Transmission, Reflection and
Absorption in Sonic and Phononic
Crystals

A thesis submitted for the degree of Doctor of Philosophy by

Alejandro Cebrecos Ruiz

INSTITUTO PARA LA GESTION INTEGRADA DE ZONAS COSTERAS

UNIVERSIDAD POLITECNICA DE VALENCIA

Valencia, October 6, 2015

SUPERVISORS
Victor Sanchez Morcillo Universidad Politécnica de Valencia, Spain
Rubén Picé Vila Universidad Politécnica de Valencia, Spain

DISSERTATION JURY

Vincent Tournat Université du Maine (LAUM), France
Olivier Richoux Université du Maine (LAUM), France
Francisco Camarena Femenia  Universidad Politécnica de Valencia, Spain









The relevance of the people you love most is trully revealed when they are
apart. Life goes on, memories remain.

To my brother, Tono.



La relevancia de las personas que mds quieres se manifiesta realmente
cuando no estin. La vida sigue, los recuerdos permanecen.

A mi hermano, Tomno.






Aknowledgements

It has been a long time since, after being involved for the first time in
research during the realization of my Master Thesis, Victor Sanchez gave me
the oportunity to work with him to investigate subharmonic generation in
resonant cavities. Soon after, he proposed me to start my PhD in the context
of wave propagation in sonic crystals. I remember quite well my doubts and
lack of confidence to start a PhD on this topic at that time. However, it was
easy for Victor to convince me, as science is a truly passion for him and he
transmits it to everyone in his sorroundings. I am really grateful to him for
sharing this years working together and totally convinced that I made the
right choice. I also appreciate my other PhD supervisor, Rubén Picé, for his
outstanding contribution and attitude, always open to discussion and helpful.

Fortunately, by the time I started my PhD studies, our research group
experimented a quick growth and several researchers gradually started to work
with us, enriching my work deeply. Vicent Romero worked in Gandia for two
years, and still collaborate with us. He made a huge contribution to our
research group and to this thesis. He helped me in many ways and situations,
including numerical simulations, experimental techniques, and any doubt I
might have. I also want to acknowledge Lluis Garcia Raffi, who collaborated a
lot with me too. He is always ready to share his knowledge in mathematics and
physics with me and able to generate a huge amount of ideas and proposals.
I also appreciate the contributions from other members of the group, such
as Javier Redondo, and the people from ICREA in Terrasa. I appreciate
the contributions from Kestutis Staliunas, whose astonishing knowledge of
physics is always an inspiration to us, and Yu-Chieh Cheng, our collaborations
working in periodic structures in optics and acoustics were of great interest
for me and her extreme efficiency in every task she performs is amazing.

Chapter 5 of this thesis, and other works that are not included here,
were developed in the University of Colorado at Boulder, in the USA, were
I spent almost one year. I would like to acknowledge Mahmoud Hussein,
from Dpt. of Aerospace Engineering Sciences, for giving me the oportunity
to integrate myself in his group to work in the development of numerical
techniques for elastic band structure calculation, and also for pushing hard
to start and mantain a collaboration with our group in Gandia. It was an
amazing experience were all the members of the group made me feel at home.
Osama R. Bilal, Michael Frazier, Romik Khajehtourian, Dimitri Krattiger,
Clémence Basquet and Hossein Honarvar, thank you all.



Ademsds de las personas con las que he trabajado en tareas directamente
relacionadas con mi tesis, mi trabajo en Gandia ha sido muy placentero gracias
a la gente del departamento con la que he compartido estos anos. No quiero
dejar pasar la oportunidad de agradecer el trabajo extremadamente profe-
sional de Fernando Hernandez, nuestro técnico del departamento y guardian
de nuestros servidores de cdlculo. Y por supuesto, todos los habitantes del
Brain Zone, Noé, Patri, Maria, Vicent, Silvia, y Ester, asi como las nuevas
incorporaciones, Luis, Ahmed e Ivan. Gracias a vosotros todo ha sido més di-
vertido, sin olvidar lo que cada uno me habéis aportado tanto a nivel personal
como profesional. Se os echard de menos!

Tras 10 anos en Valencia y con mi familia a 800 km de aqui, han sido
muchos los amigos con los que he compartido muchas vivencias en diferentes
épocas y que se han convertido en mi familia valenciana, Alcoy, Pibe, Alvarico,
Miguelén, Polo, Edouard, Patri, Dieguifio, Pascu, Maria, José Juan, Mario,
Bosio, Pepo, Alex, José Corella, Fredo, Bart, Chino, Juanjo, Rasin. Han sido
grandes anos de los que me llevo grandes recuerdos. Aupa chavales!

Por ultimo, quiero agradecer a mi familia por su permanente apoyo desde
la distancia y por la motivaciéon que me han transmitido mis padres, hermanas
y mis sobrinetes. Especialmente a ti, Mamd, t mejor que nadie sabes los
rodeos que di al principio del camino que me ha llevado hasta aqui, y con tu
esfuerzo y empuje inagotables eres la responsable de que haya llegado hasta el
final, eres parte primordial de este trabajo. Te estaré eternamente agradecido
y orgulloso de ti.



Abstract

Phononic crystals are artificial materials formed by a periodic arrangement
of inclusions embedded into a host medium, where each of them can be solid
or fluid. By controlling the geometry and the impedance contrast of its con-
stituent materials, one can control the dispersive properties of waves, giving
rise to a huge variety of interesting and fundamental phenomena in the con-
text of wave propagation. When a propagating wave encounters a medium
with different physical properties it can be transmitted and reflected in lossless
media, but also absorbed if dissipation is taken into account. These funda-
mental phenomena have been classically explained in the context of homoge-
neous media, but it has been a subject of increasing interest in the context
of periodic structures in recent years as well. This thesis is devoted to the
study of different effects found in sonic and phononic crystals associated with
transmission, reflection and absorption of waves, as well as the development
of a technique for the characterization of its dispersive properties, described
by the band structure.

We start discussing the control of wave propagation in transmission in
conservative systems. Specifically, our interest is to show how sonic crystals
can modify the spatial dispersion of propagating waves leading to control the
diffractive broadening of sound beams. Making use of the spatial dispersion
curves extracted from the analysis of the band structure, we first predict
zero and negative diffraction of waves at frequencies close to the band-edge,
resulting in collimation and focusing of sound beams in and behind a 3D sonic
crystal, and later demonstrate it through experimental measurements. The
focusing efficiency of a 3D sonic crystal is limited due to the strong scattering
inside the crystal, characteristic of the diffraction regime. To overcome this
limitation we consider axisymmetric structures working in the long wavelength
regime, as a gradient index lens. In this regime, the scattering is strongly
reduced and, in an axisymmetric configuration, the symmetry matching with
acoustic sources radiating sound beams increase its efficiency dramatically.
Moreover, the homogenization theory can be used to model the structure as
an effective medium with effective physical properties, allowing the study of
the wave front profile in terms of refraction. We will show the model, design
and characterization of an efficient focusing device based on these concepts.

Consider now a periodic structure in which one of the parameters of the
lattice, such as the lattice constant or the filling fraction, gradually changes



along the propagation direction. Chirped crystals represent this concept and
are used here to demonstrate a novel mechanism of sound wave enhancement
based on a phenomenon known as ”soft” reflection. The enhancement is
related to a progressive slowing down of the wave as it propagates along the
material, which is associated with the group velocity of the local dispersion
relation at the planes of the crystal. A model based on the coupled mode
theory is proposed to predict and interpret this effect.

Two different phenomena are observed here when dealing with dissipation
in periodic structures. On one hand, when considering the propagation of
in-plane sound waves in a periodic array of absorbing layers, an anomalous
decrease in the absorption, combined with a simultaneous increase of reflection
and transmission at Bragg frequencies is observed, in contrast to the usual
decrease of transmission, characteristic in conservative periodic systems at
these frequencies. For a similar layered media, backed now by a rigid reflec-
tor, out-of-plane waves impinging the structure from a homogeneous medium
will increase dramatically the interaction strength. In other words, the time
delay of sound waves inside the periodic system will be considerably increased
resulting in an enhanced absorption, for a broadband spectral range.

Finally, a new methodology for elastic band structure calculation is pre-
sented. Based on the finite-element in time-domain method, we consider a
single unit cell applying Bloch boundary conditions depending on space and
time, and compute the band structure by implementing a time-marching al-
gorithm. A wide-band frequency signal excites the Bloch modes allowed to
vibrate in the periodic structure and, by analyzing the time-history data, and
spanning the Bloch wave vector along the Brillouin zone, we are able to detect
these Bloch modes needed to build the dispersion relation of the system. The
computational method is characterized in terms of accuracy, convergence and
computation times.



Resumen

Los cristales fonénicos son materiales artificiales formados por una disposi-
cién periddica de inclusiones embebidas en un medio, pudiendo ambos ser de
caracter sélido o fluido. Controlando la geometria y el contraste de impedan-
cias entre los materiales constituyentes se pueden controlar las propiedades
dispersivas de las ondas, dando lugar a una enorme variedad de fenémenos fun-
damentales interesantes en el contexto de la propagaciéon de ondas. Cuando
una onda propagante se encuentra un medio con diferentes propiedades fisicas
puede ser transmitida y reflejada, en medios sin pérdidas, pero también ab-
sorbida, si la disipacion es tenida en cuenta. Estos fenémenos fundamentales
han sido explicados tradicionalmente en el contexto de medios homogéneos,
pero en los ultimos afios también han sido objeto de un interés creciente en el
contexto de estructuras peridédicas. La presente tesis estd dedicada al estudio
de diferentes efectos presentes en cristales sénicos y fonémnicos relacionados
con la transmision, reflexion y absorcién de ondas, asi como el desarrollo de
una técnica para la caracterizacién de sus propiedades dispersivas, descritas
por la estructura de bandas.

En primer lugar, se estudia el control de la propagacién de ondas en trans-
misién en sistemas conservativos. Especificamente, nuestro interés se centra
en mostrar como los cristales sénicos son capaces de modificar la dispersion
espacial de las ondas propagantes, dando lugar al control del ensanchamiento
de haces de sonido, caracteristico de la difraccion. Haciendo uso de las curvas
de dispersion espacial extraidas del analisis de la estructura de bandas, se
predice primero la difraccién nula y negativa de ondas a frecuencias cercanas
al borde de la banda, resultando en la colimaciéon y focalizacién de haces
acusticos en el interior y detras de un cristal sénico 3D, y posteriormente se
demuestra mediante medidas experimentales. La eficiencia de focalizacién de
un cristal sénico 3D esta limitada debido a las multiples reflexiones existentes
en el interior del cristal, caracteristico del régimen difractivo. Para superar
esta limitacién se consideran estructuras axisimétricas trabajando en el régi-
men de longitud de onda larga, como lentes de gradiente de indice. En este
régimen, las reflexiones internas se reducen fuertemente y, en configuracion
axisimétrica, la adaptacién de simetria con fuentes acusticas radiando haces
de sonido incrementa la eficiencia drasticamente. Ademads, la teoria de ho-
mogenizacion puede ser empleada para modelar la estructura como un medio
efectivo con propiedades fisicas efectivas, permitiendo el estudio del frente



de ondas en términos refractivos. Se mostrara el modelado, disefio y carac-
terizacién de un dispositivo de focalizacion eficiente basado en los conceptos
anteriores.

Considérese ahora una estructura peridédica en la que uno de los paramet-
ros de la red, sea el paso de red o el factor de llenado, cambia gradualmente
a lo largo de la direccién de propagacién. Los cristales chirp representan
este concepto y son empleados aqui para demostrar un mecanismo novedoso
de incremento de la intensidad de la onda sonora basado en un fenémeno
conocido como reflexién “suave”. Este incremento estd relacionado con una
ralentizacién progresiva de la onda conforme se propaga a través del mate-
rial, asociado con la velocidad de grupo de la relaciéon de dispersién local en
los planos del cristal. Un modelo basado en la teoria de modos acoplados es
propuesto para predecir e interpretar este efecto.

