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ABSTRACT 
 
We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric 

nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide 

(H2O2). We show experimentally and theoretically that the current–voltage curves provide a 

suitable method to monitor the change of pore surface characteristics induced by H2O2 in solution 

from the electronic readouts. We demonstrate also that the single pore characteristics can be 

scaled to the case of a multipore membrane whose electric outputs can be readily controlled. 

Because H2O2 is an agent significant for medical diagnostics, the results should be useful for 

sensing nanofluidic devices. 
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In this letter, we describe the reversible chemical functionalization of hydrogen peroxide 

(H2O2)-sensitive asymmetric nanopores, showing experimentally and theoretically that the 

current-voltage (IV) curves of a single pore provide a suitable method to monitor the solution 

properties from electronic readouts. We demonstrate also the scalability of the single pore 

characteristics to the case of a multipore membrane whose output electrical signals can be readily 

controlled. The reversibility of the surface functionalization process suggests the possibility of 

reusing the pores while the scalability paves the way to integration into functional devices 

through multipore membranes. Note that H2O2 is an agent significant for medical diagnostics1-5 

which is usually monitored by biological, chemical and electrochemical methods based on 

spectrometry,4,6 chemoluminescence,7,8 and amperometry.9,10 An alternative method is based on 

confining the sensing process within a single nanopore whose inner surface is functionalized, 

e.g., with the covalently linked enzyme horseradish peroxidase.11 The changes observed in the 

IV curves can then be correlated with the presence of H2O2 in the external solution. High sensor 

sensitivities can be achieved because of the small working volume and the off-the-shelf electronic 

equipment.12 

The asymmetric track-etching technique12 was employed here to fabricate the asymmetric 

nanopores in polyethylene terephthalate (PET) membranes of thickness 12 µm. Both single pore 

and multipore (104 pores/cm2) membranes were obtained by heavy ion irradiation and subsequent 

chemical track-etching process (see Supporting Information for experimental details). The 

resulting carboxylic acid (–COOH) groups were exposed on the pore surface.13 These groups act 

as starting points for the covalent attachment of different functionalities which modulate the 

electrochemical characteristics of the pore surface (Figure 1a-d).  

To fabricate the hydrogen peroxide sensitive nanopore, we have synthesized an amine-

terminated boronic ester carbamate (6) (BEC–NH2) chemical compound (see Supporting 

Information, SI for detail). Briefly, the starting material 4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)benzylalcohol (1) was first synthesized in excellent yield by already reported 

method.14 Then, the activation of benzyl alcohol (1) was performed with carbonyldiimidazol (2) 

in anhydrous acetonitrile to give a stable imidazole carbamate (3).15 Subsequently, the reaction of 

N-boc-1,6-hexanediamine (4) with imidazole carbamate (3) gave N- boc-protected carbamate (5). 

The protected carbamate (5) was treated with trifluoroacetic acid in dichloromethane (1:3) to give 

the BEC–NH2 (6) compound. 
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The covalent functionalization of the BEC–NH2 on the pore surface was achieved through N-

(3-dimethylaminopropyl)-N′-ethylcarbodiimide pentafluorophenol (EDC/PFP) coupling 

chemistry (Figure 1 a-b).16 Finally, the surface amine groups were converted into carboxylic 

acids moieties (Figure 1c-d) by reaction with succinic anhydride (SA).17 

 

Figure 1. (a)-(b) The surface functionalization of the carboxylic acid groups with amine-terminated 
boronic ester carbamate (BEC-NH2) moieties via carbodiimide coupling chemistry. (b)-(c) The H2O2 

triggered generation of amine groups on the pore surface. (c)-(d) The conversion of surface amine groups 
into carboxylic acids moieties by reaction with succinic anhydride (SA). 

Figure 2a shows the I–V curves of a single asymmetric nanopore before and after the 

functionalization of the H2O2 sensitive molecules on the inner pore surface (Figure 1a-b). The 

rectification characteristics, described by the ratio |I(+2V)|/|I(2V)| in the inset, arise from the 

electrostatic interaction of the asymmetrically distributed surface charge with the mobile ions in 

solution.14 The I–V curves were obtained under symmetrical electrolyte conditions using a non-

cation-selective
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buffered 0.1 M KCl solution at pH = 5.6 ± 0.2 in the conductivity cell. The as-prepared, 

unmodified asymmetric pore is cation selective (Figure 1a) and rectifies the ionic current (Figure 

2a). The preferential direction of cation flow is from the narrow tip towards the wide opening.18,19 

After modification, the anchoring of the BEC–NH2 neutral chains having uncharged terminal 

boronic ester decreased the pore surface charge density, in agreement with the significant 

decrease observed in the pore rectification ratio, from 5.7 to 1.7. 

