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Abstract. In this paper we present and analyze a set of predictor-corrector iterative methods with in-
creasing order of convergence, for solving systems of nonlinear equations. Our aim is to achieve high order
of convergence with few Jacobian and/or functional evaluations. On the other hand, by applying the pseu-
docomposition technique on each proposed scheme we get to increase their order of convergence, obtaining
new high-order and efficient methods. We use the classical efficiency index in order to compare the obtained
schemes and make some numerical test.
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1 Introduction

Many relationships in nature are inherently nonlinear, which according to these effects are not in direct propor-
tion to their cause. In fact, a large number of such real-world applications are reduce to solve nonlinear systems
numerically. Approximating a solution ξ of a nonlinear system F (x) = 0, is a classical problem that appears in
different branches of science and engineering.

Recently, for n = 1, many robust and efficient methods have been proposed with high convergence order, but
in most of cases the method cannot be extended for several variables. Few papers for the multidimensional case
introduce methods with high order of convergence. The authors design in [1] a modified Newton-Jarrat scheme of
sixth-order; in [6] a third-order method is presented for computing real and complex roots of nonlinear systems;
Shin et al. compare in [8] Newton-Krylov methods and Newton-like schemes for solving big-sized nonlinear
systems; in [2] a general procedure to design high-order methods for problems in several variables is presented.

The pseudocomposition technique (see [5]) consists of the following: we consider a method of order of
convergence p as a predictor, whose penultimate step is of order q, and then we use a corrector step based on
the Gaussian quadrature. So, we obtain a family of iterative schemes whose order of convergence ismin{q+p, 3q}.
This is a general procedure to improve the order of convergence of known methods.

To analyze and compare the efficiency of the proposed methods we use the classic efficiency index I = p1/d

due to Ostrowski [7], where p is the order of convergence, d is the number of functional evaluations, per iteration.
In this paper, we present three new Newton-like schemes, of order of convergence four, six and eight, re-

spectively. After the analysis of convergence of the new methods, we apply the pseudocomposition technique in
order to get higher order procedures.

The convergence theorem in Section 2 can be demonstrated by means of the n-dimensional Taylor expansion
of the functions involved. Let F : D ⊆ Rn −→ Rn be sufficiently Frechet differentiable in D. By using the
notation introduced in [1], the qth derivative of F at u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) : Rn × · · ·×
Rn −→ Rn such that F (q)(u)(v1, . . . , vq) ∈ Rn. It is easy to observe that

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn),

⋆ This research was supported by Ministerio de Ciencia y Tecnoloǵıa MTM2011-28636-C02-02 and by FONDOCYT
2011-1-B1-33, República Dominicana.
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2. F (q)(u)(vσ(1), . . . , vσ(q)) = F (q)(u)(v1, . . . , vq), for all permutation σ of {1, 2 . . . , q}.
So, in the following we will denote:

(a) F (q)(u)(v1, . . . , vq) = F (q)(u)v1 . . . vq,
(b) F (q)(u)vq−1F (p)vp = F (q)(u)F (p)(u)vq+p−1.

It is well known that, for ξ+h ∈ Rn lying in a neighborhood of a solution ξ of the nonlinear system F (x) = 0,
Taylor’s expansion can be applied (assuming that the Jacobian matrix F ′(ξ) is nonsingular), and

F (ξ + h) = F ′(ξ)

[
h+

p−1∑
q=2

Cqh
q

]
+O[hp], (1)

where Cq = (1/q!)[F ′(ξ)]−1F (q)(ξ), q ≥ 2. We observe that Cqh
q ∈ Rn since F (q)(ξ) ∈ L(Rn × · · · × Rn, Rn)

and [F ′(ξ)]−1 ∈ L(Rn).
In addition, we can express the Jacobian matrix of F , F ′, as

F ′(ξ + h) = F ′(ξ)

[
I +

p−1∑
q=2

qCqh
q−1

]
+O[hp], (2)

where I is the identity matrix. Therefore, qCqh
q−1 ∈ L(Rn). From (2), we obtain

[F ′(ξ + h)]−1 =
[
I +X2h+X3h

2 +X4h
3 + · · ·

]
[F ′(ξ)]−1 +O[hp], (3)

where X2 = −2C2, X3 = 4C2
2 − 3C3,. . .

