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1 Introduction

Nonlinear equations arise in many real problems in Science and Engineering.
The subject of root-finding of nonlinear equations play an important role in
Numerical Analysis and Optimization. In particular, Newton’s scheme and its
modifications can be used to solve the variational inequality and the nonlinear
complementary problems (see, for example [1] and [2]). Also efficient iterative
schemes are needed to solve nonlinear equations coming from the application
of shooting methods to solve boundary value problems.

Throughout this paper we consider iterative methods to find a simple root
α in an open interval D, i.e., f(α) = 0 and f ′(α) ̸= 0, of a nonlinear equation
f(x) = 0.

Recenly, Chun and Neta in [3] presented a sixth-order method as follows
yn = xn − f(xn)

f ′(xn)
,

zn = yn − f(yn)
f ′(xn)

(
1− f(yn)

f(xn)

)−2

,

xn+1 = zn − f(zn)
f ′(xn)

(
1− f(yn)

f(xn)
− f(zn)

f(xn)

)−2

.

(1)

This scheme without memory includes three evaluations of the function
and one evaluation of the first-order derivative per computing step to reach
the order six and thus its classical efficiency index is 6

1
4 ≈ 1.565, which is not

as high as possible with four functional evaluations according to the hypothesis
of Kung and Traub on the optimality of multi-point iterations without memory
[4].

To improve the local order of convergence different techniques have been
used getting iterative schemes with and without memory (see, for instance
[5–7]) and to upgrade the efficiency index, many optimal methods without
memory have been proposed; see, for example, [3,8–16], and the references
therein.

The prime motivation of this paper is to optimalize (1) in terms of the local
convergence order and the efficiency index, as well as to study the dynamics
of some optimal eighth-order methods using fractal picture. Thus, we aim at
modifying (1) to reach a wide class of three-step methods using four evalua-
tions, i.e. the same as (1), but with higher order of convergence and efficiency.
This purpose will be studies by using weight function technique.

The dynamical study of the rational function associated to an iterative
method gives important information about the convergence and stability of
the scheme. In this sense, we should not forget the early work [17] and more
recent studies, as for example [18–23] and the references therein). In order
to do this, we recall some concepts. Thus, now we shortly present them. Let
R : Ĉ → Ĉ be a rational map on the Riemann sphere. For z ∈ Ĉ, we define its
orbit as the set orb(z) = {z,R(z), R2(z), · · · , Rn(z), · · · }, and subsequently, a
point z0 is a fixed point of R if R(z0) = z0.

A periodic point z0 of period m is such that Rm(z0) = z0 where m is the
smallest such integer. And also a point z0 is called attracting if |R′(z0)| < 1,
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repelling if |R′(z0)| > 1, and neutral if |R′(z0)| = 1. The Julia set of a nonlinear
map R(z), denoted J (R), is the closure of the set of its repelling periodic
points. The complement of J (R) is the Fatou set F(R), where the basin of
attraction of the different roots lie.

The rest of the paper is organized in what follows. In the next section, we
derive a new family of three-step eighth-order convergent methods, which is
consistent with the Kung-Traub conjecture. Section 3 covers some concrete
optimal eighth order of convergence methods of the class. Next, in Section 4,
we give a number of numerical tests to clarify the effectiveness of the new at-
tained methods. Section 5 successfully discusses the dynamics of the presented
optimal iterations. The concluding remarks of the paper is furnished in Section
6.

2 The improved scheme

To build an optimal eighth-order method consuming four evaluations accord-
ing to (1), we suggest the following iterative class by using weight function
approach at the end of the first and third steps

yn = xn − f(xn)
f ′(xn)

A(δ),

zn = yn − f(yn)
f ′(xn)

(
1− f(yn)

f(xn)

)−2

,

xn+1 = zn − f(zn)
f ′(xn)

(
1− f(yn)

f(xn)
− f(zn)

f(xn)

)−2

{G(t) +H(µ)},

(2)

where δ = f(x)
f ′(x) , t =

f(y)
f(x) , and µ = f(z)

f(y) , without the index n. The three weight

functions A(δ), G(t), and H(µ), should be chosen such that the order arrives
at local eight. This is done and illustrated in Theorem 1.

