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Abstract

In the present paper, by approximating the derivatives in the well known fourth
order Ostrowski’s method and in an sixth order improved Ostrowski’s method by
central-difference quotients, we obtain new free from derivatives modifications of
these methods. We prove the important fact that the obtained methods preserve
their convergence orders four and six, respectively, without calculating any deriva-
tives. Finally, numerical tests confirm the theoretical results and allow us to compare
these variants with the corresponding methods that make use of derivatives and with
the classical Newton’s method.
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1 Introduction

In the last years, a lot of papers have developed the idea of removing deriva-
tives from the iteration function in order to avoid defining new functions as
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the first or second derivative, and calculate iterates only by using the func-
tion that describes the problem, obviously trying to preserve the convergence
order. In this sense, in the literature of nonlinear equations can be frequently
found the expression “derivative free”, referring in most cases to the second
derivative (see [1-3]). The interest of these methods is to be applied on non-
linear equations f(z) = 0, when there are many problems in order to obtain
and evaluate the derivatives involved.

The procedure of removing the derivatives usually increases the number of
functional evaluations per iteration. Commonly in the literature the efficiency
of an iterative method is measured by the efficiency index defined as p'/¢,
where p is the order of convergence and d is the total number of functional

evaluations per step.

There are different methods for computing a zero « of a nonlinear equation
f(z) = 0, the most known of these methods is the classical Newton’s method

(NM)

n = dn — ) 20717"'7 1
Tt =T iy " @

that, under certain conditions, has quadratic convergence.

Newton’s method has been modified in a number of ways to avoid the use of
derivatives without affecting the order of convergence. For example, replacing
in (1) the derivative by the forward approximation

f(xn + f(2,)) = f(2n)
f(xn) ’

f(wn) ~

Newton’s method becomes

" — flan)?
o ! f(@n + f(2n)) = f(2n)’

which is called Steffensen’s method (SM). This method has still quadratic
convergence, in spite of being derivative free and using only two functional
evaluations per step.

When an iterative method is free from first derivative, authors refer to it as a
“Steffensen like method”. Some of these methods use forward differences for
approximating the derivatives. For example, in [4] Jain proposed a Steffensen-
secant method (JM) deformed from Newton-secant. This method only uses
three functional evaluations per step and gets third order convergence. Other
Steffensen like method of third order, based on the homotopy perturbation
theory, is presented by Feng and He in [5], (FM). It uses three functional
evaluations per step.

By applying forward-difference approximation to Weerakoon-Fernando’s for-



mula [6], Zheng et al. derived in [7] a family of Steffensen like methods (ZM)
which have order of convergence three and use four functional evaluations per
iteration.

In order to control the approximation of the derivative and the stability of
the iteration, a Steffensen type method, with quadratic convergence and two
functional evaluations per step, has been proposed by Amat and Busquier in
8], (AM). The recent paper [9] has extended it to Banach spaces, obtaining
its semilocal and local convergence theorems.

If we try to use forward-difference approximation, with the fourth order Os-
trowski’s method [10]:

(2)
Tyl =T, — f(@n) [yn) = flzn)
n+1 n f/(xn) 2f(yn) _ f($n>,

the order of convergence of the new method goes down to three. For this
reason, we have used central-difference in (2), obtaining a variant of Os-
trowski’s method that preserves the convergence order four and is derivative
free. Recently, Dehghan and Hajarian [11] proposed a free derivative itera-
tive method (DM) by replacing the forward-difference approximation in Stef-
fensen’s method by the central-difference approximation. However, it is still a
method of third order and requires four functional evaluations per iteration.

In the same way, we consider the sixth order method proposed by M. Grau
et al. in [12] as an improvement to Ostrowski root-finding method, which
iteration scheme is:

()
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We are going to replace in (3) the first derivative by a symmetric-difference in
order to obtain a new method that preserves the sixth convergence order and
is derivative-free.

