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Abstract

Type 1 diabetes mellitus is a chronic and incurable disease that affects millions
of people all around the world. Its main characteristic is the destruction
(totally or partially) of the beta cells of the pancreas. These cells are in charge
of producing insulin, main hormone implied in the control of blood glucose.
Keeping high levels of blood glucose for a long time has negative health effects,
causing different kinds of complications. For that reason patients with type 1
diabetes mellitus need to receive exogenous.

Since 1921 when insulin was first isolated to be used in humans and first
glucose monitoring techniques were developed, many advances have been done
in clinical treatment with insulin. Currently 2 main research lines focused
on improving the life quality of diabetic patients are opened. The first one
is concentrated on the research of stem cells to replace damaged beta cells
and the second one has a more technological orientation. This second line
focus on the development of new insulin analogs to allow emulating with
higher fidelity the endogenous pancreas secretion, the development of new non-
invasive continuous glucose monitoring systems and insulin pumps capable of
administering different insulin profiles and the use of decision-support tools
and telemedicine. The most important challenge the scientific community has
to overcome is the development of an artificial pancreas, that is, to develop
algorithms that allow an automatic control of blood glucose.

The main difficulty avoiding a tight glucose control is the high variability
found in glucose metabolism. This fact is especially important during meal
compensation. This variability, together with the delay in subcutaneous
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insulin absorption and action causes controller overcorrection that leads to late
hypoglycemia (the most important acute complication of insulin treatment).

The proposals of this work pay special attention to overcome these
difficulties. In that way, interval models are used to represent the patient
physiology and to be able to take into account parametric uncertainty. This
type of strategy has been used in both the open loop proposal for insulin dosage
and the closed loop algorithm. Moreover the idea behind the design of this last
proposal is to avoid controller overcorrection to minimize hypoglycemia while
adding robustness against glucose sensor failures and over/under- estimation
of meal carbohydrates. The algorithms that have been proposed have been
validated both in simulation and in clinical trials.



Resumen

La diabetes mellitus tipo 1 es una enfermedad crónica e incurable que afecta a
millones de personas en todo el mundo. Se caracteriza por una destrucción
total o parcial de las células beta del páncreas. Estas células son las
encargadas de producir la insulina, hormona principal en el control de glucosa
en sangre. Valores altos de glucosa en la sangre mantenidos en el tiempo
afectan negativamente a la salud, provocando complicaciones de diversa índole.
Es por eso que los pacientes con diabetes mellitus tipo 1 necesitan recibir
insulina de forma exógena.

Desde que se consiguiera en 1921 aislar la insulina para poder utilizarla
en clínica humana, y se empezaran a desarrollar las primeras técnicas
de monitorización de glucemia, se han producido grandes avances en el
tratamiento con insulina. Actualmente, las líneas de investigación que se
están siguiendo en relación a la mejora de la calidad de vida de los pacientes
diabéticos, tienen fundamentalmente 2 vertientes: una primera que se centra
en la investigación en células madre para la reposición de las células beta
y una segunda vertiente de carácter más tecnológico. Dentro de esta
segunda vertiente, están abiertas varias líneas de investigación, entre las que
se encuentran el desarrollo de nuevos análogos de insulina que permitan
emular más fielmente la secreción endógena del páncreas, el desarrollo de
monitores continuos de glucosa no invasivos y de bombas de insulina capaces de
administrar distintos perfiles de insulina y la inclusión de sistemas de ayuda a la
decisión y telemedicina. El mayor reto al que se enfrentan los investigadores es
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el de conseguir desarrollar un páncreas artificial, es decir, desarrollar algoritmos
que permitan disponer de un control automático de la glucosa.

La principal barrera que se encuentra para conseguir un control riguroso
de la glucosa es la alta variabilidad que presenta su metabolismo. Esto es
especialmente significativo durante la compensación de las comidas. Esta
variabilidad junto con el retraso en la absorción y actuación de la insulina
administrada de forma subcutánea favorece la aparición de hipoglucemias
tardías (complicación aguda más importante del tratamiento con insulina) a
consecuencia de la sobreactuación del controlador.

Las propuestas presentadas en este trabajo hacen especial hincapié en
sobrellevar estas dificultades. Así, se utilizan modelos intervalares para
representar la fisiología del paciente, y poder tener en cuenta la incertidumbre
en sus parámetros. Este tipo de estrategia se ha utilizado tanto en la propuesta
de dosificación automática en lazo abierto como en el algoritmo en lazo cerrado.
Además la principal idea de diseño de esta última propuesta es evitar la
sobreactuación del controlador, evitando hipoglucemias y añadiendo robustez
ante fallos en el sensor de glucosa y en la estimación de las comidas. Los
algoritmos propuestos han sido validados en simulación y en clínica.



Resum

La diabetis mellitus tipus 1 és una malaltia crònica i incurable que afecta
milions de persones en tot el món. Es caracteritza per una destrucció total o
parcial de les cèl·lules beta del pàncrees. Aquestes cèl·lules són les encarregades
de produir la insulina, hormona principal en el control de glucosa en sang.
Valors alts de glucosa en la sang mantinguts en el temps afecten negativament
la salut, provocant complicacions de diversa índole. És per això que els pacients
amb diabetis mellitus tipus 1 necessiten rebre insulina de forma exògena.

Des que s’aconseguís en 1921 aïllar la insulina per a poder utilitzar-la
en clínica humana, i es començaren a desenrotllar les primeres tècniques de
monitorització de glucèmia, s’han produït grans avanços en el tractament amb
insulina. Actualment, les línies d’investigació que s’estan seguint en relació a
la millora de la qualitat de vida dels pacients diabètics, tenen fonamentalment
2 vessants: un primer que es centra en la investigació de cèl·lules mare per a la
reposició de les cèl·lules beta i un segon vessant de caràcter més tecnològic.
Dins d’ aquest segon vessant, estan obertes diverses línies d’investigació,
entre les que es troben el desenrotllament de nous anàlegs d’insulina que
permeten emular més fidelment la secreció del pàncrees, el desenrotllament
de monitors continus de glucosa no invasius i de bombes d’insulina capaces
d’administrar distints perfils d’insulina i la inclusió de sistemes d’ajuda a la
decisió i telemedicina. El major repte al què s’enfronten els investigadors és el
d’aconseguir desenrotllar un pàncrees artificial, és a dir, desenrotllar algoritmes
que permeten disposar d’un control automàtic de la glucosa.

La principal barrera que es troba per a aconseguir un control rigorós de
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la glucosa és l’alta variabilitat que presenta el seu metabolisme. Açò és espe-
cialment significatiu durant la compensació dels menjars. Aquesta variabilitat
junt amb el retard en l’absorció i actuació de la insulina administrada de forma
subcutània afavorix l’aparició d’hipoglucèmies tardanes (complicació aguda
més important del tractament amb insulina) a conseqüència de la sobreactuació
del controlador.

Les propostes presentades en aquest treball fan especial insistència en
suportar aquestes dificultats. Així, s’utilitzen models intervalares per a
representar la fisiologia del pacient, i poder tindre en compte la incertesa en els
seus paràmetres. Aquest tipus d’estratègia s’ha utilitzat tant en la proposta de
dosificació automàtica en llaç obert com en l’ algoritme en llaç tancat. A més,
la principal idea de disseny d’aquesta última proposta és evitar la sobreactuació
del controlador, evitant hipoglucèmies i afegint robustesa davant de fallades en
el sensor de glucosa i en l’estimació dels menjars. Els algoritmes proposats han
sigut validats en simulació i en clínica.
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Introduction and objectives

Diabetes mellitus (DM) comprises a group of common metabolic disorders that
share the phenotype of high glucose levels in blood (hyperglycemia). Causes
for this hyperglycemia are different, from an insufficient insulin production by
the pancreas, type 1 diabetes mellitus (DM1), to an insulin resistance, type 2
diabetes mellitus (DM2).

According to data from the International Diabetes Association [77],
diabetes currently affects more that 360 million people around the world (about
6% of the total world population). Predictions estimate that these figures are
still growing and by the year 2030 the number of diabetic people will reach 552
million.

These patients are at risk of developing different kinds of long-term
complications (ophthalmologic complications, renal disorders, cardiovascular
pathologies. . . ) as a consequence of the disease. In fact, in the United
States, DM is the leading cause of end-stage renal disease, non traumatic lower
extremity amputation, and adult blindness [81].

About 10% of diabetic patients suffer from DM1 and they depend on
exogenous insulin for survival. Several studies, such as the Diabetes Care
and Complications trial (DCCT) [61] and the Epidemiology of Diabetes
Interventions and Complications (EDIC) [109] have demonstrated that any
improvement in the metabolic control of diabetic patients, helps in reducing
those complications. In order to remain as much as possible within safety
glucose values, patients have to follow an intensive insulin therapy that tries

XXIII
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to reproduce the insulin secretion profile of a healthy person. This therapy can
be administered using multiple daily insulin injections (MDI) or a continuous
subcutaneous insulin infusion (CSII) using insulin pumps. From a control
point of view, two control actions can be considered. On one hand, the insulin
needed to keep the glucose concentration in safety values (around 100 mg/dl)
during the night and between meals (basal insulin); and, on the other hand,
the insulin needed to counteract the effect of the meals (bolus insulin).

One of the biggest concerns related to glucose control in DM1 is meal
counteraction. Modern insulin pumps are capable of administering short-time
insulin continuously, adding more flexibility and allowing different profiles in
the postprandial time (after the meals) [32]. They also include tools for
helping in the postprandial bolus decision-making process (bolus-advisors)
[184]. However, despite the development of these new tools, postprandial
control optimization is still an empirical process based both in physicians’
and patients’ experience.

Moreover, meals are also the greatest perturbation complicating the
development of the so-called “artificial pancreas”, final objective of the research
in this area. Recent development of continuous glucose monitoring systems
(CGMS) together with the already mentioned insulin pumps, has fostered an
increase in the efforts for achieving automatic glucose control systems (the
artificial pancreas). Controllers which are already being validated in clinical
practice, mainly based on proportional-integral-derivative controllers (PIDs)
and model predictive control (MPC) [68] [48], are finding in the increase
in hypoglycemia events1 during the late postprandial period the main barrier
complicating the control [24]. These hypoglycemias are mainly caused by an
overcorrection to the meal perturbation due to a delay in subcutaneous insulin
absorption.

An additional problem of the metabolic control in DM1 is the high
variability found in the physiologic behavior. This variability exists not only
between different patients but also in a same patient in different times or

1Too low glucose concentrations (bellow 70 mg/dl) that are potentially dangerous for the
patient, especially if they are kept too long.
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situations. This variability and uncertainty has to be taken into account when
designing both open-loop and closed-loop control strategies.

Indeed meal counteraction avoiding late hypoglycemia is still an unsolved
problem both in open and closed-loop strategies, mainly due to the delays in
subcutaneous insulin action and to the high inter and intra-patient variability.

In this context, the main objective of this thesis work is:

“To provide the scientific community with strategies that add robustness to
the glucose control of type 1 diabetic patients, especially in the postprandial
period.”

The search of this objective has lead to a set of results:

• Review of the characteristics of DM disease and its impact in the patients
and in the world-wide health system.

• Review of the therapies that are currently applied to counteract the
effects of DM, the main challenges that still remain unsolved and the lines
to improve the performance of the glucose control algorithms already
present in literature.

• An strategy to improve open-loop glucose control in the postprandial
period.

• An strategy to improve closed-loop glucose control adding robustness
against uncertainty in the parameters and in the measures.

These results are presented across the different chapters. Chapter 1 and
Chapter 2 review the main characteristics of Diabetes Mellitus. The attention
is focused on the different models used to represent the metabolism involved
in the disease and in the challenges that current therapies need to overcome.

In Chapter 3 an algorithm based on set inversion via interval analysis is
used to coordinate basal and bolus insulin infusions to deal with postprandial
glucose excursions. Chapter 4 and Chapter 5 present an algorithm to be
added to any glucose closed-loop controller to provide an additional safety layer
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against hypoglycemias. The algorithm, called SAFE and based on sliding mode
reference conditioning techniques (SMRC), adds constraints in the residual
insulin activity being robust against uncertainty in the patient metabolism
behavior.

A set of conclusions and summary of the results can be found in Chapter
6.



1 | Glucose metabolism and dia-
betes mellitus

Glucose is the main source of energy for the cells. In humans, a complex
metabolic regulation of glucose, where several hormones are involved, balances
the glucose storage and production (basically in the liver); and, the utilization
from mainly the muscle, the adipose tissue and the brain. Due to this regu-
lation, plasma glucose is normally kept within a narrow range (approximately
65− 140 mg/dl).

However, in people with DM the regulation of glucose metabolism is
altered and their body is not capable of maintaining blood glucose in that
narrow range naturally. Excessive increase in plasma glucose concentration
over years is potentially dangerous for diabetic patients whose rate of
cardiovascular morbidity and mortality is twice the general population.
Moreover, maintenance of plasma glucose above the threshold of hypoglycemia
is critical for survival of the whole body.

In this chapter, an introduction of the main actors participating in the
regulation of glucose metabolism is presented (Section 1.1). Then, Sections
1.2 and 1.3 deal with a general review of DM, focusing on DM1 which is the
one of interest in this thesis.

1
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1.1 Introduction to glucose metabolism

Metabolism is defined as the energy management for maintaining the living
state of the cells and the organism. Nutrition is the key to metabolism. The
pathways of metabolism rely upon nutrients that they breakdown in order to
produce energy. These nutrients are provided through the diet and can be
classified as: carbohydrates, proteins, fat, minerals, vitamins and water.

Carbohydrates are one of the main types of nutrients. They are the most
important source of energy for our body. During the digestion they are divided
into monosaccharides (mainly glucose) that are absorbed through the small
intestine walls into the bloodstream to be used by body cells. The way a
healthy body regulates glucose metabolism is explained in this section.

1.1.1 Endocrine regulation of glucose metabolism

An important part of the glucose absorbed in the intestine, is stored in the
liver (with the help of the insulin) in the form of glycogen. This glycogen
can be transformed again into glucose in case it is needed (during the night
or between meals, when there is not exogenous contribution of glucose). The
glucose not stored in the liver is distributed through the circulatory system to
the rest of the body cells. Muscles are also capable of storing glucose in form
of glycogen, but, unlike what happens in the liver, the glucose of the muscles
can only be consumed by physical exercise.

Several hormones are needed in order to regulate this glucose metabolism.
The most important ones are insulin and glucagon.

The main function of insulin is to promote the absorption of glucose by
the cells and to promote the glycogen synthesis in the liver (glycogenesis),
diminishing blood glucose concentration. Glucagon, on the other hand,
increases blood glucose concentration when it is needed, favoring the glycogen
degradation to obtain glucose (glycogenolysis). Both hormones are produced
by special cells present in the endocrine part of the pancreas, grouped in
clusters called “Langerhans islets”.
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Langerhans islets contain β-cells (producing insulin), α-cells (producing
glucagon), δ-cells (producing somatostatin) and PP-cells (producing pancreatic
polypeptide). β-cells are the most numerous (around 60% of the cells in
the islets) and are located mainly in the islets’ heart, whereas α and δ-cells
are located in their periphery. Islets cells interact with each other through
direct contact and through their products. In that way, for example, insulin
inhibits the production of glucagon and, somatostatin inhibits the production
of insulin and glucagon [62]. In Figure 1.1 the distribution of these cells in
the Langerhans Islets is shown.

Figure 1.1: Physiologic anatomy of an islet of Langerhans in the pancreas [62].

A brief description of the main mechanisms of metabolism regulation in
different situations is provided bellow. In this regulation, insulin, glucagon
and the different organs and tissues are involved.

1. In resting conditions

In resting conditions, the glucose in blood is almost constant, although
the organs keep consuming it. The glucose used is replaced either by
the liver from the stored glycogen (glycogenolysis) or by the generation
of glucose from fats and proteins (gluconeogenesis). Therefore, to keep
the level constant a combined action between glucagon (to transform
glycogen into glucose) and insulin (to help the distribution of the glucose
to the organs through blood) is needed (Figure 1.2).
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Figure 1.2: Glucose regulation in resting conditions.

Figure 1.3: Glucose regulation in activity conditions.
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Figure 1.4: Glucose regulation after a meal.

2. In activity conditions

In activity conditions, the demand of glucose by the muscles increases
considerably. In this situation, the secretion of insulin is reduced and
the glucagon secretion increased, in order to favor the degradation of
glycogen into glucose in the liver (glycogenolysis). In these conditions of
physical exercise the muscles do not need insulin to absorb the glucose.
Thus, the glucose obtained via the glycogenolysis can be directly used
by them (Figure 1.3).

If the activity lasts a long period of time, the glucose can reach a very low
level, even though it is regulated. This is due to the fact that when there
are no more reserves of glycogen in the liver, the only source of glucose is
the synthesis from amino acids and non-carbohydrate carbon substrates
(gluconeogenesis). The amount of glucose obtained by this method is
not enough for covering the demand of the muscles during high activity
conditions.

3. After a meal

After eating a meal rich in carbohydrates, the β-cells receive signals to
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increase the synthesis and secretion of insulin. In the same way, the
secretion of glucagon is reduced.

The insulin goes through the blood to the different cells, favoring the
glucose transport into the cell. Most of the glucose is stored in the liver
in the form of glycogen. The amount exceeding the space of the liver is
transformed into fats. Once the level of glucose is stable, the β-cells stop
the extra secretion of postprandial insulin (Figure 1.4).

1.2 Diabetes Mellitus: definition and history

The term diabetes was first used in 2nd century BC in greek medicine. Its
etymological meaning is “passer-through, siphon” and it was used in reference
to a disease characterized by the elimination of huge quantities of urine.

DM, or simply, diabetes, can be defined as a group of diseases characterized
by high blood glucose levels (hyperglycemias) that result from defects in the
body’s ability to produce and/or use insulin. In a healthy person, the blood
glucose concentration is narrowly controlled, usually between 80 and 90 mg/dl

in the fasting period, each morning before breakfast. This concentration
increases to 120 to 140 mg/dl during the first hour or so after a meal, but the
feedback system for control of blood glucose returns the glucose concentration
rapidly back to the control level, usually within 2 hours after the last absorption
of carbohydrates. Conversely, in starvation, the liver provides the glucose that
is required to maintain the fasting glucose level. In diabetic patients, both
fasting blood glucose concentration and the glucose rise after the ingestion
are abnormally increased. Moreover, they present a slower fall of the glucose
concentration curve. These differences in the blood glucose curve are shown in
Figure 1.5 where the glucose concentration curves of a person with and without
diabetes after ingesting 1 g of glucose per kg of body weight are plotted.

The main symptoms of a continuous hyperglycemia are polyuria (frequent
urination), polydipsia (increased thirst and fluid intake) and polyphagia
(increased appetite). A chronic hyperglycemia can cause damage, disfunction
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Figure 1.5: Blood glucose curve after ingestion of 1 g of glucose per kg of body
weight in a person with (red line) and without (green line) diabetes [62].

or failure in some organs such as the eyes, the kidneys, nerves, heart and blood
vessels.

1.2.1 Brief history of the disease

As it occurs with many other diseases, the main advancements in the study
and knowledge of DM have been carried out during the 20th century. In fact,
it is not until 1922 when insulin begins being used for human clinical practice.
This advance is achieved thanks to Grant Banting (1891–1941) and Charles
Best (1899–1978) who, in 1921, succeeded in isolating insulin [17]. Because of
this deed, Banting was laureated with the nobel prize in 1923.

Figure 1.6: Frederic Banting, canadian physician and one of the discoverers of
insulin.

Despite the fact that the biggest advances in the field took place during
the last century, the first reference to the disease dates back to 1550 B.C. in
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the popular Ebers Papyrus1. In that papyrus a symptomatology similar to
diabetes is described. Diabetes (“a passer-through, siphon” in greek) owes its
name to Areteo of Capadocia who named it that way in reference to an excess
of urine. From the 10th to 11th century A.D., it was in Arabic medicine where
most progress was made, mainly because of the works of Avicenna (980–1037)
and Averroes (1126–1198) [106].

We have to wait until 17th century to find great advances in the occidental
world. In that way, Thomas Willis (1621–1675) in 1674 pointed out the sweet
taste in the urine of diabetic people, which gave diabetes the sub-name of
“mellitus” (honey sweet). However, it was only in 1776 when Mathew Dobson
(1745–1784) chemically confirmed the presence of sugar in diabetics’ urine.
In 1859, Claude Bernad (1813–1878) determined the presence of glucose in
the blood of diabetes people. The 19th century was decisive for advancing in
the physiologic understanding of diabetes. Oskar Minkowski (1858–1931) and
Josef von Mering (1849–1908) proved in dogs that the absence of the pancreas
caused an increment of blood glucose. This demonstration, together with the
discovery of the “islets of Langerhans” in 1893 by Edouard Laguesse (1861–
1927)2, fostered the interest in isolating the active ingredient of the islets of
Langerhans capable of reducing blood glucose concentrations. However, it
was necessary to wait until 1921 for Frederic Grant Banting (1891–1941) and
Charles Best (1899–1978) to isolate a toxicity free extract of the pancreas, to
be used as diabetes treatment: Insulin [39].

Nowadays, the research lines to improve the quality of life of diabetic
patients are mainly two: the first one is focused on the research of stem cells
to replace the damaged β-cells of the pancreas (the cells that produce the
insulin). The second line has a more technical character and includes, the
production of new types of insulins which are more efficient and can emulate
better pancreatic secretion, the development and improvement of devices to

1The Ebers Papyrus is one of the oldest medicine treatise known. It was found in 1862
with the remains of a mommy in Luxur. After that, it was bought and translated by George
Ebers. Nowadays, it is kept in the university library of Leipzig.

2The islets of Langerhans were previously described by Paul Langerhans (1847-1888) in
his PhD thesis (1869) but it was Edouard Laguesse who suggested their implications in the
endocrine part of the pancreas.
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measure the blood glucose and administrate the insulin and the development
of support systems and telemedicine platforms. Finally, the biggest challenge
in this research line is the development of the so-called “Artificial Pancreas” ,
that is, algorithms to enable the automatic control of glucose.

1.2.2 Types of diabetes

The last classification of DM dates from 1997, when an expert committee of the
American Diabetes Association (ADA) and of the World Health Organization
(WHO) agreed on a new diabetes classification replacing the last one developed
by the National Diabetes Data Group (NDDG) in 1979.

The main difference between both classifications is that the new one is
based on the pathogenic process that leads to hyperglycemia, as opposed to
the earliest one which used age and therapy criteria. In that way, the 1997
classification distinguishes between two broad categories, DM1 and DM2.

DM1 embraces all the kinds of diabetes where there is destruction of
pancreatic β-cells and propensity to ketoacidosis3. This kind of diabetes
can be due to an autoimmune process or presents an unknown aetiology.
The treatment for people with DM1 is the necessarily replacement of the
endogenous insulin secretion by means of the administration of exogenous
insulin.

DM2 is the most common type of diabetes and it is characterized by
variable degrees of insulin resistance, impaired insulin secretion, and increased
glucose production. It is related to various clinical risk factors such as
increasing age, obesity, and racial and geographical characteristics. In most
cases, this kind of diabetes can be effectively treated, at least in the early stages,
with exercise, caloric restriction and drugs that increase insulin sensitivity.
However, in the later stages, insulin administration is usually required to
control plasma glucose [62].

3An acute complication of diabetes due to the accumulation of ketones (sub-product of
the fat metabolism) when glucose is not available as organism energy source.



10 Chapter 1

I. Type 1 diabetes

A. Inmune-mediated
B. Unknown Aetiology

II. Type 2 diabetes
III. Other specific types of diabetes
IV. Gestational diabetes

Table 1.1: Aetiology classification of diabetes. Adapted from [159]

Other kind of diabetes also considered in 1997 classification are those
induced by genetic defects in insulin secretion or action, metabolic abnormal-
ities that impair insulin secretion, mithocondrial abnormalities and a host of
conditions that impair glucose tolerance. Finally, this classification considers
also gestational DM which is usually reverted after pregnancy [159]. Table
1.2.2 summarizes this classification.

This thesis is focused on glucose control in DM1 where insulin is needed as
a control action from the early stages of the disease.

1.3 DM1 and complications of the disease

In DM1 the pancreatic β-cells are destroyed. This fact implies an absolute
insulin deficit and the need of exogenous insulin for survival. The usually
onset of this kind of diabetes occurs in people under 15 years (this is why it
is also known as juvenile diabetes), but it can start at any age. 90% of DM1
cases have an autoinmmune aetiology whereas the rest are idiopathic (unknown
aetiology). The destruction rate of β-cells in DM1 is variable. It takes place
very quickly in some patients (mainly children and teenagers) and slower in
others.