Theorem 1 Let α ∈ D be a simple zero of a sufficiently differentiable function
f : D ⊆ R → R for an open interval D, which contains x0 as an initial
approximation of α. Then the three-step iteration (2) without memory, which
contains four evaluations per full cycle has the optimal convergence rate eight
and satisfies the error equation below

en+1 =
1

24c71
c2(−2c22 + c1c3)(24c1c

2
2c3(7− 2H ′′(0)) + 12c21c

2
3(−2 +H ′′(0))

+12c21c2(−2c4 + c1A
(3)(0)) + c42(−120 + 48H ′′(0) +G(4)(0)))e8n (3)

+O(e9n),

when A(0) = 1, A′(0) = 0, A′′(0) = 0, |A(3)(0)| < ∞, |G(0)| < ∞, G′(0) = 0,
G′′(0) = 2, G(3)(0) = 0, |G(4)(0)| < ∞, H(0) = 1 − G(0), H ′(0) = 1 and
|H ′′(0)| < ∞.
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Proof. By defining en = xn − α as the error of the iterative scheme in
each iteration, applying the Taylor’s series expansion and taking into account
f(α) = 0, we have

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n +O(e9n), (4)

where ck = f(k)(α)
k! , k ≥ 1.

Furthermore, we have

f ′(xn) = c1+2c2en+3c3e
2
n+4c4e

3
n+5c5e

4
n+6c6e

5
n+7c7e

6
n+8c8e

7
n+O(e8n). (5)

Dividing (4) by (5) gives us

f(xn)

f ′(xn)
= en − c2e

2
n

c1
+

2
(
c22 − c1c3

)
e3n

c21
(6)

+

(
−4c32 + 7c1c2c3 − 3c21c4

)
e4n

c31
+ · · ·+O(e8n).

Substituting (6) in yn and writing the Taylor’s expansion for f(yn), we obtain
by considering A(0) = 1, A′(0) = 0, A′′(0) = 0, and |A(3)(0)| < ∞, respectively

yn = α+
c2e

2
n

c1
+

2
(
−c22 + c1c3

)
e3n

c21
(7)

+

(
4c32 − 7c1c2c3 + 3c21c4

c31
− 1

6
A(3)(0)

)
e4n + · · ·+O(e8n),

f(yn) = c2e
2
n +

(
−2c22

c1
+ 2c3

)
e3n (8)

+

(
5c32
c21

− 7c2c3
c1

+ 3c4 −
1

6
c1A

(3)(0)

)
e4n + · · ·+O(e8n).

Moreover for the second step of (2), we find

zn − α =

(
2c32 − c1c2c3

)
e4n

c31
+

(
−6

(
5c42 − 7c1c

2
2c3 + c21c

2
3 + c21c2c4

)
+ c31c2A

(3)(0)
)
e5n

3c41

+
1

12c51
(372c52 − 864c1c

3
2c3 + 2c21c

2
2(126c4 − 13c1A

(3)(0)) (9)

+2c31c3(−42c4 + 5c1A
(3)(0)) + c21c2(360c

2
3 + c1(−36c5 + c1A

(4)(0))))e6n

+ · · ·+O(e9n).