We denote ek = x(k) − ξ the error in the kth iteration. The equation e(k+1) = Lek
p + O[ek

p+1], where L is
a p-linear function L ∈ L(Rn × · · · ×Rn, Rn), is called the error equation and p is the order of convergence.

The rest of the paper is organized as follows: in the next section, we present the new methods of order four,
six and eight, respectively. Moreover, the convergence order is increased when the pseudocomposition technique
is applied. Section 3 is devoted to the comparison of the different methods by means of several numerical tests.

2 Proposed high-order methods

Let us introduce now a new Jarratt-type scheme of five steps which we will denote as M8. It can be proved
that its first three steps are a fourth-order scheme, denoted by M4, and its four first steps become a sixth-order
method that will be denoted by M6. The coefficients involved have been obtained optimizing the order the
convergence and the whole scheme requires three functional evaluations of F and two of F ′ to attain eighth-
order of convergence. Let us also note that the linear systems to be solved in first, second and last step have
the same matrix and also have the third and fourth steps, so the number of operations involved is not as high
as it can seem.

Theorem 1. Let F : Ω ⊆ Rn → Rn be sufficiently differentiable in a neighborhood of ξ ∈ Ω which is a solution
of the nonlinear system F (x) = 0. We suppose that F ′(x) is continuous and nonsingular at ξ and x(0) close
enough to the solution. Then, the sequence {x(k)}k≥0 obtained by

y(k) = x(k) − 2

3

[
F ′

(
x(k)

)]−1

F
(
x(k)

)
,

z(k) = y(k) +
1

6

[
F ′

(
x(k)

)]−1

F
(
x(k)

)
,

u(k) = z(k) +
[
F ′

(
x(k)

)
− 3F ′

(
y(k)

)]−1

F
(
x(k)

)
, (4)

v(k) = z(k) +
[
F ′

(
x(k)

)
− 3F ′

(
y(k)

)]−1 [
F
(
x(k)

)
+ 2F

(
u(k)

)]
,

x(k+1) = v(k) − 1

2

[
F ′

(
x(k)

)]−1 [
5F ′

(
x(k)

)
− 3F ′

(
y(k)

)] [
F ′

(
x(k)

)]−1

F
(
v(k)

)
,

converges to ξ with order of convergence eight. The error equation is:

ek+1 =

(
C2

2 − 1

2
C3

)(
2C3

2 + 2C3C2 − 2C2C3 −
20

9
C4

)
e8k +O[e9k].
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By applying the next result, it is known (see [5]) that, the pseudocomposition technique allows us to design
methods with higher order of convergence.

Theorem 2. [5] Let F : Ω ⊆ Rn → Rn be differentiable enough in Ω and ξ ∈ Ω a solution of the nonlinear
system F (x) = 0. We suppose that F ′(x) is continuous and nonsingular at ξ. Let y(k) and z(k) be the penultimate
and final steps of orders q and p, respectively, of a certain iterative method. Taking this scheme as a predictor
we get a new approximation x(k+1) of ξ given by

x(k+1) = y(k) − 2

[
m∑
i=1

ωiF
′(η

(k)
i )

]−1

F (y(k)),

where η
(k)
i =

1

2

[
(1 + τi)z

(k) + (1− τi)y
(k)

]
and τi, ωi i = 1, . . . ,m are the nodes and weights of the orthogonal

polynomial corresponding to the Gaussian quadrature used. Then,

1. the obtained set of families will have an order of convergence at least q;
2. if σ = 2 is satisfied, then the order of convergence will be at least 2q;
3. if, also, σ1 = 0 the order of convergence will be min{p+ q, 3q};

where

n∑
i=1

ωi = σ and

n∑
i=1

ωiτ
j
i

σ
= σj with j = 1, 2.

Each of the families obtained will consist of subfamilies that are determined by the orthogonal polynomial
corresponding to the Gaussian quadrature used. Furthermore, in these subfamilies it can be obtained methods
using different number of nodes corresponding to the orthogonal polynomial used (see Table 1). According to
the proof of Theorem 2 the order of convergence of the obtained methods does not depend on the number of
nodes used.