The most common acute complications in DM1 are ketoacidosis and
hypoglycemia.

• Diabetic ketoacidosis (also known as diabetic coma) is a state of severe
and uncontrolled diabetes, caused by an insulin deficiency and it requires
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an emergency treatment with intravenous insulin and fluids. Its cause
is the accumulation of sub-products coming from the metabolism of fats
known as ketones. This fact happens when there is no available glucose
to be used as energy source by the organism and lipids are used instead.
Diabetic ketoacidosis is a serious problem with an estimated mortality
between 5% and 10% in occidental countries and particularly dangerous
in elderly people. Usually, it can be found in young DM1 patients (in
fact in many cases it is the first symptom leading to the diagnosis of
the disease) although it can be found also in patients with DM2 during
severe infections or other illnesses.

• Hypoglycemia occurs as a secondary effect of the treatment with
insulin. Correct function of the brain depends on the continuos supply
of glucose. The interruption of the supply during more than a few
minutes can cause a disfunction on the central nervous system, loss of
consciousness and even coma.
Hypoglycemia in diabetics is due to an unusual increase of blood insulin
concentrations or an increase in its effect. The concrete causes of
hypoglycemia are diverse: an excess in the insulin dose, an increase
in the bioavailability4 (for example, an acceleration in the absorption
due to exercise), an insulin sensitivity5 increment, or an inadequate
carbohydrate ingestion. Other risk factors are stomach paresthesias, and
alcohol or other drug consumption.

However, the major cause of mortality in diabetic patients are chronic
long-term complications derived from the disease. These complications can
affect several organic systems and can be divided into micro-vascular, macro-
vascular and other kind of complications. The risk of developing these
complications increases with exposure to hyperglycemia. The most common
chronic complications are briefly described [81, 63, 179]:

4The degree and velocity to which a drug or other substance becomes available to the
target tissue after administration.

5Insulin sensitivity describes how sensitive the body is to the effects of insulin.
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• Microvascular

– Eye disease
– Neuropathy
– Nephropathy

• Macro-vascular

– Coronary artery disease
– Peripheral vascular disease
– Cerebrovascular disease

• Other

– Gastrointestinal
– Genitiurinary
– Dermatologic
– Infectious
– Cataracts
– Glaucoma

Table 1.2: Chronic Complications of Diabetic Mellitus

Figure 1.7: Main chronic complications of DM.
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1. Ophthalmologic complications: Diabetic retinopathy, damage in the
blood vessels of the retina, is the most common diabetic eye disease and a
leading cause of blindness in adults. Other ophthalmologic complications
are cataracts and glaucomas. An estimated 97% of insulin-taking and
80% of non insulin-taking people who have had diabetes for more than
15 years have retinopathy; approximately 40% of insulin-taking and 5%
of non insulin-taking people have the most severe stage, proliferative
diabetic retinopathy.

2. Renal complications: Diabetes is the most common cause of kidney
failure in developed countries. The main characteristic of this complic-
ation is the presence of protein in urine due to a disfunction in kidney
blood vessels. This fact affects the operation of the kidney and can lead
to chronic kidney disease and kidney failure.

3. Neuropathy: Neuropathy is a very common complication in DM. The
nervous system is damaged because of high blood glucose levels that
diminish blood supply. The most common neuropathy associated with
diabetes affects the lower limbs, mainly the feet. Some times it can be
asymptomatic, causing damage in the feet due to a loss of sensitivity.

4. Gastrointestinal disfuntion: The most common gastrointestinal
problem in diabetic people is gastroparesis. Food remains in the stomach
for a longer time than normal. This fact favors the overgrowth of
bacterias, and causes the formation of solid masses of undigested food
(beozars) that can, eventually, provoke intestinal obstruction. The cause
of this problem is the damage of the vague nerve, which is in charge of
controlling the digestion, due to continuous hyperglycemia.

5. Cardiovascular problems: Cardiovascular disease is increased by 2–4
times its normal rate in people with both DM1 or DM2. High blood
glucose levels, together with cholesterol and high blood pressure are
risk factors for artheroescloris (artery wall thickening that causes its
narrowing) which is the seed of many heart and large blood vessel
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problems: coronary artery disease, cerebrovascular accidents, peripheral
vascular diseases. . .

6. Other: Other kind of complications in DM are lower limb complications,
infections and several minor dermatologic complications.

1.4 Simulating in DM1

As it has been reviewed through this chapter, diabetes is a complex disease
with many social implications and which affects the quality of life of the
patient. Models capable of reproducing the different processes that are involved
in the metabolism of diabetic people can be used to help the patient to
get an understanding of his disease, and how his body reacts to exercise,
stress, insulin, etc. . . Additionally, these models are very useful for developing
decision-support tools and in the process of designing and testing closed-loop
algorithms for glucose control.

Depending on the modeling approach, these models can be data-driven
models or physiological models. Data-driven models are focused on data
reproduction, and not at all in the physiology behind it, while physiological
models only use the data to adjust the parameters, while the structure is
determined by the model itself. Most of the models used in diabetes are
physiological models, although there are some methods that use simplification
and linearization of those models to use them for control design purposes.

So as to model the physiology of the body of a diabetic patient, the main
parts of the organisms that take part, in one or another way, in the glucose
regulation and may be affected by the disease, must be taken into account.
Many factors, difficult to model, such as stress, exercise, the presence of
infections. . . are present in this regulation. However, the main systems that
basically govern the behavior of a diabetic patient are represented by:

• Insulin absorption model

• Glucose absorption model
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• Glucorregulatory model

Figure 1.8 shows the block diagram of these three systems, where the
outputs of the two former act as the inputs of the glucorregulatory system.

Exogenous 
insulin delivery

Meal

Plasma insulin

Glucose 
absorption

Plasma 
glucose

Insulin 
absorption 

model

Glucose 
absorption 

model

Glucorregulatory 
model

Figure 1.8: Diabetic body physiology.

The insulin absorption model represents the way insulin gets into the
organism, which involves its pharmacokinetics, diffusion through different
tissues and natural insulin degradation. Insulin is injected or infused in the
subcutaneous tissue, delaying its appearance in plasma compared to insulin
secretion by the pancreas. The glucose absorption model involves the process
of ingestion, digestion and absorption from the intestine into blood of glucose
and other nutrients; and, the glucorregulatory model tries to reproduce the
glucose regulation explained in Section 1.1. It defines how insulin and glucose
interact and determine the level of glucose in blood at the defined conditions.

During the last years many mathematical models have been developed with
different purposes, as educational models [96], models for estimating insulin
sensitivity [30], and models for developing new drugs [183]. But, lately, a
lot of effort is concentrating in the the development of models to test new
algorithms and strategies, in virtual patients (simulation). The most widely
used models, both for control and for validation, and those which have already
been implemented in simulation environments, are the one developed by Dr.
Hovorka’s group in Cambridge [177] and the one developed by Dr. Kovatchev
and Dr. Cobelli groups in Virgina and Padova, respectively [88]. This last
simulator has been accepted by the Food an Drug Administration (FDA) as a
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substitute to trials with animals in the preclinical testing of closed-loop control
strategies.

Here, both simulators and the models used in them are briefly explained
because these are the ones that will be used through out this work.

1.4.1 Hovorka’s group simulator [71, 177]

The simulator developed by the group of Roman Hovorka in Cambridge
University is presented in [177]. It includes 18 virtual patients represented by
a model of glucose regulation [71] and their specific parameter set. The intra-
individual variability is represented by super-imposing sinusoidal oscillations of
5% amplitude and a 3 h period on nominal values of selected model parameters.
Each of those parameters had a different phase generated randomly from a
uniform distribution U[0, 3h] [177]. The simulator also includes two types of
error models for the glucose measurement and another one for characterizing
insulin delivery error.

The model implemented in Hovorka’s simulator has been used both for
simulation and control purposes, in many different scenarios, from critical
patients [73] to overnight experiments [71] with successful results. The whole
model is represented in Figure 1.9 and it consists of:

Insulin absorption model

The model of subcutaneous insulin absorption is represented by three
compartments, an accessible (S1) and a non-accessible (S2) subcutaneous
compartment and a plasma compartment (I). All of them have the same
transfer rate. The model equations are:

Ṡ1(t) = u(t)− S1(t)
tmax,I

Ṡ2(t) = S1(t)
tmax,I

− S2(t)
tmax,I

İ(t) = S2(t)
tmax,IVI

− keI(t)

(1.1)
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where tmax,I represents the time to maximum bolus absorption, VI is the
volume of distribution of rapid-acting insulin and ke represents the elimination
rate from plasma.

Glucose absorption model

Hovorka gastrointestinal model is very simple. It consists of two identical
compartments (G1 and G2) with the same transfer rate:

Ġ1(t) = − G1(t)
tmax,G

+Bio ·D(t)

Ġ2(t) = G1(t)
tmax,G

− G2(t)
tmax,G

UG(t) = G2
tmax,G

(1.2)

The model includes two parameters: the carbohydrate bioavailability (Bio)
and the time it takes to reach peak appearance of glucose from the gut (tmax,G).
In [177], the model is slightly modified considering that the glucose flux from
the gut is a saturable process. In this way, tmax,G is defined as follows:

tmax,G =

{
tmax,G_ceil if UG > UG_ceil

tmax,G otherwise
(1.3)

where tmax,G_ceil = G2
UG_ceil

and UG_ceil is the maximum glucose flux from
the gut.

Glucorregulatory model

The main characteristic of Hovorka’s glucoregulatory model is that it
considers three remote effects of insulin on glucose kinetics: the effect
on glucose transport/distribution, glucose disposal and endogenous glucose
production (x1, x2 and x3). The glucose kinetics is represented by a two-
compartment sub-model.

The equations that represent effects of insulin on glucose kinetics are:
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Figure 1.9: Hovorka’s model implemented in the simulator.
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ẋ1(t) = −ka1x1(t) + SITkb1I(t)

ẋ2(t) = −ka2x2(t) + SIDkb2I(t)

ẋ3(t) = −ka3x3(t) + SIEkb3I(t)

(1.4)

SIT = ka1/kb1, SID = ka2/kb2 and SIE = ka3/kb3 are insulin sensitivities
for transport, distribution, and endogenous glucose production, with kai

and kbi (i = 1, .., 3) representing deactivation and activation rate constants
respectively.

The glucose kinetic equations are:

Q̇1(t) =
[

F c
01

VGG(t) + x1(t)
]
Q1(t) + k12Q2(t)− FR + EGP + UG(t)

Q̇2(t) = x1(t)Q1(t)− [k12 + x2(t)]Q2(t)

y(t) = G(t) = Q1(t)/VG

(1.5)

k12 represents the transfer-rate constant from the non-accessible (Q2) to
the accessible (Q1) compartment and VG represents the glucose distribution
volume in the accessible compartment.

The endogenous glucose production is defined as:

EGP =

{
EGP0[1 + x3(t)] if EGP ≥ 0

0 otherwise
(1.6)

The insulin-independent glucose utilization is assumed to be a saturable
process and is represented by a Michaelis-Menten relationship:

F c01 =
F s01G

(G+ 1.0)
,where F s01 =

F01

0.85
(1.7)

FR is the renal glucose clearance above the glucose threshold of R_thr,
and it is defined as:
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FR =

{
R_cl(G−R_thr)VG if G ≥ R_thr

0 otherwise
(1.8)

where R_cl is the renal clearance.

1.4.2 UVa Simulator [88, 100, 38, 37]

The simulator developed by University de Virginia and University of Padova,
was accepted by the FDA in 2008 as a substitute to animal trials in the
preclinical testing control strategies. It includes a cohort of 300 virtual patients
(100 adults, 100 adolescents and 100 children) based in real individual data,
an in silico sensor that simulates the typical errors of continuous glucose
monitoring, and a CSII pump model (see Section 2.1 and Section 2.2.1).
Recently, new features have been included in the simulator mainly to improve
the description of glucose kinetics in hypoglycemia [101] and to include the
effect of insulin sensitivity intra-individual variability [166]. The educational
version of the simulator has some limitations and only includes 30 virtual
patients (10 adults, 10 adolescents and 10 children).

The insulin, gastrointestinal and glucorregulatory models used in the first
version of the UVa simulator used in this work are now described:

Insulin absorption model

The insulin model proposed by Cobelli’s group has two compartments for
the interstitial space, and it considers that the elimination of insulin takes
place entirely after the absorption into plasma. The structure of the model
and the equations that govern it are shown in Figure 1.10 and equations
(1.9) respectively. Note that the elimination of insulin takes places both by
degradation in the plasma compartment and in the liver, which is considered
as another compartment (Ip and Il respectively).
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Figure 1.10: Cobelli’s insulin model.

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

Ṡ2(t) = kdS1(t)− ka2S2(t)

İl(t) = −(m1 +m3)Il(t) +m2Ip(t)

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka1S1(t) + ka2S2(t)

(1.9)

Glucose absorption model

The glucose absorption model, developed by Chiara Dalla Man follows the
structure shown in Figure 1.11. This model considers a two-compartment
model for digestion (qsto1 and qsto2 representing the amount of glucose in
the stomach in solid and liquid phase respectively) and a simple single-
compartmental model for the absorption in the gut (qgut).

The compartmental model equations are:

q̇sto1(t) = −K21qsto1(t) +Dδ(t)

q̇sto2(t) = −Kempt(qsto)qsto2(t) +K21qsto1(t)

q̇gut(t) = −Kabsqgut(t) +Kempt(qsto)qsto2(t)

Gex(t) = fKabsGgut(t)

(1.10)
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Figure 1.11: Dalla Man’s gastrointestinal model.

where δ(t) is the Dirac delta, simulating an impulse input to the model.
The rest of parameters are flux constants, for the transfer of glucose through
the system, except for the Kempt parameter, which is time-varying depending
of the amount of glucose in the stomach (qsto = qsto1+qsto2 and defines the form
of the gastric emptying. The equations describing the transfer rate defining
the flow of glucose from the stomach to the intestine are:

Kempt(qsto) = Kmin + Kmax−Kmin
2 · {tanh[α(qsto − b ·D)]−

− tanh[β(qsto − c ·D)] + 2}

qsto(t) = qsto1(t) + qsto2(t)

α = 5
2D(1−b) ; β = 5

2Dc

(1.11)

Glucoregulatory model

The core structure of the Cobelli glucorregulatory model is pretty simple,
as shown in Figure 1.12:

The model equations are:
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Figure 1.12: Cobelli’s glucorregulatory model.

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1Gp(t) + k2Gt(t)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t)

G(t) = Gp(t)/VG

(1.12)

where,

• Ra is the exogenous flux of glucose coming from the gut.

• Uii is the utilization of glucose that is non dependent on insulin. It is
usually considered constant and equal to Fcns.

• Uid is the utilization that depends on the insulin concentration, and it
follows the following set of equations:

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib]

Vm(t) = Vm0 + VmxX(t)

Uid(t) = V m(t)Gt(t)
Km+Gt(t)

(1.13)
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where X(t) is the remote insulin, I(t) is the plasma insulin, Ib is the basal
insulin and V m(t) is the transfer rate for the Michaelis-Menten reaction in
equation (1.13).

• E(t) represents the renal excretion, which occurs if plasma glucose
exceeds a certain threshold (see Section 2.1). It is modeled as follows:

E(t)=

{
ke1 [Gp(t)−ke2]
0

if Gp(t)>ke2
otherwise

(1.14)

where ke1 is the glomerular filtration rate and ke2 is the renal threshold of
glucose.

• EGP (t) is the Endogenous Glucose Production, and it depends on a
delayed insulin signal as follows:

.
I1(t)=−ki [I1(t)−I(t)]

.
Id(t)=−ki [Id(t)−I1(t)]

EGP (t)= max {0, kp1−kp2Gp(t)−kp3Id(t)}

(1.15)

where I(t) is the insulin concentration in plasma.

1.5 Conclusions

In this chapter, a quick review of the metabolism of glucose which is altered
in DM has been provided together with the main characteristics of the
disease. Moreover, the implications and the complications of the disease
have been explained. In the same way, the main simulators that emulate the
glucorregulatory system of DM1 patients were reviewed. In particular, details
of the simulators developed by Dr. Hovorka’s group and Dr. Kovatchev and
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Dr. Cobelli groups have been given. Those will be the base of the simulating
work of this thesis.

Next chapter deals with the different strategies currently being used or
tested in clinical practice in order to achieve the objective of normoglycemia.
Several studies like the Diabetes Care and Complications Trial (DCCT) [61],
the United Kingdom Prospective Diabetes (UKPDS) [164] and more recently,
the Epidemiology of Diabetes Interventions and Complications(EDIC) [109]
have demonstrated that the achievement of a good metabolic control prevents
or postpones those chronic complications both in DM1 (DCCT and EDIC) and
DM2 (UKPDS). For this reason, normoglycemia (blood glucose concentration
within a normal range) has been established as the control objective for patients
with DM, except if some contraindication exists. This is accomplished, in DM1,
through the use of exogenous insulin, promoting the transport and storage of
blood glucose into the cell, and thus, decreasing blood glucose concentration.





2 | Glucose control in type 1
diabetes

The therapeutical goals for DM are to eliminate symptoms related to
hyperglycemia, reduce or eliminate the long-term complications and allow
the patient to achieve as normal a lifestyle as possible. In order to achieve
these objectives, each patient will need a specific treatment adapted to his
characteristics (age, weight, insulin sensitivity. . . ). In any case, the basic pillars
of the treatment are diet, exercise and, in case of DM1, an insulin therapy
[14]. Much effort is being put in developing new and improved technologies for
insulin administration and ways to help patients to gain quality of life and to
obtain a proper metabolic control.

In order to determine the proper therapy for each patient so as to keep his
blood glucose levels within a established range, it is important to have short
and long-term indicators that give idea of how well the patient is controlled. In
Section 2.1 the main available devices and techniques to evaluate the metabolic
control of the diabetic patients are summarized. Section 2.2 deals with the
different kinds of insulin and the different administration possibilities that can
be found in the market. A review of different open-loop insulin therapies with
especial attention to intensive insulin therapies both with MDI and with CSII
is provided in Section 2.3 whereas Section 2.4 deals with the different closed-
loop strategies that are currently being tested, remarking the challenges that
arise.

27
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2.1 Metabolic control monitoring

A diabetic patient is controlled when his metabolism is not much different
than a non-diabetic’s metabolism. In order to achieve a good metabolic
control, it is necessary to use measures to quantify the goodness of a therapy
and to make adjustments in diet, exercise, and medications. In that way,
monitoring of metabolic status is considered a cornerstone of diabetes care.
Different metabolites are altered by diabetes but, currently, patient monitoring
of capillary blood glucose is the recommended method of day-to-day testing.
In this way, good metabolic control is related to the maintenance of blood
glucose levels close to normality throughout the day. Besides blood glucose
levels, other indices of insulin deficiency are blood and urine ketones. Moreover,
measures of long-term control over the preceding weeks (glycated hemoglobin
and fructosamine) are also commonly used [179, 63, 59].

Capillary blood glucose

Measuring capillary blood glucose is essential in insulin therapies. It is
done with a drop of blood taken from the finger tip using a device called
glucometer. The main advantage of this method is that it allows self-control
since the measurements can be easily made at home. Usually, in a controlled
diabetes, patients perform around four measurements in a day (one before
each meal and one before going to bed) although this number can increase
in some cases. Depending on the glucose measurement, the patients must
apply a suitable compensatory action, that is, choose the amount of insulin to
counteract the meal to be eaten and take additional compensatory meals if the
glucose level is too low. This decision is based on the empirical knowledge of
both the patients and the physicians.

As the major reason for poor patient compliance and for low frequency of
testing is the discomfort of testing the fingers, new glucometer devices have
been developed to operate at a smaller blood volume and to allow the testing
at alternative body sites.

Continuous glucose monitoring systems (CGMS)
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Recently, engineering and scientific advances have allowed the development
of CGMS. These devices measure the glucose levels in interstitial fluid
usually producing a glucose reading every 5 minutes. Data from CGMS
can be presented on-line or stored for being downloaded in a computer to
be analyzed. CGMS use the glucose-oxidase enzyme-based technology which
gives a measurement of interstitial glucose expressed in terms of intensity of
the current generated by the enzymatic reaction. They have to be calibrated
using capillary blood glucose.

The most important usefulness of CGMS is that it allows to study
glycemic variations within several days in order to detect hypoglycemias
(specially during nights), hyperglycemia peaks, and to adjust the insulin
treatment according to that. Moreover the future development of the already
mentioned artificial pancreas requires accurate and frequent blood glucose
measurements. However, currently, none of the existing devices have analytical
accuracy comparable to that of glucometers. The potential capability of CGMS
to improve glycemic control in DM1 [160] has fostered the research in CGMS
to increase the accuracy of these devices, improving the technology and the
calibration algorithms [11, 53, 42].

Glycated hemoglobin (HbA1C)

Blood glucose measurements (together with urine glucose and urine ketone
testing explained later) provide useful information for day-to-day management
of diabetes. However, these tests cannot provide the patient and physicians
with an objective measure of glycemia over an extended period of time.
Measurements of glycated proteins allow to quantify average glycemia over
weeks or months.

Hemoglobin is a protein of red blood cells in charge of carrying oxygen
from the respiratory organs to the rest of the body. When hemoglobin
is exposed to plasma glucose, glucose molecules are attached to it forming
glycated hemoglobin. Once attached, glucose molecules remain there until the
red blood cell die (about 120 days). There are different types of hemoglobin
and, in case of diabetes testing, HbA1C is used because of the strength of the
union glucose-hemoglobin. In that way, the percentage of HbA1C in blood can
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be used to determine the glucose control of the patient over the last 2 or 3
months. It is recommended to combine self blood glucose measurements with
regular HbA1C tests. In diabetic people the ADA fixes a value of HbA1C below
7% as an indicator of good metabolic control [9].

Other testing methods

Urine glucose test : The glucose urine test measures the amount of glucose
in an urine sample. The presence of glucose in the urine is called glycosuria
or glucosuria. It appears when blood glucose is above the renal threshold
of glucose (about 180 mg/dl). This test cannot be used by itself as a
method for controlling diabetes and it has to be combined with blood glucose
measurements. That is because the renal threshold is different for each person
and because the test does not measure current glucose concentration but the
glucose accumulated since the last urination.

Ketone bodies test : Measuring ketone bodies allows to detect a severe
absence of insulin and to prevent ketoacidosis. Ketones are substances that
are made when the body breaks down fat for energy because cells do not have
enough glucose. This lack of glucose in the cells can be caused by an absence
of glucose or by an incapability of the cells to use it. The latter is the case
of diabetic people. The absence of insulin avoids the absorption of glucose by
the cells and the energy needed by the organism has to be obtained from the
metabolism of lipids. Ketones can be measured both in urine and in blood.
The urine test is most commonly used, mainly because of its lower cost but,
as it occurs with glucose tests, its accuracy is lower than blood tests.

Glycated serum protein (fructosamine) test : Glycated serum proteins are
formed when serum proteins react with glucose molecules. As it happens
with HbA1C , the concentration of glycated serum proteins reflects the average
glucose level during a period of time. In the case of glycated serum protein,
this period is shorter than HbA1C (about 1 or 2 weeks). Because of that it is
used when there has been a change in diet or treatment that requires a middle-
term blood glucose measures or in special circumstances where HbA1C is not
suitable.
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2.2 Insulin administration

Patients with DM1 require exogenous insulin administration for living. Moreover,
the majority of DM2 patients eventually require insulin to preserve satisfactory
glucose control and an HbA1C bellow 7%. One international unit of insulin (1
IU) is defined as the “biological equivalent” of 34.7 µg pure crystalline insulin.
This corresponds to the amount required to reduce the concentration of blood
glucose in a fasting rabbit to 45 mg/dl [4]. Nowadays the most common
insulin concentration in the market is U–100 (100IU/mL).

Until the 1980s, insulin was extracted from the pancreas of cattle and
pigs. Nowadays, animal insulin is fallen in disuse and it has been substituted
by synthetic human insulin, i.e., insulin with a chemical structure identical
to the insulin produced by the human pancreas (Figure 2.1). The sequence
of this human insulin can be modified so as to improve its pharmacokinetic
characteristics (analog insulins).

Figure 2.1: Molecular structure of human insulin.