Se observan dos fendémenos diferentes al considerar pérdidas en estructuras
periddicas. Por un lado, si se considera la propagacion de ondas sonoras en
un array periédico de capas absorbentes, cuyo frente de ondas es paralelo
a los planos del cristal, se produce una reduccién anémala en la absorciéon
combinada con un incremento simultdaneo de la reflexion y transmision a las
frecuencias de Bragg, de forma contraria a la habitual reduccién de la trans-
misién, caracteristica de sistemas periddicos conservativos a estas frecuencias.
En el caso de la misma estructura laminada en la que se cubre uno de sus lados
mediante un reflector rigido, la incidencia de ondas sonoras desde un medio
homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal,
produce un gran incremento de la fuerza de interaccién. Dicho de otra forma,
el tiempo de retardo de las ondas sonoras en el interior del sistema peridédico
aumenta considerablemente, resultando en un incremento de la absorciéon en
un rango amplio de frecuencias.

Por tultimo, se presenta una nueva metodologia para el cilculo de estruc-
turas de bandas en medios elasticos. Empleando el método de los elementos
finitos en dominio temporal, se considera una celda unidad aplicando condi-
ciones de contorno periédicas (Bloch) dependientes del espacio y el tiempo.
Mediante una una senal de banda ancha se excitan los modos de Bloch permi-
tidos por la estructura periédica y, mediante el analisis de las sefiales tempo-
rales registradas, asi como el barrido del vector de onda de Bloch a lo largo de
la zona de Brillouin, se detectan los modos de Bloch y obtener la relacién de
dispersion del sistema. El método computacional es caracterizado en términos
de su precision, convergencia y tiempo de computacion.



Resum

Els cristalls fononics sén materials artificials formats per una disposicio
d’inclusions en un medi, ambdds poden ser solids o fluids. Controlant la ge-
ometria i el contrast d’impedancies dels seus materials constituents, és poden
controlar les propietats dispersives de les ondes, permetent una gran varietat
de fenomens fonamentals interessants en el context de la propagacié d’ones.
Quan una ona propagant troba un medi amb pérdues amb propietats fisiques
diferents es pot transmetre i reflectir, pero també absorbida si la dissipacié
es té en compte. Aquests fenomens fonamentals s’han explicat classicament
en el context de medis homogenis, pero també ha sigut un tema de creixent
interés en el context d’estructures periodiques en els ultims anys. Aquesta
tesi doctoral tracta de I'estudi de diferents efectes en cristalls fononics i sonics
lligats a la transmissio, reflexié i absorcié d’ones, aixi com del desenvolupa-
ment d’una teécnica de caracteritzacié de les propietats dispersives, descrites
mitjangant la estructura de bandes.

En primer lloc, s’estudia el control de la propagacié ondulatori en trans-
missié en sistemes conservatius. Més especificament, el nostre interés és
mostrar com els cristalls sonors poden modificar la dispersi6é espacial d’ones
propagants donant lloc al control de 'amplaria per difracci6 dels feixos sonors.
Mitjangant les corbes dispersié espacial obtingudes de ’analisi de I’estructura
de bandes, es prediu, en primer lloc, la difraccié d’ones zero i negativa a fre-
qiiencies préximes al final de banda. El resultat és la collimacié i focalitzacié
de feixos sonors dins i darrere de cristalls de so. Després es mostra amb
mesures experimentals. L’eficiencia de focalitzacié d’un cristall de so 3D esta
limitada per la gran dispersié d’ones dins del cristall, que és caracteristic del
regim difractiu. Per a superar aquesta limitacid, estructures axisimetriques
que treballen en el régim de llargues longituds d’ona, i es comporten com a
lents de gradient d’index. En aquest regim, la dispersié es redueix enorme-
ment i, en una configuracié axisimetrica, a causa de ’acoblament de la sime-
tria amb les fonts acistiques que radien feixos sonors, ’eficiencia de radiacié
s’incrementa significativament. D’altra banda, la teoria d’homogeneitzacié es
pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de
focalitzaci6é basat en aquests conceptes.

Considerem ara una estructura periodica en la qual un dels seus parame-
tres de xarxa, com ara la constant de xarxa o el factor d’ompliment canvia



gradualment al llarg de la direccié de propagacié. Els cristalls chirped rep-
resenten aquest concepte i s’utilitzen aci per a demostrar un mecanisme nou
d’intensificacié d’ones sonores basat en el fenomen conegut com a reflexié
“suau”. La intensificacié esta relacionada amb la alentiment progressiva de
I’ona conforme propaga al llarg del material, que esta associada amb la veloc-
itat de grup de la relacié de dispersié local en els diferents planols del cristall.
Es proposa un model basat en la teoria de modes acoblats per a predir i
interpretar este efecte.

Dos fenomens diferents cal destacar quan es tracta d’estructures per-
iodiques amb dissipacié. Per un costat, al considerar la propagacié d’ones
sonores en el planol en un array periodic de capes absorbents, s’observa una
disminucié anomala de I’absorcid i es combina amb un augment simultani de
reflexié i transmissié en les freqiiéncies de Bragg que contrasta amb la usual
disminucié de transmissid, caracteristica dels sistemes conservatius a eixes fre-
qiiéncies. Per a un medi similar de capes, amb un reflector rigid darrere, les
ones fora del pla incidint I'estructura des de un medi homogeni, augmentaran
considerablement la interaccié. En altres paraules, el retras temporal de les
ones sonores dins del sistema periodic augmentara significativament produint
un augment d’absorcié en un rang de banda ampla espectral.

Finalment, es presenta una nova metodologia per al calcul de ’estructura
de bandes en medis elastics. Basat en el metode d’elements finits en el domini
de temps, considerem una cellula unitat on s’apliquen les condicions de con-
torn de Bloch dependents de I'espai i del temps, i es calcula ’estructura de
bandes implementant un algorisme de marxa. Un senyal amb gran amplada
de banda excita els modes de Bloch que poden vibrar en ’estructura periodica
i, utilitzant les dades de temps enregistrades, i estenent els vectors d’ona de
Bloch a la zona de Brillouin, és poden detectar els modes de Bloch necessaris
per a construir la relacié de dispersié del sistema. El metode computacional
es caracteritza mitjancant la precissié, convergencia i temps de calcul.
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This chapter is intended to offer a brief description of the physics of peri-
odic media. A review of the state of the art is presented, mentioning historical
origins and some of the most relevant works regarding transmission, reflection
and absorption of waves in phononic crystals. Then, a description of the ob-
ject and motivation of this thesis is given, commenting on several studies that
triggered our interest to explore different phenomena presented throughout
this work. Finally, a brief overview of the work and some bibliographic notes
are given.



1. Introduction

1.1 Sonic and phononic crystals

In the late 80’s, the pioneering studies of Yablonovitch [Yablonovitch, 1987]
and John [John, 1987] pointed out the existence of photonic gaps as the
electromagnetic counterpart of electron band gaps. Few years later, several
theoretical works, inspired by the previous studies, ignite the interest in the
study of acoustic and elastic and wave propagation in periodic materials pre-
senting acoustic and elastic band structure calculations, showing the existence
of acoustic and elastic band gaps, i.e., ranges of frequencies where vibrations,
sound and phonons are forbidden [Sigalas and Economou, 1992, Sigalas and
Economou, 1993, Kushwaha et al., 1993, Kushwaha, 1994].

Phononic crystals are artificial materials formed by a periodic arrange-
ment of inclusions embedded into a host homogeneous material, featuring the
propagation of longitudinal, transverse or mixed longitudinal and tranverse
waves. A particular case of phononic crystal is the so-called sonic crystal,
where the host material is a fluid and thus only longitudinal waves are al-
lowed to propagate. By controlling the geometry and the impedance contrast
of its constituent materials, one can control wave propagation and disper-
sion, giving rise to a huge variety of interesting and fundamental physical
phenomena.

Band gaps ocurr due to Bragg resonances, i.e., destructive interference
encountered at a particular range of frequencies. Most of the initial studies
regarding phononic crystals were devoted to the existence of full band gaps
and the required variations in the elastic constants and density to achieve this
goal [Kushwaha et al., 1993, Kushwaha, 1994, Sigalas, 1997, Kushwaha et al.,
1998], as well as experimental verifications of these phenomena [Martinez-Sala
et al., 1995, Robertson and Rudy III, 1998, Sdnchez-Pérez et al., 1998].

At the same time great efforts were made to develop methodology for
band structure calculations. The plane wave expansion method (PWE) was
applied in the initial works of Sigalas and Kushwaha [Sigalas and Economou,
1993, Kushwaha et al., 1993, Kushwaha, 1994]. In this method, by expanding
the physical properties of the periodic media in Fourier series and applying
Bloch’s theory [Kittel and Holcomb, 1967], the wave equation is transformed
into a set of linear homogeneous equations to form an eigenvalue problem
that can be solved to obtain the band structure. Subsequently, other meth-
ods were explored with the same purpose. The multiple scattering method
(MST) was used for the computation of the band structure [Kafesaki and



1.2. Transmission, reflection and absorption in periodic structures

Economou, 1999] and the determination of transmission and reflection co-
efficients for finite phononic crystals slabs [Liu et al., 2000]. Time-domain
methods, such as the finite-difference in time domain (FDTD), were also ex-
plored for band structure calculations [Tanaka et al., 2000] and for the study
of the transmission characteristics in two-dimensional finite phononic crystals
[Garcia-Pablos et al., 2000].

Analysis of the band structure enables the study of a rich variety of fun-
damental phenomena and different wave propagation characteristics, with
potential applications. In the next section we will briefly describe the state
of the art by considering different effects in the context of tranmission, re-
flection and absorption in periodic media and finite-size phononic crystals,
introducing some of the most relevant studies referenced in this thesis.

1.2 Transmission, reflection and absorption in pe-
riodic structures

When a propagating wave encounters a medium with different physical prop-
erties it can be transmited and reflected in lossless media, but also absorbed
if dissipation is taken into account. These fundamental phenomena have been
classically explained in the context of homogeneous media, but it has been
subject of increasing interest in the context of periodic structures in the last
decades as well.

Transmission phenomena

One of the hot topics in the last decades regarding the control of wave
propagation in transmission in sonic and phononic crystals has been the focus-
ing of acoustic waves. There are several ways to achieve this goal, but arguably
negative refraction is the most explored method. It is predicted analyzing the
equifrequency contours of the band structures, as their gradient vectors in
the reciprocal space give the group velocity of waves inside the crystal, and
thus, the direction of propagation. It was first demonstrated theoretically and
experimentally for acoustic waves more than a decade ago [Zhang and Liu,
2004, Yang et al., 2004]. Two different mechanisms have been reported for
wave focusing using negative refraction; on one hand, it can be achieved due
to Bragg scattering near the Brillouin zone in the first band without showing
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a negative refractive index, as reported by Zhang and Liu [Zhang and Liu,
2004]. On the other hand, it can also be found in the second band due to a
negative effective index [Yang et al., 2004]. Several works explored the charac-
teristics of this effect later [Ke et al., 2005,Feng et al., 2005, Qiu et al., 2005, Li
et al., 2006, Sukhovich et al., 2008, Bucay et al., 2009], and it was used for the
design of lenses based in phononic crystals slabs, where incident waves from
point sources where focused at the other side of the slab, creating an image.
Moreover, this effect was soon oriented to the design of perfect lenses, where
the coupling of the incident field with evanescent modes inside the crystals
may lead to overcome the difraction limit, like reported initially in photonics
[Luo et al., 2003] and later in phononics [Ke et al., 2007a, Sukhovich et al.,
2009]. Other methods have demonstrated that phononic crystals can also be
used to generate focusing on the far field [Qiu et al., 2005] or to obtain highly
directional beams in different manners, making use of the band edge states
[Ke et al., 2007a] or by resonant cavities at frequencies belonging to the band
gap [Hsu et al., 2008, Wu et al., 2006, Ke et al., 2006].