Quadratures

Number of nodes Chebyshev Legendre Lobatto Radau

σ σ1 σ σ1 σ σ1 σ σ1

1 π 0 2 0 2 0 2 -1

2 π 0 2 0 2 0 2 0

3 π 0 2 0 2 0 2 0

Table 1: Quadratures used

Let us note that these methods, obtained by means of Gaussian quadratures, seem to be known interpolation
quadrature schemes such as midpoint, trapezoidal or Simpson’s method (see [4]). It is only a similitude, as they
are not applied on the last iteration x(k), and the last step of the predictor z(k), but on the two last steps of
the predictor. In the following, we will use a midpoint-like as a corrector step, which corresponds to a Gauss-
Legendre quadrature with one node; for this scheme the order of convergence will be at least min{q + p, 3q},
by applying Theorem 2.

The pseudocomposition can be applied on the proposed scheme M8 with iterative expression (4), but also
on M6. By pseudocomposing on M6 and M8 there can be obtained two procedures of order of convergence 10
and 14 (denoted by PsM10 and PsM14), respectively. Let us note that it is also possible to pseudocompose on
M4, but the resulting scheme would be of third order of convergence, which is worst than the original M4, so it
will not be considered.

Following the notation used in (4), the last step of PsM10 is

x(k+1) = u(k) − 2

[
F ′

(
v(k) + u(k)

2

)]−1

F (u(k)), (5)
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and the last three steps of psM14 can be expressed as

v(k) = z(k) +
[
F ′

(
x(k)

)
− 3F ′

(
y(k)

)]−1 [
F
(
x(k)

)
+ 2F

(
u(k)

)]
,

w(k+1) = v(k) − 1

2

[
F ′

(
x(k)

)]−1 [
5F ′

(
x(k)

)
− 3F ′

(
y(k)

)] [
F ′

(
x(k)

)]−1

F
(
v(k)

)
, (6)

x(k+1) = v(k) − 2

[
F ′

(
w(k) + v(k)

2

)]−1

F (v(k)).

Fig. 1: Efficiency index of the different methods for different sizes of the system

If we analyze the efficiency indices (see Figure 1, we deduce the following conclusions: the new methods M4,
M6 and M8 (and also the pseudocomposed PsM10 and PsM14) improve Newton and Jarratt’s schemes (in fact,
the indices of M4 and Jarratt’s are equal). Indeed, for n ≥ 3 the best index is that of M8. Nevertheless, none of
the pseudocomposed methods improve the efficiency index of their original partners.

3 Numerical results

In this section, we test the developed methods to illustrate its effectiveness compared with other methods.
Numerical computations have been performed in MATLAB R2011a by using variable-precision arithmetic,
which uses floating-point representation of 2000 decimal digits of mantissa. The computer specifications are:
Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz with 16.00GB of RAM. Each iteration is obtained from the former
by means of an iterative expression x(k+1) = x(k)−A−1b, where x(k) ∈ Rn, A is a real matrix n×n and b ∈ Rn.
The matrix A and vector b are different according to the method used, but in any case, we use to calculate
inverse −A−1b the solution of the linear system Ay = b, with Gaussian elimination with partial pivoting. The
stopping criterion used is ||x(k+1) − x(k)|| < 10−200 or ||F (x(k))|| < 10−200.

Firstly, let us consider the following nonlinear systems of different sizes:

1. F1 = (f1(x), f2(x), . . . , fn(x)), where x = (x1, x2, . . . , xn)
T and fi : Rn → R, i = 1, 2, . . . , n, such that

fi(x) = xixi+1 − 1, i = 1, 2, . . . , n− 1

fn(x) = xnx1 − 1.

When n is odd, the exact zeros of F1(x) are: ξ1 = (1, 1, . . . , 1)T and ξ2 = (−1,−1, . . . ,−1)T .
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2. F2(x1, x2) = (x2
1 − x1 − x2

2 − 1,− sin (x1) + x2) and the solutions are ξ1 ≈ (−0.845257,−0.748141)
T

and

ξ2 ≈ (1.952913, 0.927877)
T
.