In that way, many kinds of insulins (human and analog) can be found in the
market depending on their pharmacokinetic characteristics. In general terms
they can be divided into regular short-acting, intermediate-acting and long-
acting insulin. Additionally, mixtures of short an intermediate-acting insulin
are also being use to combine the effect of both insulins. The main parameters
that characterize insulin types are time of the start of the action, time of peak
and duration. Figure 2.2 shows in a schematic way the pharmacokinetics of
the main kinds of insulin available in the market. Remark that the effect of
each kind of insulin is not always the same. The absorption can be different
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depending on the patient and even in the same patient in different moments
as many factors are involved.
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Figure 2.2: Different insulin effects. Adapted from [43].

Insulin is usually injected subcutaneously, although it can be also injected
intravenously if a rapid decrease in glucose concentration is needed. Addition-
ally, new administration methods such as inhaled insulin are being developed
to avoid the annoying use of needles.

2.2.1 Administration devices

Traditionally, insulin has been administrated using vials and syringes but
lately, they are being substituted by simpler and more convenient devices
such as insulin pens. In patients for whom glucose variability remains a
problem, continuous subcutaneous insulin infusion via an implanted cannula
or continuous intraperitoneal insulin infusion via an implanted pump is safe
and effective when used correctly, although cost can be a limitation. Less
invasive devices are jet injectors and the devices for inhaled insulin [120]. A
brief description of the possibilities for insulin administration is provided:
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Vials or syringes: Syringes have been used for insulin administration
since 1960s and are still the main used device in many countries. They have
the advantage compared with insulin pens that they allow patients to mix their
own insulin formulations. However, the existence of premixed insulin analogs
for use in insulin pens is fostering the replacement of vials with pens due to
their highest accuracy and patient adherence.

Insulin pens: Several studies have shown that insulin pen devices have
several advantages over the traditional vial and syringe methods, including
improved patient satisfaction and adherence, greater ease of use, and superior
dosing accuracy [119]. These devices consist of an insulin cartridge or reservoir
and a syringe and are available as either reusable or disposable types. Pen
devices are more accurate than syringes especially at doses below 5 IU.

Jet injectors: Jet injectors use high pressure to send a fine spray of
insulin through the skin. They are specially recommended for those patients
with needle-phobics.

Continuous subcutaneous insulin infusion (CSII) pumps: CSII
pumps are external devices that allow the administration of insulin in a
continuous way. They have an insulin deposit which is filled in the same
way than a normal syringe. The pump is attached to a small tube or catheter
with a needle on the end that is inserted in the skin, usually in the abdomen
and that has to be changed every three days. These pumps use short-acting
insulin to infuse, in a continuous way, a previously programmed basal insulin
profile needed to keep blood glucose within the desirable range between meals
and in the night period. Besides, the patient can indicate the extra amount of
insulin needed to counteract each meal (bolus insulin). The newest models of
CSII pumps have several advanced features, such as the incorporation of bolus
advisors and, the possibility of implementing alarms when they are coupled to
CGMSs or even an automatic pump shut-off when hypoglycemia is detected.
However, these devices are not yet automatic and it is still the patient who
has to determine the insulin dose for each meal [142].

The main advantage of CSII pumps is that the continuous infusion of short-
acting insulin allows different profiles of basal insulin improving flexibility and
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that insulin can be dosed in smaller increments than in pens or syringes (0.1
IU). It is specially useful in patients experiencing severe hypoglycemia or
hypoglycemia unawareness. On the contrary, patients using insulin pumps are
more likely to suffer diabetic ketoacidosis (see Section 1.3) due to the use of
short-acting insulin that remains less time in the subcutaneous compartment.
However, training of the patient and frequent self-monitoring of blood glucose
reduce this risk [146].

Recently, a new type of CSII pump has been developed. The catheter that
joins the insulin pump and the place of infusion is eliminated and the pump is
directly connected to the skin with an adhesive patch. The main advantages of
this kind of pumps are that they are small, lightweight and can be manipulated
discreetly. However they still have some problem such as poor adherence or
adhesive intolerance by the patient [8].

Continuous intraperitoneal insulin infusion (CPII): An alternative
to CSII is CPII where insulin is delivered through an implantable pump that
allows more predictable insulin profiles and improves glycemic control. Because
of the high costs and the lack of experience with these devices their use is still
limited to a very specific patients.

Inhaled insulin: One of the possibilities that is being explored in
pharmaceutical industries is the use of less invasive insulin administration
modes. In September 2006 the first inhaled insulin was put in the market
by the pharmaceutical Pfizer but its selling was interrupted due to poor
acceptance from patients and providers. Currently, there is one formulation of
inhaled insulin in phase III clinical trials called Afrezza. With this technology
insulin particles are delivered through an inhaler into the lungs and enter the
bloodstream through tiny blood vessels.

Figure 2.3 shows the different external devices that are used for insulin
administration.
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Figure 2.3: External insulin administration devices.

2.3 Open-loop glucose control in type 1 diabetes:
intensive insulin therapy

In order to establish an insulin regimen for DM1, different factors have to
be taken into account. In that way, depending on the patient’s age, the
ability to understand and implement a complex regimen, the presence or not of
complications, the ability to recognize hypoglycemic symptoms, the lifestyle,
etc,. . . physicians can choose either a conventional insulin therapy or an
intensive insulin therapy.

The conventional insulin therapy consists of one or two injections
per day of long-acting or intermediate-acting insulin. The objective of this
kind of therapies is to keep the patient asymptomatic, preventing extreme
decompensations. In that way, the control objective is less ambitious than with
an intensive therapy allowing HbA1C values between 8 and 9%. This insulin
regimen is relatively easy to understand and it does not require high training.
Because of that, it is often recommended to very young or very old patients or
patients with severe hypoglycemia problems. Conventional regimens are also
frequently used in DM2, with patients that cannot be controlled using oral
agents.

However, in most cases, in order to obtain good glucose control patients
have to follow an intensive insulin treatment. The objective of this insulin
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regimen is to mimic a normal insulin secretion pattern. In order to achieve this
objective a basal-bolus strategy is used. Basal insulin is used to keep glucose
in normoglycemia during the night period and between meals whereas bolus
insulin is used to counteract the different meals.

Intensive insulin therapy allows greater flexibility in meal timing and
amounts but it requires greater motivations and skills from the patient. To be
successful, it requires frequent blood glucose monitoring (3–5 times per day).
This kind of therapy is indicated for adult patients and selected adolescents
and children with DM1 and for treating gestational diabetes.

2.3.1 Intensive insulin therapy: MDI and CSII

The study developed by the DCCT in 1993 [61] finally confirmed the superiority
of intensive insulin therapy in DM1 in conjunction with frequent self-
monitoring of blood glucose in reducing the long-term diabetes complications,
compared with conventional therapy. Intensive insulin therapy can be based
on MDI or in CSII using insulin pumps. Moreover, it has to be adapted to the
specific characteristics of each patient adjusting the insulin regimen to each
one.

MDI: MDI is the most popular regimen for intensive insulin therapy. In
MDI the basal insulin is provided by intermediate or long-acting insulins and
short-acting insulins are used before each meal.

A common insulin regimen consists of administering two daily injections
of intermediate-acting insulin mixed with short-acting insulin (or a premixed
insulin) before the breakfast and the dinner (Figure 2.4 A). Usually, two-thirds
of the insulin is given in the morning and the rest before the dinner. The
problem of this kind of therapy is that patients have to follow a strict schedule
of meals and daily activity because of its poor flexibility.

Figure 2.4 B shows a different intensive insulin therapy where short-acting
insulin is injected before each meal (bolus insulin). This kind of regimens are
more flexible and allow adjustments in the bolus dose depending on the glucose
concentration before the meal and on the type of meal. The basal insulin can
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Figure 2.4: Different intensive insulin therapy regimens. Adapted from [81].
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be administered using one long-acting insulin injection or two intermediate-
acting insulin injections. In order to succeed in this kind of regimen home
blood glucose monitoring is essential, specially before each meal.

CSII: Intensive therapy can also be administered via CSII, through
portable electromechanical pumps (see Section 2.2.1). Insulin pumps use
continuous short-acting insulin infusions to administer basal insulin. This fact
allows to program different basal profiles depending on the known changes in
insulin sensitivity of a patient along the day (see Figure 2.4 C ). Multiple basal
infusions rates can be programed to accommodate nocturnal versus daytime
basal insulin requirements, alter infusions rate during periods of exercise or
select different waveforms of insulin infusion. In that way, phenomenons such
as the “dawn phenomenon”1 can be counteracted. Indications for CSII include
patients unable to achieve glycemic targets with MDI and motivated patients
who indicate a preference for CSII over MDI. It often requires technical support
for the pump and a diabetes care team trained in pump usage.

Extensive research has been conducted over the years to evaluate the
clinical effectiveness of CSII compared with MDI [19, 67, 127, 44]. In general
CSII achieves slightly improved mean blood glucose concentration and HbA1C

values. The frequency of hypoglycemia is usually lower in CSII.

Since the first commercial insulin pumps marketed in the late 1970s,
many improvements have been developed. Most modern pumps, termed
“smart pumps”, have tools to aid diabetic subjects in the prandial bolus
decision-making process: the bolus advisors. They take into account the
patient’s current blood glucose level, target blood glucose level, amount of
carbohydrate to be consumed, insulin-to-carbohydrate ratio (I:C)2 , and an
approximation of the insulin action curve to determine the amount of insulin
remaining in the body from previous insulin boluses [184]. Several studies
have demonstrated superior postprandial performance of automated bolus

1An early morning increase in blood sugar concentration caused by the release of counter-
regulatory hormones such as growth hormone, cortisol, glucagon, or epinephrine.

2A ratio that specifies the number of grams of carbohydrate covered by each unit of
short-acting insulin. This ratio, determined by the physician for each patient, serves as the
foundation for adjusting premeal bolus insulin doses.
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calculation against manual bolus with a high degree of satisfaction by the
patient [83, 60, 147] reflecting better insulin dosing accuracy and ease of
calculations. However, a positive impact on long-term glucose control (HbA1C)
has not been demonstrated. In order to be efficient, the parameters of bolus
calculators have to be well tuned. Incorrect tuning of the I:C ratio, the
correction factor to be applied if glucose concentration is abnormally high
or low, and the duration of insulin action is a limitation for the success of CSII
therapies [172, 173].

Another feature of smart insulin pumps is the ability to change the shape
of the boluses to account for differences in meal absorption with respect to
nutritional content and variable needs of insulin [115]. Currently available
bolus shapes or waveforms are standard wave, square wave, and dual wave.
With the standard wave all the bolus insulin is delivered in the briefest period,
with the square wave the bolus is delivered over an extended period of time,
while a dual wave bolus mode is a combination of both. It is used to deliver part
of the bolus immediately and the reminder over a period of time. In Figure
2.5 a schematic representation of the different available bolus waveforms is
shown. Each of these waves may provide better glucose control depending on
the amount, duration, and composition of the meal. Square wave and dual wave
profiles have been shown to be more effective than standard bolus in controlling
postmeal glucose excursion in slow-absorption meals and meals with high fat
content [84, 31, 79, 116]. In [171] and later in [20] an additional waveform
called “super-bolus” which administers future basal insulin at the bolus time
to compensate hyperglycemia quicker is proposed.

Moreover, as first step to automatic control, some new insulin pump
devices are linked to a CGMS allowing the implementation of new features
such as the automatic pump suspension when CGMS alerts to a low glucose
concentration [33, 25].

However, despite the availability of these new tools, achievement of good
metabolic control in terms of HbA1C is still an elusive goal in more than 50% of
patients with T1DM due, among other things, to clinical inertia and patient’s
low compliance [83, 172, 173]. In fact, optimization of postprandial control is
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still an empiric process based on the experience of both the physician and the
patient.

Standard wave

Square wave

Dual wave

Basal

Basal

Basal

Bolus

Bolus

Bolus

Figure 2.5: Graphical representation of different bolus waveforms implemented
in insulin pumps.

2.4 Closed-loop glucose control in type 1 diabetes:
Artificial Pancreas

In an attempt of improving quality of life of DM1 patients, and to reduce their
implication in insulin dosing decisions, much effort has been put in developing
systems for administering insulin automatically. Closing the loop between the
glucose sensors and the insulin pumps using control algorithms (the so-called
artificial pancreas) has been a dream of the scientific community for more
than 40 years.

Although some research is still being done using alternative delivery
routes [134], most of the closed-loop strategies currently being tested use the
subcutaneous route both for the glucose sensor and the insulin administration.
However, the first approaches of the artificial pancreas measured glucose and
delivered insulin and glucose intravenously. The first closed-loop insulin pump
device was designed in 1964 by Kadish [80]. The control algorithm was an
“on-off system” that administered insulin if the blood glucose was above 150

mg/dl, and glucose if blood glucose was below 50 mg/dl. Despite its huge
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size (see Figure 2.6) which made the system unfeasible for daily use, and its
simple control algorithm this first approximation fostered the development of
improved systems.

Figure 2.6: First insulin pump developed by Kadish in 1964.

During the 1970s, several research groups presented closed-loop control
results, standing out the works of Albisser et al. [5] in Toronto and Pfeiffer
et al. in Ulm [123] whose results led to the first commercial closed-loop
device called Biostator [35] put into production in 1977 (currently relegated
to hospital research); and the work of Shichiri et al [148] that was implemented
in the Nikkiso STG–22 device [182] (an evolution of this device is being used
in Japan in clinical practice [163]). Both devices used proportional-derivative
(PD) controllers.

Pickup [126] and Tamborlane [155] first demonstrated the feasibility of
the subcutaneous route for insulin delivery but, the improvements in CSII
technology in the last two decades and the introduction of the first commercial
minimally invasive subcutaneous glucose sensing in 1999 [105] have accelerated
the research in a wearable subcutaneous-subcutaneous artificial pancreas.
Despite its inherent challenges, subcutaneous route has been elected in most
of the recent closed-loop systems because of its management and safety at the
expense of more invasive routes such as intravenous or intraperitoneal.

Figure 2.7 shows and schematic representation of a glucose closed-loop
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system using subcutaneous route. In these systems, the measured output is
the subcutaneous glucose provided by the CGMS which is an estimation of
plasma glucose. The control variable is insulin administered via CSII pumps,
and the main disturbances to be counteracted are meals and exercise.

Glucose 
setpoint

r

 Insulin 
infusion rate

u

Feedforward

Glucose sensor 
signal

y 

Feedback

controller pump subject sensor

Figure 2.7: Schematic representation of a glucose closed-loop system using the
subcutaneous route. Adapted from [70] and [15].

A review of the main challenges that have to be overcome in the
development of an artificial pancreas using the subcutaneous route is provided
in next section.

2.4.1 Main challenges

As it has been already mentioned, depending on the implementation devices
used, different routes can be found for closing the loop (see Table 2.1). Due
to its minimally invasive nature, the most commonly used route currently
is subcutaneous both for sensing and delivery. This route, however, adds
additional problems to the already complicated task of developing an automatic
blood glucose controller, mainly because the delays in insulin action. In Figure
2.8, the delays associated with each closed-loop route are showed.

The main challenges for the development of the artificial pancreas are:
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Figure 2.8: Delays in insulin action depending on the route used. Adapted from
[68]. Last transport lag is only present in microdialisys or microperfusion-based
systems.
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Table 2.1: Artificial Pancreas routes. Adapted from [22].
Glucose
measurement

Glucose Infusion Characteristics

i.v i.v The absence of delays allows for rapid changes if needed.
But, it is only viable in intensive care units.

i.v i.p. Insulin action closer to physiology than s.c infusion. The
cost of the infusion devices together with the necessity of
implantation represent the main drawbacks.

s.c. i.p. Glucose monitor minimally invasive and implantable pump.
Same drawbacks than the i.v.-i.p. route plus additional ones
derived of the sensor errors.

s.c s.c. Glucose monitor minimally invasive and external pump.
Easy to manipulate. The non physiologic infusion of insulin
adds delays in its action.

i.v., intravenous, i.p., intraperitoneal, s.c., subcutaneous

Insulin delivery

The principal problem of subcutaneous insulin delivery is the presence of
delays, that, in spite of using short-acting insulins, can be higher than 80 min
(50 min for insulin absorption and 30 min for insulin action) [68]. Moreover,
there can be significant variability in the pharmacodynamic action of insulin
from one patient to another [47] and even in the same patient along the day.
These facts difficult the reduction of glucose peaks after a meal and, moreover,
the delayed insulin action when postpandrial glucose is already decreasing,
may result in later hypoglycemias.

An additional problem of CSII pumps is the presence of mechanical failures
such as occlusions, inflammation of the zone of infusion or insulin leakage back
to the skin surface.

Perturbations

The main perturbation in a closed-loop glucose system is meals. They
are large and uncertain perturbations difficult to counteract due, among other
things, to their faster response in glucose concentration as compared to insulin
delivery. Although clinical studies have demonstrated better performance
in feed-forward control strategies (“meal announcement”) [176], the amount
of carbohydrates in a meal is no always easy to calculate. In addition, it
must be taken into account that the effect of a meal in the blood glucose
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depends on many factors, not only on the ingestion time, and the grams of
carbohydrates. Factors such as the nutritional composition of the meal, the
way it has been cooked and the effect of previous meals make the meal a no
completely measurable perturbation.

Variability

Another important issue that must be considered when thinking in glucose
control is variability. This variability is not only referred to inter-patient
variability (among patients), but also to changes in the insulin sensitivity in
the same patient along a day. Insulin sensitivity is known to have circadian
variations of different intensity depending on the patient [168]. Other sources
of intra-patient variability are stress, exercise, infections. . .

Glucose measurement

One of the biggest challenges for the artificial pancreas is the lack of enough
accuracy of current CGMS with Mean Absolute Relative Difference (MARD3)
close to 15% [92]. CGMS failures are related to the complex interaction
between the sensor and the subject. Motion of the patient, pressure on the
sensor site, and foreign body response to the sensor, among others things,
influence the output of the CGMS. Typical sensor failures are signal loss
and sensor drifts. As CGMS give measurements of glucose concentration in
the interstitial fluid, they have to be calibrated using capillary blood glucose
measurements. Calibration algorithms currently used in commercial CGMS
are based in linear regression methods and present limitations [141]. Moderns
calibration algorithms are being suggested in literature [12, 94, 53] but are
not still validated in clinical context. The fact of measuring in interstitial fluid
adds also delays that are considered in Figure 2.8.

Because of all the difficulties that have to be overcome, achieving a proper
closed-loop glucose controller is not an easy task. Partial solutions helping
to improve control and patients’ quality of life mean a big step in the final
development of an artificial pancreas. In next section, an overview of the

3 The result of a mathematical calculation that measures the average disparity between
the sensor and the reference measurement.
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current state of automatic blood glucose control algorithms is provided, paying
especial attention to those strategies with more clinical evidence.

2.4.2 Artificial pancreas nowadays

In the last decade, many control algorithms have been proposed and tested
in simulations (in silico) such as H∞ [117, 143, 130], sliding mode control
with glucose prediction after meals [54], neural networks and fuzzy logic [154,
28], adaptive control structures [76] and algorithms inspired in the molecular
biology of beta cells [113] but those with the best clinical evidence of efficacy
are proportional-integral-derivative (PID) [153, 103] controllers and model
predictive control (MPC) [71].

PID algorithm, adapted from control systems in industrial sector, tries
to emulate the behavior of β cells [152] calculating insulin delivery based on
three terms. The proportional (P) term is directly related to the the glucose
error (current glucose concentration minus glucose target). The integral (I)
component adjusts insulin delivery according to the area under the curve
between measured and target glucose (accumulated error). The derivative (D)
term is based on the rate of change of blood glucose over time (error trend).

The typical equation of a PID glucose controller is:

uc(t)=kP e(t)+kDĠ+ kI

∫ t

0
e(t) dt (2.1)

where e(t) = G(t) − Gr(t) with Grf (t) the glucose reference and kP , kD and
kI the constants of the proportional, derivative, and integral parts of the PID
respectively. Figure 2.9 is an schematic representation of the effect of each PID
part in response to a hyperglycemic clamp4 .

The most relevant achievements using PID algorithms are from Medtronic
Diabetes and its ePID insulin infusion system [153].

4A method used usually for quantifying insulin secretion and resistance that consists in
maintaining a high blood sugar level by perfusion or infusion with glucose.
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Figure 2.9: Response of each PID part to a hyperglycemic clamp. P component
is proportional to the error, I component increases if the time outside the
target increases and D component is active when there is an increment in
blood glucose [153].

The MPC approach uses mathematical models to predict the glucose
concentration response to insulin delivery. The control action is obtained by
solving, at each sampling time, a finite horizon optimal control problem (see
Figure 2.10). In that way, the main ingredients of MPC are the model, the cost
function and the constraints, which are accounted for during the control law
design. The main potential advantage of MPC is prediction capability, but, as
a drawback, this prediction and the whole performance of the controller are
very dependable on the model goodness.

The main contributions of these approaches are from University of Cam-
bridge [73], Universities of Virginia and Padova [100] and the University of
California Santa Barbara in collaboration with the Sansum Diabetes Research
Institute [52].

Another approach which is currently being tested in clinical trials is an
algorithm that applies the principles of fuzzy logic theory to imitate the way
of reasoning of diabetes caregivers [10, 110].

An ideal glucose controller would be one capable of limiting the insulin
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prediction horizon N 

t-1 t-Nt-kt t+1

y(t)

u(t) u(t+k|t)

(t+k|t)ŷ

Figure 2.10: MPC way of operation [71]. Based on a model, the output
trajectory ŷ(t+ t|k), k = 1, ..., N , is estimated for any given control sequence
u(t+ k|t) over a prediction horizon N.

infusion, minimizing the hypoglycemia events, and robust in the presence of
intra-patient variability and errors in the measurements. In addition, it cannot
be too complex, and needs to be adjustable according to clinical practice.
However, its development is not easy at all, due to the challenges and difficulties
listed in Section 2.4.1.

In [90] a roadmap to a closed-loop artificial pancreas is provided. It
consists of 6 stages: (i) pump shut-off to avoid hypoglycemia, (ii) a predictive
hypoglycemia minimizing system, (iii) a system that controls glucose between
low and high glucose limits, (iv) overnight control to a desired glucose set-
point, (v) fully closed-loop control using insulin, and (vi) fully closed-loop
control using both insulin and glucagon. Apart from the first stage which
has already entered in the postmarketing stage with the low glucose suspend
function integrated in the Paradigm R© Veo (Medtronic) insulin pump [125],
all the rest are still in research phase.

In the last years many clinical trials have been carried out mainly after
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the Juvenile Diabetes Research Foundation (JDRF) launched the Artificial
Pancreas Project in 2006 [2], setting up a consortium of Universities and other
research organizations to promote collaboration in diabetes research5. This
consortium, together with DREAM [110] and Artificial Pancreas at home
(AP@home) [1] consortiums, have monopolized the list of the most recent
clinical trials. The approval by the Food and Drug Administration of the UVa
simulator [88] (Section 1.4.2), that substitutes animals testings before human
trials, has accelerated also the validation of the algorithms.

The main approaches already proposed and those that are currently being
tested, both for overnight and postprandial control are explained now.

Overnight control

According to [158], most severe hypoglycemic episodes occur during sleep.
The possibility of reducing these events by using a closed-loop strategy is
promising due to the absence of the biggest perturbations (meals and exercise).
Several studies have been developed by Cambridge University to evaluate the
efficacy of an MPC-based closed-loop algorithm overnight [93] with promising
results. The algorithm was evaluated in hospital in randomized crossover
studies in 17 children and 24 adults. Time in target plasma glucose (70− 144

mg/dl) in both young and adults was longer than using a conventional CSII
therapy (from 40% to 60%, p = 0.002 in young and 50% to 76%, p < 0.001
in adults). Moreover, glycemic variability was also lower for closed-loop (27

versus 37.8 mg/dl, p = 0.007).

Another study using an MPC controller developed using UVa simulator [87]
and carried out with 20 DM1 adults in Virginia, Padova (Italy) and Montpellier
(France), showed a reduction in nocturnal hypoglycemia (blood glucose below
70.2 mg/dl) from 23 to 5 episodes (p < 0.01). Additionally, the fuzzy logic
based MD-Logic Artificial Pancreas (MDLAP) [10] was also tested in a 12
DM1 patients cohort crossover trial conducted in Slovenia, Germany, and Israel
[111]. The percentage of time spent in normoglycemia (63 − 140 mg/dl) was
significantly higher in the overnight closed-loop sessions (76%) than during

5Go to http://jdrfconsortium.jaeb.org/ClinicsListing.aspx for an updated list of
consortium participants.
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CSII therapy (29%) (p = 0.02). The mean overnight glucose level was reduced
by 36 mg/dl with closed-loop insulin delivery (p = 0.02) with a significantly
less glucose variability when compared with the CSII nights (p < 0.001).