Another interesting effect in transmission is the non-diffractive propaga-
tion of waves in periodic systems, named self-collimation. This effect is based
on the existence of flat segments of spatial dispersion curves (the curves of
constant frequency in k-space) at particular frequencies depending on the
geometry of the crystal. It was first demonstrated experimentally for electro-
magnetic waves in the optical and microwave regimes, and later reported for
acoustic waves [Pérez-Arjona et al., 2007, Espinosa et al., 2007].

The aforementioned effects occur for frequencies at the band gap, or at
frequencies close to the band edges, below or above the band gap, where
the wavelength is of the same order as the separation between inclusions, i.e.,
the lattice constant. A different regime, named the long-wavelength regime, is
found for frequencies well below the Bragg resonances, where the wavelength is
large compared to the lattice constant. In this regime, periodic structures can
be considered homogeneous materials having effective properties. Cervera et
al presented a simple model that allowed to use a sonic crystal as a refractive
focusing device for sound focusing [Cervera et al., 2001]. The first exact
analytical theory of homogenization of periodic elastic structures was based
in the PWE method, obtaining compact formulas for the effective velocity
[Krokhin et al., 2003]. Few years later, not only the effective velocity but also
the effective mass density were derived using the multiple scattering theory
[Mei et al., 2006, Torrent and Séanchez-Dehesa, 2006, Torrent et al., 2006].
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Subsequent works presented different designs of gradient index lenses
based on phononic crystals in the long-wavelength regime, changing the elas-
tic properties of cylinders along the transverse direction [Lin et al., 2009], or
using unit cells based on cross-shape scatterers [Zigoneanu et al., 2011] and
coiling up space [Li et al., 2012], achieving a high transmission efficiency usign
small devices compared to the wavelength.

Reflection phenomena

So far we have described several works considering different transmission
effects in phononic crystals. It is very well-known that propagating waves
impinging a periodic structure are efficiently back reflected at frequencies
belonging to the band gap (i.e., the Bragg frequencies). In this regime, most
studies have been traditionally focused in studying the absence of transmission
[Martinez-Sala et al., 1995,de Espinosa et al., 1998,Sdnchez-Pérez et al., 1998],
defect modes [Khelif et al., 2003, Romero-Garcia et al., 2010] and related
phenomena. However, few of them explored what are the characteristics of
wave reflection, in other words, how waves are reflected and what effects can
be found.

The reflection properties in finite-size sonic crystals were studied more
than a decade ago using the so-called standing-wave ratio technique, which
constitutes a measure of the partial standing wave formed in front of a sonic
crystal when a sound wave impinges on it, at frequencies belonging to the
band gap [Sanchis et al., 2001]. In this context, another study calculated the
reflection coefficient to measure the sound velocity inside a refractive device
in the long wavelength regime, as an example of a Fabry-Pérot interferometer
[Cervera et al., 2001].

Reflection of waves at the interface defined by the host and the periodic
media has been the subject of several studies. Specifically, the diffraction of
bulk waves on the exterior surface of a two-dimensional phononic crystal was
studied, showing the existence of orders of diffraction, behaving as a diffrac-
tion grating [Moiseyenko et al., 2012, Moiseyenko et al., 2013]. In the case
of electromagnetic waves, recent works demonstrated the near-field focusing
of narrow beams in reflection from flat subwavelength diffraction gratings,
reporting numerical [Cheng et al., 2014b], and experimental [Cheng et al.,
2014c] evidences. Following the concept of focusing in reflection, Cheng et al
considered flat chirped structures as an efficient device to focus light beams
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in reflection [Cheng et al., 2013, Cheng et al., 2014a, Cheng et al., 2015].

Chirped crystals, also called graded or adiabatic tappered, have been used
in optics for different purposes, such as light bending at frequencies near
the band gap [Cassan et al., 2011]. An interesting phenomenon shown in
photonic chirped crystals is the smooth deflection of a light beam from the
straight trajectory as it propagates through the crystal, the so-called mirage
effect [Centeno et al., 2006]. Another interesting effect reported recently is
the so-called rainbow trapping effect, the dependence of the turning point
position on the color of radiation. It has been predicted for one-dimensionally
modulated chirped photonic structures [Shen et al., 2011] and tapered optical
and plasmonic waveguides [Shen et al., 2011,Smolyaninova et al., 2010]. These
type of crystals were introduced in acoustics some time ago to open full band
gaps [Kushwaha et al., 1998, Psarobas and Sigalas, 2002] or as an acoustic
bending waveguide [Wu and Chen, 2011]. However, we are not aware of
works in the field of acoustics exploring some of the aforementioned effects
in wave propagation using these structures, such as the mirage effect or the
rainbow trapping.

Dissipation in phononic crystals

Although many effects found in periodic media can be observed in con-
servative systems, waves cannot be absorbed unless dissipation is considered.
Moreover, especially in real experiments, often one or more of the constituent
materials present some non-negligible losses in the frequency range of inter-
est, which might introduce some discrepancies with theoretical and numerical
predictions if a conservative system is considered.

The effect of viscoelastic losses in phononic crystals was discussed more
than a decade ago using a finite crystal with a unit cell of close-packed rubber
spheres in air, analyzing its transmittance and absorbance under a multiple
scattering approach [Psarobas, 2001]. More recent studies discussed the mod-
ification of the dispersion relation resulting in phononic crystals composed of
lossless inclusions in a solid lossy matrix [Laude et al., 2013], or the influence
of the material and size inclusions in a lossy solid matrix on wave attenua-
tion [Hwan Oh et al., 2013]. Damping of elastic waves in solid-solid phononic
crystals has also been discussed, as in Ref. [Andreassen and Jensen, 2013]
or by Hussein, who proposed a theory for Bloch wave propagation in viscous
damped elastic media that allow to compute the band structures using a finite
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element framework [Hussein, 2009].

Another posibility to introduce losses in a periodic system is to consider
porous materials, where viscothermal losses are dominant. Wave propagation
in such materials has been investigated to calculate the band structure incor-
porating absorption in a periodic layered acoustic media [Lee et al., 2010],
or to describe wave propagation in the long-wavelength regime in an acoustic
absorbing media with rigid periodic inclusions [Tournat et al., 2004].

In the audible regime most of the studies have been, and still are, trying
to achieve maximum absorption for a broadband frequency range and for
incident radiation at any angle. Sonic crystals made of rigid cylinders with
a porous absorbent covering [Umnova et al., 2006], or a periodic array of
scatterers made of a combination of rigid, absorbent and resonant cavities
[Romero-Garcia et al., 2011] have been proposed as efficient acoustic devices
to block sound. Other recent studies considered elastic membranes [Mei et al.,
2012] or microperforated shells [Garcia-Chocano et al., 2012] to increase the
absorption and at the same time, reduce the reflection.

1.3 Object and motivation

The main object of this work is the study of different phenomena associated
with transmission, reflection and absorption of acoustic waves in phononic
crystals. In particular, we concentrate our efforts in three different topics;
(i) wave focusing and collimation in transmission, (ii) field enhancement us-
ing the concept of soft reflection in chirped structures, and (iii) the control
of losses in layered dissipative systems. To do that, we use 1D, 2D and 3D
finite structures of various types, materials and geometries. Nonetheless, all
the systems considered here posses a common property, a fluid is selected as
the host medium. Hence, we deal with sonic crystals, where only longitudi-
nal waves propagate in the host medium. Depending on the case, the fluid
considered is air or water and the corresponding range of frequencies lay on
the audible and ultrasonic regimes, respectively. Moreover, all the structures
considered are analyzed both theoretically and experimentally.

A secondary goal of this work is the development of a computational
methodology for elastic band structure calculation in the framework of the
finite element in time-domain method, using 1D and 2D solid-solid phononic
crystals. In this case, we consider the propagation of longitudinal (1D) and
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coupled in-plane longitudinal and shear vertical wave propagation modes
(2D). This work was developed under the supervision of Prof. Mahmoud Hus-
sein at the Department of Aerospace Engineering Sciences at the University
of Colorado at Boulder as part of the program VLC/Campus para promover
la internacionalizacion de la Formacién Doctoral mediante la realizacion de
Estancias en Centros Extranjeros de Prestigio.

Having these goals in mind, we describe now several works that motivated
us to achieve them.

Wave propagation control in transmission

Most of the works mentioned in the previous section regarding focalization
considered point sources to generate the acoustic field, in contrast to sound
beams with a radiation pattern similar to real acoustic sources with radial
symmetry [Huang and Breazeale, 2006]. Several studies developed in our re-
search group considered the non-diffractive propagation and focalization of
sound beams in two-dimensional sonic crystals [Pérez-Arjona et al., 2007, Es-
pinosa et al., 2007]. In these works, analytical expressions for the prediction
of nondiffractive propagating beams are presented, considering the field ex-
pansion of the homogeneous and low order modes and the analysis of their
spatial dispersion curves. Focalization of sound beams behind 2D sonic crys-
tals was also considered in [Sdnchez-Morcillo et al., 2009]. Similar analytical
methods (i.e., field expansions) were used in this work to predict and iden-
tify different focusing regimes, as well as focusing distances and beam widths
behind the crystal, demonstrating the validity of these expressions through
numerical simulations and experimental results.

Motivated by the previous theoretical and experimental studies in two-
dimensional systems, we extend here these works in order to explore the fo-
cusing and collimation characteristics in three-dimensional sonic crystals. For
that purpose, we study the spatial dispersion curves and the focusing charac-
teristics, such as the focusing distance or the beam width, using the explicit
formulas derived and presented in those studies. An interesting effect that
arises from the results obtained previously is the possibility to use sonic crys-
tals to modify the focusing distance by slightly varying the frequency of the
incident acoustic beam. On the other hand, as stated previously, most of the
existing acoustic wave sources posses radial symmetry. Hence, it seems rele-
vant to consider the symmetry matching between the source and the focusing
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device in the design of acoustic lenses. With this regard, we are interested in
improving the efficiency of acoustic lenses exploring the modelling and design
of axisymmetric structures as focusing devices.

Wave enhancement in chirped crystals

Chirped crystals have been used in acoustics mainly to open full band gaps
[Kushwaha et al., 1998, Psarobas and Sigalas, 2002] or as an acoustic bending
waveguide [Wu and Chen, 2011], but few attention has been paid to benefit
from the possibilities of wave control arising from the gradual variation of the
properties of the crystal, characteristic of chirped structures. In particular,
the study of phenomena related to the reflection of acoustic waves using these
structures. In optics, chirped crystals have been succesfully employed for
different purposes, and the local variation of the group velocity has been
used to demonstrate the mirage effect [Centeno et al., 2006], or the rainbow
trapping effect [Shen et al., 2011], among them.

Motivated by these works in optics, and considering the similarities be-
tween electromagnetic and acoustic waves, we explore this phenomenos in
acoustics. Moreover, we are willing to study the influence of the local vari-
ation of the wave group velocity in its propagation along a one-dimensional
chirped crystal. We demonstrate here that, using chirped structures in which
the lattice constant is reduced along the propagation direction, and working
at frequencies close to the upper band edge, it is possible to gradually reduce
the sound velocity of the wave until it reachess a plane having a band gap at
a given frequency, leading to a soft reflection and subsequent enhancement
of the acoustic field at a "brilliant” plane. Moreover, the position of this
"brilliant” plane inside a 1D chirped structure will depend on the frequency
of the incident radiation, an unambiguous indication of the rainbow trapping
effect. A coupled mode theory, widely used in optics, is considered here to its
application in acoustics to predict the existence of the aforementioned effects
in acoustic chirped crystals.