3. F3(x1, x2) = (x2
1 + x2

2 − 4,− exp (x1) + x2 − 1), being the solutions ξ1 ≈ (1.004168,−1.729637)T and
ξ2 ≈ (−1.816264, 0.837368)T .

4. F4(x1, x2, x3) = (x2
1+x2

2+x2
3−9, x1x2x3−1, x1+x2−x2

3) with three roots ξ1 ≈ (2.14025, −2.09029, −0.223525)T ,
ξ2 ≈ (2.491376, 0.242746, 1.653518)T and ξ1 ≈ (0.242746, 2.491376, 1.653518)T .

Table 2 presents results showing the following information: the different iterative methods employed (Newton
(NC), Jarratt (JT), the new methods M4, M6 and M8 and the pseudocomposed PsM10 and PsM14), the number
of iterations Iter needed to converge to the solution Sol, the value of the stopping factors at the last step and
the computational order of convergence ρ (see [3]) approximated by the formula:

ρ ≈ ln(||x(k+1) − x(k)||)/(||x(k) − x(k−1)||)
ln(||x(k) − x(k−1)||)/(||x(k−1) − x(k−2)||)

. (7)

The value of ρ which appears in Table 2 is the last coordinate of the vector ρ when the variation between their
coordinates is small. Also the elapsed time, in seconds, appears in Table 2, being the mean execution time for
100 performances of the method (the command cputime of Matlab has been used).

(a) M6 (b) PsM10

Fig. 2

We observe from Table 2 that, not only the order of convergence and the number of new functional evaluations
and operations is important in order to obtain new efficient iterative methods to solve nonlinear systems of
equations. A key factor is the range of applicability of the methods. Although they are slower than the original
methods when the initial estimation is quite good, when we are far from the solution or inside a region of
instability, the original schemes do not converge or do it more slowly, the corresponding pseudocomposed
procedures usually still converge or do it faster.

The advantage of pseudocomposition can be observed in Figures 2a, 2b (methods M6 and PsM10) and 3a,
3b (methods M8 and PsM14) where the dynamical plane on R2 is represented: let us consider a system of two
equations and two unknowns (the case F2(x) = 0 is showed), for any initial estimation in R2 represented by
its position in the plane, a different color (blue or orange, as there exist only two solutions) is used for the
different solutions found (marked by a white point in the figure). Black color represents an initial point in which
the method converges to infinity, and the green one means that no convergence is found (usually because any
linear system cannot be solved). It is clear that when many initial estimations tend to infinity (see Figure 3a),
the pseudocomposition ”cleans” the dynamical plane, making the method more stable as it can find one of the
solutions by using starting points that do not allow convergence with the original scheme (see Figure 2b).
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(a) M8 (b) PsM14

Fig. 3: Real dynamical planes for system (b) and methods M8 and PsM14

We conclude that the presented schemes M4, M6 and M8 show to be excellent, in terms of order of conver-
gence and efficiency, but also that the pseudocomposition technique achieves to transform them in competent
and more robust new schemes.
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Function Method Iter Sol ||x(k) − x(k−1)|| ||F (x(k)|| ρ e-time (sec)

F1 NC 8 ξ1 1.43e-121 2.06e-243 2.0000 8.6407

x(0) = (0.8, . . . , 0.8) n = 99 JT 4 ξ1 1.69e-60 2.06e-243 4.0000 3.9347

M4 4 ξ1 1.69e-60 2.06e-243 4.0000 3.7813

M6 4 ξ1 6.94e-193 4.33e-1160 6.0000 5.3911

M8 3 ξ1 9.40e-50 3.51e-4011 8.0913 5.0065

PsM10 3 ξ1 1.28e-91 9.54e-921 10.0545 4.9061

PsM14 3 ξ1 4.65e-164 0 14.0702 6.1018

F1 NC 17 ξ1 3.37e-340 1.14e-340 - 9.2128

x(0) = (0.0015, . . . , 0.0015) n = 99 JT 9 ξ1 8.18e-085 1.14e-340 4.0000 10.1416