Daily control and meal counteraction

As explained in Section 2.4.1, the biggest challenge of glucose control is
the counteraction of meals and the risk of late-postprandial hypoglycemia
due to the delays in subcutaneous insulin absorption. First trials using fully
automatic glucose controllers showed limitations in the postprandial control
[153] with glucose peaks higher than desired (189, 172 and 225 mg/dl for lunch,
dinner and breakfast respectively). The use of an hybrid approach with manual
delivery of prandial insulin boluses has reported better results both with PID
[176] and MPC [49]. However, late postprandial hypoglycemia continues being
a problem even with meal announcement strategies [34, 24, 51].

In an attempt to add safety against hypoglycemia to closed-loop strategies,
different approaches have been proposed. In [151] feedback of a model
predicted insulin profile was added to the ePID algorithm (ePID-IFB) to try
to better emulate the β-cell physiology, and improve postprandial behavior.
The trial which included a fixed 2IU prebolus before each meal evaluated the
feasibility of the approach with 8 patients receiving closed-loop insulin delivery.
Although it improved results with respect the ePID without IFB [176], 3
patients needed supplemental carbohydrates in order to avoid hypoglycemia.

More recently, a modular control-to-range strategy [118] which adds a
safety supervision module to avoid hypoglycemia has been clinically tested
[23]. This safety module uses IOB constraints implemented in a MPC controller
[52] and “power brakes” [75] that attenuate the basal rate to determine
the safe insulin dose. The trial involved 11 adolescents and 27 adults and
included also a premeal bolus. It tested the performance of two control-to-
range algorithms, one more conservative and another with a tightest target
range, versus CSII open-loop therapy. Although both strategies improved the
time in normoglycemia with respect to open-loop (from 61 to 74% in one case
and from 76 to 90% in the other), some hypoglycemia events were still found
after exercise and in the late postprandial period.
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Finally, the use of counterregulatory actions (glucagon) to avoid hypogly-
cemias is also being investigated [29, 47]. In [47] MPC was used for insulin
delivery and a PID for glucagon delivery. Glucose was measured intravenously.
The trial reported that 5 from 11 adults being controlled required additional
carbohydrates to avoid hyperglycemia due to slower insulin absorption. A later
study found that the effectiveness of glugagon was inversely related to the error
in the controller insulin level estimations and the magnitude of IOB [144]. The
third-generation of the algorithm has been recently tested using CGMS both
in inpatient [46] and outpatient conditions [145]. In this last work two 5-days
studies, one with 20 adults and with 32 adolescents with different controlled
outpatient condition are presented. In both cases the percentage of time in the
desired range (here 70− 180 mg/dl) increased during days 2–5 of closed-loop
therapy ( 79.5 vs 58.8%, p<0.001 in adults and 75.9% vs 64.5%, p<0.001 in
adolescents) that was accompanied by a decrease in percentage of time below
70 mg/dl in the case of the adult cohort (4.1% vs. 7.3%, p=0.01). The main
difficulty that these approaches found is the lack of an FDA-approved stable
glucagon preparations that can be infused via subcutaneous pump [133].

Future directions

As it has been reviewed, overnight closed glucose control has already
been validated with good results in controlled environments. Nowadays,
algorithms are being tested in more realistic situations. In that way, the
DREAM group recently published data from a multinational camp two nights
study in 56 children [124] testing MD-logic algorithm. The number of
overnight hypoglycemic events was reduced in the closed-loop scheme (7 vs
22). The algorithm is also being tested in adults under domiciliary conditions.
Interim results were published in [112]. Cambridge group and AP@home
consortium have also reported preliminary promising results of wearable closed-
loop systems in outpatient studies [50, 36]. More recently, in [72] a 3-weeks
outpatient study in adolescent is presented. Nights with glucose <63 mg/dl
for at least 20 min were reduced from 17 to 10% (p = 0.01). Several other
wearable systems are currently being tested in clinical trials.

With relation to postprandial control, several trials are currently being
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carried out to improve the counteraction of the meals and to increase safety
and robustness against variability and the delay in insulin action. A recent
study in supervised transitional outpatient conditions and using the control-to-
range algorithm implemented in a smartphone (DiAs [89]) showed a reduction
in hypoglycemia events per patient from 2.39 to 1.22 (p = 0.02). However
the the percentage of time in the target range was slightly lower. This and
other algorithms are currently being tested both in inpatient and outpatient
settings. Additionally, strategies combining insulin closed-loop system with
drugs already used used in DM2 such as pramlintine and liraglutide are also
being tested [175].

In Table 2.2, the most relevant clinical studies that are currently ongoing
are listed. Results presented in chapter 4 are currently being tested clinically
in study NCT02100488.

2.5 Conclusions

Current strategies for glucose control were explained in detail in this chapter.
The main insulin therapies used in clinical practice were reviewed paying
special attention to intensive insulin therapies and to the advances that are
being implemented in CSII pumps. Closed-loop strategies that try to improve
glucose control and quality of life of DM1 patients were carefully explained.
The characteristics of the measuring and the infusing devices were listed so as
to understand their possibilities and limitations.

The purpose of this review was to understand what are the challenges
of glucose control and the difficulties that have not been solved yet. Meals
counteraction avoiding late hypoglycemia is still an unsolved problem both in
open and closed-loop strategies, mainly due to the delays in subcutaneous
insulin action and to the high inter and intra-patient variability. On one
hand, in open-loop therapies, despite the existence of bolus advisors and
the possibilities of infusing smart bolus waveforms in new insulin pumps,
the selection of the postprandial doses is still an empirical process based on
the experience of patient and physician. On the other hand, in order to



Glucose Control in Type 1 Diabetes 53

Table 2.2: Current clinical studies validating closed-loop control systems
SPONSOR/COLLABORATORS NCT NUMBER TITLE
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Rabin Medical Center
NCT01901913 MD-Logic Artificial Pancreas for Automatic Type 1 Diabetes

Meals Management

NCT00541515 Closing the Loop Between Glucose Sensor and Insulin Pump-
developing an Algorithm

Institut de Recherches Cliniques de
Montreal

NCT02282254 Closed-loop Control of Overnight Glucose Levels (Artificial
Pancreas) in Type 1 Diabetes Adults With Hypoglycemia
Unawareness and Documented Nocturnal Hypoglycemia

NCT01930110 Closed-loop Control of Glucose Levels (Artificial Pancreas)
During Exercise in Adults With Type 1 Diabetes

Yale University

NCT01787318 Effect of the InsuPatch on Automated Closed-loop Glucose
Control in Type 1 Diabetes

NCT02135068 Preventing Hypoglycemia During Exercise With Proactive
Snacking on Closed Loop

NCT01945099 Acceleration of Insulin Action by Hyaluronidase During
Closed-Loop Therapy

NCT01856790 Effect of Liraglutide on Automated Closed-loop Glucose
Control in Type 1 Diabetes

University of Cambridge NCT02129868 Automated Closed-loop in Children and Adolescents With
Type 1 Diabetes

Medtronic Diabetes NCT01712594 Safety and Effectiveness Study of a Closed Loop System
Maintaining Patients’ Glucose Levels During an Overnight
Period

Albert Einstein College of Medicine of
Yeshiva University

NCT01755416 Liraglutide Versus Insulin Mono-therapy in the Closed Loop
Setting

Fundación para la Investigación del Hos-
pital Clínico de Valencia

NCT02100488 Improving Postprandial Glycaemia by a New Developed
Closed-loop Control System - Closedloop4meals

University of Virginia NCT01945060 Closed Loop Control in Adolescents Using Heart Rate as
Exercise Indicator

Azienda Ospedaliera Universitaria Integ-
rata Verona

NCT02003274 Mixed Meal Test in Type 1 Diabetes on Insulin Pump
Therapy: Optimization of Artificial Pancreas

Joslin Diabetes Center NCT02065895 Effect of Gain on Closed-Loop Insulin

Hvidovre University Hospital NCT02232971 Treatment of Low Blood Sugar With Glucagon Among
Patients With Type 1 Diabetes

Centre d’Etudes et de Recherche pour
l’Intensification du Traitement du Diabète

NCT02101229 Validation of the Artificial Pancreas Diabeloop Algorithm in
the Hospital

O
ut
pa

ti
en
t
st
ud

ie
s

Rabin Medical Center NCT01238406 Overnight MD-Logic

Institut de Recherches Cliniques de
Montreal

NCT01966393 Closed-loop Control of Glucose Levels (Artificial Pancreas)
for 60 Hours in Adults With Type 1 Diabetes

University of Cambridge NCT01961622 Closing the Loop in Adults With Sub-optimally Controlled
Type 1 Diabetes Under Free Living Conditions

Medtronic Diabetes NCT01857973 Overnight Closed Loop Study in U.S.

St Vincent’s Hospital Melbourne NCT02040571 The Performance of an Artificial Pancreas at Home in People
With Type 1 Diabetes

University of Virginia

NCT01890954 Optimizing Closed-Loop Control of Type 1 Diabetes Mellitus
in Adolescents

NCT02302963 Unified Safety System (USS) Virginia Closed-Loop Versus
Sensor Augmented Pump Therapy for Hypoglycemia
Reduction in Type 1 Diabetes

NCT02147860 Full Day and Night Closed-Loop With DiAs Platform

Juvenile Diabetes Research Foundation
Artificial Pancreas Project Consortium

NCT02137512 Pilot Study 3 of Outpatient Control-to-Range: Safety and
Efficacy With Day-and-Night In-Home Use

Stanford University NCT02280863 Hybrid Closed-Loop Hotel Studies With Medtronic PID
Controller

Massachusetts General Hospital |Boston
University

NCT02181127 Closed-Loop Glucagon Administration For Hypoglycemia
Treatment

http://clinicaltrials.gov [closed-loop and type 1 Diabetes]
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make the future artificial pancreas feasible, more advancements have to be
implemented so as to improve safety against controller overcorrection that lead
to hypoglycemia.

Next chapters deal with the main proposals of this thesis to improve glucose
control in the postprandial period adding robustness to current strategies. In
that way, in next chapter an open-loop proposal to select the best basal-bolus
concentration to counteract a specific meal is presented.



3 | Open-loop strategy: Com-
bining basal-bolus insulin in-
fusion for tight postpandial
glucose control

In Chapter 2 the limitations and challenges of current insulin therapies have
been presented. Despite the recent development of CGMS and smart insulin
pumps and the advances in new insulin analogs, postprandial glucose control
is still a challenging issue in everyday diabetes care. Insulin dosing remains as
an empirical process, and its success is highly dependent on the patients’ and
physicians’ skills, either with multiple daily injections or with CSII.

In this chapter, an algorithm based on mathematically guaranteed tech-
niques (interval analysis) to calculate, in a non-heuristic way, the best prandial
basal–bolus combination leading to a tight postprandial glucose control is
presented.

Section 3.2 reviews the main theoretical concepts related to interval analysis
and set inversion, presenting the set inversion via interval analysis (SIVIA)
algorithm and the definitions needed to understand it. The new methodology
for prandial insulin determination is introduced in Section 3.3. Section 3.4
presents the characteristics of the in silico validation whereas a proof-of-
concept clinical study is presented in Section 3.5.
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Part of the contents of this chapter appeared in the following journal
articles:

• A. Revert, P. Rossetti, R. Calm. J. Vehí, J. Bondia, Combining Basal-
Bolus Insulin Infusion for Tight Postprandial Glucose Control. An
In Silico Evaluation in Adults, Children and Adolescents, Journal of
Diabetes Science and Technology,(6), 1424–1437, 2010 [138]

• A. Revert, R. Calm, J. Vehí, J. Bondia, Calculation of the best basal-
bolus combination for postprandial glucose control in insulin pump
therapy, IEEE Transactions on Biomedical Engineering,58(2), 274–281,
2011 [136]

• P. Rossetti, F.J. Ampudia-Blasco, A. Laguna, A. Revert, J. Vehí, J.F.
Ascaso, J. Bondia, Evaluation of a novel continuous glucose monitoring-
based method for mealtime insulin dosing - the iBolus - in subjects with
type 1 diabetes using continuous subcutaneous insulin infusion therapy:
a randomized controlled trial, Diabetes Technology and Therapeutics,
14(11), 1043–1052, 2012 [140]

3.1 Introduction

Achieving good postprandial glycemic control, without triggering hypogly-
cemia events, is a challenge of treatment strategies for type 1 diabetes subjects.
Continuous subcutaneous insulin infusion, the gold standard of therapy, is
based on heuristic adjustments of both basal and prandial insulin. Some tools,
such as bolus calculators, are available to aid patients in selecting a meal-
related insulin dose. However, they are still based on empiric parameters such
as the insulin-to-carbohydrate ratio and on the physicians’ and patients’ ability
to fit bolus mode to meal composition.

The main challenge that still needs to be overcome is the high intra-patient
variability which difficulties the achievement of good glucose control. This
is particularly notable in the control of postprandial glycemia excursions.
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Certainly, meals are one of the major perturbations to counteract and
avoidance of overcorrection and subsequent hypoglycemia one of the objective
of current therapies.

Interval techniques [78, 107, 6] have shown to be particularly suitable
to deal with constraints under uncertainty, and they are applied in a wide
range of fields such as robotics, control, computer graphics, economy, global
optimization, and fault detection, among others [131]. These techniques were
first introduced in the context of postprandial glucose control in insulin pump
therapy for T1DM in [20].

In this work, the ideas of [20] are used to posed a 3D (basal, bolus,
time of restoration of basal to baseline) Set Inversion problem to determine,
for a given meal, which prandial insulin administration mode and dose will
yield a good postprandial performance (following the International Diabetes
Federation (IDF) guideliness [77]), according to the patient’s model. The
solution can lead to standard, square, and dual-wave boluses modes currently
available in insulin pumps, as well as temporal basal decrement mode (currently
not available in pumps), which can be considered as a generalization of the
concept of superbolus introduced by Walsh and Roberts [171, 170].

A unique feature of this algorithm is that it allows the addition on
uncertainty in the parameters of the patient’s models and also in the estimated
carbohydrate content of the meals. This fact makes this algorithm more robust
to variability than those currently implemented in insulin pumps. The proposal
was validated in silico using the available patients of the FDA-approved UVa
simulator (described in Section 1.4.2) with the consideration of structural
mismatch between the patient’s model and the model used to describe he
virtual patient. Afterwards, the algorithm was also tested in a controlled
inpatient clinical study to validate this prandial insulin dosing algorithm in
comparison with traditional I:C ratio-based therapies in T1DM subjects using
CSII.
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3.2 Theoretical framework: Interval Analisis and Set
Inversion

Interval analysis arose in the context of numerical analysis and the study of
propagation of computational errors in finite number systems [107, 131]: if
real numbers are substituted by compact subsets of the digital scale (intervals)
which contain it, and real operators by interval operators, computations will
lead to intervals that contain the actual solution, whose width is a measure of
the approximation error. It is precisely this property of inclusion of the actual
solution that makes interval analysis and methods derived very interesting
when a mathematical guarantee is desired.

Inclusion functions are thus one of the fundamental tools in interval
analysis.

In the following [x] will denote a real interval, and x, x are its left and right
endpoints. Interval vectors, or boxes, will be denoted in boldface, [x]. The set
of all real intervals will be denoted by IR and the set of n-dimensional boxes
as IRn.

A formal definition follows.

Definition 3.2.1 Given a function f : Rn → Rm, the interval function [f ] :

IRn → IRm is an inclusion function for f if for any box [x] = [x,x] ∈ IRn

[f ]([x]) ⊇ [min
x∈[x]

f(x),max
x∈[x]

f(x)]. (3.1)

The simplest way to get an inclusion function for f is replacing the real
variable x with an interval variable [x] and the real arithmetic operations with
corresponding interval operations. The result [f ] is called a natural inclusion
function of f [107]. However, this may yield significant overestimation when
multiple instances of a variable appear in the expression to evaluate (multi
incidences problem). Other inclusion functions have been studied to reduce
this problem like centered forms or Taylor expansion forms. See for instance
[6, 131, 107, 78] for more details on this topic.
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Currently, interval analysis is a mature technology that has been suc-
cessfully applied in fields aside numerical analysis such as robotics, control,
computer graphics, economy, global optimization, and fault detection, among
others [78].

An important application of interval analysis is the solution of set inversion
problems. Let X ⊆ Rn and Y ⊆ Rm be an input and output space, respectively.
Given a set Y ⊆ Y and a map f : X → Y, the set X := {x ∈ X | f(x) ∈ Y}
is sought. The set Y is usually defined through constraints on the output
space. The SIVIA algorithm [78] makes use of a branch-and-bound technique
together with interval analysis to get an approximation of the solution set X .
This approximation is done in terms of subpavings (collection of boxes of the
appropriate dimension with non-overlapping interiors). An inner and outer
subpaving, which will be denoted as [X ]i and [X ]o respectively, are built so
that [X ]i ⊆ X ⊆ [X ]o. Hence, it is guaranteed that [X ]i will contain only
solutions while the complementary set of [X ]o, denoted as [X ]o, will contain
only non-solutions (see Figure 3.1).

Some previous definitions follow before presenting the SIVIA algorithm.

Definition 3.2.2 The width of a box [x] = [x,x] ∈ IRn is w([x]) :=

maxi∈{1,...,n}(xi − xi).

Definition 3.2.3 The midpoint of a box [x] = [x,x] ∈ IRn is m([x]) := (x +

x)/2.

Definition 3.2.4 The left and right children of a box [x] = [x,x] ∈ IRn are

L([x]) := [x1, x1]× · · · × [xj ,m([xj ])]× · · · × [xn, xn]

R([x]) := [x1, x1]× · · · × [m([xj ]), xj ]× · · · × [xn, xn]

where j is the first component of [x] with maximum width, that is, j =

min{i | w([xi]) = w([x])}.

Algorithm 3.2.1 [SIVIA, [78]]
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Figure 3.1: Plot that illustrates the concept of inner and outer subpaving. Blue
rectangles represent the inner subpaving and guarantee the fulfillment of the
constraints. The outer subpaving is made up of both blue and red rectangles.
Its complementary set (in white) is guaranteed to contain only non-solutions
that violate some of the constraints. Results in the boundary (red rectangles)
are unknown a priori.
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Let X be the solution set sought and [X ]i and [X ]o be two subpavings
corresponding to inner and outer approximations of X as defined above. Let
[t] : IRn → IB be a test interval function from the set of n-dimensional interval
vectors (box in the input space) to the set of interval booleans, IB = {0, 1, [0, 1]}
(where 0 stands for false, 1 for true and [0, 1] for indeterminate). Finally, let
[x] ∈ IRn be an initial box in the input space and ε be a positive precision factor
that can be chosen arbitrarily low. The SIVIA algorithm is as follows:

SIVIA(in: [t],[x],ε, out: [X ]i,[X ]o)
if [t]([x]) = 0, return;
if [t]([x]) = 1,
then {[X ]i := [X ]i ∪ [x]; [X ]o := [X ]o ∪ [x]; return; };

if w([x]) < ε,
then {[X ]o := [X ]o ∪ [x]; return;};

SIVIA([t],L([x]),ε,[X ]i,[X ]o);
SIVIA([t],R([x]),ε,[X ]i,[X ]o);

The inner subpaving will thus consist of the boxes classified as True, while
the outer subpaving contains the True and Indeterminate boxes (of width
smaller than the tolerance defined). Not small enough Indeterminate boxes
will be split in two sub-boxes by the midpoint of its largest dimension and the
procedure repeated.

3.3 Set-Inversion-Based prandial insulin delivery

With a proper instantiation of the input and output spaces, X and Y, and the
test interval function [t], SIVIA algorithm can be used to gain insight on the
different dosage strategies that can be applied depending on the patient and
the nature of the meal and to select the best basal-bolus combination that will
yield a good postprandial control.

For this purpose, the following set inversion problem is posed:

• The input space X corresponds to the bolus insulin dose, the modified
basal insulin infusion at meal time and the time of restoration of basal
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to its baseline value. For a given box in the input space, [x], and a set
of constraints C on postprandial glycemia, the test function [t]([x]) will
determine whether: (1) all the insulin therapies contained in [x] fulfill
the constraints C (True case); (2) none of the insulin therapies contained
in [x] fulfill the constraints C (False case); (3) some of the therapies in
[x] fulfill the constraints, while others do not (Indeterminate case).

• The constraints C are defined as follows:

1. Constraints based on the IDF guidelines for postmeal control [77]:
non-hypoglycemia and two-hour postprandial glucose value below
140 mg/dl, in a 5-hour time horizon. The hypoglycemic threshold
is not explicitly defined in the guidelines. A value of 70 mg/dl is
adopted here following clinical practice.

2. Terminal constraints: 5-hour postprandial glucose value above 90

mg/dl and a maximum glucose slope of 0.05 mg/dl/min starting 4
hours after the meal (i.e., conditions of glycemic stability).

Terminal constraints are included here to minimize both the risk of
hypoglycemia after the first five hours and late undesirable glucose
rebounds. It must be considered that these are constraints applied on
the model prediction, which may not be reliable enough after a few hours
after the meal. They were tuned so as to get a good patient’s behavior
in spite of model prediction discrepancies.

• Finally, a patient’s model is used to predict postprandial glycemia, G,
that is compared against the above constraints. An interval simulation
of the model is carried out using Modal Interval Analysis [55]. This
allows to obtain tight bounds of the envelopes enclosing the collection of
postprandial glucose profiles originated from the set of therapies in [x].
For a given time t, [G](t) will thus be an interval (see Figure 3.2). A
time step of 1 minute is used in the simulation.

The test interval function, [t]([x]) is thus defined as:
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Figure 3.2: Output of an interval simulation. Upper and lower envelopes
include all possible glucose responses for the input box.

True: (∀tk ∈ [0, 300] [G](tk) ≥ 70)∧

(∀tk ∈ [120, 300] [G](tk) ≤ 140)∧

[G](300) ≥ 90)∧

(∀tk ∈ [240, 300]
[G](tk+1)−[G](tk)

tk+1−tk ≤ 0.05)

False: (∃tk ∈ [0, 300] [G](tk) < 70)∨

(∃tk ∈ [120, 300] [G](tk) > 140)∨

([G](300) < 90)∨

(∃tk ∈ [240, 300]
[G](tk+1)−[G](tk)

tk+1−tk > 0.05)

Indet.: otherwise

(3.2)

where tk is a discrete time instant. Remark that the above inequalities
correspond to interval inequalities ([x, x] ≤ α ⇔ x ≤ α, [x, x] ≥ α ⇔ x ≥
α, α ∈ R).

An schematic representation of the proposal is shown in Figure 3.3.
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Figure 3.3: Input and outputs of the designed algorithm. By using a
mathematical model of the patient and information regarding the meal to
be ingested, the SIVIA based algorithm calculates the best basal-bolus insulin
dose combination to fulfill a set of constraints according to the IDF criteria of
good postprandial control.
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3.3.1 Output of the algorithm: best basal-bolus combination

The kind of inner subpavings that are obtained after the application of the
algorithm is shown in Figure 3.4. The subpaving consists of 3D feasible
boxes, where these three dimensions correspond to the bolus dose, the
postprandial basal dose and time of restoration of basal to baseline. In this way,
combinations in the inner subpaving are guaranteed to yield a glucose profile
that fulfills the defined constraints. On the contrary, combinations outside the
outer subpaving will violate some constraint. If the outer subpaving is empty,
there is no solution to the problem unless the constraints are relaxed. To gain
interpretability the 3D set can be projected into the 2D basal-bolus projection.
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Figure 3.4: Plot that represents a 3D (basal, bolus and time) feasible set with
its corresponding basal-bolus 2D projection.

This 2D projection contains information on the different basal-bolus
combinations that will lead to a good performance for a particular patient
and meal. The basal-bolus space can be divided into regions corresponding
to different bolus administration modes present in current insulin pumps
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(see Figure 2.5 in Chapter 2), plus a new one called here temporal basal
decrement.

This is illustrated in Figure 3.5, where basal and bolus axes have been
normalized with respect to nominal basal and nominal bolus for the given
meal (computed from the patient’s I:C), respectively. Point (1,1) corresponds
thus to the standard therapy.
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Figure 3.5: Normalized feasible set that shows all the possible bolus
administration modes. Therapies with nominal basal correspond to a standard
strategy, therapies with an increment in basal postprandial dosage result in a
dual-wave or square-wave strategy whereas therapies with less postprandial
basal than baseline are called here as temporal basal decrement mode. The
corresponding insulin infusion profiles are depicted for each region.

For a given meal, the projected set reveals which bolus administration
modes are feasible. This is especially important since it allows the automatic
selection of the best administration mode. As the carbohydrate content of the
meal increases, fewer options are available, until no solution exists (Figure 3.6).
In this case, either the patient reduces the meal intake or constraints must be
relaxed.

