastewaters.  

 

Mention must also be made of the potential of AnMBR to be net energy producer 

(surplus electricity that can be exploited in other parts of the WWTP) when treating 

low-sulphate UWW. Specifically, Figure 7c shows that when methane is captured from 

both biogas and effluent, scenario FP5 presents very low operating cost (€0.006 per m3) 

for case BP17°C, SRT, 30days; whilst this cost decreases up to €0.002 per m3 for case BP22°C, 

SRT 38days. Moreover, null operating cost (or even income if the surplus energy is 

exploited and/or sold to the market) could be achieved for case BP33°C, SRT 70days: 

theoretical maximum benefit of up to €0.014 per m3. 

 

Therefore, in mild/warm climates (i.e. tropical or Mediterranean), AnMBR technology 

is likely to be a net energy producer when treating low/non sulphate-loaded 

wastewaters: a theoretical maximum energy production of up to 0.11 kWh·m-3 could be 

obtained by capturing the methane from both biogas and effluent.  

 

3.4 Comparison with other existing technologies  
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According to recent literature [13], the full-scale aerobic MBR from Peoria (USA) has a 

membrane and total aeration energy demand of around 0.34 and 0.55 kWh·m-3, which is 

low compared to the consumption of other full-scale municipal aerobic MBRs (e.g. 

Running Springs MBR WWTP, USA, consuming around 1.3-3 kWh·m-3). On the other 

hand, the conventional activated sludge system in Schilde (Belgium) consumed 0.19 

kWh·m-3 [21]. In our study, the theoretical minimum energy requirements treating 

sulphate-rich UWW resulted in 0.07 kWh·m-3. Therefore, from an energy perspective, 

AnMBR operating at ambient temperature is a promising sustainable system compared 

to other existing urban wastewater treatment technologies. Nevertheless, it is important 

to consider that the energy demand from the AnMBR system evaluated in our study 

does not take into account the energy needed for nutrient removal, which it is 

considered in the wastewater treatment plants that has been mentioned as references. 

 

According to Xing et al. [22], sludge production in activated sludge processes is 

generally in the range of 0.3-0.5 kg TSS·kg-1 CODREMOVED. As expected, low/moderate 

amounts of sludge were obtained in our study (0.16, 0.43 and 0.55 kg TSS·kg-1 

CODREMOVED for cases BP33°C, SRT 70days, BP22°C, SRT 38days   and. BP17°C, SRT 30days, 

respectively). Moreover, the produced sludge was considered stabilised, which allows, 

as mentioned before, its direct disposal on farmland without requiring further digestion. 

 

4. Conclusions  

 

The results obtained reinforce the importance of optimising SGDP and SRT (for given 

ambient temperature conditions) to minimise the energy requirements of AnMBRs 

treating sulphate-rich UWW (minimum value: 0.07 kWh·m-3). Operating at high 
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ambient temperature and/or high SRT allows achieving significant energy savings 

whenever the methane generated is used as energy resource. Moreover, low/moderate 

sludge productions were obtained (minimum value: 0.16 kg TSS·kg-1 CODREMOVED), 

which further enhanced the AnMBR operating cost (minimum value: €0.01 per m3). On 

the other hand, the sulphate content in the UWW significantly affected the final 

production of methane and thereby affected the overall energy consumption. Indeed, 

AnMBR technology is likely to be a net energy producer when treating low/non 

sulphate-loaded wastewaters in warm/hot climates: theoretical maximum energy 

productions of up to 0.11 kWh·m-3 could be achieved.  
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Table and Figure captions 

 

Table 1. Average characteristics of AnMBR influent. 

Table 2. Main operating conditions in scenarios FP1-FP5. TMP: transmembrane pressure; J20: 20 ºC-

standardised transmembrane flux; MLTS: mixed liquor total solids; SRFMT and SRFMT: sludge recycling 

flow to membrane tank and anaerobic reactor, respectively; SGDm: specific gas demand per square metre 

of membrane area; and BRFAnR: biogas recycling flow to anaerobic reactor. 

Table 3. Operating temperature (T) and sludge retention time (SRT), total methane production (VCH4), 

biogas methane (VCH4,BIOGAS), and methane dissolved in the effluent (VCH4,EFFLUENT) per m3 of treated 

water, and sludge production, for cases BP33°C, SRT 70days, BP22°C, SRT 38days   and BP17°C, SRT 30days. 