Using (9), we now have

f(zn) =
(2c32 − c1c2c3)e

4
n

c21
+ (−2(5c42 − 7c1c

2
2c3 + c21c

2
3 + c21c2c4)

c31
+

1

3
c2A

(3)(0))e5n

+
1

12c41
(372c52 − 864c1c

3
2c3 + 2c21c

2
2(126c4 − 13c1A

(3)(0))

+2c31c3(−42c4 + 5c1A
(3)(0)) + c21c2(360c

2
3 + c1(−36c5 + c1A

(4)(0))))e6n

+ · · ·+O(e9n).
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It is now easy to find

1 − f(yn)

f(xn)
− f(zn)

f(xn)
= 1− 2c2en

c1
+

(7c22 − 4c1c3)e
2
n

c21

+

(
−26c32 + 26c1c2c3 − 6c21c4

c31
+

1

3
A(3)(0)

)
e3n (10)

+

(
93c42
c41

− 138c22c3
c31

+
24c23 + 38c2c4

c21
− 8(3c5 + c2A

(3)(0))

3c1
+

1

12
A(4)(0)

)
e4n

+
1

60c51
(40(−3(153c52 − 312c1c

3
2c3 + 99c21c

2
2c4 + 5c21c2(24c

2
3 − 5c1c5)

+5c31(−7c3c4 + c1c6)) + c31(23c
2
2 − 8c1c3)A

(3)(0))− 45c41c2A
(4)(0)

+c51A
(5)(0))e5n +O(e6n).

For the last step of (2), we obtain by using (7)-(10)

en+1 =
c2(−2c22 + c1c3)(−1 +G(0) +H(0))e4n

c31

+
(6(5c42 − 7c1c

2
2c3 + c21c

2
3 + c21c2c4)(−1 +G(0) +H(0))

3c41
e5n

+
3c22(−2c22 + c1c3)G

′(0)− c31c2(−1 +G(0) +H(0))A(3)(0))

3c41
e5n

+
1

12c51
(−12c52(−31 + 25G(0) + 25H(0)− 16G′(0) + 4H ′(0) +G′′(0))

+6c1c
3
2c3(−144 + 134G(0) + 134H(0)− 42G′(0) + 8H ′(0) +G′′(0))

+2c31c3(−1 +G(0) +H(0))(42c4 − 5c1A
(3)(0))

+2c21c
2
2(6c4(−21(−1 +G(0) +H(0)) + 2G′(0))

+c1(13(−1 +G(0) +H(0))− 2G′(0))A(3)(0))− c21c2(12c
2
3(−30 + 29G(0)

+29H(0)− 4G′(0) +H ′(0)) + c1(−1 +G(0) +H(0))(−36c5 + c1A
(4)(0))))e6n

+
1

360c61
(−60c21c

3
2(−6c4(−100 + 90G(0) + 90H(0)− 33G′(0)

+8H ′(0) +G′′(0)) + c1(−56 + 46G(0) + 46H(0)− 21G′(0) + 8H ′(0) +G′′(0))A(3)(0))

+120c62(−222 + 60G(0) + 60H(0)− 213G′(0) + 96H ′(0) + 33G′′(0)−G(3)(0))

−60c1c
4
2c3(−1476 + 948G(0) + 948H(0)− 942G′(0) + 360H ′(0) + 84G′′(0)

−G(3)(0)) + 5c31(−144c33(9G(0) + 9H(0)− 2(5 +G′(0)) +H ′(0)) + 4c1(−1 +G(0) +H(0))

(−18c4 + c1A
(3)(0))(−6c4 + c1A

(3)(0))− 15c1c3(−1 +G(0) +H(0))

(−48c5 + c1A
(4)(0))) + 15c21c

2
2(24c

2
3(−188 + 156G(0) + 156H(0)

−73G′(0) + 26H ′(0) + 3G′′(0)) + c1(−672c5(−1 +G(0) +H(0)))

+72c5G
′(0 + c1(15(−1 +G(0) +H(0))− 2G′(0))A(4)(0)))− 6c31c2(20c3

(6c4(−44 + 42G(0) + 42H(0)− 7G′(0) + 2H ′(0)) + c1(26− 24G(0)

−24H(0) + 5G′(0)− 2H ′(0))A(3)(0))c1(−1 +G(0) +H(0))(−240c6 + c1A
(5)(0))))e7n +O(e8n).
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Table 1 Some typical forms of the weight functions in (2), ω ∈ R