The procedure used to select a specific point (basal-bolus combination)
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Figure 3.6: 2D basal-bolus projection of normalized feasible sets for a meal
of 40 to 140 g of carbohydrates and initial normoglycemia. The vertical line
stands for the standard strategy with basal equal to its baseline value.
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from all the possible ones is done as follows. The 2D basal-bolus subpaving
is divided into two smaller subpavings (when possible) corresponding to a
positive and negative basal deviation from nominal. The first one corresponds
to a bolus mode currently available in insulin pumps (standard/square/dual-
wave). The second one corresponds to temporal basal decrement, found to be
the only solution for big sized meals (see [20]). The optimal point of each of
these new subpavings can be selected in several ways, and different approaches
will be explained here:

• Centroid solution: The basal-bolus combination is chosen as the
geometric centroid of the corresponding subset. This alternative leads
to a conservative solution where the glucose response remains as far as
possible from the constraints. Although this solution does not optimize
the glucose profile, it is the most robust solution against mismatches
between patients’ model and actual patients.

• Maximal-bolus solution: The basal-bolus combination is chosen by
applying the highest possible bolus to optimize the 2-hour postprandial
glucose concentration. This solution follows a similar philosophy to the
typical physicians’ approach for selecting the appropriate I:C ratio for
each patient. The difference here is that the coordinated basal-bolus
action will allow an optimal 2-hour postprandial glucose control, while
avoiding hypoglycemia although loosing robustness.

After the selection of the desired basal-bolus combination, the time of
restoration of basal to baseline is selected from the third dimension in the 3D
feasible set, which corresponds to an interval of feasible times of restoration.
The mid-value is considered here. Figure 3.7 summarizes this procedure.

Summarizing, after identification of the patient’s model characterizing
postprandial behavior up to 5 hours, the algorithm consists of the following
steps:

1. Computation of the feasible set of prandial insulin infusions in the 3D
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space (bolus insulin at mealtime, basal rate at mealtime, time of basal
restoration).

A. If it is empty, relax constraints and go to 1.

B. If it is not empty, go to 2.

2. Projection onto the two-dimensional space (bolus insulin, basal rate at
mealtime).

3. Selection of the desired administration mode among the feasible ones in
the two-dimensional projection.

4. Selection of a bolus insulin and basal rate at mealtime among the selected
subset.

5. Selection of a feasible time of basal restoration, according to the selection
in 4, from the three-dimensional feasible set.

3.4 In silico evaluation

Table 3.1 shows the demographic, anthropometric, and metabolic parameters
of the 30 patients available in the educational version of UVa simulator. Those
patients are used as population set. Nominal basal is taken as the basal infusion
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normalizing glucose around 100 mg/dl, and the I:C ratio is estimated through
simulations trying to obtain a 2-h glucose concentration below 140 mg/dl.

Table 3.1: Demographic, anthropometric and metabolic parameters of the 30
in silico subjects available in the educational version of the UVa simulator.

ADULTS

Age Body Weight (kg) Nominal basal (IU/h) I:C (g/IU)
Mean 51.6 86.07 1.685 9.92
Standard Deviation 16 15.79 0.25 6.33

ADOLESCENTS

Age Body Weight (kg) Nominal basal (IU/h) I:C (g/IU)
Mean 16.5 47.7 1.17 9.65
Standard Deviation 1.75 7.89 0.24 6.09

5cCHILDREN

Age Body Weight (kg) Nominal basal (IU/h) I:C (g/IU)
Mean 9.4 35,865 0.502 21.11
Standard Deviation 1.56 5.96 0.07 13.76

The algorithm requires obtaining an individual model for each of the
patients, characterizing their postprandial glucose behavior. UVa simulator
uses the Cobelli model as a mathematical description of type 1 diabetic patients
(see Section 1.4.2). In order to force mismatch between patient’s model and
the virtual patient behavior for a more realistic scenario, the Hovorka model
[74, 71] (Section 1.4.1), which is structurally different, is used here as patient’s
model.

The use of a model structurally different from the model used in the
UVa simulator is justified by the unavoidable discrepancies that always exist
between the real behavior of a patient and the response of its model. Choosing
a different model for identification than the one used in the simulator allows
evaluating the robustness of the algorithm with respect to model and patient
mismatch.
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3.4.1 Patient’s model identification

A critical point of the methodology is the identification of the prediction model
of each patient so as to reproduce his metabolism as accurately as possible. A
proper design of the procedure used for identification so as to obtain as much
information as possible from the patient metabolism is the key to achieve good
parameters estimation. Thus, an optimal experiment design (OED) was carried
out in order to find the best procedure for the identification.

OED consists in identifying the proper experiment setup (selection of inputs
to excite the process) that delivers experimental data allowing parameter
estimation with minimal uncertainty. In this manner, OED helps in improving
the a posteriori identification of the parameters, minimizing also problems of
bad conditioning in their estimation [174, 99].

The specific features of the OED used for patients identification are now
described:

Parameters selected for describing the experimental design were:

• ingested carbohydrates,

• bolus insulin dosage, and

• time instant of bolus insulin infusion (before or after the meal).

The duration of each experiment (meal) was set in 5-hours and the number
of measurements was fixed and determined by the frequency of the continuous
glucose sensor (5 minutes). Each experiment was considered to be carried out
on different days, approximately at the same time every day (lunch time).

Bound constraints on the parameters were included to avoid impractical
results. So, the grams of carbohydrates were limited to values between 50–100
g (corresponding to an acceptable range for the lunch) while the bolus insulin
dosage was forced to remain in the range ±20% the patient’s standard bolus
for that meal. Infusion time for bolus insulin was limited from 30 minutes
before the intake to 30 minutes after it. In addition, extra constraints were
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added to avoid hypoglycemia (< 70 mg/dl) or extremely high hyperglycemia
(> 300 mg/dl).

A priori identifiable parameters reported in [71] were considered for
identification, with the exception of F01 (non-insulin-dependent glucose flux)
that was replaced with tmax,G (time to maximum carbohydrate absorption) so
as to include at least one parameter related to the meal intake (see [71] for the
model details). Moreover Q2(0) (initial mass of glucose in the non-accessible
compartment) was also included as an additional parameter to be identified.
The values of the parameters used were mean parameters with the body weight
set to the mean body weight of the adults, adolescents and children to be used
in the in silico validation. An insulin sensitivity proportionality factor was
applied and fixed to 0.5, 0.6 and 0.7 respectively. Nominal basal was taken
as the basal infusion normalizing glucose around 100mg/dl. I:C ratio was
estimated through simulations and fixed to 1:14, 1:19 and 1:25 for adults,
adolescents and children.

The optimality criterion used was D-optimality, corresponding to the
maximization of the determinant of the Fisher Information Matrix [174].
Figure 3.8 shows the evolution of this criterion for the three groups of patients
with respect to the number of days (number of lunches) used for identification.
It can be observed that the improvement in the criterion resulting from adding
a new day decreases progressively. So, a compromise solution between the
time needed to identify and the a posteriori identifiability of the model was
selected. Therefore, data obtained from four different lunches was used in the
identification process.

Table 3.2 shows the OED results obtained for adults, adolescents and
children. In general, it can be inferred from the OED that the best results
in identification are obtained by alternating the time of administration of the
bolus insulin with respect to meal time, always distancing the administration
as much as possible from the meal. Moreover, both carbohydrate grams and
deviation from nominal I:C must be selected from the extreme values. That is,
big or small meals are better for identification than medium size meals. In the
same way, the glucose response has to be excited as much as possible delivering
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Table 3.2: Proper four meals experiment setup according to the OED

Meal 1 Meal 2 Meal 3 Meal 4

ADULTS
carbohydrates (g) 50 100 50 100

4(I : C) 20% 20% 20% -20%

time (min) -30 -30 30 -30

ADOLESCENTS
carbohydrates (g) 100 50 90 100

4(I : C) -20% 20% 0% 20%

time (min) -30 -30 0 -30

CHILDREN
carbohydrates(g) 100 70 50 100

4(I : C) 20% 17% 20% -10%

time (min) -30 0 -30 -30

bolus the further from nominal the better, but always within control limits to
not decompensate the patient in excess. This fact can be clearly observed in
the adult group whereas in adolescents and children, due to their higher insulin
sensitivity, the possible violation of the bound constraints reduces the freedom
in the selection of the experiment parameters.

A posteriori identifiability analysis of the model with the results obtained
from Table 3.2, proved that the seven to-be-identified parameters have a
coefficient of variation below 10%, fact that guarantees their identifiability.

A 4-day identification for each of the 30 patients was carried out following
the OED results. Results are summarized in Table 3.3. Figure 3.9 shows the
specific identification results obtained for one representative adult patient from
the UVa simulator are shown in Figure 3.9. The coefficient of determination,
R2, is 86% which assures a good identification quality.

3.4.2 Metrics used in the in silico evaluation

Once obtained an individual patient model for each of the 30 virtual patients
available, the feasible sets were computed for meals in the range 40–140
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Figure 3.9: Four-meal identification following the OED results. The solid red
line represents the glucose profile of the virtual patient whereas the dotted blue
line represents the profile simulated by the identified model.
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Table 3.3: Model parameters estimation
tmax, I tmax, G SfIT SfID SfIE EGP0 Q2(0)

(min) (min) (1/min per mIU/L) (1/min per mIU/L) (1/min per mIU/L) (mmol/(kg·min)) (mmol)

ADULTS
Mean 60.85 61.17 0.0049 0.0034 0.0015 0.0137 47.55

CV 0.27 0.23 0.98 1.13 2.20 0.35 0.37

ADOLESCENTS
Mean 53.39 59.45 0.0045 0.00873 0.0010 0,01590 20.84

CV 0.47 0.29 1.43 1.25 2.26 0.30 0.27

CHILDREN
Mean 59.19 53.07 0.0203 0.0074 0.0160 0.0175 18.41

CV 0.42 0.48 1.55 0.90 1.73 0.31 0.81

CV: coefficient of variation

g of carbohydrates and initial normoglycemia. For this study, the bolus
administration mode selected among the feasible sets was the temporal basal
decrement. Indeed, for some situations, it is the only feasible solution [20] (see
Figure 3.6). Postprandial glucose control efficiency of both the centroid and
the maximal-bolus solution of the temporal basal decrement set was measured
and compared with the standard bolus. A 7-hour postprandial horizon was
considered to evaluate the risk of later hypo and hyperglycemia. Different
metrics were used for this comparison:

1. The area under the curve (AUC) for glucose concentrations higher than
140 mg/dl and lower than 70 mg/dl was calculated, using the trapezoidal
rule [132] in the 0–2 h, 0–5 h and 0–7 h postprandial periods for the
whole 40–140 g range of carbohydrates;

2. percentage of time spent in the desired glycemic range (70 mg/dl < gluc-
ose < 140 mg/dl), as well as percentage of time spent in hypoglycemia
(glucose < 70 mg/dl), were computed;

3. The blood glucose standard deviation within the 0–5 h and 0–7 h time
intervals (SDwsh) [139] was calculated as a measure of the glycemic
variability associated with each prandial insulin administration strategy.

Total and bolus insulin dose were also reported, to allow for correct
interpretation of the above-mentioned indicators. The AUC0−2h, AUC0−5h

and the AUC0−7h, as well as the insulin dose, were normalized by the respective
values obtained using standard bolus.
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All data are subjected to repeated-measures analysis of variance with
Huynh–Feldt adjustment for nonsphericity [180]. The analysis of variance
model included only the test condition (standard bolus, centroid and maximal-
bolus temporal basal decrement), as within-subjects factor, and post hoc
comparisons (Tukey test) were carried out to pinpoint specific differences on
significant interaction terms.

3.4.3 Results of the in silico evaluation

Tables 3.4, 3.5 and 3.6 show the mean AUC of the three groups of patients
(adults, adolescents and children) following meals with different carbohydrate
content. A comparison among the percentages of time in normoglycemia (70

mg/dl < glucose < 140 mg/dl) and hypoglycemia (glucose ≤ 70 mg/dl) for
each of the solutions is also provided along with the amount of prandial bolus
insulin and total insulin dose in the 7 hours postprandial period. One virtual
child (child number 8 with BW=23.73 kg) was eliminated from the study
because the feasible set of prandial insulin infusions was empty for meals higher
than 60 g even relaxing constraints.

As a whole, results demonstrate the feasibility and effectiveness of the
proposed algorithm based insulin administration. It performed generally better
than the traditional bolus in all of the considered time horizons. In particular,
both centroid and maximal-bolus temporal basal decrement solutions were
associated with significant less hypoglycemic exposure in all groups of patients
(Tables 3.4, 3.5 and 3.6 ). This was associated with a lower (or at least
not different) overall exposure to undesired glycemic levels (both hyper and
hypoglycemia), as indicated by the AUCs values and the percentage of time
spent in the normoglycemic range (the latter did not approach statistical
significance only in children).

Total insulin dose was generally lower with the algorithm-based adminis-
tration as compared to the standard therapy, and this was mainly attributable
to a reduction in the basal insulin dose. In the adult population, total insulin
dose resulted lower with the algorithm-based administration but the difference
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Table 3.4: Mean Different Indicator Values for the 10 Adults in the University
of Virginia Simulator.

ADULTS

AUC 2h AUC 5h AUC 7h % of time % of time % of time Bolus Total IU
Normo 7h Hypo 5h Hypo 7h 7h

40 g

Standard 1 1 1 92.28 0.83 6.34 1 1
Centroid 0.57 0.53 0.15 97.91 0.00 0.00 0.88 0.88a

Maximal-bolus 0.08 0.08 0.02 99.55 0.00 0.00 1.54ab 0.92a

p value 0.409 0.148 0.06 0.06 0.135 0.135 <0.001 <0.001

60 g

Standard 1 1 1 81.59 2.83 9.90 1 1
Centroid 0.91 0.78 0.39 91.57a 0.00 0.71 1.01 0.89a

Maximal-bolus 0.62a 0.53a 0.28a 93.99a 0.00 0.93 1.38ab 0.93b

p value 0.034 0.034 0.006 0.011 0.135 0.368 <0.001 0.007

80 g

Standard 1 1 1 71.30 3.53 11.80 1 1
Centroid 1.02 0.98 0.60 82.94a 0.00 0.59 0.97 0.88a

Maximal-bolus 0.73ab 0.66ab 0.41a 87.60ab 0.00 1.07 1.26ab 0.92b

p value 0.002 0.002 <0.001 <0.001 0.135 0.204 0.001 0.007

100 g

Standard 1 1 1 61.04 3.87 14.56 1 1
Centroid 0.96 0.91 0.63 76.41a 0.00 1.47a 0.99 0.87a

Maximal-bolus 0.80ab 0.73ab 0.50a 80.00ab 0.33 1.35a 1.17ab 0.90
p value 0.007 0.007 <0.001 <0.001 0.368 0.043 0.001 0.002

120 g

Standard 1 1 1 54.47 3.97 16.77 1 1
Centroid 1.05 1.03 0.78a 63.59a 0.00 4.75a 0.94 0.85a

Maximal-bolus 0.88 0.82 0.62a 69.24a 0.00 5.04a 1.10ab 0.88
p value 0.184 0.111 <0.001 0.002 0.135 0.005 0.039 0.002

140 g

Standard 1 1 1 49.24 4.13 17.53 1 1
Centroid 1.09 1.09 0.86 54.89 0a 4.92a 0.92 0.83a

Maximal-bolus 0.96 0.91 0.73a 60.97 0a 6.08a 1.02 0.85
p value 0.249 0.180 0.004 0.056 0.05 <0.001 0.061 0.006

a p < 0.05 versus standard bolus
b p < 0.05 versus centroid
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Table 3.5: Mean Different Indicator Values for the 10 Adolescents in the
University of Virginia Simulator

ADOLESCENTS

AUC 2h AUC 5h AUC 7h % of time % of time % of time Bolus Total IU
Normo 7h Hypo 5h Hypo 7h 7h

40 g

Standard 1 1 1 63.7 10.97 27.43 1 1
Centroid 1.38 0.91 0.43a 87.17a 0.00 1.42a 0.89 0.82
Maximal-bolus 1.25 0.83 0.47a 84.94a 2.10 5.84 1.18b 0.88
p value 0.163 0.18 0.01 0.01 0.066 0.011 0.027 0.273

60 g

Standard 1 1 1 56.22 11.63 28.38 1 1
Centroid 1.33 1.13 0.64a 74.06a 0a 5.11a 0.85 0.81a

Maximal-bolus 1.14 0.93 0.59a 68.41a 2.50a 13.92a 1.07 0.86
p value 0.106 0.054 <0.001 0.012 0.016 0.011 0.184 0.049

80 g

Standard 1 1 1 48.15 12.33 29.81 1 1
Centroid 1.23 1.13 0.75a 58.50 0a 13.06a 0.85 0.80
Maximal-bolus 1.13 1.03 0.72a 58.08 2.13a 16.82a 0.99ab 0.84
p value 0.138 0.205 <0.001 0.236 0.01 0.023 0.045 0.061

100 g

Standard 1 1 1 40.36 12.37 29.90 1 1
Centroid 1.22 1.22 0.89 49.74a 1.30a 16.27a 0.81a 0.77
Maximal-bolus 1.14 1.13 0.85a 49.22a 2.70a 19.24 0.92b 0.81
p value 0.111 0.082 0.017 0.023 0.002 0.006 0.045 0.061

120 g

Standard 1 1 1 36.13 12.03 29.19 1 1
Centroid 1.21 1.25 0.98 44.20a 1.40a 16.39a 0.78a 0.75
Maximal-bolus 1.15 1.19 0.94 48.79a 1.97a 15.11a 0.87b 0.78
p value 0.096 0.061 0.067 0.002 0.004 0.023 0.045 0.273

a p < 0.05 versus standard bolus
b p < 0.05 versus centroid
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Table 3.6: Mean Different Indicator Values for Nine Children Analyzed from
Those Available in the University of Virginia Simulator

CHILDREN

AUC 2h AUC 5h AUC 7h % of time % of time % of time Bolus Total IU
Normo 7h Hypo 5h Hypo 7h 7h

40 g

Standard 1 1 1 66.77 10.26 22.75 1 1
Centroid 1.64 1.95 1.33 69.52 0.00a 0.00a 1.33 0.78a

Maximal-bolus 1.41 1.46 1.04 71.47 0.00a 0.00a 1.04 0.80a

p value 0.278 0.129 0.642 0.923 0.041 0.003 0.06 <0.001

60 g

Standard 1 1 1 61.12 11.96 24.49 1 1
Centroid 1.36 1.27 0.87 73.24 0.00a 3.93a 0.87 0.78a

Maximal-bolus 1.29 1.27 0.90 72.34 0.00a 4.70a 0.90 0.80a

p value 0.278 0.129 0.642 0.251 0.007 0.006 0.092 <0.001

80 g

Standard 1 1 1 51.31 14.04 30.48 1 1
Centroid 1.34a 1.36 1.00 61.52 0.04a 6.91a 1.00 0.77a

Maximal-bolus 1.27 1.27 0.95 64.71 0.30a 7.31a 0.95b 0.78a

p value 0.031 0.154 0.187 0.164 0.002 <0.001 0.019 <0.001

100 g

Standard 1 1 1 46.95 11.74 30.40 1 1
Centroid 1.33ac 1.41ac 1.08 54.50 0.67a 7.47a 1.08a 0.75a

Maximal-bolus 1.27 1.33 1.04 56.85 0.85a 7.86a 1.04b 0.77a

p value <0.001 <0.001 0.328 0.278 0.048 0.001 0.004 <0.001

120 g

Standard 1 1 1 40.83 10.74 30.19 1 1
Centroid 1.29a 1.41a 1.13 47.43 0.37a 7.44a 1.13a 0.74a

Maximal-bolus 1.26 1.37 1.11 48.19 0.44a 7.73a 1.11b 0.76a

p value 0.006 <0.001 0.209 0.406 0.031 0.001 0.019 <0.001
a p < 0.05 versus standard bolus
b p < 0.05 versus centroid
c p < 0.05 versus maximal-bolus
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was statistically significant only for the centroid solution (Table 3.4). Indeed,
bolus increase with the maximal-bolus solution is compensated for reduction
of basal insulin in the following hours. The increase in the bolus insulin dose
was not seen in the adolescent and children populations in most of the tested
meals. This fact may be explained by the high incidence of hypoglycemia in
those groups as compared with the adult population.

Table 3.7 represents the glycemic variability during the postprandial 5
and 7 hours with the centroid, maximal-bolus and standard solution, showing
significant improvement with temporal basal decrement solutions in all of the
considered meals.

Table 3.7: Glycemic Variability over the Course of Five and Seven Hours
ADULTS ADOLESCENTS CHILDREN

Standard
deviation
5h

Standard
deviation
7h

Standard
deviation
5h

Standard
deviation
7h

Standard
deviation
5h

Standard
deviation
7h

40 g

Standard 13.48 15.91 24.9 28.2 27.19 27.99
Centroid 9.30a 9.72a 17.80a 20.13a 18.69a 19.53a

Maximal-bolus 11.59 11.12a 20.69a 21.71 19.17a 19.95a

p value 0.009 <0.001 0.002 <0.001 <0.001 <0.001

60 g

Standard 19.77 23.18 33.89 39.63 29.35 40.05
Centroid 14.68a 15.81a 27.53a 31.71a 28.74 30.22a

Maximal-bolus 16.92 16.93b 29.15a 32.03a 29.35 30.22a

p value 0.002 <0.001 <0.001 <0.001 0.154 <0.001

80 g

Standard 25.79 29.85 42 49.86 48.05 51.55
Centroid 20.22a 22.07a 36.47a 42.51a 39.63a 41.88a

Maximal-bolus 21.96a 22.37a 37.14a 42.13a 39.42a 40.96a

p value 0.002 <0.001 0.006 <0.001 <0.001 <0.001

100 g

Standard 31.67 35.96 50.23 59.78 57.05 61.99
Centroid 25.84a 27.82a 45.03a 52.99a 50.57a 54.45a

Maximal-bolus 27.00a 27.70a 45.16a 52.30a 50.11a 53.09a

p value 0.001 <0.001 0.006 <0.001 0.01 0.005

120 g

Standard 37.36 42.02 57.87 68.97 65.83 71.72
Centroid 31.00a 33.95a 53.35a 63.37a 60.27 65.2
Maximal-bolus 31.78a 33.32a 52.57a 61.91a 60.04 64.18
p value <0.001 <0.001 <0.001 <0.001 0.067 0.328

140 g

Standard 42.37 47.66
Centroid 35.82a 39.33a

Maximal-bolus 36.30a 38.72a

p value <0.001 <0.001
a p < 0.05 versus standard bolus
b p < 0.05 versus centroid
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In Figures 3.10, 3.11 and 3.12 the mean glucose response of the adults,
adolescents and children is shown for different carbohydrate content meals.
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Figure 3.10: Mean glucose response of the 10 adults in the UVa simulator.
The blue line represents the response applying the standard bolus, whereas
the green and the red line correspond to the centroid and maximal-bolus
solution, respectively. These latter solutions produce a flatter profile than
the one observed with the standard bolus, avoiding late hypoglycemia. In
addition, the peak in the glucose profile remains similar or even lower.

3.4.4 Discussion of the in silico evaluation

In this section, an in silico evaluation (needed step prior to clinical trials) of the
algorithm proposed in Section 3.3 has been carried out. Results demonstrate
the feasibility, efficacy and robustness of this approach. Algorithm-based
bolus insulin administration is associated with lower hypoglycemic risk and
less glycemic variability, as compared with standard strategy, in both the
5-h and 7-h postprandial horizons. Results indicate that, when looking for
tight postprandial glucose control, a parallel reduction in basal insulin dose is
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Figure 3.11: Mean glucose response of the 10 adolescents in the UVa simulator.
The blue line represents the response applying the standard bolus, whereas the
green and the red line correspond to the centroid and maximal-bolus solution,
respectively. These latter solutions produce a flatter glucose profile than the
one observed with the standard bolus, avoiding late hypoglycemia. The peak
in the glucose profile using any of the solutions is similar.
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Figure 3.12: Mean glucose response of nine children analyzed from those
available in the UVa simulator. The blue line represents the response applying
the standard bolus, whereas the green and the red line correspond to the
centroid and maximal-bolus solution, respectively. These latter solutions,
although producing a slightly higher peak in the glucose profile than the
standard bolus, achieve a flatter glucose profile, avoiding the severe late
hypoglycemia.
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required to limit late post-absorptive hypoglycemia, especially for meals with
higher carbohydrates content.