Table 4. Theoretical methane production (VCH4), biogas methane (VCH4,BIOGAS), and methane dissolved in 

the effluent (VCH4,EFFLUENT) per m3 of treated water for cases BP33°C, SRT 70days, BP22°C, SRT 38 and BP17°C, SRT 

30days when treating low-sulphate UWW. 

Table 5. Power requirements in scenarios FP1-FP5. 

 

Figure 1. AnMBR performance at different temperature and SRT conditions: (a) effluent COD (without 

including dissolved methane concentration); (b) total methane production (VCH4) (biogas methane and 

methane dissolved in the effluent); and (c) sludge production measured in kg TSS·kg-1 COD removed. 

Figure 2.  Evolution of K20 and MLTS throughout 920 days of operation. 

Figure 3. Weighted average distribution for the AnMBR power requirements in scenarios: (a) FP1 to 

FP3; and (b) FP4 and FP5. 

Figure 4. Net energy consumption in scenarios FP1-FP5 for cases BP33°C, SRT 70days (■), BP22°C, SRT 38    (

■) and BP17°C, SRT 30days (■) including energy recovery from: (a) biogas methane; and (b) biogas methane 

and methane dissolved in the effluent. 

Figure 5.  Operating cost (net energy consumption and sludge handling and recycling to land) in 

scenarios FP1-FP5 for cases BP33°C, SRT 70days (■), BP22°C, SRT 38days    (■) and BP17°C, SRT 30days (■): (a) non-

capture of methane; (b) energy recovery from biogas methane; and (c) energy recovery biogas methane 

and methane dissolved in the effluent. 
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Figure 6. AnMBR operational cost (power requirements, energy recovery from total methane production, 

and sludge handling and recycling to land) at different temperature and SRT conditions for three SGDP 

levels: (■) SGDp 33.4; (■) SGDp 22.3; and (■) SGDp 14.3. 

Figure 7.  Operating cost (net energy consumption and sludge handling and recycling to land) in 

scenarios FP1-FP5 for cases BP33°C, SRT 70days (■), BP22°C, SRT 38days  (■) and BP17°C, SRT 30days (■) when 

treating low-sulphate UWW: (a) non-capture of methane; (b) energy recovery from biogas methane; and 

(c) energy recovery biogas methane and methane dissolved in the effluent. 
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Table 1. Average characteristics of AnMBR influent. 

Parameter Mean ± SD  

Treatment flow rate (m3·day-1) 3.2 ± 0.7 

TSS  (mg·L-1) 313 ± 45 

VSS  (mg·L-1) 257 ± 46 

COD  (mg·L-1) 650 ± 147 

SO4-S  (mg·L-1) 105 ± 13 

NH4-N  (mg·L-1) 35 ± 3 

PO4-P  (mg·L-1) 4 ± 1 
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Table 2. Main operating conditions in scenarios FP1-FP5. TMP: transmembrane pressure; J20: 20 ºC-

standardised transmembrane flux; MLTS: mixed liquor total solids; SRFMT and SRFMT: sludge recycling 

flow to membrane tank and anaerobic reactor, respectively; SGDm: specific gas demand per square metre 

of membrane area; and BRFAnR: biogas recycling flow to anaerobic reactor. 

Scenario 

Period TMP J20 MLTS SRFMT SRFAnR SGDm BRFAnR 

(days) (bar) (LMH) (g·L-1) (m3·h-1) (m3·h-1) (m3·h-1·m-2) (m3·h-1) 

FP1 137-170 0.35 10.0 32.5 2.7 1 0.23 1.5 

FP2 361-404 0.13 13.3 12.5 2.7 1 0.23 1.5 

FP3 556-600 0.26 9.0 22.5 2.7 1 0.23 1.5 

FP4 807-850 0.09 15.0 14 2.7 1 0.17 1.5 

FP5 853-896 0.20 20.0 13 2.7 1 0.23 1.5 
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Table 3. Operating temperature (T) and sludge retention time (SRT), total methane production (VCH4), 

biogas methane (VCH4,BIOGAS), and methane dissolved in the effluent (VCH4,EFFLUENT) per m3 of treated 

water, and sludge production, for cases BP33°C, SRT 70days, BP22°C, SRT 38days   and BP17°C, SRT 30days. 