Figure 1b-c shows the generation of amine groups upon exposing the BEC-modified pore to 

a solution of H2O2. The slightly alkaline solution of H2O2 can hydrolyze the arylboronic ester into 

a corresponding phenol.20 The resulting phenolic compound further undergoes decarboxylation 

and 1,6-elimination reactions, leading to the generation of amine groups.21 H2O2 acts as a 

triggering agent which generates the amine groups on the backbone of the boronic ester 

carbamate chains.21 Figure 2b shows the I–V curves of the BEC-modified pore when exposed to a 

H2O2 solution for different times. As expected, an inversion of the ionic current rectification18,19 

with respect to that of Figure 2a was observed due to the amine moieties on the pore surface (in 

our experimental conditions, the amine groups are protonated, imparting positive charge to the 

pore surface). This process also leads to the conversion of the inner pore environment from a 

hydrophobic nonconducting state to a hydrophilic conducting state. 

Figure 2b suggests that the exposure time to the H2O2 solution was proportionally related to 

the generation of amine groups, which changes the pore rectification and ionic current. After 60 

min of exposure time, the value of positive current was decreases while that of the negative 

current increased (in absolute value) compared with the reference values of the BEC-modified 

pore. Further increase in the exposure time enhanced the above experimental trends because of 

the increased pore surface charges. However, after 180 min of exposure time, no significant 

change in the positive and negative ion currents was observed, indicating the saturation of the 

surface charge. 
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Figure 2 (a) I–V curves of a single asymmetric nanopore with approximate tip and opening diameters 2aR 
~ 25 nm and 2aL ~ 600 nm, respectively, in a 100 mM KCl solution at pH 5.6 ± 0.2. The inset shows the 
rectification ratios for the same pore prior to (black) and after (blue) chemical modification. (b) I–V curves 
of the modified nanopore in electrolyte solution before (blue) and after exposure to H2O2 for 60 (red), 120 
(green) and 180 (black) minutes. The inset shows the rectification ratios as a function of the H2O2 
exposure time. (c) I–V curves of the H2O2 treated nanopore in solution prior to (red) and after (green) 
reaction with SA. (d)-(f) Theoretical I–V curves obtained from equations (1) and (2) corresponding to the 
experimental conditions in (a), (b), and (c). 

As discussed above, the pore rectification is directly related with the H2O2-dependent surface 

charge density (Figure 1b-c). The rectification ratio in the inset of Figure 2b, estimated from the 

corresponding I−V curves, was then regulated by the pore exposition to H2O2. This fact provides 

a facile tool to correlate the presence of H2O2 in solution to the system electronic readout. Indeed, 

upon exposing the modified pore to the H2O2 solution for 60, 120 and 180 min, the electrical 
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rectification ratio increased to 1.9, 3.0 and 4.0, respectively, to be compared to the unmodified 

pore value (0.5).  

Figure 1c-d shows that the arylboronic ester hydrolysis and subsequent generation of amine 

groups triggered by H2O2 can be further modified through a chemical reaction between the 

terminal amine groups and succinic anhydride (SA) molecules. When the H2O2 treated, aminated 

pore is exposed to SA, condensation reactions lead to the production of terminal carboxylate 

groups on the pore surface. After SA modification, the regenerated carboxylate moieties switch 

the surface charge from positive to negative, changing the pore ionic selectivity and rectification 

from anionic to cationic (Figure 2c). The carboxylic acid moieties on the SA-modified pore 

surface suggest the possibility of reusing  the pore. 