The rest of this paper is organized as follows. In Section 2, we describe our
free from derivatives methods as a variants of Ostrowski’s method and the



improved Ostrowski’s method, respectively. In Section 3, we establish the con-
vergence order of these methods. Finally, in Section 4 different numerical tests
confirm the theoretical results and allow us to compare these variants with
the original methods (which make use of derivatives) and also with Newton’s
method.

2 Description of the methods

By using a symmetric difference quotient

2f(xn) ’

f(w,) =~

to approximate the derivative in the fourth order Ostrowski’s method (2), we
obtain a new method free from derivatives, that we call modified Ostrowski’s
method free from derivatives (ODF):

Tpt1l = Tp — Qf(x”)Q fn) — f(zn)
T T o F () — f(@n — F(n) 2F () — F(wn)

As we have said, in [12], Grau et al. proposed an improvement of Ostrowski’s
method (3) and proved that it has sixth order of convergence. By approxi-
mating the derivative by central-difference we obtain a new method free from
derivatives, that we call improved Ostrowski’s method free from derivatives

(IODF):

Yo = Ty — 2f($N)2
" @+ f(w) — f@n — f@n)
=Yy — T f (), (5)

2f<yn) - f(xn>

o . Yn — Tn
T ) — S

In the next section, we are going to prove that the methods ODF and IODF
have order of convergence four and six, respectively.



3 Analysis of Convergence

In this section we analyze the order of convergence of the methods described
previously.

Theorem 1 Let o € I be a simple zero of a sufficiently differentiable function
f:I CR — R in an open interval I. If xg is sufficiently close to «, then the
modified Ostrowski’s method free from derivatives defined by (4) has order of
convergence four and satisfies the error equation

2 3
enil = —Co (—3 +c3+ — = et 4+ 0(ed).

Proof: Let ¢, = x,, — a. The Taylor series of f(x,) about « is:
f(2,) = cre, + cael + caed + cuep + O(€D), (6)

fM(a)

where ¢, = Jk=1,2,...

Computing the Taylor series of f(x, + f(z,)) and substituting f(z,) by (6)
we have

=ci1(1+4c1)e, (6102 + (1+c1)?er)e2 + (2(1 +c1)cs +cres + (1 +¢)’es)ed +
+(3(1 + ¢1)2cacs + cacs +2(1 4 ¢1)es) + crea + (1 + 1) eq)ed + O(ed). (7)

Analogously, the Taylor series of f(z, — f(z,)) is:
flxn = f(2n)) =
= (1 —c1)eren + (1 —c1)?cy — crc)e? 4+ (—2(1 — ¢1)es + (1 —¢1)3es — cies)el +
+<—3<]. — 01)202C3 + CQ(C% — 2(1 — Cl)Cg) + (1 — 01)404 — 61C4)€n + 0(6751) (8)

Then, the quotient that appears in the expression of y, in (4) is:

2f(x,)? co€? N (2¢2 — (2 + c%)c;»,)ef’z_i_
= eTL —
f(xn + f(l‘n)) - f(xn - f(xn)) C1 C%
46% Tcy o 3ey 4 5
+ < 3 + cycs + 7361 ¢ — 4deyey en +0len). 9)

We obtain y,, — « taking into account (9)



2f (xn)? B

f@n + f(2n)) — f(2n — f(20)) B
€2 (263 —c1(2+ A)es)ed
c1 c?

N ( 4¢3 ~ Teaes 3cy

3 — cocs c? c1 + 4eyey

Yn — @ =€p —

) et +0(ed). (10)

Now, substituting (10) in the Taylor series of f(y,), we have

(2¢2 — 1 (2 + A)e3)ed

f(yn) :C26$L - =+
8]
c3 4¢3 Tcoc 3¢
+<§+cl< 2 4 et +0(eh). (11)
i €] — CaC3 ci c1 + 4cieq