Strength of the proposed method is its robustness. The use of a model
significantly different from the virtual patient for the identification of the
patient’s postprandial behavior shows the feasibility of the method in spite
of imperfect glucose predictions, due for instance to intra-patient variability.
Robustness of the solution could be further increased, if needed, with explicit
consideration of intra-patient variability (as interval quantities in model
parameters) or considering uncertainty in the carbohydrates content of the
meal in the computation of the feasible solution set with SIVIA (that would
yield smaller feasible sets and thus more constrained solutions). This is a
unique feature of the presented algorithm. Another one is the possibility to
determine, in a non-heuristic way, the feasible insulin administration modes for
a given meal, which could be included in smarter insulin pumps in the future.

The main limitation of this study is that its results may not apply to the
real diabetic population in daily life. Adult virtual patients are built on data
from real patients response to a specific (and non physiologic) mixed meal
[13], not necessarily representative of the postprandial response to a meal of
different composition. Extrapolation of results from virtual adolescents and
children to the real population should be done even more cautiously. Indeed,
to the best of our knowledge, no published data are available on traced mixed
meal postprandial response of non-adult diabetic people. Data published so far
for young people have been obtained from oral glucose tolerance test (OGTT)1

[161], but results are certainly not equivalent to a mixed meal.

Finally, identification of the patient model will definitely require specific
protocols to be followed by the patient during several days to avoid non-
identifiability issues. This can be an inconvenient for the patient.

In conclusion, despite its limitations, the results of this in silico validation
were promising enough to carry out a clinical validation of the algorithm to

1A medical test where a standard dose of glucose is ingested by mouth and blood samples
are taken afterwards to determine how quickly glucose is cleared from the blood.
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test its feasibility to be implemented in current insulin pumps. The protocol
and results of that clinical trial are provided in next section.

3.5 Clinical validation

Results of the in silico validation of the set inversion-based algorithm for
postprandrial control, encouraged its evaluation in clinical practice by the
team. In that study, the proposed algorithm was compared with standard
strategy for counteracting meals based on the I:C ratio.

The study was a randomized, prospective, single-center, double-blinded,
two-way crossover study. It involved 12 people (9 women and 3 men) with
T1DM under long-term intensive insulin treatment with CSII. The study was
done in the Clinic University Hospital of Valencia, Spain, under controlled
circumstances after an ambulatory period registering data using a CGMS. It
was carried out according to the Declaration of Helsinki after written informed
consent was obtained from all subjects and approved by the local institutional
review board.

This study is registered at ClinicalTrials.gov with trial registration number
NCT01550809. The research leading to these results received funding from
the European Union Seventh Framework Programme (FP7/2007/2013) under
grant agreement 252085 and from the Spanish Ministry of Science under
grants DPI2010–20764-C02–01 and DPI2011–28112-C04–01. The team was
composed by Dr. Paolo Rossetti, Dr. Jorge Bondia, Dr. Javier Ampudia-
Blasco, Dr. Juan F. Ascaso, Dr. Josep Vehi, Dr. Alejandro Laguna and Ana
Revert. P.R. contributed to the study concept and design, wrote the study
protocol, performed meal tests, researched and analyzed the data, F.J.A-B.
contributed to the study concept and design and reviewed the study protocol,
A.L. and A.R. researched and analyzed the data, J.F.A. supervised the protocol
development and the research, J.V. contributed to the study concept and
design and reviewed the study protocol, J.B. contributed to the study concept
and design, supervised the protocol development and the research, analyzed
the data.
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More detail about the clinical protocol and results of the study can be
found in [140].

3.5.1 Characteristics of the study

The anthropometric, demographic and metabolic parameters of the subjects
that participated in the study are showed in Table 3.8.

The study consisted of four 5-hour mixed-meal tests, two of 40 g car-
bohydrates and two of 100 g carbohydrates. For each type of meal the
standard therapy based on the individual I:C ratio was compared to the therapy
suggested by SIVIA algorithm, in consecutive weeks. Both the physicians and
patients were blinded regarding the bolus administration procedure during
test meals. Prior to each block of meal tests, subjects underwent at least two
outpatient 6-day periods of CGMS monitoring for the identification (the first 3
days) and validation (the last 3 days) of an individualized model to be used in
the prediction of the 5-h postprandial period using a clinical protocol derived
by the team from a qualitative analysis of optimal experiment design results
for a variety of models [95] (similarly to Section 3.4.1 for Hovorka model).

20% uncertainty in insulin sensitivity and 10% uncertainty in the grams of
carbohydrates was considered in the interval model used in SIVIA algorithm.
In that way hard constraints were applied to the punctual model whereas
soft constraints were used for the interval model [21]. The selection of the
specific basal-bolus combination from the 3D set of solutions provided by the
SIVIA algorithm was done using the maximum-bolus solution. Remark that
the solution set was considered here as a whole and no prior bolus mode was
selected. In that way, the solution set may contain profiles either increasing
(dual-wave bolus) or decreasing (temporal basal decrement) postprandial basal
rate as required to fulfill the constraints for the specific patient.

For each study, subjects were admitted to the Clinic University Hospital
of Valencia at 09:00 h and all mixed-meal tests started at 13:00 h with the
ingestion of a meal. Comparable initial metabolic conditions among the tests
were guaranteed by a prior intravenous infusion of regular human insulin
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following a feedback procedure to maintain plasma glucose (PG) close to 90

mg/dl before the starting of the study. In order to avoid hypoglycemia during
test (5 hours), a controlled glucose infusion was started if PG fell below 75

mg/dl, and the premeal glycemic levels were maintained.

Table 3.8: Demographic, anthropometric and metabolic parameters of the
patients participating in the study

.

Age BMI (kg/m2) HBA1c (%) Nominal basal (IU/h) I:C (IU/10 g)

Mean 41.8 25.1 8.0 0.8 1.3
SD 7.3 2.8 0.6 0.3 0.5

3.5.2 Metrics used and results of the clinical validation

The metrics used for the clinical validation were similar than the ones used
in silico. In that way, the AUC of PG during the whole experiment (AUC −
PG0−5h) was calculated for each of the four tests. It is a measure of the overall
glucose-lowering efficacy of the postprandial strategy. Moreover, the AUC of
the glucose infusion rate (AUC − GIR0−5h) which represents a measure of
hypoglycemic exposure was also calculated. The most effective postprandial
strategy is determined then by the lower value of AUC − PG0−5h without
increasing AUC−GIR0−5h. Additionally, the AUC of PG above the threshold
of 140mg/dl (AUC−PG > 140) was computed as an indicator of meal-induced
hyperglycemic risk.

Variability of the postprandial glycemic response was calculated as the
coefficient of variation (CV) of the AUC − CGMS0−5h and of the AUC −
PG0−5h. Glucose concentrations at t0 ( PG − t0), the mean prandial insulin
dose (Insulin dose0−5h), and their respective CVs (CV − Gt0, CV − PGt0,
and CV-Insulin dose0−5h) were computed as well, as potentially related to
variability of postprandial glucose.

All data were subjected to repeated-measures analysis of variance with
Huynh–Feldt adjustment for nonsphericity [180]. The analysis of variance
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model included the sequence of studies as a between-subjects factor, whereas
test condition (maximal-bolus vs. standard), carbohydrates content of the
meal (40 g and 100 g carbohydrates conditions), and time (where appropriate)
were the within-subjects factors. Subjects were entered in the model as
random factors nested into the sequence. Post hoc comparisons with a
nominal significance level of 0.05 (Newman–Keuls test) were carried out to
pinpoint specific differences on significant interaction terms. The coefficient of
determination R2 was reported as a measure of the proportion of variability in
the glycemic response that was accounted for by the statistical model.

As it can be inferred from Table 3.9, the postprandial glycemic control
was similar independently of the doses strategy followed (standard therapy
and the maximal-bolus solution from SIVIA). In that way the overall 5 hours
glycemic exposure (AUC−PG0−5h), the hypoglycemic risk (AUC−GIR0−5h),
and the hyperglycemic risk (AUC-PG > 140) were not different for the
different strategies. This fact contrasts with the results in insulin dose.
The maximal-bolus strategy resulted in a clinically although not statistically
significant approximately 30% greater mean insulin dose (bolus + 5-hours
basal) compared with the standard therapy. The bolus dose accounted for
the whole increment in the 40 g carbohydrates meals whereas in the 100 g
carbohydrates meals both the basal insulin and the bolus insulin were equally
increased.

With respect to variability, despite the feedback procedure that guaranteed
equal prepandial PG values, the postprandial glucose response varied in a
wide range with both the maximal-bolus (median CV, 14.7%; interquartile
range, 4.5– 27.9%) and the standard (median CV, 5.4%; interquartile range,
3.3–12.7%) (Table 3.10). Glucose variability was significantly greater with the
maximal-bolus, likely because of the wider range of insulin doses administered
(Table 3.9).

3.5.3 Discussion of the clinical validation

The purpose of this proof-of-concept study was to validate the non-heuristic
interval analysis based algorithm for determining the best basal-bolus com-
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Table 3.9: Insulin Dose and the Area Under the Curves of Plasma Glucose,
Plasma Glucose Above 140 mg/dl, and Glucose Infusion Rate of the 5-h
Postprandial Period for the maximal-bolus solution and the standard therapy

40 g of carbohydrates 100 g of carbohydrates

Maximal-bolus Standard Maximal-bolus Standard p value
Insulin dose0−5h (IU) 9.9 ±3.4 7.4 ±2.1 18.0 ±6.7 13.8 ±4.3 0.32
Bolus dose (IU) (7.1 ±2.8) (4.3 ±1.5) (13.9 ±7.1) (10.8 ±3.8)
AUC-PG0−5h 585.5 ±127.5 689.2 ±180.7 752.1 ±237.7 760.0 ±263.2 0.07
AUC-GIR0−5h 150.1 ±134.5 54.0 ±87.4 88.9 ±195.5 56.0 ±121.1 0.45
AUC-PG>140mg/dl 37.2 ±63.5 77.5 ±123.8 141.3 ±182.8 144.6 ±217.7 0.29

Table 3.10: Intrasubject Variability of the Postprandial Glycemic Response
Reported as the Intra-Individual Coefficient of Variation of the 5-h
Postprandial Period

CV

Gt0/PGt0 (mg/dl) Insulin dose (IU) AUC0−5h(mg/dl·h)
Overall 6.4 ±2.5%(101.9± 4.1) 40.1 ±11.6%(12.3± 3.6) 14.5 ±10.5%(696.7± 175.3)
Maximal-bolus 6.7 ±3.7%(101.2± 4.4) 39.5 ±24.9%(13.9± 4.4) 16.7 ±15.3%(668.8± 162.7)
Standard 5.6 ±5.0%(102.5± 5.5) 42.8 ±3.3%(10.6± 3.2) 10.1 ±12.5%(724.6± 198.7)
p value 0.36 (0.43) 0.65 (0.007) 0.04 (0.07)

bination leading to a good postprandial control, already tested in simulations
using the FDA-accepted UVa simulator, in CSII-treated patients with T1DM.
Results show that the proposed strategy for insulin delivery provides a
postprandial glycemic control similar to that achieved by standard bolus
calculators. Taking into account that currently postprandial control is still a
heuristic process depending on the expertise of the patient and the physician,
these results are encouraging and open the way to larger clinical studies aimed
at validating less user-dependent strategies for prandial insulin dosing. The
study validates also the feasibility of using CGMS measures for the automatic
insulin dosing.

Several are the causes for the differences found between the in silico study
results and those from the clinical trial, and all are related to the identification
process. Remark that SIVIA algorithm guarantees the fulfillment of the
constraints as far as the prediction model is reliable. Although to test the
robustness of the algorithm a model different from the one used in UVa
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simulator was used for obtaining the identified prediction models (Section
3.4.1), the postprandial response of each virtual patient in the simulator
only depends on the carbohydrates quantity. However, not only the quantity
of the carbohydrates but also the proteins and fats content of the meal
can significantly affect glycemic postprandial response. Available models in
literature are presumably specific to the meal used in the experiment and may
not apply to meals of different composition, limiting prediction capabilities of
the individual model.

Moreover, another factor not considered in the in silico validation was intra-
patient variability with resulted to be huge in the clinical test. In that way,
in spite of keeping into control the main known sources of variability (meal
composition, prepandial glycemia and accuracy of the glucose measurments),
clinically significant different insulin doses using different strategies (30%
greater with the maximal-bolus strategy compared with the standard therapy
(see Tables 3.9 and 3.10) achieved similar glycemic control. This fact was
also observed at the individual level in some cases. This must be regarded as
“unexplained” variability, which makes it very difficult to control postprandial
glucose response in open loop for some patients, whatever the model used for
insulin dosing: the bolus advisors currently implemented in clinical practice, or
new proposals. In that respect, one of the advantages of the proposed strategy
is that uncertainty can be considered in the SIVIA algorithm. In this way, if the
causes of variability could be characterized, they would be easily incorporated
in the algorithm as interval parameters aiming at more robust insulin dosing
according to the individual patient model. Further work is thus necessary in
modeling postprandial behavior and the characterization of variability.

3.6 Conclusions

In this chapter, an innovative strategy for calculating the most appropriate
combination of basal and bolus insulin for a good postmeal glucose control
has been thoroughly presented. The set inversion methods based on interval
analysis are applied to determine, for a given meal, which bolus-administration
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mode will yield a glucose response fulfilling the IDF guidelines of postprandial
control.

The algorithm was first evaluated in silico with the adults, adolescents
and children in the UVa simulator demonstrating robustness with respect
to the patient model. The promising results lead to the development of a
clinical protocol for the validation of the algorithm in vivo. The clinical
trial demonstrated the feasibility of the algorithm using CGMS measurements
for postprandial insulin delivery, showing similar results than those using
traditional therapies. The fact that a non-heuristic CGMS-based insulin
delivery algorithm is capable of matching the performance of currently heuristic
strategies is encouraging. However, some limitations were found that explain
the differences with respect the in silico test.

The main problem is high intra-subject variability, that is a barrier for
obtaining good prediction models to be used by the algorithm. Most of the
causes of that high variability remains unexplained and more research should
be done to determine its nature. This limitation is difficulties to overcome
in open-loop strategies and it encourages the use of closed-loop strategies as
presented in the next chapter.

Despite its limitations, the proposed algorithm has some features that
provide interesting advantages. The first one is that it can consider uncertainty
in the models’ parameters. This means that individual variations in insulin
sensitivity, meal absorption, or errors in the estimation of the amount of
ingested carbohydrates (among other factors) can be considered in insulin
dosing. Moreover, it provides not a single but a set of solutions that, according
to the model, are designed to maintain the patient in a prespecified glycemic
range. These features may be relevant in clinical practice because, if the
individual models were good, they would allow for a more robust and safer
insulin administration.

In next chapter, the second proposal of this thesis is presented. It consists
of an algorithm called SAFE which purpose is again to improve postprandial
control using CGMS measurements, gaining in robustness and avoiding late
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hypoglycemia events. The algorithm is thought to be added to closed-loop
glucose control schemes.





4 | Closed-loop strategy: A ref-
erence conditioning method
for the reduction of hypogly-
cemia

In last chapter an open-loop algorithm to improve postprandial glucose
control under uncertainty was presented. It’s performance was tested both
in silico and in vivo. The result demonstrated the feasibility of using an
automatic non-heuristic CGMS-based algorithm for insulin delivery. However
the results obtained in the clinical validation did not significantly improve
those obtained with the standard therapy. The main barrier was high intra-
subject variability which accounts for the greatest part of unpredictability of
postprandial glycemic control and remains a barrier for the implementation of
more effective open-loop insulin treatments.

In an attempt to overcome this problem and due to its potential advantages
with respect to open-loop proposals a closed-loop strategy is presented in
this chapter. The main objective of this proposal is to help in avoiding
one of the main challenges of artificial pancreas: over-reaction leading to
hypoglycemia, especially in the late post prandial period. An original proposal
based on sliding mode reference conditioning ideas is presented as a way to
reduce hypoglycemia events induced by a closed-loop glucose controller. The
method is inspired in the intuitive advantages of two-step constrained control

95
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algorithms. It acts on the glucose reference sent to the main controller, shaping
it so as to avoid violating given constraints on the insulin-on-board. Some
distinctive features of the proposed strategy are that (i) it provides a safety
layer which can be adjusted according to medical criteria, (ii) it can be added
to closed-loop controllers of any nature, (iii) it is robust against sensor failures
and over-estimated prandial insulin doses, (iv) it can handle non-linear models.

This chapter is organized as follows. Section 4.2 revises the theoretical
concepts behind this proposal. Section 4.3 presents the method design and
analysis, showing its robustness properties and presenting some discussion
about the definition of IOB bounds. In Section 4.4 some simulations are
carried out to illustrate the robustness of the strategy against sensor failures
and priming bolus over-estimations. Moreover, the proposal is evaluated in
silico using the 10 adult patients available in the educational version of the
the Food and Drug Administration-accepted University of Virginia simulator
(UVA Simulator) [88]. Finally, in Section 4.5 a set of conclusions is provided.

Part of the contents of this chapter has been published in:

• A. Revert, F. Garelli, J. Pico, H. De Battista, P. Rossetti, J. Vehi, J.
Bondia. Safety Auxiliary Feedback Element for the Artificial Pancreas
in Type 1 Diabetes, IEEE Transactions on Biomedical Engineering ,
60(8), 2113- 2122, 2013 [137]

4.1 Introduction

As it has been discussed in Chapter 2, in the last 10–15 years the develop-
ment of CGMS has fostered research in the artificial pancreas and several
experiments of CGMS-based automated insulin infusion have been performed.
Although different controllers have been proposed, those with more clinical
evidence are PID [153, 103] controllers and algorithms such as MPC [69].
In an attempt to improve the performance of the controllers, and the control
of postprandial glycemia excursions avoiding overcorrection and subsequent
hypoglycemia, several schemes are being used. In this way, feedforward
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strategies with meal announcement and different safety strategies such as
modular control-to-range, the addition of safety constraints in the residual
insulin activity, the so-called insulin-on-board (IOB), or the addition of an
insulin feedback are being incorporated to the control schemes (see Section
2.4.2).

However, the problem of overcorrection has not been solved yet in a
satisfactory and universal way. Only solutions that apply to specific scenarios
have been successfully tested [52, 122]. Therefore, further investigation needs
to be perform in this field.

Specifically, it seems important to propose and evaluate alternative meth-
ods to implement safety constraints on IOB which can be applied to any glucose
closed-loop system. Indeed, two general approaches can be found in control
systems literature in order to deal with constraints [108, 121]:

• one-step approaches, in which knowledge of constraints is explicitly
exploited, and constraints accounted for, during control law design.
These are mostly MPC strategies.

• two-step algorithms, originally inspired in reference governors schemes
for industrial controllers.

The latter approach can be illustrated by the premise: ’‘design the
controller ignoring limitations, and then add a compensation to minimize
adverse effects of limitations on closed-loop performance” [86]. This leads
to some separation in the controller such that one part is devoted to achieving
nominal performance and the other part is devoted to constraint handling.
This feature allows the development of universal solutions that are applicable
regardless of the control scheme chosen. Thus, all the know-how on classical
control and tuning techniques can be used for the main control loop design.

In the case of glucose control, a two-step approach would permit exploiting
clinical evidence and experience on other valuable control strategies which are
not able to deal with IOB constraints by their own, such as ePID and ePID-
IFB [114, 27], or even non-linear control laws which take advantage of advanced
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physiological and pharmacokinetic dynamics knowledge. Despite the intuitive
advantages attributed to two-step algorithms [156], they are usually criticized
for being ad hoc methods without the background of a well-established theory.

In this chapter, sliding mode reference conditioning (SMRC) previously
successfully used in different fields [56, 58, 128, 165, 57] is applied to the design
of a safety algorithm to reduce hypoglycemia events in closed-loop glucose
control. It follows the two-step approximation to constrained control with the
advantage of providing a rigorous methodology design and robustness against
sensor failures. Indeed, differing from most two-step algorithms originally
conceived as anti-windup methods for linear and biproper controllers, the
proposed method can deal with both biproper/strictly-proper controllers and
linear/nonlinear controllers or IOB estimators. Furthermore it does not require
the model of the controller and IOB estimator but only their relative degree
(generally constant and known a priori), and provides insensitive IOB limits
to matched disturbances and sensor errors.

Some initial approaches based on conventional sliding mode control have
been reported both with [3] and without [82] meal announcement. In contrast,
in this proposal sliding modes are not established within the main control loop
but in an auxiliary software-based loop, which can operate at much faster
sampling rates than the ones allowed by current glucose monitors. In this way,
given a closed-loop controller (which can be of any nature), an outer control
loop is added so as to impose constraints on the IOB. This loop, based on
SMRC, is only active when the IOB amounts to undesirable values. It acts on
the reference of the main controller, shaping it so as to avoid the violation of the
constraints. Both upper and lower constraints in IOB can be defined, reducing
the hypoglycemia risk but also avoiding too high blood glucose values, mainly
in the late-postprandial period, acting as a second layer control. The IOB is
estimated through a subcutaneous insulin absorption model and different IOB
limits can be imposed depending on the ingested meal and on the estimation
of the insulin sensitivity for each patient. The main advantage of this scheme
is that it does not affect the design of the inner controller, which could be
designed previously and in an independent way.
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4.2 Theoretical framework

In order to address the glucose control problem with constrained IOB from
a general framework, in this section some important concepts on invariance
control and sliding regimes are reviewed. In particular, the necessary
conditions to confine a non-linear dynamical system to an invariant region
of the state-space are presented, and compared with the equivalent continuous
dynamics of a system operating in sliding mode (SM), i.e., when the system
input consists of a high frequency discontinuous signal.

4.2.1 Invariance control

Let the system


dx(t)

dt
= f(x, d) + g(x)w(t)

y(t) = h1(x)

v(t) = h2(x)

(4.1)

where x(t) ∈ Rn is the state vector, w(t) ∈ R is a control input and
d(t) ∈ Rn an unmeasured perturbation which can represent either parametric
uncertainties or external non-structured disturbances. f(x, d) : Rn×Rn −→ Rn

and g(x) : Rn −→ Rn are vector fields and h1(x), h2(x) : Rn −→ R scalar fields.

Variables y(t) and v(t) are both real-valued system outputs, y(t) being the
main controlled variable and v(t) a variable to be bounded so as to belong to
the set:

Σ = {x(t) | σ(t) = v(t)− v∗(t) ≤ 0} , (4.2)

with v∗(t) the bound imposed to v(t).

Thus, the goal is to find a control action w(t) such that the region Σ

becomes invariant (i.e., trajectories originating in Σ remain in Σ for all times
t), while y(t) is driven as close as possible to its desired value r. To ensure
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the invariance of Σ, the control action w(t) must guarantee that the right-
hand-side of the first equation in system (4.1) points to the interior of Σ at all
points on the border surface ∂Σ = {x(t)|σ(t) = 0}. Figure 4.1 is a graphical
representation of this invariance condition. Mathematically, this is verified if
the implicit invariance condition [7, 104]:

inf
w
σ̇(t) 6 0,withx(t) ∈ ∂Σ (4.3)

holds.

Figure 4.1: Invariance condition. Adapted from [128].

From equations (4.1), using Lie-derivatives, we have

w(t) = (Lgσ(t))−1 [σ̇(t)− Lfσ(t) + v̇∗(t)]

= wσ + (Lgσ(t))−1σ̇(t)
(4.4)

with wσ = (Lgσ(t))−1 [−Lfσ(t) + v̇∗(t)]. Since w(t) must be chosen so as to
fit equation (4.3) , it must verify (w(t)− wσ)Lgσ(t) 6 0, ∀x(t) ∈ ∂Σ.

Hence, the explicit invariance control for system (4.1) is obtained
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w(t) ∈ w ∈ R|w < wσ if (x(t) ∈ ∂Σ ∧ Lgσ(t) > 0)

w(t) ∈ w ∈ R|w > wσ if (x(t) ∈ ∂Σ ∧ Lgσ(t) < 0)

w(t) = 0 if (x(t) ∈ Σ \ ∂Σ)

(4.5)

with Lfσ(t) assumed to be positive without loss of generality.

Note that condition Lgσ(t) = δσ(t)
δx(t)g(x) 6= 0 must hold on ∂Σ for wσ to

exist and invariance control be feasible. Observe also that once the surface ∂Σ

and the control field g(x) are defined, only one of the two inequalities holds,
i.e., Lgσ(t) remains either positive or negative but never changes its sign.