Dissipative periodic structures

The control of losses using periodic systems, generally speaking, is a now
topic of great interest, not only for acoustic or elastic waves, but also for
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electromagnetic waves. In optics, many efforts are devoted to minimize losses
with different purposes. Some studies reported absorption reduction in a
multilayered magneto-photonic crystals [Figotin and Vitebskiy, 2008, Figotin
and Vitebskiy, 2010], while others achieved enhanced transmission through a
stack of dielectric layers having contrast only in attenuation [Erhokhin et al.,
2008, Kumar et al., 2012], and extended to two-dimensional (2D) modulation
of losses, showing nontrivial light beam propagation effects, analogous to flat
photonic crystal lensing reported in conservative systems [Staliunas et al.,
2009, Kumar et al., 2013].

These studies in optics motivated our interest to investigate the control
of losses in acoustics from a fundamental point of view. To do that, we
investigate in-plane wave propagation in a layered system formed by a periodic
array of porous absorbing layers embedded in air. Our interest is to explore
how the periodicity of the absorptive system modifies the global absorption
as well as the reflection and transmission properties. We will show here how a
simultaneous increase of transmission and reflection, combined with a decrease
in the global absorption, ocurrs around the Bragg frequency. This anomalous
behavior is different from the classical decrease in transmission characteristic
in conservative systems at this range of frequencies. Now, as in the case
of reflection in chirped structures, a coupled mode theory is used, which is
extended to include losses that allow us to predict the effect, which will be
demonstrated experimentally as well.

In the audible regime, from a technological point of view, there is a huge
interest in the development of systems featuring complete absorption of sound,
meaning a broadband absorption and for multiple directions of the incident
field. Moreover, due to the large wavelength of sound waves at low frequency,
the absorption of sound is only achieved by means of very thick absorbers.
Different systems based on periodic structures constitute an option to develop
efficient absorbers [Umnova et al., 2006]. However, the behavior of periodic
systems is highly dependent on frequency, specially in systems incorporat-
ing rigid scatterers. Thus, the development of efficient absorbers based in
sonic crystals often incorporates additional effects to compensate the lack of
a broadband behavior [Romero-Garcia et al., 2011, Garcia-Chocano et al.,
2012, Mei et al., 2012]. In this context, we analyze experimentally a periodic
system similar to the one mentioned previously for in-plane wave propagation,
formed by a periodic distribution of porous layers. However, the periodic lay-
ered media is designed for out-of-plane waves impinging the structure from a
homogeneous medium and it is backed by a perfect reflector. This configura-
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tion allows to increase dramatically the time delay of sound waves inside the
periodic system, resulting resulting in an enhanced absorption, for a broad-
band spectral range in different angles of the incident radiation.

Characterization of dispersive properties in phononic crystals

Several methods for the computation of the band structure in phononic
crystals are already available, all of them with their pros and cons. Most of the
existent methods are formulated in the context of time-harmonic dependence,
i.e., assuming steady-state solutions and incorporating Bloch theory in most
cases, allowing to consider a single unit cell in the calculations. PWE is
one of the most popular, being suitable for solid-solid or fluid-fluid unit cells
[Kushwaha et al., 1993, Sigalas and Economou, 1993]. Multiple scattering
methods (MST) are also a good option, and they easily deal with fluid-solid
unit cells [Kafesaki and Economou, 1999, Kafesaki et al., 2000, Liu et al., 2000].
Other methods compute the band structures in time-domain, postprocessing
the time-history data, such as FDTD.

Our motivation here is the development of a methodology based in the
finite-element in time-domain. The idea is, on one hand, to overcome the
existent limitation in MST or FDTD to deal with irregularly shaped scatter-
ers, something achieved easily by employing a finite element discretization of
the unit cell and at the same do that in a framework capable to deal with
solid-fluid unit cells. On the other hand, the motivation to implement a time-
domain technique is to employ this method to a problem where the unit cell
is composed of a solid and a fluid channel where the fluid is time-dependent.
In this thesis, however, we will only consider a solid-solid unit cell in order to
validate the method. The fluid channel problem is a work in progress at the
time this thesis is written and the subsequent publication will be submitted
to a journal soon. Nontheless, this work has been presented already Phonon-
ics 2015: 3rd International Conference on Phononic Crystals/Metamaterials,
Phonon Transport and Phonon Coupling under the title: An elastic medium
with a time-changing band structure.

11
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1.4 Overview of Thesis

A brief description of the organization of the contents of this thesis is de-
scribed here. This document contains 6 Chapters and 1 Appendix. This
work encompass the study of transmission, reflection and absorption effects
found in sonic and phononic crystals and the computation of their dispersive
properties is also considered. The thesis is written in the form of a collection of
articles which are included in Appendix A. The main concepts, methods and
results of these publications are described extensively along this document.

Chapter 2 is devoted to the study of transmission effects in sonic crystals.
The focusing and collimation in regular periodic and axisymmetric structures
is studied in two different regimes, the long wavelength and the diffractive
regimes. Using theoretical tools such as the eigenfrequency analysis using
the finite element method, or the homogenization theory, we can predict the
focusing behavior of finite-size structures and characterize it using numerical
simulations and experimental measurements.

The study of wave phenomena in chirped sonic crystals is considered in
Chapter 3. In order to model the reflection of waves in this peculiar structures,
in which one of the parameters of the structure varies along the propagation
direction, we consider and describe in detail a coupled mode theory, adapted
here to model the propagation of waves in acoustic layered media. This theory
is widely used in optics in the context of photonic crystals to model the prop-
agation of coupled forward and backward waves. Using this theory, a wave
enhancement found in chirped sonic crystals related to a progressive slowing
down of waves is predicted and demonstrated using analitical, numerical and
experimental methods.

Up to this point, all the systems considered are conservative. Now we turn
our attention to dissipative systems, consideration the effect of absorption in
sonic crystals. In Chapter 4 two multilayered systems of periodic absorbers
are considered for different purposes. On one hand, the enhancement of trans-
mission of in-plane waves around the Bragg frequencies is analyzed. For that
purpose, we consider an extension of the couple mode theory used in Chapter
3 incorporating losses, and discuss the differences found in the main param-
eters of the theory with respect to conservative systems. We will bring some
insights to show how this enhancement of transmission is related to a decrease
in the absorption in the lossy layers. On the other hand, we will discuss how
a slight variation in the configuration of a similar layered system can be used
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for a different purpose, the enhancement of the absorption. We demonstrate
through experimental measurements a dramatic increase in the absorption
when out-of plane-waves strike a multilayered medium of porous absorbers
backed by a rigid reflector.

We will turn our interest later in the characterization of the dispersive
properties in phononic crystals. A new methodology for band structure cal-
culation is proposed in Chapter 5. The proposed method is based in time-
domain simulations and implemented in the framework of the finite element
method. We will discuss the characteristics of the method by comparing its
performance, in terms of accuracy, convergence and computational time, with
other standard and already validated methods for band structure calculations.

Ultimately, Chapter 6 summarizes the work describing the main conclu-
sions and offering some perspectives for future research.

1.4.1 Bibliographic notes

The references of this work are included at the end of each chapter in order
to facilitate the search of cited references by the reader.
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Chapter 2

Control of Wave Propagationin
Transmission

The contents of this chapter are organized in two sections. Section 2.1 is
devoted to the study of focusing and collimation of beams in sonic crystals,
describing the main concepts and methods used in “Formation of collimated
sound beams by three-dimensional sonic crystals”, published in Journal of
Applied Physics. Section 2.2 encompass the design and modelling of a focusing
device based on an axisymmetric gradient index (GRIN) lens working in the

long wavelength regime, a work published in Applied Physics Letters under
the title "Wave focusing using symmetry matching in axisymmetric acoustic
gradient index lenses”. In this chapter summary we describe some methods
and concepts used in the aforementioned publications by means of numerical
calculations. For further details and experimental results the reader is referred
to Appendix A.1.




2. Control of wave propagation in transmission. Lensing effects

Since the 40’s ultrasonic sources became a main tool on industrial appli-
cations, since they constitute a noninvasive, nondestructive and low-cost ex-
ploration method. These have been used for the detection of inhomogeneities
in different materials such as metals, plastics and wieldings, as well as to
analyze its physical properties or thickness. Sonar technology was developed
during World War II and initially used for remote sensing in underwater acous-
tics, although an extensive variety of underwater acoustics applications have
emerged ever since, such as biomass estimation and bathymetry. In the 60’s
the use of ultrasound devices for medical imaging and diagnosis began and
have been intensively improved, mainly due to microprocessors and digital
signal processing, available since the 80’s.

The increase on the use of ultrasonic sources in several branches of sci-
ence and technology triggered the need to control and improve the radia-
tion pattern of gaussian beam transducers [Huang and Breazeale, 2006], i.e.
beamwidth and directivity, reduction of side lobes, beam direction, etc. Sev-
eral active and passive methods were developed to achieve this goal. On one
side, active methods featuring phased arrays have received much attention
and several commercial devices for medical ultrasound have been developed.
A phased array is formed by an array of elementary transducers controlled
individually and electronically, where the application of suitable temporal
delays on the excitation of each of the elements allow to focus or deflect the
acoustic beam. On the other hand, passive methods such as the use of acous-
tic lenses [Shield and Harris, 1984], curved transducers or horns have been
demonstrated as efficient tools to reduce the focusing distance and increase
the gain. While the use of active methods offers higher flexibility than passive
ones on the design of the radiation pattern of the acoustic source, specially for
a high number of elements, phased arrays are expensive and its cost increases
dramatically with the number of elements.

In the last few decades, it has become apparent that phononic/sonic crys-
tals, i.e., materials whose physical properties are modulated in space, might
constitute a great candidate to improve the focusing performance of passive
methods, by modifying the spatial dispersion of propagating waves.

Among the various effects on wave propagation related to periodic struc-
tures, controlling the diffraction of waves has been an intensive area of re-
search for the last decades. Different mechanisms allow to modify the spatial
dispersion of propagating waves. Specifically, the analysis of the curves of
equal frequency in E—spaee (spatial dispersion or isofrequency curves) shows
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that beams can propagate within the periodic structure without diffraction
(the so called self-collimation effect) due to the appearence of flat segments
of the spatial dispersion curves. This effect has been predicted and experi-
mentally demonstrated in acoustics [Pérez-Arjona et al., 2007, Soliveres et al.,
2009] and optics [Zengerle, 1987].

Moreover, modification of spatial dispersion curves can produce interest-
ing beaming phenomena not only inside a periodic structure, but outside of
it, for finite-size structures. The negative refraction effect, reported firstly
in optics [Pendry, 2000, Martinez et al., 2006, Bulu et al., 2003], has been
intensively studied also in acoustics [Sukhovich et al., 2008, Zhang and Liu,
2004, Yang et al., 2004, Bucay et al., 2009], and allows to focus the waves out-
side the periodic structure, prompting potential applications based on lensing
[Ke et al., 2005,Li et al., 2006, Qiu et al., 2005] and superlensing effects [Luo
et al., 2003, Sukhovich et al., 2009, Zhang and Liu, 2008, Ke et al., 2007a].

Other approaches have been reported to obtain highly directional sources
using periodic structures. Using the high density of states of propagating
waves near the band-edge frequency, [Qiu and Liu, 2006, Ke et al., 2007b] or
by resonant cavity modes operating at the band gap frequency [Hsu et al.,
2008, Wu et al., 2006, Ke et al., 2006], the directional emission of point and
linear (flat piston) acoustic sources has been substantially improved.

In most of real-world applications, such as in medical ultrasound [Baac
et al., 2012], commercial ultrasonic transducers in sonar applications, aeroa-
coustics [Samimy et al., 2010], microfluidics [Choe et al., 2011], etc, acoustic
wave sources usually posses radial symmetry. Hence, the symmetry matching
between the source and the potential focusing device becomes a main feature
of the source-lens system .