From (6) and (11) we obtain

F(un) = Fln) = —cren + <_03 _2g-al+ C%) &+

&1
3 3
c5 des Tcocs 3¢y 4 5
— @) 12
+ (cf —c o (c:{’ — CoCy c? + c1 4 4ciey en+Olen) (12)
and
2(2¢2 — c1(2+ A)c
2 () — F(n) = —cren + 26 + (—C3 dzabrd) 3>> e
1
c3 4¢3 Tcoc 3c
+ <—C4 + 2 <§ + (f — CoC3 — 22 Sy 4dcqey efL + O(ei).
€1 1 C1 1

Taking into account (9), (12) and the last expression, we finally obtain

c €3\ 4 5
enp1=—C2 | —5 +ez+ =5 | e, +0(e).
G 1
This proves that the method is of fourth order. O

Theorem 2 Let o € I be a simple zero of sufficiently differentiable function
f:I CR — R in an open interval I. If xg is sufficiently close to «, then the
improved Ostrowsky’s method free from derivatives defined by (5) has order of
convergence six and satisfies the error equation

(23 +a(+d)e) cdral+dan) o o0

n n

Ent+1 =
c?



Proof: Let e, = x,, — a. The Taylor series of f(z,) about « is:

f(xn) = cren + o€ + csed 4 cued + cse® 4 cgel + O(e)), (13)
(k)
where ¢, = / k'(a),k: =1,2,...

Computing the Taylor series of f (xn, + f(x,)) and substituting f(z,) by (13)
we have

fla, + f(x,)=c1(1 +c1)e, + (01 + (1 + 01)2) co€? +
( 1+c1)cs+eies+ (1+¢) c3)e +
+ (3(1 + c1)%cacs + ¢ <02 +2(1+ 01)03) +
+erea+ (1+er)'ea) e +
+ (3(1 +c1)es (cg +c3 + 0103) +4(1 4 ¢1)%caca+
+ 2¢o(cacs + ¢4+ c1e4) + 105 + (1 + C1)5C5) e> +
+ (201 + 1)? (363 +2(1 + c1)es) eat
+ c3 (cg +6(1 + ¢1)cacs + 3(1 + 61)204) +
+ 5(1 4 c1)*cacs + co <c§ + 2(cocy + 5 + 0105)) +
+ erce + (14 ¢1)cg) €5+ O(el). (14)

The Taylor series of f(z, — f(x,)) is:

flzn— f(zn))=—(—1+c1)c1e, + (1 —3c1 + cf) cae? +

+ (2(—1 +c1)es — (=14 ¢1)Pcs — 0103> e +

+ (—3(—1 + ¢1)?cacs + co (cg +2(—-1+ 01)63> +

+(=1+c) ey — 0104) e+

+ ( 3(—1+c)es (02 +(-1+ 01)03) +4(=14¢1)3cacy+

+ 2c9(cacs + (=14 c1)eq) — (=1 +¢1)%cs — c1c5> el +

+ (—0303 +2 (4 — 6c; + 30?) cocyt

+ (=14 ¢1)* (=7 + 4ey)esey + ¢ ((7 — 6c1)ca+

+ (=7 + 22¢1 — 30c} + 206} — 5¢f) e5) +

+ (1 —Tcyp + 156 — 2068 + 15¢t — 6¢5 + C?) 06) e +0(el).
(15)

Substituting (14) and (15) in the expression of y,, in (5), gives us



2f (wn)?
Yo — =Ty — 0 — =

flen + f(zn)) = f(wn — f(2,))
Qf(xn>2

= en — =
f(@n + f(2n)) — flon — f(zn))
cen (26 —a(2+d)a)e,
o 3
4¢3 Tcocs 3¢
—|'<32—6263— 223+4+4CIC4> ei_
Cl Cl Cl

01‘11 (8(:‘21 —C (20 -+ 30?) cscs + 2¢7 (5 + 20?) CaCy+
+ ((6 + 3¢t + 0411) c—c (4 +10¢] + c‘ll) 05)> e —
— cl? (—1602 +c (52 + 703) cycs — 4ct (7 + 3c§) cacy—
— ey ((33 + 126 + c‘f) 3+ (—13 —10c] + c‘f) 05) +
+ 3 ((17 +17¢3 + 80411) C3Cs—
- (5 +20¢8 + 60‘11) c6>) el +0(el). (16)