4.2.2 Finite-time invariance achievement via Sliding Mode
Reference Conditioning

The concept of reference conditioning to achieve a realizable reference arises in
the context of constrained control systems. Specifically, Hanus and Walgama
[64, 169] applied this kind of solutions to solve the problem of actuator
saturation (windup) in linear controllers. Based on these approaches and
getting advance of the possibilities of sliding modes, Mantz and colleagues [102,
58, 128, 165] have used SMRC in several applications to robustly obtain
realizable references under restrictions both in the actuators, in the outputs,
or in any state or combination of states.

The sliding control loop appears in SMRC schemes as an additional
loop that makes the reference realizable under certain constraints, instead of
representing the main control loop. In that way, in contrast with conventional
variable structure controllers and sliding modes, the sliding regime is intended
as a transitional mode of operation.

Figure 4.2 shows a generic implementation of an SMRC loop. It basically
consists of two elements: a switching logic driving the search so as to fulfill the
constraints and force the system to remain in the invariance set, and a filter
F which purpose is to smooth out the conditioned signal rf (t). Notice that
the block Θ in the figure may represent a control loop, in which case r is the
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Figure 4.2: Generic scheme of an SMRC loop.

set-point while in system (4.1), x(t) is the extended state vector comprising
the process, controller, and filter states.

The switching logic is implemented as:

w(t) =

{
w+ if σSM (t) > 0

0 if σSM (t) 6 0
(4.6)

where

σSM (t) = v(t)− v∗(t) +
l−1∑
i=1

τi

(
v(t)(i) − v∗(t)(i)

)
(4.7)

with l being the relative degree between the output v(t) and the input w(t).
v(t)(i) and v∗(t)(i) are the i− th derivative of v(t) and v∗(t) respectively. τi are
constant gains and w+ is the w(t) upper value. The filter F is implemented as
the first-order filter ṙf (t) = −α (rf (t) + w(t)− r) with α a design parameter.

According to the definition of the switching function in equation (4.7, it
always has relative degree unitary with respect to w(t) (its first derivative ex-
plicitly depends on w(t)), which is a necessary condition for SM establishment
known as the transversality condition [45]. Indeed, it is interesting to observe
that for a general system as the one described in system (4.1), this condition
coincides with the existence condition of invariant control, Lgσ(t) 6= 0 (see
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equation (4.4)). Then, as long as w+ > wσ -recall equations (4.5)-, the SMRC
loop leads to a sliding regime on σSM (t) = 0 whenever the variable v(t) is
about to violate its constraint v∗(t), robustly ensuring the invariance of Σ.

Note that if the initial condition is beyond the frontier defined by
σSM (t) = 0, the switching logic of equation (4.6) sets a control action w+

which drives the system to the invariant region in finite time. The same would
happen if an abrupt (and not sufficiently bounded) disturbance led the system
to transiently leave the allowed region.

4.3 Safety auxiliary feedback element (SAFE) in
diabetes control

In this section, the theoretical framework presented in Section 4.2 is applied to
develop a safety algorithm for glucose control loops with the aim of reducing
the number and severity of hypoglycemia events and to avoid late postprandial
glucose rebounds. The main approach here is to limit the concentration of
residual insulin in the subcutaneous tissue, the so-called IOB, whose excess is
the main cause of late hypoglycemia due to delayed absorption and action.

4.3.1 Basics of the algorithm

Assume now that the block Θ in Figure 4.2 stands for a glucose control loop,
in which the main controlled variable y(t) is the glucose concentration (G(t))

and the constrained variable v(t) is the IOB(t) (henceforth IOB).

A representation of the proposed closed-loop scheme is shown in Figure 4.3.
C represents a controller. The control action is the pump’s insulin infusion
rate (uc(t)), while uf (t) represents a priming bolus in meal announcement
schemes. For the subsequent analysis, the inner controller C is assumed to
be a realizable proportional-integral-derivative (PID) controller. However, it
is worth remarking that it could be any other controller, even nonlinear and
strictly-proper ones.
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Figure 4.3: SMRC implementation for diabetes application.

Hence,

uc(t)=kP e(t)+kDĠ+ kI

∫ t

0
e(τ) dt (4.8)

where e(t) = G(t) − Grf (t) with Grf (t) the conditioned reference further
defined in equation (4.11) and kP , kD and kI the constants of the proportional,
derivative, and integral parts of the PID respectively. Notice that when uc(t)
(insulin injected) increases, the glucose concentration G(t) decreases. This fact
explains the error sign.

Since the IOB is inaccessible, it must be estimated. Again, the proposed
methodology does not restrict the way in which IOB is estimated, which
can be performed by means of any of the published insulin absorption
models [85, 91, 98, 129, 149, 157, 162, 181, 16, 178, 100], or even employing
static pharmacokinetic curves as currently done in commercially available
insulin pumps. Here, the insulin absorption model developed by Cobelli’s
group [100] and presented in Section 1.4.2 is used for the method description
(Figure 4.4). Its equations for the subcutaneous insulin absorption take the
form:

Ṡ1(t) = −(ka1 + kd)S1(t) + up(t)

Ṡ2(t) = kdS1(t)− ka2S2(t)
(4.9)

where S1(t) and S2(t) are subcutaneous tissue compartments (insulin mass),
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up(t) represents the administration of insulin, ka1, ka2 are rate constants of
insulin absorption and kd is the inter-compartment transport rate.

Figure 4.4: Schematic representation and equations of Cobelli’s insulin model
used here to estimate IOB.

In this way, IOB is defined as:

IOB = S1(t) + S2(t) (4.10)

As mentioned in the previous section, the outer SMRC loop consists of two
main elements. A switching logic responsible for constraining IOB inside the
desired bounds, and a first-order filter F which purpose is to smooth out the
conditioned reference.

The first-order filter takes the form:

Ġrf (t) = −α (Grf (t) + w(t)−Gr) , (4.11)

where Gr (usually constant) is the desired reference when IOB does not
reach the defined bounds, Grf (t) is the conditioned reference, w(t) is the
injected discontinuous signal and α determines the filter cut-off frequency.

Two constraints for the IOB can be defined. One upper constraint
(IOB(t)) (from here on IOB) to mitigate, as explained before, the problem
of hypoglycemia incidence, and an additional lower constraint (IOB(t)) (from
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here on IOB) to avoid undesirable glucose rebounds and maintain a minimum
quantity of IOB. To design the corresponding sliding functions, it is necessary
to know the relative degree l between IOB and w(t). Defining IOB as
S1(t) + S2(t), this relative degree is l = 2. Hence, according to (4.7), the
sliding functions are defined as 1:

σ1(t) = IOB - IOB + τ( ˙IOB− ˙IOB) =

= (1− τ ka1)S1(t) + (1− τ ka2)S2(t) + τ up(t)− IOB− τ ˙IOB

σ2(t) = IOB - IOB + τ( ˙IOB− ˙IOB) =

= (1− τ ka1)S1(t) + (1− τ ka2)S2(t) + τ up(t)− IOB− τ ˙IOB
(4.12)

and the associated switching logic is:

w(t) =


w + if σ1(t) > 0

w - if σ2(t) < 0

0 otherwise

(4.13)

Note that, because of the way the system is defined, w+ is negative and
w− positive. That is, when the upper bound is violated, the reference value
is increased so as to reduce the control action, and vice versa for the lower
constraint. In other words, when σ1(t) > 0, IOB is higher than IOB. In
order to decrease IOB, the insulin injected (uc(t)) must decrease. This effect is
achieved increasing Grf (t), avoiding hypoglycemia due to an excess of insulin.
In the same way, when σ2(t) < 0, IOB is lower than IOB and Grf (t) must
decrease in order to force an increase in u(t) and inject more insulin. This
procedure avoids undesirable later glucose rebounds once the effect of the meal
has already been counteracted.

As the algorithm is thought to be added to any closed-loop controller in
1Note that the compensation design is exactly the same independently of the controller

and estimator -provided their relative degree is the same, which is the case in practice as
otherwise additional lag would be unnecessarily introduced to the control loop-.
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order to provide an additional safety layer, it is named here Safety Auxiliary
Feedback Element (SAFE).

Remark: It is well known that the main drawback of sliding mode control is
the chattering phenomena, but in the proposed SAFE algorithm this problem
is not present. On the one hand, the discontinuous action is not a physical
signal due to the software-based nature of the algorithm. On the other hand,
it is filtered previously to being used to modify the reference. Therefore, all
signals in the main control loop are smooth.

4.3.2 Robustness and fault-tolerance properties

One of the most relevant features of sliding modes is their robustness against
an important sort of uncertainties and disturbances, the so-called matched
perturbations. Indeed, the matching condition of sliding regimes [45] states
that the dynamics during SM is insensitive (which is more than robustness) to
any bounded disturbance being collinear with the discontinuous action.

For the SAFE algorithm, combining the expressions related to IOB of the
insulin system (equations (4.9)), the controller (equation (4.8)) and the filter
(equation (4.11)), the open-loop dynamics of the whole conditioning system
can be rewritten in the general form of system (4.1) as:


Ṡ1(t)

Ṡ2(t)

u̇p(t)

 =


(−ka1−kd)S1(t)+up(t)

kdS1(t)−ka2S2(t)

−up(t)

+


0

0

ψ

+


0

0

kPα

w(t)

ψ =− kPαGr − (kI − kPα+ kP )Grf (t) + (kP + kI)G(t)+

+(kP + kD)Ġ(t) + kDG̈(t) + kI

∫ t

0
G(t) dt−

−kI
∫ t

0
Grf (t) dt+ uf (t) + u̇f (t)

(4.14)
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where, following the general notation of system (4.1):

x(t) =

 S1(t)

S2(t)

up(t)

 , g(x) =

 0

0

kPα

 , (4.15)

and f(x, d) is composed of the first two terms of the right-hand-side of system
(4.14).

The above equation shows that the second term, which can be seen as
the perturbation vector d(t), is collinear with the control vector g(x) which
determines the direction of the discontinuous action, i.e., they satisfy the
matching condition. Thus, once SM is established on surfaces σ1(t) = 0 or
σ2(t) = 0, the resulting SM dynamics is insensitive to changes in Gr, G(t) and
uf (t). This means that the limits imposed to IOB are robust against set-point
changes, measurement noise and over-estimated priming bolus doses, and avoid
also high concentrations of residual insulin due to sensor failures. Note that
this robustness is referred to the IOB limits and does not imply a delay in the
inner controller reaction to those changes.

Observe that although Ġ(t), G̈(t) and u̇f (t) appear in d(t), they do not
affect the robustness of the algorithm as they could only be unbounded during
given time instants (e.g., at glucose monitor samplings or start of bolus doses),
after which the commanded signal to the pump will be consistent with the
IOB constraints. Recall that the software-based SAFE algorithm can operate
at the much faster rates than the main control loop, which guarantees that,
in case IOB is going to violate the constraints in the period between sensor
measurements, the algorithm detects this violation. In this way, the algorithm
continuously calculates the insulin needed for keeping the IOB under the
constraint between samples and, at the next sampling rate of the insulin pump
it can inject, for example, the mean value of all the calculations. Moreover,
G̈(t) does only appear if we consider a controller with a pure differentiator,
something improbable in practice, and u̇f (t) can always be bounded by means
of a fast filtering (imperceptible for the slow open-loop system dynamics) of
the feed-forward action.
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4.3.3 SM establishment on safety IOB constraints

From Section 4.2, the necessary condition that must be fulfilled so as the sliding
mode to exist is the transversality condition, that is Lgσ(t) = ∂σ(t)

∂x(t)g(x) 6= 0.

As Lgσ1(t) = Lgσ2(t), calculations are carried out in the following for σ1(t)
being the procedure for σ2(t) analogous:

Lgσ1(t)=
∂σ1(t)
∂x (t)g(x)=

(
1−τka1 1−τka2 τ

) 0

0

kPα

=τkPα

(4.16)
where kP , τ and α are design parameters, always different from 0 and positive.
Therefore, the transversality condition holds.

Since the objective here is to shape the reference signal Grf (t), as a rule
of thumb it is reasonable to take w+ of the order of the glucose set-point Gr.
Nevertheless, the exact minimum amplitude to guarantee SM can be explicitly
computed from the invariance condition stated in Section 4.2:

(w+ - wσ1)Lgσ1(t) 6 0, ∀x(t) ∈ ∂Σ (4.17)

According to equations (4.5), since in this case Lgσ1(t) > 0, w+ must be
chosen to fit equation:

w+ 6 wσ1 = - (Lgσ1(t))
−1[Lfσ1(t) + ˙IOB] = ξ(x, τ, α) < 0 (4.18)

with ξ(x, τ, α), derivable from equations (4.14) and (4.18), defining the
minimum amplitude for the negative value w+ so as to guarantee SM.

4.3.4 IOB constraints definition

One of the critical points to guarantee the reduction of the hypoglycemia events
using SAFE is the selection of the proper IOB constraints. This decision can
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be based on different criteria and it differs from one individual to another.
Indeed, the most suitable IOB constraints depend on the insulin sensitivity of
each patient, together with the meal amount and composition ingested.

Different parameters can be used as insulin sensitivity estimation. Demo-
graphic (age) and anthropometric parameters such as the body mass index
(relation between height and weight), the body fat (fat percentage of body
weight) and the waist circumference [18, 167] together with metabolic paramet-
ers as total daily dose of insulin, the insulin-to-carbohydrate ratio, correction
factor and basal rate prescribed by the physician (insulin pump tuning), can
be combined to perform the estimation. Remark also the time-varying nature
of insulin sensitivity due, among others, to the circadian rhythms [65] that
can be taken into account in the definition of the IOB constraints, making
them time-variable along the day. In order to avoid the uncertainty caused
by the inaccurate estimation of the carbohydrate content of a meal by the
patients, meal size could be estimated using the measured glucose slope, but the
high variability observed in glucose absorption advises against this approach.
Finally, physician’s knowledge and experience always play an important role
in the selection of the proper IOB constraints for each patient. Note also that
the bounds IOB and IOB can initially be chosen in a conservative way so as
to compensate for uncertainty in the insulin absorption model (see equations
(4.9)), and then they could be easily adjusted by the physicians to each patient.

One approach to define IOB limit is to adjust it to a piecewise function as
illustrated in Figure 4.5. It consists of a security constraint during the night
period, a higher constraint (meal dependent) for the postprandial period and
a more restrictive constraint for the late postprandial period specially useful
in meals with high fat content. Depending on the scenario, other option could
be to fix just one daily (conservative) and one nightly security constraint in
order to obtain a non-meal dependent outer loop to be used in fully automated
control loops. An additional lower constraint can be added to avoid glucose
rebounds. A good way to define this lower constraint is to build it proportional
to the usual basal rate of the patient, that could be time-variable in case of
pump therapies.
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Figure 4.5: Daily IOB constraint function.

Note that although IOB limits can be time-variant (v∗(t) in Section 4.2.1),
their variation must be slower than the bandwidth of SAFE. Thus, the case of
IOB limits piecewise constant should be addressed in practice with ramp-like
changes instead of steps. In any case, the dynamics of the changes could still
be much faster than patient dynamics (e.g., 5 min. ramps) but slow enough
for SAFE.

In this thesis, the size of the meal together with the total daily dose
of insulin (TDD) as an estimator of the insulin sensitivity are used for the
definition of the postprandial IOB limits in the in silico evaluation of the
methodology (Section 4.4.2). The time-varying nature of the insulin sensitivity
has not been taken into account in this step in order not to complicate the
tuning of the IOB limits definition. The lower IOB constrained has been
defined proportional to the basal rate (in this case the same during the whole
day) of each patient. However, any other approximation to define IOB limits
could be used.
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4.4 Simulations and results

The evaluation of the above explained methodology has been carried out
through an in silico study using the UVA simulator [88]. Previously, some
simulations are presented to illustrate the robustness of the methodology,
demonstrated theoretically in Section 4.3.2.

4.4.1 SAFE algorithm simulations illustrating robustness

As an illustration of the SAFE principle, a one-day simulation (40–80–70g)
is shown in Figure 4.6 comparing performance of a PID with and without
SAFE. A discontinuous signal (w(t)) driving the PID set-point (after filtering)
is generated when the IOB is in the upper (lower) limit imposed by the
constraints. When IOB remains inside the allowed region, the discontinuous
signal is zero. For this simulation and the followings, the initial set-point
of the inner controller (Gr in equation (4.11)) is fixed to 100 mg/dl. Note
that, in this particular example, the lower IOB limit allows a reduction in the
glucose peaks, whereas the upper limit reduces hypoglycemia risk. It is worth
mentioning that the lower IOB bound does not prevent the controller from
suggesting insulin delivery to zero, although the time the insulin delivery is
zero is reduced. The objective of this constraint is to avoid a situation of total
absence of insulin (IOB = 0).

In Figure 4.7 the robust behavior of the proposed algorithm is demonstrated
through 3 simulations that represent typical failures of CGMS. Solid lines
represent the sensor measurements with their corresponding failures and
dotted lines the actual glucose profile. Red and blue lines correspond to
the performance with and without SAFE against the same sensor failures.
Case 1 represents a sensor drift where the upper deviation from the actual
glucose value is forced to be abrupt to illustrate the worst-case scenario. The
calibration point at time = 200 min makes the sensor return to the correct
value. The controller reaction to a high increase in glucose concentration is
to apply more insulin, over-reacting with the subsequent hypoglycemia risk.
Constraints in IOB reduce this over-reaction avoiding risk situations. Case
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Figure 4.6: Comparison of the performance of the controller in one virtual
patient (patient 4) with a conventional PID and with a PID plus the additional
SAFE loop during one day. The glucose profile, together with the IOB profile,
and the discontinuous signal with the realizable reference derived from it are
presented. Additionally, the actual response of the controller with and without
SAFE is also shown.
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2 shows a similar situation where the sensor drifts until saturation at the
lower limit of a typical CGMS (40 mg/dl). In this case, SAFE prevents the
hyperglycemia after the sensor drift. Case 3 represents a common situation of
signal loss, that also can cause later hyperglycemia events.
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Figure 4.7: Glucose response,IOB profile and controller response (no priming
bolus is considered here) in the presence of sensor failures. Blue lines represent
the response without SAFE loop whereas red lines correspond to the response
using SAFE. In the glucose profiles, solid lines are the sensor signal and dotted
lines the actual glucose profile.

These sensor failures can produce undesired responses of the controller
leading to late hypo or hyperglycemia events. By adding the SAFE loop with
the upper and lower constraints for IOB, this effect is avoided, showing the
robustness of the algorithm against sensor failures as it was mathematically
demonstrated in Section 4.3.2. In the same way, SAFE algorithm is also
robust against other type of perturbations, as for example an over-estimation
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of the priming bolus usually used to compensate for meals. This effect is
shown in Figure 4.8 where for a 50g meal, a 4IU bolus (30% higher than the
usual patient’s therapy) is administered as feed-forward bolus. The SMRC
loop detects too high IOB values and it is capable of keeping IOB below
its constraint, provided that the amplitude of w+ designed in (4.18) is high
enough. If that was not the case, the IOB limit could be temporally violated
but SAFE would contribute to enter again in the allowed region with w(t) = w+

(see Section 4.2.2). That situation is illustrated in Figure 4.9. In both cases,
the insulin given by the inner controller is reduced and therefore hypoglycemia
is avoided. This simulation has been repeated for all the 10 available virtual
adult patients and the area under the curve (AUC) of plasma glucose (PG)
below 70 mg/dl with and without SAFE has been represented in Figure 4.10.
It shows that the AUC with SAFE is always lower than without it, being the
time spent below 70 mg/dl zero in most cases.
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Figure 4.8: Plot that illustrates the SAFE reaction against over-estimated
priming bolus. In this case, a 4IU bolus is added to the control output for
a small meal (50g). The third figure represents the controller output uc(t) in
Figure 4.3. The actual insulin delivery is up(t) = uc(t)+uf (t) with uf (t) being
the priming bolus.

4.4.2 In-silico evaluation using UVA simulator

Finally, an in silico study using the cohort of 10 adult virtual patients available
in the educational version of the UVA simulator [88] is presented below. Those
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Figure 4.9: Plot that illustrates the SAFE reaction against over-estimated
priming bolus in case w+ has not been designed high enough. The IOB limit is
temporally violated but SAFE always contributes to enter again in the allowed
region with w(t) = w+.
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Figure 4.10: Plot that shows the AUC of PG < 70 mg/dl for the 10 available
virtual bolus for a 50g meal and a feed-forward bolus 30% higher than the
usual.
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Table 4.1: PID tuning for each of the patient

Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5 Pat. 6 Pat. 7 Pat. 8 Pat. 9 Pat. 10

kP (IU/h ∗ dl/mg) 0.063 0.077 0.056 0.023 0.085 0.033 0.038 0.058 0.041 0.058

kD (IU ∗ dl/mg) 7.603 9.216 6.735 2.816 10.240 3.980 4.608 6.912 4.896 6.912

kI (IU/h2 ∗ dl/mg) 0.14e-3 0.17e-3 0.12e-3 0.05e-3 0.19e-3 0.07e-3 0.08e-3 0.13e-3 0.91e-4 0.13e-3

virtual patients are the same used in the evaluation of the open-loop algorithm
presented in Chapter 3. Their demographic, anthropometric, and metabolic
parameters can be found in Table 3.1.

A 16-hour clinical protocol corresponding to active daily hours (from 8h
to 24h) of three meals (8:00 am, noon, and 6:00 pm) of 40, 80, and 70
g during 10 days was considered. In order to test the robustness of the
methodology with respect to intra-patient variability, sinusoidal oscillations
of 5% amplitude (except for insulin sensitivity which was 10%) and 3 h period
were superimposed on nominal values of the model parameters in a similar way
as in [177]. A PID controller tuned individually for each patient was used as
main controller.

A subcutaneous glucose sensor model was also included to account for
noisy measurements. Performance of the controller with and without SAFE
was compared.

The specific PID parameters used for each patient are shown in Table
4.1. They have been determined, taking advanced of the in silico nature
of the evaluation, through simulations using plasma glucose measures. In
real practice the parameters of the controller could be determined using the
information of the usual pump therapy of the patient in a similar way as
in [153]. Due to its proved superiority against fully closed-loop systems a feed-
forward meal announcement was added to the control scheme. In this case, a
fixed 2IU bolus was infused at mealtime as in [114].

In order to deal with inter-patient variability, different postprandial upper
limits for IOB were defined depending on an estimation of the insulin sensitivity
of each patient. This estimation was carried out computing TDD using the
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Table 4.2: Upper postprandial IOB limits

TDD <= 60 60 < TDD < 75 75 < TDD < 85 TDD > 85

CHO < 40g 3 3 3 3

40g < CHO < 70g 5 7 9 10

70g < CHO < 100g 7 9 11 13

CHO > 100g 9 10 13 15

basal insulin rate of each patient, i.e. , basal infusion normalizing plasma
glucose (PG) around 100 mg/dl (TDD=basal[IU/h]242). The IOB limit
depended also on the meal size, allowing higher IOB values for big meals and
being more restrictive with small meals. Table 4.2 shows the specific limits
that have been used for this evaluation.

Additionally, these limits were reduced if they were caused by the second
peak of the meal absorption (later postprandial period) or if the patients
initial condition was moderate hypoglycemia (10% decrease). Moreover, initial
conditions of hyperglycemia allowed higher values of IOB (10% increase). In
order to maintain always a minimum of IOB to keep a good basal glucose
concentration and avoid glucose rebounds, a fixed lower IOB bound for each
patient (proportional to their basal rate) was established for all the situations.

In Table 4.3 a set of indicators are provided comparing the performance of a
controller with and without SAFE. The number of potentially severe (PG < 50

mg/dl) and moderate hypoglycemia (50 mg/dl < PG < 70 mg/dl) events
together with the percentage of time in these values are provided. Additionally,
the percentage of time above 180 mg/dl and between 140 mg/dl and 180 mg/dl

is also provided. Normoglycemia is here defined as 70 mg/dl < PG < 140

mg/dl. All data were subjected to repeated-measures analysis of variance with
Huynh-Feldt adjustment for nonsphericity (the p-value of each comparison is
also included in Table 4.3) [180]. Note that the parameters used in equation
(4.9) to estimate IOB are population parameters, so the results presented



Closed loop strategy: A reference conditioning method for the reduction of
hypoglycemia 119

Table 4.3: Different indicators for the evaluation of SAFE

PG < 50(%) 50 < PG < 70(%) PG > 180(%) 140 < PG < 180(%) Normo(%) Severe Moderate
hypo events hypo events

Without SAFE 3.96 11.79 2.64 9.25 72.34 44 97

With SAFE 0.35 6.64 3.39 12.52 77.08 9 72

p value 0.018 0.01 0.389 0.006 0.011 0.002 0.003

here demonstrate also robustness with respect to discrepancies between the
estimated IOB and the real one.