Methods A(δ) G(t) H(µ)

Forms 1 + δ3 + ωδ5 t2 + ωt4 1 + µ+ ωµ2

By choosing |G(0)| < ∞, G′(0) = 0, G′′(0) = 2, G(3)(0) = 0, |G(4)(0)| < ∞,
H(0) = 1−G(0), H ′(0) = 1 and |H ′′(0)| < ∞, the error equations in the last
step will be attained as comes next en+1 = 1

24c71
c2(−2c22 + c1c3)(24c1c

2
2c3(7−

2H ′′(0))+12c21c
2
3(−2+H ′′(0))+12c21c2(−2c4+c1A

(3)(0))+c42(−120+48H ′′(0)+
G(4)(0)))e8n + O(e9n). This shows that the iterative scheme (2) can attain at
least eighth order of convergence. Hence, the proof is complete. �

Remark 1. The suggested class (2) includes only four evaluations per full
cycle to achieve the local convergence order eight. Hence, its classical efficiency
index is 8

1
4 ≈ 1.682, which is much better than the efficiency of its origin, i.e.

6
1
4 ≈ 1.565 of the method (1).

Remark 2. The weight function A(δ) at the end of the first step gives a
generality to this step. Since, its third derivative around zero has a clear effect
on the final error equation (3). Such an effect provides a more generality to
the proposed scheme along with furnishing a better condition for making with
memory schemes out to (2).

3 Some optimal concrete methods

Some new methods can now be constructed using Theorem 1 and the class (2).
Note that some typical forms of the weight functions satisfying Theorem 1 are
illustrated in Table 1. By applying A(3)(0) = 0, H ′′(0) = 0, and G(4)(0) = 120
we have, for instance


yn = xn − f(xn)

f ′(xn)

(
1 +

(
f(xn)
f ′(xn)

)5
)
,

zn = yn − f(yn)
f ′(xn)

(
1− f(yn)

f(xn)

)−2

,

xn+1 = zn − f(zn)
f ′(xn)

(
1+( f(yn)

f(xn) )
2
+5( f(yn)

f(xn) )
4
+

f(zn)
f(yn)

)
(1− f(yn)

f(xn)
− f(zn)

f(xn) )
2 ,

(11)

with the following error equation

en+1 = −
c2

(
−2c22 + c1c3

) (
−7c22c3 + c1c

2
3 + c1c2c4

)
c61

e8n +O(e9n). (12)
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By using A(3)(0) = 6, H ′′(0) = 0, and G(4)(0) = 120, we have
yn = xn − f(xn)

f ′(xn)

(
1 +

(
f(xn)
f ′(xn)

)3
)
,

zn = yn − f(yn)
f ′(xn)

(
1− f(yn)

f(xn)

)−2

,

xn+1 = zn − f(zn)
f ′(xn)

(
1+( f(yn)

f(xn) )
2
+5( f(yn)

f(xn) )
4
+

f(zn)
f(yn)

)
(1− f(yn)

f(xn)
− f(zn)

f(xn) )
2 ,

(13)

where its error relation reads

en+1 =
c2

(
−2c22 + c1c3

) (
3c21c2 + 7c22c3 − c1

(
c23 + c2c4

))
c61

e8n +O(e9n). (14)

Finally, by applying A(3)(0) = 0, H ′′(0) = 0, and G(4)(0) = 0, we attain
yn = xn − f(xn)

f ′(xn)

(
1−

(
f(xn)
f ′(xn)

)5
)
,

zn = yn − f(yn)
f ′(xn)

(
1− f(yn)

f(xn)

)−2

,

xn+1 = zn − f(zn)
f ′(xn)

(
1+( f(yn)

f(xn) )
2
+

f(zn)
f(yn)