Now, substituting (16) in the Taylor series of f(y,) we have

2c2
f(yn) = CQQi + <—C2 + 2¢3 + C%Cg) 62 +
1

+ (56% _ 76203

c? 1

— c1C9c3 + 3¢y + 4cfc4> ei +

+ 01:{’ (—120‘21 + (24 + 503) cac3 — 2¢7 (5 + 20%) CoCy+
+ cf (— (6 +3ct + c‘ll) 3+ (4 +10c3 + c‘ll) c5)> el +
+61411 (2803 - (73 + 130?) ches + 2¢7 (17 + 100?) cacqt

+ cley (374163 +2c}) & + 1 (=13 — 106} + ¢f) es) +
+c} (= (17 + 176} + 8¢} eseat
+ (5 4202 + 60411> 06)> e +0(el). (17)

Using (13), (16) and (17) into (5), gives



(3 —ci(I+cf)es)e,

2y — @ =Yp — fnf(Yn) = 3 N
Sl
(4e5 — 201 (A+A)Bes+ A (2436 + ) 3 + 26 (14 2¢3) cacy) €

5

n_

ol

_ cl5 (—1003 +2¢; (15 + 20%) cycy — 4cf (3 + 26%) cea + ¢ (7 17+ 8011) Cacat
1

+ ey ((—18 — 8¢t + c%) s+ (3 +10¢] + Cil) 05)) e +0(el)

and substituting (18) in the Taylor series of f (z,) we have

2 2 4
co(c5 —c1(l+cf)cs)e,
f(Zn) —_ ( 2 ( e 1) ) o
&)
(4 —2cy (4 +¢3) ez + 2 (2+ 3¢ + ) 2+ 262 (1 + 2¢2) cacy) €3

ci

€1
+ ey ((—18 — 8 + c‘i‘) s+ (3 +10c¢% + c‘f) c5>) e +0(el).

Taking into account (18) and (19), we finally obtain

€ntl = Zn — & — ﬂnf(ZN> =

_ (—2c2 +c1 (1+3)c3) g—cg +c (14 ¢3) 6263>62 +O(el). (20)
1

This proves that the method is of sixth order. O

It is easy to observe that the method ODF uses four functional evaluations per
step, whereas the IODF needs five. There are many techniques for obtaining
high order iterative methods, but the complexity of the iterative expressions
increase considerably. So we have introduced in [13], in the context of nonlinear
systems, a new index in order to compare the different methods, taking into
account not only the number of functional evaluations, but also the number
of products and quotients involved in each step of the iterative process. The
computational efficiency index is defined as CI = pY/(@+P) where p is the
order of convergence, d is the number of functional evaluations per step and
op is the number of products and quotients per iteration.

In the next table we present the order of convergence, the efficiency index and
the computational efficiency index of the Steffensen’s like methods mentioned
in Section 1 and our new methods.

(18)

— l4 (—1()@; + 2¢; (15 + 20?) c303 — 4c§ (3 + 20?) 0304 + c:f (7 + 170? + 8611) C3C4+

(19)



Method Order | Efficiency index | Comp. Efficiency index
Steffensen (SM) 2 91/2 91/(2+2)
Jain (JM) 3 31/3 31/(3+6)
Feng-He (FM) 3 31/3 31/(3+8)
Zheng et al. (ZM) 3 3L/4 31/(4+6)
Amat-Busquier (AM) 2 21/2 91/(2+2)
Dehghan-Hajarian (DM) 3 31/4 31/(4+4)
ODF 4 41/4 41/(4+4)
IODF 6 6L1/5 61/ (5+5)
Table 1

Order and efficiency indices of some derivative free methods

We can observe the position of our methods in relation to the other ones,
taking into account the efficiency index:

Iry = Iy > Liopr > lopr = Isy = Tam > Iz = Ipu
and the computational efficiency index

C]IODF > C]ODF = CISM = C]AM > C]DM > C]JM > C]ZM > C]FM

4 Numerical results

In this section we check the effectiveness of the new methods ODF and IODF
applied to obtain the solution of several nonlinear equations. We use equations
(a) to (j) to compare the described methods with their counterparts that
make use of derivatives, that is, Ostrowski’s method (OM) and improved
Ostrowski’s method (/OM) and the classical Newton’s method (NM).