Potentially severe hypoglycemia events (PG < 50 mg/dl) were almost
avoided using SAFE (44 vs 9, p = 0.002) reducing the percentage of time
in hypoglycemia (PG < 70 mg/dl) more than 50% (p < 0.001). Reduction
of hypoglycemic exposure was not associated with an increase in the risk of
hyperglycemia. Indeed, hyperglycemic exposure (time spent above 180 mg/dl)
was not different (2.84% of time vs 3.39% p = 0.389).

Figure 4.11 shows graphically the detailed metrics for each of the 10
patients. In most of the patients the reduction in the time in hypoglycemia
does not imply a corresponding increase in hyperglycemia. In fact, in some
cases, the time above 180 mg/dl is reduced with SAFE. Note that the cases
where this increase exists correspond to the cases with highest reduction in
potentially severe hypoglycemia, mainly due to the initial conditions of the
last meal.

4.5 Conclusions

In this chapter, a new approach for reducing the risk of hypoglycemia,
especially in the postprandial period, considered as one of the challenges for
the development of an efficient artificial pancreas has been presented. The
algorithm, called SAFE, is shown as a security loop to be added to the main
control loop that is only active when IOB is about to violate any previously
defined constraint. Otherwise, the SAFE loop is inactive and the original
control system is not altered at all. In this way, the approach exploits the
attributes of the sliding regime as a transitional mode of operation.
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The theoretical basis of the algorithm are detailed, demonstrating its
robustness against perturbations. Moreover, an in silico evaluation with
a sample of the adults’ cohort of the UVA Simulator is presented. The
results obtained are promising, reducing the number and the duration of
hypoglycemia events, in spite of considering intra-patient variability and
population parameters for the IOB estimation.

In conclusion, despite the limitations of every in silico evaluation, this is a
proof of concept study that may prelude the development of clinical studies to
validate SAFE algorithm. In fact clinical trials to evaluate the efficacy of the
algorithm in vivo are currently on-going (NCT02100488).

Some improvements to gain in robustness against uncertainty are presented
in next chapter.





5 | Extending SAFE to improve
its performance against vari-
ablity

In Chapter 4 an SMRC scheme to be added to any closed-loop glucose
control to improve its performance was presented. Indeed, it demonstrated
superiority with respect to the single closed-loop, together with robustness
against sensor failures and over-estimations of the priming bolus. However,
some improvements can be added to the algorithm so as to increase its
robustness against other factors such as parametric uncertainty.

In Section 2.4.1, variability is posed as one of the challenges glucose
closed loop control has to counteract. In [47], differences in the rate of
insulin absorption from one patient to another is shown to be an important
factor for the controller design. Moreover, despite of the development of the
new short-term insulin preparations, intra-patient variability in the insulin
pharmacokinetics has not been avoided yet [66, 135].

In this scenario of uncertainty, introducing in the control algorithms models
that take uncertainty into account seems to be a good idea.

In Chapter 4, the SMRC algorithm was used mainly to impose constraints
to the IOB in order to avoid high values of residual insulin leading to
hypoglycemia. The constraints were not applied to the actual and inaccessible
IOB values but to an estimation of them. This estimation was performed
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using an insulin model [100] with constant population parameters. Neither
intra nor inter-patient variability was considered there. In this chapter, an
interval version of the IOB model is used instead. In this way, uncertainty
in the parameters of the model is taken into account adding robustness with
respect to variability to SAFE algorithm. Depending on the glycemic state
of the patient at each instant of time, a more conservative solution or a more
aggressive solution is selected. The rules used to determine witch envelope to
take are based on a Mandami-type fuzzy model.

5.1 Theoretical framework

In this work, the insulin absorption model used for method description is the
same used in Chapter 4, the one developed by Cobelli’s group [100] (see Section
1.4.2). Refer to Figure 4.4 for a compartmental representation of the model.

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

Ṡ2(t) = kdS1(t)− ka2S2(t)
(5.1)

Uncertainty in the parameters of the model is considered using a monotone
systems approach for the computation of IOB envelopes [40]. The advantages
of this approach compared to modal interval analysis [26] used in Chapter 3
is that uncertainty can be considered in all the parameters of the model (even
in the initial conditions) and that no time-discretisation is required, reducing
computational time. This is specially critical in closed-loop systems.

In this section the approach used to study the monotonicity of the system
and to compute the output bounds is explained.

5.1.1 Monotonicity analysis

Graph theory has been used to perform the monotonicity analysis of the IOB
system. In order to include the parameters in the analysis they are considered
constant states (k̇a1 = k̇a2 = k̇d = 0).
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By using the species-reaction graph [150] and assigning a node for each
state, an activation arrow between two nodes A and B represents that the
derivative ∂B/∂A is strictly positive, while an inhibition line denotes that it
is strictly negative. If the derivative is equal to zero no line is drawn (no
effect). Once the activation and inhibition lines are drawn, nodes connected
by an activation arrow will have the same sign (cooperative), whereas nodes
connected by an inhibition line will have different sign (competitive). A
dynamical system is monotone if there exists at least one consistent assignment.
In Figure 5.1 an example of a monotone and non-monotone system is presented.

?

A B

Figure 5.1: Example of a monotone (A) and a non-monotone system (B) [41].

After the monotonicity analysis has been performed, the upper bound
is computed taking the maximum values of the cooperative states and the
minimum values of the competitive ones. In the same way for the lower
bound, the minimum values of the cooperative states and the maximum
of the competitive ones are used. The problem arises with non-monotone
compartments which need to be considered as intervals. These interval
uncertainties produce an overestimation on the computation of output bounds.
To solve this issue the solution proposed in [41] has been used here. It consists
in combining the equations of the original model to obtain a new model in which
the output compartment is unaltered and which is monotone with respect to all
the compartments and parameters of the model. Therefore, the computation
of its output bounds can be performed without overestimation.

A monotonicity analysis performed to the model used for IOB estimation
system (5.1) reveals that the system is not monotone. It is cooperative with
respect to the compartments and the parameters ka1 and ka2 are competitive.
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Nevertheless the system is not monotone with respect to parameter kd. The
partial derivatives of the two compartments with respect to kd take different
signs:

∂Ṡ1(t)

∂kd
= −S1(t) < 0

∂Ṡ2(t)

∂kd
= S1(t) > 0

(5.2)

However, if the equations of the model are combined by performing a change
of variables as suggested in [41] the new model to study its monotonicity is:

Ẏ1(t) = −(ka1 + kd)Y1(t) + u(t)

Ẏ2(t) = −ka1Y1(t)− ka2(Y2(t)− Y1(t)) + u(t)
(5.3)

where Y1 = S1, Y2 = S1 + S2

If we study now the monotonicity of the resulting system:

∂Ẏ1(t)
∂Y2(t)

= 0; ∂Ẏ1(t)
∂ka1

= −Y1(t) ≤ 0; ∂Ẏ1(t)
∂ka2

= 0;

∂Ẏ1(t)
∂kd

= −Y1(t) ≤ 0; ∂Ẏ1(t)
∂u(t) = 1 > 0

∂Ẏ2(t)
∂Y1(t)

= ka2 − ka1; ∂Ẏ2(t)
∂ka1

= −Y1(t) ≤ 0;

∂Ẏ2(t)
∂ka2

= Y1(t)− Y2(t) ≤ 0; ∂Ẏ2(t)
∂kd

= 0; ∂Ẏ2(t)
∂u(t) = 1 > 0

(5.4)

Therefore, system (5.4) is monotone. If ka2 − ka1 > 0 the system is
cooperative with respect to states Y1 and Y2 and the insulin input u(t).
Parameters ka2, ka1 and kd are competitive parameters. Figure 5.2 is a
graphical representation of the monotonicity analysis of both system 5.1 and
5.3.

Figure 5.3 shows the result of the computation of the output bounds of
the system using both the traditional monotonicity approach (A) and using
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Y22

?
A B

Figure 5.2: Parameters monotonicity of systems 5.1 and 5.3.

the system (5.3). Red lines represent the computed output bounds while the
blue lines are the result of several numerical simulations with variation in the
parameters.

In Figure 5.3 A the original system (5.1) is used. ka1 and ka3 are
competitive (minimum value is used for the computation of the upper bound
and viceversa for the lower bound ). However both (minimum/maximum)
values of the non-monotone paramer kd are considered in the computation of
the bounds:

. Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

Ṡ2(t) = kdS1(t)− ka2S2(t) Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

Ṡ2(t) = kdS1(t)− ka2S2(t)

(5.5)

where X and X represent the lower bound and the upper bound for X. See
that the upper bound of kd is used to minimize S1 and the upper bound to
minimize S2. So the standard monotonicity approach ensures the inclusion of
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all the possible solutions, but it produces an overestimation in the computation
of solution envelopes.
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Figure 5.3: Output bounds for the IOB in Cobelli’s insulin absorption model
developed. S1(0) = 183, S2(0) = 194 and ka1=0.0034, ka2=0.0159, kd=0.0161
under 60% uncertainty (worst case in the Cobelli’s adult population).

In Figure 5.3 B however, the monotonicity is studied using system
(5.3)which is in fact monotone with respect to all the states and parameters of
the model and because of that it can be represented without overestimation.

. Ẏ1(t) = −(ka1 + kd)Y1(t) + u(t)

Ẏ2(t) = −ka1Y1(t)− ka2(Y2(t)− Y1(t) + u(t))

 Ẏ1(t) = −(ka1 + kd)Y1(t) + u(t)

Ẏ2(t) = −ka1Y1(t)− ka2(Y2(t)− Y1(t) + u(t))

(5.6)

5.2 Interval version of SAFE

Uncertainty can be considered in several ways when estimating IOB. If the
parameters of the model for each of the patients are unknown a general model
with population parameters (like the one used in Chapter 4) can be used but



Extending SAFE to improve its performance against variability 129

considering uncertainty in the parameters to represent inter-patient variability.
In case the parameters of each of the patients can be estimated prior of the
closed loop study, a less conservative solution could be achieve considering only
uncertainty due to intra-patient variability. In this work, the same model (with
population parameters) has been used for all the simulations and uncertainty
in the parameters has been considered to counteract inter-patient variability.
With the interval representation of the IOB profile it can be used to select the
worst possibility among all the possible solution of IOB at each step of the
algorithm.

In this way, depending on the deviation from normoglycemia of the patient’s
glycemic status at a specific moment and on the trend of the measured plasma
glucose (slope), the limits on IOB can be more or less restrictive. To implement
this, for a fix IOB limit the IOB solution used for computation is different. In
case the glycemic state of the patient is hypoglycemic, a more restrictive IOB
limit should be applied. This is done by using the upper IOB curve to represent
the IOB estimation. However, when the plasma glucose is high, the lower curve
of the IOB estimation is used or in other words a less restrictive limitation is
applied.

In order to decide which value of IOB estimation to take in each moment,
a Mandami-type fuzzy model is used. The model has two inputs, the
deviation from normoglycemia (PG−100 mg/dL) and the slope of the plasma
glucose. The first one is defined using five member functions (high_negative,
low_negative, normal, low_possitive, high_possitive) in the range of –50 to
120 mg/dL with 0 meaning absolute normoglycemia. For the glucose slope
three member functions (neg_slope, medium_slope, poss_slope) are used with
a range of –3 to 5 mg/dL ∗ s. These inputs are used to select the IOB solution
(output) to be considered in SAFE. Three member functions are used to define
this output (low, medium and high). Two-sided composite of two different
Gaussian curves are used for the definition of all the membership functions.

The fuzzy rules are defined using the AND fuzzy operation and being more
restrictive with hypoglycemia states. The method used for deffuzification is
the bisector.
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When the output of the fuzzy system is maximum the upper bound of
the IOB curve is used as the input of the SAFE algorithm. In the same way
when the the output of the fuzzy system is minimum the lower bound is used.
Intermediate values correspond to IOB curves between the upper and lower
bound interval with central point (IOB − IOB)/2.

5.3 Simulations and results

In order to illustrate the kind of results that are obtained using an interval IOB
model in the additional SAFE loop, again the UVA simulator [88] is used.

In Figure 5.4 an example of teh results obtained during 20h with three
meals (40–80–70g) is presented. Here the glucose profile together with the IOB
curve is presented for the three options: PID, PID+SAFE and PID+SAFE
intervalar. The use of an interval model for the IOB estimation reduces the
exposure to hypoglycemia even more than using the simple version of SAFE.

More detail of the performance of this approach is shown in Figure 5.5.
One point is worth to explain: in this approach the IOB limits, apart from
following the general rule explained in Section 4.3.4 and Figure 4.5, become
adaptive when the IOB profile is switching between the different solutions
inside the IOB interval (to guarantee the sliding mode). In that way, the only
situation when the IOB curve can be temporally above the limit is when this
limit is abruptly reduced during the late postprandial period. In that case
SAFE would contribute to enter again in the allowed region with w(t) = w+.

For the in silico evaluation the same clinical protocol (16-daily hours study
with 3 meals) that was designed for the evaluation of the simple version
of SAFE has been used. Again, intra-patient variability was simulated by
superimposing to the nominal parameters of each patient sinusoidal oscillations
of 5% amplitude (except for insulin sensitivity which was 10%) and 3 h period.
The glucose measures used for the controller were taken from a simulated
subcutaneous glucose sensor.

A PID with meal announced tuned as in Table 4.1 was used as main
controller.
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estimated and the real IOB profile) are shown.
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Figure 5.5: Plasma glucose profile, IOB estimation together with the
discontinuous signal and weighting coefficient that resulted from the fuzzy
system for the PID + the interval version of SAFE. The dotted lines in the
IOB curve represent the outer and the inner bounds of the IOB estimation.
Note that according to the weighting coefficient the IOB curve used in the
algorithm is closer to one or the other bound.
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The rules for choosing the different postprandial upper limits for IOB of
this study were the same as the ones used in Chapter 4, being the specific
values used specified in Table 4.2. As it was done during the evaluation of
the simple version of SAFE the limits were slightly modified depending on
the initial conditions (initial conditions of hypo/hyper glycemia implied a 10%

decrease/increase in the IOB limit. In the same way the limits were reduced if
they were caused by the second peak of the meal absorption (later postprandial
period). As it has been already explained the limits become adaptive during
the transition from one possible IOB solution to the another one. A fixed,
and proportional to the basal rate of each patient, lower IOB bound was also
established.

In Table 5.1 a set of indicators are provided comparing the performance of
a controller with a standard PID, the addition of a simple SAFE loop and with
the interval version of SAFE. Again normoglycemia is defined as 70 mg/dl <

PG < 140 mg/dl. All data are subjected to repeated-measures analysis of
variance with HuynhâFeldt adjustment for nonsphericity [180]. The analysis
of variance model included only the test condition (standard PID, PID+SAFE
and PID+ interval version of SAFE), as within-subjects factor, and post hoc
comparisons (Bonferroni test) were carried out to pinpoint specific differences
on significant interaction terms.

Note that the numbers shown here for the standard PID and the PID +
SAFE solution are not exactly the same as in Table4.3. Thie cause for this
behaviour is the consideration of of intra-patient variability, which makes each
study unique in spite of being carried out under the same conditions.

The reduction in hypoglycemic exposure is even more notable with this
version of SAFE: percentage of time bellow 70 mg/dl is reduced almost 50%
(4 p.p) with respect the standard SAFE approach (8.55 % vs 4.4 %, p = 0.005)
and almost 75% (12 p.p) with respect the PID without safe (16.52 % vs 4.4

%, p < 0.001). Although the increment in hyperglycemia exposure is also
statically significant the percentage of time above 180 mg/dl is only 1.2 p.p
higher than the PID without SAFE (2.35 % vs 3.55 % , p = 0.035).

Figure 5.6 is a representation of the percentage of time each of the patients
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Table 5.1: Different indicators for the evaluation of interval SAFE
PG < 50(%) 50 < PG < 70(%) PG > 180(%) 140 < PG < 180(%) Normo(%) Severe Moderate

Total
hypo events hypo events

Without SAFE 3.81 13.00 2.36 9.67 71.24 45 96

With SAFE 0.93 7.57a 2.61 13.41 75.48a 15a 78a

With interval SAFE 0.47a 3.97a,b 3.55a,b 15.47a,b 76.53a 8a,b 60a,b

p value 0.05 0.001 0.031 0.008 0.017 0.008 0.009

a p < 0.05 versus standard PI
b p < 0.05 versus SAFE

spends in hypoglycemia (PG < 70 mg/dl). The reduction of the hypoglycemia
exposure is notable in all the cases, being close or greater than 50% with respect
to the standard SAFE algorithm in most of the patients. In Figure 5.7 the
percentage of time in each specific glucose range defined in Table 5.1 is also
shown. Note that patient 6 is especially difficult to control with high exposure
to both hypo and hyperglycemia. However using the interval version of SAFE
the percentage of time in normoglycemia is increased 5 p.p with respect the
standard PID (53.33% vs 58.50%).
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with the three strategies
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5.4 Conclusions

A modified version of SAFE algorithm has been presented in this chapter.
Taking advance of the monotonicity analysis techniques, uncertainty is con-
sidered in the estimation of the IOB. In this manner, the model representing
IOB is capable of taking into account both intra and inter-patient variability.
This interval model provides the possibility of choosing one or other IOB
solution depending on the glycemic state of the patient. For states with
hypoglycemic risk SAFE activates when the IOB upper bound is about to
violate the constraints. In other situations less restrictive IOB solutions are
used. A Mandami-type fuzzy model has been used to decide the specific IOB
solution at each simulation step.

An in silico evaluation with the same conditions as in Chapter 4 has also
been presented, showing the improvements in the indicators, mainly in those
related to hypoglycemia exposure.
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The main aim of this work was to find strategies to improve the performance
of current therapies applied to type 1 Diabetes Mellitus. In spite of the
development of new types of insulin analogs, the improvements of glucose
sensors (specially CGMS) and the use of smart insulin pumps, variability is
still the main challenge avoiding the success of both open loop and closed loop
therapies. The effects of variability and uncertainty are especially significant
during the postprandial period.

Two main strategies have been presented in this document that help in
overcoming the main difficulties found in glucose control.

In this way, the first result presented in this thesis was a robust open-
loop strategy for glucose control in patients with type 1 diabetes using CSII
therapy. The algorithm, based on set inversion via interval analysis, provides
for a given meal, a set of solutions (basal-bolus) that are designed to maintain
the patient in a pre-specified glycemic range (according to the patient’s model).
The solution can lead to different administration modes: standard, square,
dual-wave boluses or temporal basal decrement mode.

One of the strengths of this strategy is that it can consider uncertainty in
the models’ parameters such as insulin sensitivity or the amount of ingested
carbohydrates. Moreover it provides the possibility to determine, in a non-
heuristic way, the feasible insulin administration modes for a given meal, which
could be included in smarter insulin pumps in the future.

The algorithm showed promising results in the in silico validation using
UVa Simulator that were partially confirmed in the in vivo validation.

137
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The main limitation found in the clinical validation of this proposal was
“unexplained” variability, which makes it very difficult to control postprandial
glucose response in open loop for some patients, whatever the model used for
insulin dosing: the bolus advisors currently implemented in clinical practice,
or new proposals.

Closed-loop approaches on the other hand, despite of its advantages
with respect to open-loop (perturbation counteraction and behavior against
variability) are finding in over-correction and subsequent hypoglycemia in
postprandial control the main difficulty. Intra-patient variability, errors in
the glucose sensor measurements, and, mainly, the delay in the control action
are the problems that need to be overcome. Moreover, an aggressive tuning of
the controller and changes in the patients’ sensitivity to insulin are additional
factors contributing to hypoglycemia.

These facts motivated the second proposal of this thesis: an algorithm,
called SAFE, to be added to any glucose closed-loop controller to provide an
additional safety layer against hypoglycemias. The algorithm makes use
of SMRC to impose limits to the residual insulin activity. SAFE is only active
when IOB is about to violate any previously defined constraint. Otherwise,
the SAFE loop is inactive and the original control system is not altered at
all. In this way, the approach exploits the attributes of the sliding regime
as a transitional mode of operation. The extended version of SAFE considers
uncertainty in the metabolic parameters to deal with variability. The algorithm
demonstrated its robustness with respect perturbations (errors in the meal
content estimation, errors in the CGMS. . . ) both theoretically and through
simulations.

A relevant advantage of this proposal is that, because of its nature (it uses a
two-step control approach for dealing with constraints, is an universal solution
that is applicable regardless of the control scheme chosen. Thus, all the know-
how on classical control and tuning techniques can be used for the main control
loop design which could be designed previously and in an independent way.

The results of the in silico evaluation (using UVa simulator) showed a
significant reduction of hypoglycemia exposure encouraging a clinical valid-
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ation. In fact, Clinical trials to evaluate the efficacy of SAFE are ongoing
(NCT02100488). SAFE algorithm has also lead to other in silico studies with
multiple controller tuning combinations [97].

6.1 Publications

This work has given rise to several publications in journals:

• A. Revert, P. Rossetti, R. Calm. J. Vehí, J. Bondia, Combining
Basal- Bolus Insulin Infusion for Tight Postprandial Glucose Control.
An In Silico Evaluation in Adults, Children and Adolescents, Journal of
Diabetes Science and Technology,(6), 1424–1437, 2010

• A. Revert, R. Calm, J. Vehí, J. Bondia, Calculation of the best
basal- bolus combination for postprandial glucose control in insulin pump
therapy, IEEE Transactions on Biomedical Engineering,58(2), 274–281,
2011

• P. Rossetti, F.J. Ampudia-Blasco, A. Laguna, A. Revert, J.
Vehí, J.F. Ascaso, J. Bondia. Evaluation of a novel continuous gluc-
ose monitoring- based method for mealtime insulin dosing - the iBolus -
in subjects with type 1 diabetes using continuous subcutaneous insulin
infusion therapy: a randomized controlled trial, Diabetes Technology and
Therapeutics, 14(11), 1043–1052, 2012

• P. Rossetti P, J. Vehí, A. Revert, R. Calm, J. Bondia. Comment-
ary on “Performance of a glucose meter with a built-in automated bolus
calculator versus manual bolus calculation in insulin-using subjects”
Journal of Diabetes Science and Technology. 2012;6(2):345–7.

• Revert, F. Garelli, J. Pico, H. De Battista, P. Rossetti,
J. Vehi, J. Bondia. Safety Auxiliary Feedback Element for the
Artificial Pancreas in Type 1 Diabetes, IEEE Transactions on Biomedical
Engineering , 60(8), 2113- 2122, 2013
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This research has also been exposed in the folowing congresses:

• A. Revert, P. Rossetti, R. Calm, J. Vehí, J. Bondia. Combining
basal-bolus insulin infusion for tight postpandial glucose control. An
insilico validation in adults, children and adolescents, 3rd International
Conference on Advance Technologies & Treatments for Diabetes, Basel,
Switzerland, 2010.

• A. Revert, R. Calm, J. Vehí, J. Bondia Calculation of the
best basal-bolus combination for postprandial glucose in insulin pump
therapy, 9th Diabetes Technology Meeting, San Francisco, USA, 2009.

• P. Rossetti, J. Ampudia-Blasco, A. Laguna, A. Revert, J. Vehi,
R. Calm, S. Correa, G. Viguer, J. Ascaso, J. Bondia. Cálculo
del bolus prandial utilizando monitorización continua de la glucosa en
pacientes con diabetes mellitus tipo 1 tratados con infusión subcutánea
continua de insulina. XXII Congreso Nacional de la Sociedad Española
de Diabetes. Málaga 2011

• Ampudia-Blasco, A. Laguna, A. Revert, J. Vehí, R. Calm, J. F.
Ascaso, J. Bondia. A Novel Strategy for Non-Empirical Calculation of
Prandial Insulin Bolus Based on Continuous Glucose Monitoring (CGM)
in Subjects with Type 1 Diabetes (T1DM) Treated with Continuous
Subcutaneous Insulin Infusion (CSII). American diabetes association
71th scientific sessions. 2011

• A Revert, J. Picó, H. De Battista, P. Rossetti, J. Vehí, J. Bon-
dia. A reference conditioning method for the reduction of hypoglycemia
in closed loop glucose control. 5th International Conference on Advanced
Technologies & Treatments for Diabetes. Barcelona 2012

• A. Revert, J. Picó, J.Bondia. Control de biosistemas sujetos a
restricciones. X Simposio CEA Ingeniería de Control . ETSEIB, UPC,
Barcelona 2012. ISBN 978–84–615–7398–1
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• A. Revert, J. Picó, J.Bondia. Estrategias robustas para el control de
glucosa en diabéticos tipo 1. XI Simposio CEA de Ingeniería de Control.
Universitat Politècnica de Valencia, Valencia 2013. ISBN - 978–84–695–
7298–6
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