M4 9 ξ1 8.18e-085 1.14e-340 4.0000 10.9104

M6 7 ξ1 1.40e-035 9.46e-216 - 12.3266

M8 19 ξ1 9.50e-030 1.29e-240 - 59.4832

PsM10 6 ξ1 3.02e-102 5.23e-1027 - 17.9957

PsM14 5 ξ1 1.84e-162 0 - 22.6130

F2 NC 9 ξ1 2.45e-181 5.92e-362 2.0148 0.2395

x(0) = (−0.5,−0.5) JT 5 ξ1 9.48e-189 8.13e-754 4.0279 0.3250

M4 5 ξ1 9.48e-189 8.13e-754 4.0279 0.1841

M6 4 ξ1 1.34e-146 2.14e-878 5.9048 0.2744

M8 3 ξ1 1.90e-038 1.23e-302 7.8530 0.3718

PsM10 3 ξ1 6.72e-72 2.68e-714 9.9092 0.4674

PsM14 3 ξ1 2.13e-122 1.95e-1706 13.9829 0.3187

F2 NC 13 ξ1 2.20e-182 2.73e-374 1.9917 0.3713

x(0) = (−5,−3) JT 7 ξ1 2.10e-179 4.51e-716 3.9925 0.4001

M4 7 ξ1 2.10e-179 4.51e-716 3.9925 0.7535

M6 8 ξ1 2.55e-036 5.81e-216 - 0.9382

M8 > 5000

PsM10 4 ξ1 2.59e-021 3.51e-208 - 0.4363

PsM14 29 ξ2 9.45e-020 5.05e-273 - 7.8090

F3 NC 10 ξ1 1.65e-190 4.61e-380 2.0000 1.4675

x(0) = (2,−3) JT 5 ξ1 8.03e-113 7.59e-450 3.9995 0.3151

M4 5 ξ1 8.03e-113 7.59e-450 3.9995 0.3034

M6 4 ξ1 1.25e-082 2.83e-493 6.0015 0.3696

M8 4 ξ1 1.54e-162 3.16e-1296 7.9993 0.4463

PsM10 3 ξ1 5.59e-044 1.40e-436 9.4708 0.4682

PsM14 3 ξ1 3.46e-068 3.45e-948 13.1659 0.5925

F3 NC 35 ξ1 3.71e-177 2.33e-253 - 1.4828

x(0) = (0.2, 0.1) JT 11 ξ1 3.29e-143 1.67e-574 - 0.7781

M4 11 ξ1 3.29e-143 1.67e-574 - 0.7535

M6 9 ξ1 1.31e-064 3.61e-385 - 0.8001

M8 n.c. ξ1
PsM10 5 ξ1 6.85e-156 1.06e-1555 - 0.6352

PsM14 8 ξ2 7.87e-155 0 - 1.1870

F4 NC 10 ξ1 1.03e-135 1.55e-270 1.9995 2.3263

x(0) = (1,−1.5,−0.5) JT 5 ξ1 9.94e-073 2.09e-289 4.0066 0.5296

M4 5 ξ1 9.94e-073 2.09e-289 4.0066 0.6340

M6 4 ξ1 9.31e-057 4.86e-338 5.9750 0.7443

M8 4 ξ1 4.43e-046 1.08e-364 - 0.8282

PsM10 3 ξ1 1.43e-031 1.04e-311 9.6674 0.8100

PsM14 3 ξ1 1.91e-033 4.05e-462 13.9954 1.0465

F4 NC 12 ξ1 1.08e-192 1.55e-384 1.9996 2.7271

x(0) = (7,−5,−5) JT 6 ξ1 2.31e-103 7.97e-412 4.0090 0.7761

M4 6 ξ1 2.31e-103 7.97e-412 4.0090 1.0301

M6 5 ξ1 2.99e-086 4.69e-515 - 1.0090

M8 15 ξ3 1.77e-071 1.48e-568 - 3.4007

PsM10 4 ξ1 6.86e-067 1.25e-666 - 1.0245

PsM14 7 ξ2 1.09e-130 9.15e-1825 - 1.8179

Table 2: Numerical results for functions F1 to F4