From a theoretical point of view, axisimmetric structures, i.e. structures
posessing axial simmetry, cannot be considered as periodic structures since
translational symmetry is lost, i.e., the wave equation is not invariant under
periodic translations when an axisymmetric system is considered. This can
be easily understood by considering the projection onto a 2D plane of pe-
riodic structure formed by a squared array of infinite length cylinders. An
axial rotation of the previous 2D structure will generate a 3D axisimmetric
structure and periodicity will be maintained in the radial and axisimmetric
axis, but axial rotation will break periodicity in the 3'¢ dimension. In this
situation, Bloch theory is no longer applicable, isofrequency contours cannot
be calculated and the curvature of the wave front along the focusing device
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2. Control of wave propagation in transmission. Lensing effects

cannot be estimated under this procedure.

A different approach used to overcome this limitation consists on working
in the long wavelength regime. The ratio between wavelength of the incident
wave, A, and lattice constant, a, defines the working regime. For A > 4a
periodic structures can be considered as an equivalent homogeneous medium
with effective properties [Torrent et al., 2006], which are characterized by the
theory of homogenization [Peng et al., 2010, Mei et al., 2006], allowing the
study of the wave front profile in terms of refraction. Gradient index lenses,
reported in 2D structures under a cartesian system of reference [Lin et al.,
2009, Zigoneanu et al., 2011,Li et al., 2012], are excellent candidates to control
wave propagation. These type of lenses, in an axisymmetric configuration,
may improve transmission efficiency due to symmetry matching of the source-
lens system.

2.1 Focusing and collimation of acoustic waves by
periodic structures

The focusing of waves behind a sonic crystal is related to the negative diffrac-
tion experienced by the wave inside the periodic structure. The character of
beam propagation behind the crystal depends on the wave front of the beam
acquired in the system. Hence, if the wave front acquires positive curvature
due to propagation in a material with negative or anomalous diffraction, the
beam can be focused behind the structure, where the positive diffraction in
the homogeneous medium will compensate the accumulated phase differences
at some distance. Fig 2.1 illustrates different types of diffraction according to
the components of the wave vector k= (kg, ky) assuming wave propagation
in +x direction.

W
~v
=

(a) Positive diffraction  (b) Negative diffraction  (c) Zero diffraction

Figure 2.1: k-space illustrating positive, zero and negative diffraction.
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2.1. Focusing and collimation of acoustic waves by periodic structures

Apart from the curvature of the wave front inside the periodic structure,
the character of the source plays a key role on the focusing behavior. Specif-
ically, the spatial spectrum of the source is a key parameter to take into
account, as it represents the angular components of the incident beam. Point
sources emit ominidirectional waves and thus radiate the same amplitude for
all angles, whereas for linear sources, such as a flat piston emmitting acoustic
beams, the spatial spectrum depends on its length. Qualitatively, a flat pis-
ton with an increasing length result in a narrower angular spectrum. This is
observed in Fig. 2.2, where intensity field distributions and angular spectrum
are shown for two flat pistons sources of lengths D1 = 2a and Dy = 8a, where
a = 5.25 mm. The angular spectrum show a main lobe and several side-lobes
of decreasing amplitude for increasing angles for both sources, although the
width of the main lobe, where most of the energy is concentrated, is reduced
when the size of the source is increased.

(a)

(©) @

0

10 20 30 40
x/a

Figure 2.2: Intensity field distribution (|p|?) for 2D flat pistons of length (a) Dy = 2a, (c)
Dy = 8a. (b), (d) Angular spectrum in dB for both sources (red lines) and an ideal point
source (blue line), as a reference.

Circular pistons are commonly characterized in terms of its field distri-

bution in space, i.e. near field distance, beamwidth at the waist, focal spot
length, etc. However, in the context of beam formation using periodic struc-
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2. Control of wave propagation in transmission. Lensing effects

tures, the interplay between the spatial spectrum of the beam in the homo-
geneous and periodic media is crucial to succesfully predict the focusing per-
formance of the source-lens system. This interplay is now described in terms
of the curvature of equifrequency contours and the concept of anomalous
diffraction. Besides, a simplified paraxial approximation, described in detail
in previous work from our research group [Sanchez-Morcillo et al., 2009], is
used to predict the focusing performance of a 2D finite-size SC, showing the
focusing distance, zy, as well as beamwidth at the focusing point, B,, for the
aforementioned flat pistons.

2.1.1 Positive, zero and negative diffraction: Isofrequency con-
tours

As the first step, band structure and spatial dispersion curves are calculated
by means of the Plane Wave Expansion Method (PWE). The inhomogeneous
wave equation for spatially modulated medium is solved by formulating an
eigenvalue problem and using Bloch boundary conditions, which allows to
reduce the geometry to a unit cell. A square lattice SC is considered to illus-
trate the focusing mechanism. Fig 2.3 illustrates band structure for the main
directions of propagation, i.e. at the edges of the Irreducible Brillouin Zone
(IBZ) and the spatial dispersion curves for the 2°¢ band of a SC consisting
of a periodic arrangement of steel cylinders embedded in water with radius
r = 0.8 mm and lattice constant a = 5.25 mm. The resulting filling factor
is f = mr?/a? = 0.073. Thus, frequencies of interest are ranged in the ultra-
sonic regime, although this results are scalable to others range of frequencies
by simply changing the geometrical parameters of the crystal. Material pa-
rameters are density p, = 1000 kg/m?, ps; = 7.800 kg/m? and speed of sound
cw = 1485 m/s, ¢ = 4530 m/s.

Gradient vectors of the isofrequency contours in k-space define the group
velocity vectors and hence, the propagation direction of the acoustic energy for
a given wave component, Uy = Viw (k). All three possible types of diffraction
are encountered in the spatial dispersion curves of the 2"d band depicted in
Fig 2.3(b). According to the previous definition and the negative slope of the
27d hand, a negative curvature is found for isofrequency contours for frequen-
cies ranging from 150-200 kHz, resulting in the regular positive diffraction of
waves. An acoustic wave propagating within the SC at these frequencies will
diverge as it would do in an homogeneous medium. Nonetheless, curvatures
of these spatial dispersion curves are slightly deviated from a perfect circle,
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2.1. Focusing and collimation of acoustic waves by periodic structures
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Figure 2.3: Graphical interpretation of the interplay between the incident wave generated
by circular pistons D1, D2 and the periodic structure. Band structure (a) and isofrequency
contours for the second band (b) of a square lattice SC consisting of steel cylinders embedded
in water with radius » = 0,8 mm, a = 5,25 mm. (c) Illustrates the angular spectrum of
both acoustic sources. (d) Spatial dispersion curves for 274 and 3™ bands represented in an
extended scheme. Dashed red and bluen lines relate the angular spectrum of the incident
waves to the spatial dispersion curves.

characteristic of diffraction in a homogeneous medium, which means that the
phase delay between component at high angles and low angles is lower and the
wave will spread at a lower rate than it would do in water, for instance. The
case is different for frequencies in the range 230-260 kHz, where the positive
curvature of isofrequency contour result in a negative or anomalous diffrac-
tion of waves inside the crystal. Wave components close to zero accumulate
some phase delay with respect to higher angular components, and the result-
ing phase profile of the wave acquire a negative curvature. A wave of this
frequency propagating within the SC accumulates some phase shift, i. e. a
negatively curved phase profile. As soon as it overcomes the structure and re-
turn to the host medium this phase profile starts to compensate and all wave
components will be mutually in phase again at some distance. The amount
of accumulated phase shift is directly related with the focusing distance. For
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2. Control of wave propagation in transmission. Lensing effects

a given SC of length L, the accumulated phase shift will increase together
with the curvature of the isofrequency contour and the propagation distance
needed to compensate it.

Let’s recall the aforementioned flat pistons of different size to interpret the
interplay between the angular spectrum of the incident wave and the shape
of the spatial dispersion curve inside the SC. The diagram in Fig. 2.3(d)
shows the isofrequency contour for a longitudinal wave propagating in water
at 242 kHz and the corresponding isofrequency contour for 2"4 and 3" bands
in an extended scheme. Shaded blue and red areas in 2.3(c) indicate the an-
gular spectrum content of the main lobes of flat pistons Dy and Dy, being the
Full width at half maximum (FWHM) of 18° and 5°, respectively. The broad
source Dy posses a narrow angular spectrum and its main lobe fits completely
within the corresponding contour inside the SC. Consequently, every angu-
lar component of the incident wave propagating inside the SC is allowed to
propagate. The specific curvature of the spatial dispersion curve will influ-
ence the focusing mechanism, as it will be explained in next section under the
simplified paraxial aproximation terms, but a well formed beam is expected.
In opposition to that, Source D; accounts for a broader angular spectrum
than the spatial dispersion curve of the 2" band for 242 kHz. Focusing is
affected in this case by spatial dispersion curves belonging to neighboring
bands (3" band in TM direction) and also by angular band gaps [Picé et al.,
2013, Romero-Garcia et al., 2013]. These are angular areas where waves are
not allowed to propagate. As a result, those angular components are filtered
out from the beam as it propagates through the SC, the beam quality and am-
plitude are affected and a focusing with a significant distortion of the spatial
spectrum of the beam is predicted.

2.1.2 Paraxial approximation

The shape of the above described spatial dispersion curves allow to determine
the leading and higher order terms of coefficients of diffraction. Assuming
a small filling factor, for frequencies close to the band gap and considering
wave propagation in +z direction, the isofrequency curve k; = k; (k) can be
expanded in series around ky, = 0 [Sdnchez-Morcillo et al., 2009]:

ko = do + dok + daky + ..., (2.1)
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2.1. Focusing and collimation of acoustic waves by periodic structures

where coefficients depend on the SC parameters such as frequency and filling

factor
do :CMAQ—FO(&),

dy = (1— ) +0(e). (22)

di =20 (5 — 4z ) + O (7).

where f = mr? / a? is the filling fraction, « is a geometrical factor depending
on the angle of the incident wave, being @« = 1 and a = 1 / V2 for TX and
I'M, respectively. € is the smallness parameter and indicates how far is a
given spatial dispersion curve from the edge of Brillouin Zone. The detuning
parameter AS? is defined as:

AQ = (2, — Q) /Q, (2.3)

where Q, = wgya/2mcy, is the normalized Bragg frequency, a is the lattice
constant and ¢y, is the speed of sound in the host medium. The diffraction
coefficients shown in Eq. (2.2) are obtained assuming the detuning parameter

of order ¢, and the filling fraction of order 2.

We now consider the case of a broad beam having narrow angular spec-
trum, similar to the one described previously for a flat piston of length
Dy = 8a. The corresponding spatial dispersion curve in the SC is assumed to
be completely parabolic and no higher order diffraction terms are considered
<d4k§ — 0), as stated in [Sanchez-Morcillo et al., 2009]. The acumulated
negative phase shift of the components of the spatial spectrum in the SC,
Ap (ky) = —dgkiL, are compensated at the focusing distance zy, where the
spatial components are all again in phase, i.e. doL + 27 = 0. Hence, the beam
will focus behind the SC at some distance depending on frequency:

2
2z =alL <AQ3> ) (2.4)

where L is the length of the SC.