)
(1− f(yn)

f(xn)
− f(zn)

f(xn) )
2 ,

(15)

where its error equation is

en+1 =
c2

(
2c22 − c1c3

) (
5c42 − 7c1c

2
2c3 + c21c

2
3 + c21c2c4

)
c71

e8n +O(e9n). (16)

4 Numerical examples

In this section, we check the effectiveness of the iterative class (2) by choosing
their members (11), (13), and (15). Due to this, we have compared them with
the following scheme, described in [9]

yn = xn − f(xn)
f ′(xn)

,

zn = xn − f(xn)
f ′(xn)

f(xn)−f(yn)
f(xn)−2f(yn)

,

xn+1 = un − 3(α+β)(un−zn)
γ(un−zn)+α(yn−xn)+β(zn−xn)

f(zn)
f ′(xn)

,

(17)

where α, β, γ ∈ R, α+β ̸= 0 and un = zn−
(

f(xn)−f(yn)
f(xn)−2f(yn)

+ 1
2

f(zn)
f(yn)−2f(zn)

)2
f(zn)
f ′(xn)

.

We will choose α = β = γ = 1, in Table 3.
The following optimal three-step eighth-order iteration [11] will also be

used 

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(xn)

{1 + 2 f(yn)
f(xn)

+ 4( f(yn)
f(xn)

)2},

xn+1 = zn − {( f(yn)
f(xn)

)4 + ( f(yn)
f(xn)

)5} f(zn)
f ′(xn)

−{1 + f(zn)
f(xn)

+ ( f(zn)f(xn)
)2} f [xn,yn]f(zn)

f [xn,zn]f [yn,zn]
.

(18)
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For comparisons, we have also used the following methods presented in [14]

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(xn)

{ 2f(xn)−f(yn)
2f(xn)−5f(yn)

},

xn+1 = zn − f(zn)
f ′(xn)

{ 2f(xn)−f(yn)
2f(xn)−5f(yn)

}{1 + 2 f(zn)
f(xn)

+ f(zn)
f(yn)

+( f(zn)f(yn)
)2 + ( f(yn)

f(xn)
)2 + 4( f(yn)

f(xn)
)3 + 12( f(yn)

f(xn)
)4 − f(zn)

f ′(xn)
− ( f(yn)

f ′(xn)
)2},

(19)

and

yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)
f ′(xn)

{ f(xn)
f(xn)−2f(yn)

},

xn+1 = zn − f(zn)
f ′(xn)

{ f(xn)
f(xn)−2f(yn)

}{1 + 2 f(zn)
f(xn)

+ f(zn)
f(yn)

+ ( f(yn)
f(xn)

)2

+2( f(yn)
f(xn)

)3 − f(zn)
f ′(xn)

+ ( f(yn)
f ′(xn)

)3}.

(20)

The nonlinear test functions are furnished in Table 2.

Table 2 Test functions and their zeros

Test Nonlinear Functions Simple Zeros

f1(x) = 10xe−x2 − 1 α1 ≈ 1.6796306104284499406749203388379703
f2(x) = x5 + x4 + 4x2 − 15 α2 ≈ 1.3474280989683049815067153807148212

f3(x) = xex
2 − (sin(x))2 + 3 cos(x) + 5 α3 ≈ −1.20764782713091892700941675835608

f4(x) = x4 + sin( π
x2 )− 5 α4 =

√
2

f5(x) = x2ex − sin(x) α5 = 0

f6(x) = (sin(x)−
√

2
2
)2(x+ 1) α6 = −1

f7(x) = 11x11 − 1 α7 ≈ 0.8041330975036643237414634983732973
f8(x) = sin(3x) + x cos(x) α8 ≈ 1.1977695352162711659385794729509898

The results of comparisons are given in Table 3 in terms of the number
significant digits for each test function after 3 iterations (with the same Total
Number of Evaluations; TNE=12), that is, e.g. 0.1e − 680 shows that the
absolute value of the given nonlinear function (f1) after three iterations is zero
up to 680 decimal places. For numerical comparisons, the stopping criterion is
|f(xn)| < 1.E − 1000. We used Matlab 7.5 for numerical computations and
variable precision arithmetics with 1100 digits of mantissa.