 
T 

(ºC) 

SRT 

(days) 

VCH4 

(BIOGAS+EFFLUENT) 

 (L·m-3) 

VCH4,BIOGAS 

(L·m-3) 

VCH4,EFFLUENT 

(L·m-3) 

Sludge production 

(kg TSS·kg-1 COD 

removed) 

BP33°C, SRT 70days 33 70 41.1 26.5 14.6 0.16 

BP22°C, SRT 38days    22 38 16.8 8.4 8.4 0.43 

BP17°C , SRT 30days 17 30 8.5 1.4 7.1 0.55 
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Table 4. Theoretical methane production (VCH4), biogas methane (VCH4,BIOGAS), and methane dissolved in 

the effluent (VCH4,EFFLUENT) per m3 of treated water for cases BP33°C, SRT 70days, BP22°C, SRT 38 and BP17°C, SRT 

30days when treating low-sulphate UWW. 

  

VCH4, 

(BIOGAS+EFFLUENT) 

(L·m-3) 

VCH4,BIOGAS 

(L·m-3) 

VCH4,EFFLUENT 

(L·m-3) 

BP33°C, SRT 70days 105.8 68.1 37.7 

BP22°C, SRT 38days    81.5 40.8 40.7 

BP17°C, SRT 30days                  73.2 11.7 61.5 
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Table 5. Power requirements in scenarios FP1-FP5. 

SCENARIO 

TOTAL ENERGY 

CONSUMPTION 

(kWh·m-3) 

PERMEATE 

PUMP 

 

(%) 

MEMBRANE 

TANK BIOGAS 

RECYCLING 

BLOWER 

(%) 

MEMBRANE 

TANK 

SLUDGE 

FEEDING 

PUMP 

(%) 

STIRRING 

POWER 

REACTOR 

(%) 

ANAEROBIC 

REACTOR 

FEEDING PUMP 

(%) 

ROTOFILTER 

 

 

(%) 

FP1 0.44 2.34 73.15 14.54 8.20 0.52 1.25 

FP2 0.32 1.26 73.18 14.69 8.43 0.72 1.73 

FP3 0.49 1.61 73.94 14.58 8.27 0.47 1.13 

FP4 0.20 1.38 61.73 21.02 11.89 1.17 2.81 

FP5 0.19 3.06 67.46 16.19 9.18 1.21 2.90 
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(c) 
Figure 1. AnMBR performance at different temperature and SRT conditions: (a) effluent COD (without 

including dissolved methane concentration); (b) total methane production (VCH4) (biogas methane and 

methane dissolved in the effluent); and (c) sludge production measured in kg TSS·kg-1 COD removed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

 

Figure 2.  Evolution of K20 and MLTS throughout 920 days of operation. 
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(a) 

 

(b) 

Figure 3. Weighted average distribution for the AnMBR power requirements in scenarios: (a) FP1 to 

FP3; and (b) FP4 and FP5. 
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(a) 

 

(b) 

Figure 4. Net energy consumption in scenarios FP1-FP5 for cases BP33°C, SRT 70days (■), BP22°C, SRT 38   (■

) and BP17°C, SRT 30days (■) including energy recovery from: (a) biogas methane; and (b) biogas methane 

and methane dissolved in the effluent. 
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(a) 

 

(b) 

 

(c) 

Figure 5.  Operating cost (net energy consumption and sludge handling and recycling to land) in 

scenarios FP1-FP5 for cases BP33°C, SRT 70days (■), BP22°C, SRT 38days    (■) and BP17°C, SRT 30days (■): (a) non-

capture of methane; (b) energy recovery from biogas methane; and (c) energy recovery biogas methane 

and methane dissolved in the effluent.  
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Figure 6. AnMBR operational cost (power requirements, energy recovery from total methane production, 

and sludge handling and recycling to land) at different temperature and SRT conditions for three SGDP 

levels: (■) SGDp 33.4; (■) SGDp 22.3; and (■) SGDp 14.3. 
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(a) 

 

(b) 

 

(c) 

Figure 7.  Operating cost (net energy consumption and sludge handling and recycling to land) in 

scenarios FP1-FP5 for cases BP33°C, SRT 70days (■), BP22°C, SRT 38days  (■) and BP17°C, SRT 30days (■) when 

treating low-sulphate UWW: (a) non-capture of methane; (b) energy recovery from biogas methane; and 

(c) energy recovery biogas methane and methane dissolved in the effluent. 
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