Fig. 2.4 illustrates numerical results. Focusing distance z; is shown in
Fig. 2.4(c), where on-axis absolute value of pressure depending on frequency
is depicted in density plot for Dy = 8a. Analytical prediction (continuous
grey line) following Eq. (2.4) and numerical results(black crosses) are in good

27



2. Control of wave propagation in transmission. Lensing effects
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Figure 2.4: Numerical results. Intensity field distributions obtained for a broad (a) and
narrow (b) beam for a frequency f = 242 kHz. White continuous line indicates the focusing
distance zy calculated using Eq. (2.4). (c) On-axis absolute value of the pressure (|p|) behind
the SC for frequencies corresponding to the 2" band. The acoustic field is normalized to
the maximum value along the axis (represented by black crosses) for each frequency in order
to track the focusing point. Grey continuous line represent the analytical prediction from
Eq. (2.4). Tranversal cuts showing the width of the beam at the focus point are included
for broad (d) and narrow beams (e).

agreement. Moreover, a well focused beam is formed for the broad beam in
Fig. 2.4(a), as predicted previously from analysis of isofrequency contours.
If a narrow gaussian beam is considered, such as the flat piston of length
Dy = 2a, the situation is different. Angular components corresponding to
small angles still play their role and accordingly, the beam is focused behind
the SC. However, beam profile is now affected due to non-parabolic phase
shift of high angular components, resulting in aberrations. Moreover, angular
band gaps also come into play and those angular components within this
spectral area are removed. This results in a complicated field distribution,
the beam at its waist presents several oscillations related with the interference
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2.2. Wave focusing on axisymmetric structures

between the central spectral component and the sidebands, as illustrated in
Fig. 2.4(e). Besides, a modulated profile is also observable in the main axis
of propagation, where several focuses are apparent, as shown in Fig. 2.4(b).

As stated previously, real acoustic sources are far from ideal point sources
radiating omnidirectional waves or infinite length linear sources radiating
plane waves, behaving as flat pistons with intensity field distributions simi-
lar to those shown in Fig. 2.2. When working on 3D systems, the absence
of symmetry between a 3D periodic structure and a real 3D acoustic source
having axial symmetry reduces considerably the efficiency of the lensing sys-
tem in terms of gain. Such a case is depicted in Fig. 3(b) in ”"Formation of
collimated sound beams behind 3D sonic crystals” (see Appendix A.1), where
the measured beam amplitude at the focal point, normalized to the amplitude
of the same source in the absence of SC, is depicted. With the aim of over-
coming this drawback we design and test a 3D axisimmetric structure capable
of subtantially increasing the gain of the source-lens system compared to a
regular 3D periodic structure.

2.2 Wave focusing on axisymmetric structures

The study of focusing mechanisms on periodic structures in two and three
dimensions has been mainly devoted to cartesian systems. This type of sys-
tems, i.e., square or triangular lattices in 2D or cubic lattices in 3D, are best
described by (x,y), (x,y,2) coordinates and translational symmetry is guaran-
teed. Hence, Bloch theory based methods used to characterize wave propaga-
tion in periodic structures are of application. As the next step to improve the
focusing performance of potential devices based in periodic structures, one
may think on the design of 3D structures having axial symmetry in order to
match the radial symmetry of acoustic sources.

Let’s have a look to the wave equation in cartesian and cylindrical co-
ordinates in order to compare the systems represented in Figs. 2.5(a)-(b).
Assuming harmonic time dependence the wave equation for acoustic waves
reduce to an inhomogeneous Helmholtz equation:

1 2
v (w) +p=o. (2.5)
p pc

Depending on to the geometry of the problem the fluid is characterized
by its density p (z,y), p (r, z), and speed of sound c(z,y), c¢(r, z), which are
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2. Control of wave propagation in transmission. Lensing effects

(b) =7

Figure 2.5: (a) Projection onto a 2D plane of a periodic system made of infinite length
cylinders represented in cartesian coordinates. (b) Cut at ¢ = 0 of an axial symmetric
3D structure represented using a cylindrical coordinate system. Filled circles represent the
geometry of a square lattice of some material in a host domain.

periodic functions of space expressed in the xy, rz planes, respectively. Con-
sidering the Laplace operator in Cartesian coordinates, Eq. (2.5) yields:

9 ( 1 ap) 9 ( 1 817) w?
i =)+ = — |+ ——5p=0, 2.6
9z \p(z.y) 0z) " ay \p(@.9)9y) " p(a.y) ez, ) 20

which is invariant under translations defined by the lattice parameter of the
crystal a. For the square lattice depicted in Fig. 2.5(a), Eq. (2.6) is invariant
under translations x — x+na, y — y+na, and so are the physical parameters
of the system. We consider now Eq. (2.5) taking the Laplace operator in
cylindrical coordinates, as in the system in Fig. 2.5(b):

10 r ap) 0 ( 1 8p> w?
-2 ) L |4+ —p=0. 2.7
ror (p (r,z) Or 0z \p(r,z) 0z p(r,z)c(r, z)2p 27)

Using this system of reference the wave equation is invariant under trans-
lations z — z + na, but it is not under translations of the form » — r + na
due to the presence of r and % in the first term of Eq. (2.7) despite the fact
that the physical properties of the system in Fig. 2.5(b) are indeed periodic
functions for a 2D system. A similar deduction can be made for the axisym-
metric version of Eq. (2.7). In this case, i.e., applying an axial rotation to the
system in Fig. 2.5(b), neither the wave equation nor the physical properties
in the domain are invariant under transformations in the radial axis. As a
direct consequence, an axisymmetric structure cannot be considered periodic
and a different approach from Bloch Theory has to be considered.
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2.2. Wave focusing on axisymmetric structures

2.2.1 Homogenization theory

In the long wavelength regime (A > 4a), homogenization theory [Cervera
et al., 2001, Krokhin et al., 2003] states that a periodic array of rigid inclu-
sions in a fluid medium (host medium) can be considered as an equivalent
homogeneous fluid having effective properties, such as effective density and
sound velocity, which are determined by the filling fraction of the structure
[Torrent et al., 2006].

Hence, the effective density of the medium and the effective velocity of
waves propagating in an homogenized medium can be expressed in terms of
the filling factor f as:

P _ 1+ f c _ Chost
eff hostl_fa eff 1+f

(2.8)

Another important feature of the medium is its acoustic impedance, de-
fined as the product of the sound velocity ¢ and mass density p. Specifically,
the impedance contrast between the host medium and the focusing device is
directly related to the transmittance at the interface between the two media.
According to the previous definitions of the effective properties of the homog-
enized medium, the acoustic effective impedance of the designed medium in
the homogenization limit is defined as follows:

V1i+f

T (2.9)

Zeff = Zhost

2.2.2 Axisymmetric gradient index lens

Our goal is the design of an axisymmetric gradient index lens formed by rigid
toroidal scatterers embedded in air working with a circular piston radiating
Gaussian beams in the long wavelength regime, considering waves having a
wavelength A\ > 4a, where a is the distance between the center of neighbor
scatterers. Taking into account the effective physical properties of the system
in the homogenization regime, described previously, the index of refraction
can be defined in terms of the effective velocity and filling fraction as:

n(r) =Pt — 14 (), (2.10)

Ceff
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where f (r) = mR(r)? / a? is the filling fraction of the structure, which varies
gradually along the radial axis according to the desired profile for the refrac-
tion index. Figure. 2.6 represent a schematic diagram of the axisymmetric
structure. Each scatterer is represented by a major radius R’, which is the
radius of each toroid, and a minor radius R, which determines the filling
fraction for a given distance between scatterers a.

Figure 2.6: (a) Axisymmetric GRIN lens and its main geometrical parameters. (b) Refrac-
tion index profile used for the GRIN lens.

A hiperbolic secant profile that has been shown to reduce the aberration
of the focal spot [Gomez-Reino et al., 2002] is chosen to define the index radial
variation:

n (r) = nosech (ar) (2.11)
where ng = n (r = 0) is the refractive index along z-axis and « is the gradient
coefficient: .

o= Ecosh_1 (ZZ) , (2.12)

where h is the half-width of the lens and nj, the refraction index at the lens
edges (r = £h). Figure 2.6(b) shows the refractive index profile where ny = 1
and np = 1.33. The distance between neighbor scatterers is a = 0.04 m and
h = 10a the thickness of the lens. 7 planes of toroidal scatterers were used,
as shown in Fig. 2.6(a).

In order to validate the selected approach we compare numerical results
calculated using the Finite Element Method for the axisymmetric structure
versus an homogeneous fluid whose physical properties, i.e., sound velocity
and density have been defined to fit the refraction index profile shown in Fig.
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2.2. Wave focusing on axisymmetric structures

2.6(b). Figure. 2.7 represent the acoustic field (absolute value of pressure
|p|) behind the axisymmetric structure, shown in Figs. 2.7(a), (b), versus the
field behind an homogeneous equivalent fluid of the same size, shown in Figs.
2.7(c), (d). The acoustic field is generated by a circular piston of diameter
D = ba emitting waves at two different wavelengths A = 7a and A = 4.25a.
The source is placed at a distance 5a from the structures. The acoustic field is
modulated in amplitude due to Fabry-Pérot resonances related to the length
of the lens (L = 7a).

Axisymmetric GRIN lens

A=425a

R/a
T e
LA

0 10 20 30 40 50 0 10 20 30 40 50
Distance z/a Distance z/a

Equivalent Fluid

A=425a

0 10 20 30 40 50 0 10 20 30 40 50
Distance z/a Distance z/a

Figure 2.7: Comparison between the acoustic field in the rz-plane for the axisymmetric
GRIN lens (a), (b) and the equivalent fluid lens (c), (d), for A = 7a, A = 4.25. Blue contin-
uous lines represent the ray-tracing trajectories calculated from the derivative of Eq. (2.13)
at the interface and considering Snell’s law of refraction.

The hyperbolic secant refractive index profile is used to determine the
ray-tracing trajectories inside the GRIN medium as follows [Lin et al., 2009]:

duo

1
y(z) = —sinh™! (uoﬂf (z) + e

o

H, (z)) , (2.13)

where ug = sinh (yo), H, () = sin (az)/a and Hy (2) = cos (az). The deriva-
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tive of Eq. (2.13) at the interface of the GRIN lens, together with Snell’s law
of refraction allows to determine the focus position beyond the GRIN lens.
Blue continuous lines in Fig. 2.7 represent the ray-tracing trajectories, cal-
culated using Eq. (2.13) inside the samples and applying Snell’s law at the
interface between the two media. A good agreement is observed between nu-
merical simulations for the equivalent fluid and the axisymmetric GRIN lens
for frequencies close to the homogenization limit. Moreover, the predicted
focal distance by ray-tracing trajectories is zy ~ 25a, matching well with nu-
merical results, although some mismatch is found for A = 4.25a where the
focal distance is slightly lower, which might be due to dispersive effects near
the homogenization limit related to the high filling fraction defined at the
center of the axisymmetric GRIN lens.

The sound amplification (SA) produced by the axisymmetric GRIN lens is
calculated numerically and compared to the SA produced by a 2D GRIN lens
designed with the same refraction index profile. The SA is evaluated at the
focal point as SA (dB) = 10log;, <]p\12€ns/]p\fcme). A remarkable value of SA
is obtained for the axisymmetric version of the GRIN lens, SA3p = 8.66 dB,
in contrast to the 2D version of the GRIN lens, SAsp = 4.81 dB and other re-
ported results on the literature for Cartesian lenses [Climente et al., 2010, Mar-
tin et al., 2010]. This result confirms the relevance of the symmetry matching
between the circular source and the axisymmetric structure increasing the
focusing properties of the full source-lens system. Moreover, recalling the ef-
fective acoustic impedance shown in Eq. (2.9), it is noted that the maximum
impedance contrast is found in the center of the lens, Z.f¢(r = 0) = 6.2Z504t,
and its profile along the radial axis is governed by the refraction index. This
impedance profile ensures that acoustic waves impinging the GRIN lens are
weakly reflected and strongly refracted, reinforcing the high SA obtained us-
ing the designed GRIN lens.