Although the results shown in Table 3 are not as good as would be desirable
for methods (11), (13) and (15), the dynamical study that we show below
indicates that there are important aspects in which new methods improve other
eighth-order known methods. We are going to study the basins of attraction
of the different methods for finding the roots of unity.

There are various criteria involved in choosing an iterative method to ap-
proximate the root of an equation. These include the initial value problem,
the rate of convergence and the complexity of the calculation. In order to in-
vestigate these dynamics with some higher order methods we have improved
the method (1) and now study their complex dynamics.
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Table 3 Comparison of different methods for solving test functions with TNE = 12.

f Guess (17) (18) (19) (20) (11) (13) (15)

f1 1.72 |f | 0.1e-680 0.6e-663 0.3e-765 0.5e-659 0.2e-660 0.6e-700 0.3e-654
1 0.3e-118 0.4e-221 0.3e-231 0.4e-167 0.5e-213 0.8e-53 0.6e-86
1.5 0.2e-391 0.4e-473 0.2e-438 0.1e-376 0.2e-375 0.5e-366 0.8e-361

f2 1 |f | 0.1e-190 - 0.1e-49 0.2e-127 0.4e-80 0.2e-132 0.9e-197
1.1 0.5e-278 0.1e-81 0.2e-168 0.7e-223 0.7e-165 0.2e-197 0.5e-299
1.8 0.1e-213 0.1e-215 0.2e-227 0.5e-194 0.1e-195 0.2e-189 0.4e-187

f3 -1.1 |f | 0.1e-516 0.6e-292 0.3e-322 0.6e-423 0.1e-325 0.1e-325 0.6e-433
-1.5 0.1e-253 0.4e-238 0.5e-187 0.1e-216 0.2e-253 0.1e-247 0.2e-205
-1 0.3e-379 0.1e-73 0.8e-151 0.5e-269 0.4e-158 0.1e-143 0.4e-254

f4 1.3 |f | 0.3e-470 0.5e-439 0.4e-439 0.1e-507 0.3e-504 0.1e-459 0.3e-528
1 0.3e-232 0.2e-269 0.6e-263 0.2e-289 0.2e-199 0.2e-146 0.5e-227
1.6 0.2e-469 0.1e-363 0.3e-394 0.8e-447 0.3e-376 0.3e-351 0.5e-430

f5 0.1 |f | 0.8e-360 0.5e-350 0.1e-393 0.1e-343 0.6e-349 0.1e-357 0.1e-338
0.5 0.6e-400 0.1e-317 0.1e-385 0.3e-366 0.2e-342 0.8e-342 0.8e-382
-0.1 0.3e-476 0.5e-482 0.3e-476 0.8e-457 0.4e-441 0.6e-438 0.2e-436

f6 -0.8 |f | 0.2e-294 0.1e-212 0.9e-398 0.5e-274 0.2e-248 0.7e-242 0.3e-288
-1.2 0.1e-441 0.1e-421 0.4e-421 0.2e-402 0.1e-385 0.2e-380 0.5e-381
-0.9 0.2e-483 0.1e-498 0.1e-553 0.6e-469 0.2e-500 0.1e-454 0.2e-457

f7 0.81 |f | 0.5e-752 0.5e-695 0.4e-737 0.8e-717 0.4e-697 0.5e-697 0.5e-716
0.79 0.5e-546 0.3e-461 0.2e-485 0.3e-503 0.1e-460 0.2e-460 0.5e-519
1 0.5e-76 0.3e-62 0.1e-106 0.3e-65 0.5e-64 0.6e-64 0.2e-61

f8 1 |f | 0.2e-372 0.5e-589 0.1e-435 0.5e-434 0.2e-378 0.2e-605 0.7e-374
0.8 0.1e-150 0.1e-91 0.2e-160 0.7e-156 0.8e-159 0.4e-193 0.2e-116
1.5 0.1e-188 0.2e-102 0.9e-194 0.6e-175 0.2e-147 0.1e-121 0.3e-224