The above experimental results can be described theoretically using a continuous approach 

based on the Poisson and Nernst-Planck equations,22-26 

2
i i

i

F
z c


     (1) 

0i i i i i
F

J D c z c
RT

              


 (2) 

where ci(x), zi, iJ


, and
 
Di, are the local concentration, charge number, flux density, and diffusion 

coefficient of ion i, respectively, with x being the local electric potential and  the electrical 

permittivity. In equation (2), T is the absolute temperature, with F and R being the Faraday and 

universal gas constants, respectively. The pore radius at a point of coordinate x along the pore 

axis is described by the equation 

exp exp
( )

1 exp ( / )  

n n n
R L R L

n

a a (d/h) (a a ) (x/d) (d/h)
a x

d h

          
   

 (3) 

where d is the pore length and parameters n and d/h control the pore shape.24 Equations (1)-(3) 

can be integrated numerically to give the ionic flux densities, and then the total electric current I 

through the nanopore, at each applied voltage V (see references 22 and 26 for details). The above 

model is useful to describe the IV curves of different nanopores22-26 using a reduced number of 

fitting parameters. Figure 2d-f shows that this is also the case of the present experimental results. 

The best fitting between theory and experiments has been found using d/h = 0 and n = 1.25 in the 

calculations, which gives a pore profile with a convex tip,24 slightly deviated from a perfect 
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conical shape. Once the pore shape has been determined, the only free parameter in the 

theoretical curves is the surface charge density (in units e/nm2, where e is the elementary 

charge). The values of   used in the calculations were 0.3, 0.06, (Figure 2d, unmodified and 

modified pore, respectively), 0.06, +0.2, +0.28 and +0.35 (Figure 2e, 0 min, 60 min, 120 min 

and 180 min of H2O2 exposure,  respectively), and 0.3 and +0.35 (Figure 2f, SA modified and 

H2O2 treated pore, respectively). These values are reasonable, as shown previously with these 

types of pores.22,24 

Finally, Figure 3a-c shows the I–V curves of a multipore membrane containing ~ 104 

asymmetric pores/cm2 approximately. This membrane was etched along with the same single-

pore membrane used in the functionalizations discussed above. The experimental results 

suggested that the ionic transport across the multipore membrane can be controlled using similar 

conditions to those of the single-pore membrane (Figures 2a-c). Indeed, the I-V curves of Figure 

3a reveal that the number of open pores contributing to the electric current was approximately 

2×103/cm2. The surface functionalization method developed for the single-pore membrane can 

then be integrated and exploited in multipore nanofluidic devices. The scalability characteristics 

should be useful for practical applications. Figure 3d-f shows that the theoretical curves can 

reproduce the experimental trends observed assuming the same pore shape as in the single pore 

experiments, with  (in e/nm2) = 0.3 and 0.06 (Figure 3d, unmodified and modified pore, 

respectively), 0.06, +0.02, +0.07 and +0.08 (Figure 3e, 0 min, 60 min, 120 min and 180 min of 

H2O2 exposure, respectively), and 0.06 and +0.08 (Figure 3f, SA modified and H2O2 treated 

pore, respectively). Note that the experiments in Figure 3b show that the negative currents after 

the H2O2 exposure were slightly lower (in absolute value) than the positive currents characteristic 

of the as prepared pore (Figure 3a). This is not the case for the single pore sample in Figure 2, 

where these negative currents in Figure 2b were slightly higher than those characteristic of the as-

prepared pore in Figure 2a. As a result, the values of  found for the multipore membrane are 

significantly lower than those found for the single pore sample. 
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Figure 3. (a) I–V curves of a multipore membrane with 104 asymmetric pores/cm2 prior to (black) and 
after (blue) modification with BEC-NH2 groups. (b) I–V curves of a modified multipore membrane before 
(blue) and after exposition to a H2O2 solution for a period of 60 (red), 120 (green) and 180 (black) min. (c) 
I–V curves of a H2O2 treated multipore membrane prior to (red) and after (green) reaction with SA. All 
measurements were carried out in a non-buffered 100 mM KCl solution at pH 5.6 ± 0.2. (d)-(f) 
Theoretical I–V curves obtained from equations (1) and (2) corresponding to the experimental conditions 
in (a), (b), and (c). 

In summary, we have described the reversible chemical functionalization of H2O2-sensitive 

asymmetric nanopores, showing experimentally and theoretically that the IV curves provide a 

suitable method to monitor the solution properties from electronic readouts. Also, we have 

demonstrated the scalability of the single pore characteristics to a multipore membrane whose 

output could be readily controlled, a crucial step to useful nanofluidic devices. 
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