Finally, the influence of the index of refraction, both ng and «, in the focal
distance is analyzed and represented in Figure 2.8 for ng = 1.29, ng = 1.24,
and A = 4.25a. Results from numerical simulations match well with the pre-
dicted focusing distance from ray-tracing trajectories, showing an increasing
focusing distance as ng decreases. Some decrease in the focusing distance
is found near the homogenization limit, indicating some dependence of the
gradient coefficient with frequency. This influence is noticeable for higher
values of «a, resulting in a lower focusing distance compared to ray-tracing, as
observed in 2.8(a)
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(b)

0 10 20 30 40 1 L1 12 129
Distance z/a n(r)
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Figure 2.8: Acoustic field in the rz-plane showing the absolute value of the pressure |p|
for an axisymmetric GRIN lens for (a), no = 1.29, (c) no = 1.24. (c), (d) illustrate the
corresponding refraction index profiles. Blue continuous lines represent the ray-tracing
trajectories.

In section 2.1, main concepts and methods used in the publication included
in Appendix A.1 have been explained in the context of a simple 2D geometry
that allowed to extend the analysis showing different focusing regimes, which
depend on the size of the source. The obtained results are interpreted and
analyzed in terms of the curvatures of the spatial dispersion curves and are
due to the negative diffraction close to the edge of the propagating band.
Numerical results fit well with analytical predictions in Ref. [Sanchez-Morcillo
et al., 2009], showing the tunability of the focusing distance.

Section 2.2 has been devoted to the model and design of an axisymmetric
gradient index lens presenting a geometry matching with the acoustic source.
The system is made of rigid toroidal scatterers embedded in air by varying the
filling fraction in the radial axis in order to reproduce an hyperbolic secant
profile. The ray-tracing trajectories, the effective fluid medium aproximation
and the numerical prediction using the finite element method are all in good
agreement showing a remarkable sound amplification which also agrees with
the experimental results in Appendix A.2. The reader is referred to Appen-
dices A.1, A.2 for further details and experimental results.
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Reflection in Chirped Sonic
Crystals

The contents of this chapter encompass the theory and main numerical
and experimental results of the works “Enhancement of sound in chirped sonic
crystals” (see Appendix A.3), published in the journal Applied Physics Let-
ters, and "Enhancement of sound by soft reflections in exponentially chirped
crystals” (see Appendix A.4), published in a Special topic on Phononics in the
journal AIP Advances. A novel mechanism of sound wave concentration in

linear and exponential chirped sonic crystals is proposed and demonstrated.
Special emphasis is made here in the description of the Coupled Mode Theory
(CMT) used to interpret and estimate the wave concentration effect. We will
concentrate here in the linear profile, discussing numerical and experimen-
tal results in frequency domain, and numerical simulations in time-domain,
intended to fully interpret the reported wave concentration effect.
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3. Reflection in chirped sonic crystals

Chirped crystals, also called graded or adiabatic tapered crystals, are a
particular type of structures in which one of the parameters, such as the
lattice constant or the filling fraction, gradually changes along the propagation
direction. These type of structures were introduced in optics [Cassan et al.,
2011] and acoustics [Kushwaha et al., 1998, Psarobas and Sigalas, 2002, Wu
and Chen, 2011] for different purposes, such as opening wide full band gaps in
tandem structures [Kushwaha et al., 1998], waveguiding of beams or also to
control the spatial dispersion and focalization of beams in reflection [Cheng
et al., 2014]. An interesting new phenomenon shown in chirped crystals is the
smooth deflection of light beams from the straight trajectory as it propagates
through the crystal, the so-called mirage effect [Centeno et al., 2006].

An important issue of wave propagation control and manipulation in pe-
riodic structures is the localization and concentration of the wave energy.
Several mechanisms have been used to enhance wave energy at particular
locations inside periodic structures. At a low frequency regime (A >> a,
being a the lattice constant) for finite-size crystals, Fabry-Pérot resonances
enhance the wave energy at particular frequencies f, inside the structure,
which are related to its thickness, L. These frequencies are given by the ex-
pression f, = nc/2L, where n is an integer number and ¢ the speed of sound.
For higher frequencies, where the wavelength and the lattice constant are of
the same order (A ~ a), the presence of point defects can produce localized
enhanced modes at frequencies belonging to the band gap [Romero-Garcia
et al., 2010b, Romero-Garcia et al., 2010a]. At these regimes, the wave can
be enhanced for a set of narrow bands, but no broadband enhancement is
achieved. An enhancement of the wave energy for a broader frequency range
can be found via localized modes in random systems [Hu et al., 2008, Sainidou
et al., 2005].

Another effect reported recently is the rainbow trapping effect, i.e., the
dependence of the turning point position on the color (frequency) of radiation.
It has been predicted for one-dimensional modulated chirped structures in
photonics [Shen et al., 2011] and tapered optical and plasmonic waveguides
[Stockman, 2004, Smolyaninova et al., 2010].

Rainbow trapping and wave enhancement are two different physical effects,
while the former only appears for a certain set of frequencies, the latter may
occur for a monofrequency radiation. However, both occur simultaneously in
chirped crystals for a broadband incident radiation, as it will be demonstrated
for sound waves in this chapter.
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3.1. Coupled mode theory

3.1 Coupled mode theory

There are several reasons why CMT is worth to be applied to acoustic periodic
media. Some of them are:

o CMT has been widely applied in photonics (Bragg fibers, phase grat-
ings in holography, photonic waveguides,...). However, applications in
acoustics are almost absent. The model itself is original.

e Our research group have previously applied CMT to acoustic prob-
lems in periodic media in linear regime: the lossy multilayers, and the
chirped crystals. It is also beeing extended to study the nonlinear case
of quadratic acoustic nonlinearity, although this case is not described
in this thesis.

o Allows to obtain exact analytical solutions for the amplitudes of the
stationary modes, and to analize their stability.

o It admits exact solitary wave solutions.

« and much more...

3.1.1 CMT equations for linear propagation in fluids

The propagation of sound waves in linear regime can be derivated from the
linearized version of the continuity and Euler equations, completed by the
equation of state. The linear acoustic wave equation is considered here as the
starting point for the CMT discussed below

2 1 8229

- 2290 3.1
ct ot? ’ (3.1)

where p is the acoustic pressure and cgy is the speed of sound.
Field expansion

A linear propagation problem is considered, where one wave with fequency w
propagates in a medium. In one-dimension, each wave has two possible direc-
tions of propagation (forward and backward). Assuming that the propagation
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3. Reflection in chirped sonic crystals

occurs in a homogeneous medium, a general solution for a two-frequency
field can given by

p(x,t) = Aethe—t | pe=the—ivt 4 ¢ ¢ (3.2)

where A and B are the (constant) amplitudes of the waves propagating to
the right (forward) and to the left (backward). These waves may exist if
the appropriate boundary conditions are given (excitation at the left or right
boundaries).

Modulation

Consider now the propagation in a periodic structure. The parameters (den-
sity, velocity) change periodically in space along the wave propagation co-
ordinate. We assume now that the acoustic wave velocity in the medium c
varies harmonically as:

¢ =co+dc(x), (3.3)

where ¢g is the average velocity and dc(x) can be expanded in Fourier series
as:
¢ = co+ Accos(kgz), (3.4)

where k; = 27/d is the grating wavenumber (d is the period of the modula-
tion). Note that k, = 2kp, two times the band-gap value.

The perturbation of velocity scatters the right-going wave into a left-going
wave, and viceversa. Under the coupled mode approximation, in the presence
of a small modulation the fields take the same form as in the unperturbed
medium, but may present small spatial and temporal variations in its ampli-
tudes (which are induced by the modulation). The solution takes then the
form:

p(x,t) = Az, t)e*Be= %t L Bz, t)e hBo—t L ¢ (3.5)

where A(x,t) and B(x,t) are forward and backward propagation respectively.
Note that we have chosen the reference wavenumber as the Bragg wavenum-
ber. Then, we are considering solutions that describe modes around the
band-gap, including modes in the propagation band (but close to the edge).
This means that A and B are slowly varying functions (in space and time).

Substitution of the ansatz Eq. (3.5) and the sound velocity modulation
Eq. (3.4), into the wave equation Eq. (3.1), results in a somehow complicated
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equation with many terms. However, it can be greatly simplified as soon as
some approximations are considered (which are the assumptions of coupled
mode theory), as:

e Weak velocity modulation dc¢ << ¢g. Then we can expand the term
1/c? in series, and retain only the first order.

o Frequencies are close to a reference frequency (here, the bandgap fre-
quency, kg = kg /2 = 7/d), so k = kp + Ak, with Ak << 1, and

o Slowly-Varying Envelope Approximation (SVEA), which is the assump-

tion that the envelope of a forward traveling wave pulse varies slowly in

. 2
space compared to a period or wavelength, where 88 él < klaa%.

The coupled-mode equations for A and B are obtained after retaining
only the first order phase-matched terms. Actually, projecting over the modes
exp +i(wt — kpx), neglecting off-resonance terms (those with an exponential
different from zero) we get

w? w?Ac 0A 2iw0A
5 —kh|A- "B -2ikp— — 5 — =0 3.6
(c% B) c VB ox & ot ’ (36)
which can be simplified to give
104 0A
| ——— ——=— ) = AkA B .
Z(c() ot 8:U> +mb, (37)
10B 0B
——+—] = AEkB A .
(co ot * 837) kB +ma, (3:8)

where Ak = k — kp, and k = k(w), gives the detuning with respect to the
Bragg resonance.

The group velocity is defined as v = dw/dk|,,, and the modulation param-
eter m is given by
_ Ack

m =

5 (3.9)

3.1.2 Analytical solutions for linear and exponential profiles
The CMT equations described previously are of application in one-dimensional

problems, where the two media are characterized by its parameters (den-
sity, velocity), such as the multilayered structure depicted schematically in
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Fig. 3.1(a). However, taking into consideration a feasible realization of exper-
imental measurements in acoustics, and more specifically, considering air as
the background propagation medium, the huge impedance contrast between
air and solid materials implies the absence of wave propagation within the
latter i.e., the solid material is considered as a medium with infinite acoustic
impedance, Z = pc. Hence, in order to allow wave propagation, the multilay-
ered structure is substituted by a host medium with a periodical arrangement
of rigid circular inclusions, as the one depicted in Fig. 3.1(b), which is indeed a
two-dimensional medium. However, the CMT equations can be slightly mod-
ified proceeding to a dimension reduction, assuming that the contributions
of the wave components propagating in transverse directions are negligible.
This dimension reduction is possible because the first band gap in I'X direc-
tion essentially appears due to a resonant coupling between the forward and
backward waves.

Figure 3.1: Schematic diagrams for (a) 1D Multilayered structure of a combination of two
fluid media of finite impedances and (b) 2D Periodic arrangement of solid circular inclusions
in a host medium of finite impedance.

Linear chirped crystals

Consider now a chirped sonic crystal with a linear variation of the lattice
constant given by

a(x)=ap+ a(r—x), (3.10)

where ag is the lattice constant at the input plane of the crystal and « the
adimensional chirp parameter. Assuming that the full pressure field consists
of forward and backward propagating waves and taking a solution with an
arbitrary reference wavenumber (not necessarily the bandgap), with a solution
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in the form
p(x,t) = A(z, t)eF 9 L Bz, t)e Rt 4 e e (3.11)

we obtain the following equations:

(104 9A\ Ak

10B OB -
- - Y2 ittt _ A —zAkac' 1
Z(CO 5 + 8x> mAe (3.13)

Further consideration of stationary waves and substitution of modulation
parameter m by a factor /s, obtained numerically from the back scattered
intensity by only one row of the structure, yields

dA i \/g BeZiAq(:c)x

— = 14
dx a(x) ’ (3:.14)
dB _ . \/g —2iAg(x)x

o = Za(x) Ae , (3.15)

where Ag(z) = 27/X — m/a(x) is the detuning from the Bragg frequency. It
is noticed that the detuning from the Bragg resonance Ag(z) is a function of
the longitudinal position z for chirped crystals.