 

 

5 10 15 20 25

Number of Iterations

Fig. 1 HOT Colormap in MATLAB

Note that a point z0 belongs to the Julia set if and only if dynamics in a
neighborhood of z0 displays sensitive dependence on the initial conditions, so
that nearby initial conditions lead to wildly different behavior after a number
of iterations.
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(a) (11) (b) (13) (c) (15)

Fig. 2 Basins of attraction of methods (11), (13) and (15) for f(x) = x2 − 1

(a) (17) (b) (18)

Fig. 3 Basins of attraction of methods (17) and (18) for f(x) = x2 − 1

(a) (19) (b) (20)

Fig. 4 Basins of attraction of methods (19) and (20) for f(x) = x2 − 1

5 Fractal pictures for the basins of attractions of the eighth order
methods

We consider the polynomial f(x) = xr − 1, x ∈ C for finding the rth roots of
unity. The rth roots of unity are given by

αj = cos

(
2π(j − 1)

r

)
+ i sin

(
2π(j − 1)

r

)
, j = 1, 2...r.

The basin of attraction corresponding to a zero αj of the polynomial f(x) is
the set of all starting points x0 which are attracted to αj . We use a similar
like technique as in [23] to generate the basins of attraction.

In our numerical experiments, we take a square R × R = [−2, 2] × [−2, 2]
of 256 × 256 points and we apply the eighth order iterative method starting
in every x0 in the square.
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If the sequence generated by iterative method attempt a zero αj of the
polynomial with a tolerance |f(xk)| < 1e− 5 and a maximum of 25 iterations,
we decide that x0 is in the basin of attraction of these zero.

If the iterative method starting in x0 reaches a zero in n iterations (n ≤ 25),
then we mark this point x0 with a color depending on n with colormap hot
in MATLAB as shown in Figure 1. If n > 25, we conclude that the starting
point has diverged and we assign a white color. Let us denote µ be the mean
number of iterations for the converging points and Nd the number of diverging
points. We choose r = 2, 3, 7, 20 for our numerical experiments.

 

 

(a) (11) (b) (13) (c) (15)

Fig. 5 Basins of attraction of methods (11), (13) and (15) for f(x) = x3 − 1

(a) (17) (b) (18)

Fig. 6 Basins of attraction of methods (17) and (18) for f(x) = x3 − 1

(a) (19) (b) (20)

Fig. 7 Basins of attraction of methods (19) and (20) for f(x) = x3 − 1
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(a) (11) (b) (13) (c) (15)

Fig. 8 Basins of attraction of methods (11), (13) and (15) for f(x) = x7 − 1

(a) (17) (b) (18)

Fig. 9 Basins of attraction of methods (17) and (18) for f(x) = x7 − 1

(a) (19) (b) (20)

Fig. 10 Basins of attraction of methods (19) and (20) for f(x) = x7 − 1

Table 4 gives a comparison of µ and Nd of the eighth order methods for
the polynomials f(x) = xr−1, r = 2, 3, 7, 20. We also show a column with the
percentage of white points for each method. We can observe that all methods
(except (18)) are globally convergent for quadratic polynomials, being the
mean number of iterations similar in all cases. Proposed methods are also
globally convergent for cubic polynomials as well as (19) and (20). Although,
the global convergence is missed for higher degree of the polynomials, the
number of divergent points is much lower in new methods than in known
ones.
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(a) (11) (b) (13) (c) (15)

Fig. 11 Basins of attraction of methods (11), (13) and (15) for f(x) = x20 − 1

(a) (17) (b) (18)

Fig. 12 Basins of attraction of methods (17) and (18) for f(x) = x20 − 1

(a) (19) (b) (20)