SOCOROGD

—~
—

10

) f(z) =sin’x — 22 + 1, a = 1.404492,

) f(z) =2 —e" -3z +2, a=0.257530,

) f(z) =cosx —z, a=~0.739085,

) fl@)=(@—-1P°-1 a=2,

) f(z) =2 — 10, o~ 2.154435,

) f(x) = cos(z) — we® + 2%, a ~ 0.639154,

) f(z) =e* — 1.5 — arctan(x), « = 0.767653,
) flo) = 2% +4a? — 10, a ~ 1.365230,

i) f(x) =8z — cos(x) — 222, o =~ 0.128077,

i) f(z) = arctan(x), a =0,



Numerical computations have been carried out using variable precision arith-
metics with 256 digits in MATLAB 7.1. The stopping criterion used is |z 11 — Tg|+
|f(z1)| < 1071%°) therefore, we check that the iterates succession converge to

an approximation to the solution of the nonlinear equation. For every method,

we count the number of iterations needed to reach the wished tolerance and
estimate the computational order of convergence (ACOC), according to (see
14))

_ (s — apl / |2k — 20a)
(o — 21|/ |Tro1 — Tr—2|)

(21)

The value of p that appears in Table 2 is the last coordinate of vector p when
the variation between its values is small. A comparison between methods using
derivatives and derivative free methods can be established. The behavior of the
new methods is similar to the classical ones of the same order of convergence,
as theoretical results show. It can be observed that the new methods need
more iterations than their partenaires, in some cases, but when the initial
estimation is not good and methods using derivatives diverge, derivative free
methods ODF and IODF converge quickly.

flx) | zo Iterations p
NM | OM | IOM | ODF | IODF | NM | OM | IOM | ODF | IODF

a) 1 9 5 5 5 5 2.00 | 4.00 | 6.00 | 4.00 | 6.00
b) [07] 7 ) 4 5) 6 2.00 | 4.00 | 6.00 | 4.00 | 5.99
c) 1 8 ) 4 ) 5 2.00 | 4.00 | 6.00 | 3.80 | 6.00
d) |[15] 11 6 5 6 6 2.00 | 4.00 | 6.00 | 4.00 | 6.00
e) 2 8 ) 4 5) 6 2.00 | 4.00 | 6.00 | 4.00 | 5.99
f) 1 9 ) 4 6 NC | 2.00 | 4.00 | 6.00 | 4.00 -

g) 1 9 5 4 5 5 2.00 | 4.00 | 6.00 | 4.00 | 6.00
h) | 15| 8 5) 4 6 6 2.00 | 4.00 | 6.00 | 4.00 | 6.01
i) 1 9 ) 4 ) 6 2.00 | 4.00 | 6.00 | 4.00 | 5.99
j) 1 8 5 5 5 5 3.00 | 5.00 | 7.00 | 5.00 | 7.00
j) |25 | NC | NC 5 8 6 - - 7.00 | 5.00 | 7.00

Table 2

Numerical results for nonlinear equations from (a) to (j)
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5 Conclusions

We have used central-difference approximations for the first derivative in Os-
trowski’s method, that has order of convergence four and in a improved version
of Ostrowski’s method with sixth order of convergence, obtaining two new it-
erative methods for nonlinear equations free from derivatives and we have
proven that they preserve their convergence order. The theoretical results
have been checked with some numerical examples, comparing our algorithms
with Newton’s method and with the corresponding methods that make use of
derivatives. We have compared some Steffensen like methods with our meth-
ods from the point of view of efficiency index and computational efficiency
index.
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