Fig. 13 Basins of attraction of methods (19) and (20) for f(x) = x20 − 1

Figures 2 (a)-(c) show the basins of attraction for our new methods (11),
(13) and (15), respectively for the quadratic polynomial. The dark regions show
the roots α1 = −1 and α2 = 1. This shows the rapid convergence of eighth
order methods when the starting points are chosen close to the root. There are
no diverging points for the 3 methods and all methods converge in less than 10
iterations as shown by the dark intensity of the colors. Figures (3) (a)-(b) and
(4) (a)-(b) show the basins of attraction for the methods (17)-(20), respectively.
We observe that there are some diverging points for method (18) which is based
on divided difference methods and is the worst method. We can observe the
beautiful pictures produced by each method. The most efficient method with
the lowest mean iteration number and greatest basins of attraction for the
quadratic polynomial is (17). These figures confirm graphically the numerical
results shown in Table 4.
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Table 4 Comparison of µ, Nd and Pd of the eighth order methods for the polynomials
f(x) = xr − 1, r = 2, 3, 7, 20.

Method r = 2 r = 3 r = 7 r = 20

Nd Pd µ Nd Pd µ Nd Pd µ Nd Pd µ

(11) 0 0 2.61 0 0 2.63 0 0 3.50 1816 2.8 5.91

(13) 0 0 2.92 0 0 2.88 2 0.003 3.63 2097 3.2 5.92

(15) 0 0 3.09 0 0 2.72 4 0.006 3.51 1630 2.5 5.79

(17) 0 0 2.34 66 0.1 3.12 6382 9.7 4.47 5380 8.2 5.34

(18) 772 1.18 3.22 10534 16.1 4.58 8768 13.4 4.57 7140 10.9 5.98

(19) 0 0 2.58 0 0 3.08 72 0.1 3.86 2792 4.3 4.93

(20) 0 0 2.53 0 0 3.16 160 0.2 4.35 3418 5.2 5.87

Figures 5, 6 and 7 show the basins of attractions for the cubic polynomial.
There are some diverging points for method (17) but a lot for method (18). The
other methods are globally convergent. The best method in terms of lowest
mean iteration number (see Table 4) and largest basins of attraction is method
(11).

As the degree of the polynomial increases from 3 to 7, the methods have
difficulties and their mean iteration number increases. Our methods have very
little diverging points compared to the other ones. Method (11) is globally
convergent. Figures 8, 9 and 10 show the basins of attractions for finding the
7th roots of unity. The fractal of the methods (11), (13) and (15) are almost
similar. We also observe in Figure 9 methods (17) and (18) have a lot of white
(divergent) points which is confirmed by Table 4. The method (11) is again
the most efficient method.

For a large r = 20, the complexity of the fractals increases for the methods
as shown as in Figures 11, 12 and 13. The fractals are almost similar and
the number of diverging points are high for all methods. Method (15) has
the lowest number of diverging points whereas method (19) has the lowest
mean iteration number of the converging points. On the whole, we see that
our methods are better than the other methods in the literature.

6 Conclusion

Our main goal and motivation in constructing iterative methods for solving
nonlinear equations is to attain as high as possible order of convergence with
minimal computational cost. The most efficient existing root solvers are based
on multi-point iterations, first studied in the Traub’s book [24]; and recently
have been analyzed in the Ph.D. Thesis [25].

A novel eighth-order class of derivative-involved methods without memory
including three steps and four functional evaluations per full cycle to reach the
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optimal convergence order 8 have developed by using the method of Chun and
Neta (1), and weight function technique. The contributed class has arrived at

the optimal efficiency index 8
1
4 ≈ 1.682. The convergence analysis of (2) has

been made. Finally, numerical examples were employed to support the theory
presented in this paper. The basins of attraction of the new methods have also
been provided and they have shown that the new methods can compete with
other optimal eighth order methods in the literature.
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