Equations (3.14) can be rewritten in canonical form as

d*A dA

— =ie(x)——= + A 1
7x2 ze(az)dX + A, (3.16)
where the space scaling dX = dxv/s/a(x) was chosen to make the normal-
ized coupling coefficient unity, and €(z) = 2d(X Aq(X)/dX is the normalized
detuning from the Bragg frequency.

In general (for arbitrary chirp) Eq. (3.16) cannot be solved analytically.
However, in a simple case when the normalized detuning varies linearly around
zero €(X) = €1(X — Xp), Eq. (3.16) has an analytical solution in the form

A(X) = e1Hyje, (X [ie1/2), (3.17)
where H,, is the Hermite polynomial of imaginary order. The counter-propagating

field obeys a similar expression. The integration constant c; = H; /., (Xr+/i€1/2)
is determined by the boundary conditions, by imposing that the amplitude of
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(a) (b)
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Figure 3.2: Solutions of Eq. (3.17), i.e. the intensity of the forward (continuous line) and
backward (dashed line) field along the chirped structure. (a) (with e = 3) corresponds to
experimental configuration, (b) (with e = 0.3) is shown for comparison, to illustrate soft
reflections for a substantially smaller chirp. The vertical dashed lines indicate the center of
the bandgap, and the shaded areas the bandgap itself.

the forward wave at the front face X = Xr equals unity. €; = de(X)/dX|x=x,
or, in terms of initial variables, €; = 47a/s, which estimated for experimental
parameters results e; = 3.

In Fig. 3.2 we present the amplitude of the acoustic intensity of the
forward and backward waves for linearly chirped crystals as follows from Eq.
(3.17). The acoustic field is nearly exponential in the bandgap, and oscillatory
in front of it. The oscillations, with the period and amplitude increasing as
the wave approaches the band-gap, are large-scale oscillations, which originate
from the energy exchange between the forward and backward waves. These
large-scale oscillations correspond to oscillations of the envelope of the Bloch
modes and are not due to conditions imposed at the entrance of the sonic
crystal, e.g. some possible impedance mismatch.

The controlled field enhancement effect is clearly visible again in Fig. 3.2.
From the analytical estimations in Eqgs. (3.14)-(3.17) and from Fig. 3.2 it
follows that for maximal field enhancement of the wave intensity, the chirp
must be as small as possible. For ¢; = 0.3 the maximum field enhancement
could be around 6 times (in terms of intensities) if one compares the maximal
and minimal values of the plot in Fig. 3.2(b).
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3.1. Coupled mode theory

Exponential chirped crystals

Consider now a chirped crystal with an exponential variation of the lattice
constant defined as a function of the scaled spacing as follows

a(X) =X — 1. (3.18)

In this case an analytical solution also exists, given by

- aX
A(X) = e XL8 <Z€a ) , (3.19)

where L is a generalized Laguerre polynomial, with the indexes defined as
n=(—1)%/%/a and s = V/3/a.
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Figure 3.3: (Color online) Continuous line represents the amplitude profile in the expo-
nentially chirped crystal, as given by the analytical solution of Eq. (3.19) calculated using
a = —0.05. Green dots represents the envelope for the experimental case.

Fig. 3.3 illustrates the profile of the squared amplitude of the wave (nor-
malized intensity) along the chirped structure. Continuous black line repre-
sents the results from Eq. (3.19) for a chirp parameter o = —0.05, and green
open dots represents the envelope of the experimental data for the case of
2700 Hz shown in “Enhancement of sound by soft reflections in exponentially
chirped crystals”. A significant enhancement of the wave amplitude appears
at the end of the path of the wave (bright plane), just before the turning
plane (local band gap). It is noticed that due to the range of validity of the
model, is in the range of frequencies near the band gap in which the theory
agrees well with the experiments, as expected. The region in which these
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3. Reflection in chirped sonic crystals

oscillations become important is much smaller than in the case of linear chirp
and the amplitude is more localized (see Fig. 5 (b) in "Enhancement of sound
in chirped sonic crystals”).

3.2 Wave dispersion in chirped structures. Soft re-
flection

Waves propagating in periodic structures at frequencies at and close to the
band gap have a very small or zero group velocity, v = dw/dk, as it can
be extracted from the analysis of the nearly flat segments of the dispersion
curves w(k). For frequencies belonging to the band gap, where waves are not
allowed to propagate, reflection of incoming waves is similar to the reflection
of waves impinging a rigid wall. In contrast, wave reflection from a chirped
structure is different. A wave, whose frequency is fixed and above the first
band gap, entering into a chirped sonic crystal, is gradually slowed down as
it penetrates, as the local band gaps are approaching the wave frequency in
the course of propagation. At a particular depth corresponding to the band
edge, the wave stops, turns around, and starts propagating back, experiencing
a ”soft” or "smooth” reflection. It is assumed that for a slow variation of
the lattice constant within the structure, each plane can be characterized
by a local dispersion relation, i.e., the dispersion relation of an infinitely
extended periodic crystal for parameters (lattice constant, filling fraction)
corresponding to a particular depth of the chirped crystal.

Figure 3.4 illustrates this effect for three different frequencies. The evo-
lution of the band gaps along a chirped sonic crystal with a linear profile of
the lattice constant a = a(x) is shown in red, as well as the local dispersion
relation at the entrance (first plane) and exit (last plane) of the system. In-
sets in the bottom of Fig. 3.4 represent the spatial distribution of the rigid
scatterers inside the chirped structure as well as the acoustic field for 2450
Hz, 2650 Hz and 2825 Hz. It is noted that for each of these highlighted fre-
quencies the acoustic field is enhanced at a particular plane, i.e., the brilliant
plane, due to the coupling between forward and backward waves, and quickly
and strongly attenuated behind. Besides, the position of the maximum of
the acoustic energy inside the structure is shifted as the frequency increases
(rainbow effect), in correspondence with the aforementioned assumption of
local dispersion relation.
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3500

3000

2825 Hz

2650 Hz
2500 2450 Hz

2000

Frequency (Hz)

1000

500

X G 10 19 28 37 45 52 59 66 73 79 84 90 G X
X (cm)

Figure 3.4: Local band gaps in a linear chirped structure. Left(right) panel shows the band
structure at the entrance(exit) of the system calculated using the finite element method.
Middle panel show the evolution of the upper and lower band edges of the band gap within
the discrete structure. Insets in the bottom show the spatial distribution of the scatterers
in the system as well as the acoustic field for three different frequencies, 2450 Hz, 2650 Hz
and 2825 Hz.

3.2.1 Harmonic analysis. Spatial enhancement of the acoustic
field

A linear chirped sonic crystal was designed to numerically and experimentally
validate the analytical results obtained solving Eqgs. (3.14)-(3.17). The struc-
ture consists of a two-dimensional crystal with rectangular local symmetry
made of acoustically rigid aluminum cylinders of radius r = 2 cm, embedded
in air. The spatial period is constant in the direction transverse to propaga-
tion direction ¥, a, = 10 cm, while a linear variation of the lattice constant
is defined in the longitudinal direction x. The adimensional chirp parame-
ter is & = (a; — aj41/a;), where a; is the longitudinal lattice constant at
the jth layer. For the structure considered in this section the initial period is
ag = 10 cm, the final period a13 = 4.8 cm, and the chirp parameter o = 0.055.
Hence, the structure consists of 14 scatterers in the longitudinal direction .
6 scatterers are considered in the transverse to propagation direction y.

Sound pressure amplitude, |p|, is evaluated for a longitudinal cut along z-
axis between two rows of scatterers for a wide frequency range. The recorded
amplitude is normalized with respect to the amplitude of the incident field,
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3. Reflection in chirped sonic crystals

|po|. Since the incident amplitude is normalized to unity, the total intensity
resulting from the reflection of a purely periodic structure in the frequency
range of the band gap (or almost acoustically equivalent, a rigid wall), can be
increased a maximum of 4 times, as the interference is formed from forward
and fully reflected backward waves.

30
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Figure 3.5: (a) Numerical simulations and (b) experimental results of the acoustic field, |p|,
inside the linear chirped sonic crystal. White continuous lines define the limits of the upper
and lower band edges of the spatially varying local band gaps. Coloured lines illustrate the
frequencies shown in (¢), (d), (e) as well as the corresponding positions of the turning planes
inside the crystal. (c), (d), (e) represent the normalized acoustic intensity, I/Io = |p?|/|po|?
for a longitudinal cut at frequencies 2475 Hz, 2600 Hz and 2700 Hz, respectively. Grey
shaded rectangles denote the area covered by the linear chirped crystal.

Figure. 3.5(a)-(b) represents two-dimensional frequency-space maps show-
ing the normalized acoustic field, |p|/|po|, inside the structure for numerical
calculations and experimental measurements, respectively. White continuous
lines represent the lower and upper edges of the band gap along the chirped
structure. From the analysis of these maps several features are noted. The
enhancement is observed at the brilliant planes, located just before the upper
band edges. Moreover, the position of these planes is shifted to deeper posi-
tions inside the structure as the frequency is increased, as expected. Hence,
the total intensity is enhanced for a certain range of frequencies, in opposition
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3.2. Wave dispersion in chirped structures. Soft reflection

to the case of perfectly periodic crystals in which only discrete frequencies can
be enhanced by Fabry-Pérot resonances. The finite-size of the structure in
transversal direction (6 rows of scatterers) prompts the appearance of edge
effects which are responsible for the reduction of the enhancement for frequen-
cies above 2700 Hz, to be discussed below. However, a very good agreement
is found between simulations and experiments. Three particular frequencies
illustrate quantitatively the enhancement of the normalized total intensity,
1/Iy, as shown in Fig. 3.5(c, d, e), where the axial distributions obtained
experimentally (dots) and numerically (black lines) are shown. Small-scale
fringes are observed in both cases, corresponding to the local Bloch mode, as
well as large-scale oscillations or envelope (continuous coloured lines) of the
Bloch mode. The recorded total intensity is up to 20-30 times higher than
the intensity of the incident wave.
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Figure 3.6: Numerical simulations showing the normalized pressure field, |p|/|po|, in
frequency-space maps for a longitudinal cut for two linear chirped structures with gradient
(a) @ =0.055, (b) @ = 0.028. Dashed grey lines indicate the area covered by the structures.
(¢) Maximum value of the normalized total intensity, Inaz/Io, depending on frequency. (d)
Position of the maximum value of concentration of acoustic intensity (rainbow effect).

The influence of the chirp parameter, «, is analyzed via numerical calcu-
lations and compared to the results shown in Fig. 3.5. An additional linear
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3. Reflection in chirped sonic crystals

chirped structure is designed for that purpose. Design parameters for this ad-
ditional chirped structure are the same as the previous one but «, i.e., radius
r = 2 cm, transversal period a, = 10 cm, initial period, ag = 10 cm, final
period a13 = 4.8 cm. The new value of the chirp parameter is a = 0.028,
resulting in a structure having a total length that almost doubles the length
of the previous one. To overcome the limitations found due to the finite-size
of the structure in the transversal direction, Bloch-Floquet periodic bound-
ary conditions are imposed in numerical calculations in the upper and lower
boundaries. Thus, both structures are infinite in transversal direction.

Results from the comparison between them are shown Fig. 3.6. Frequency-
space maps representing the normalized pressure acoustic field in Fig. 3.6(a),(b)
indicate that the position of the maximum value of concentration of acoustic
energy is found at deeper positions inside the longest structure. For the sake
of simplicity, the position of these maximum values depending on frequency
is represented in Fig. 3.6(d). Enhancement of the total intensity is higher for
chirped crystals with smaller «. In agreement with Fig. 5 in "Enhancement
of sound in chirped sonic crystals”, the maximum field enhancement is found
for the longest chirped structure. Figure. 3.6(b), where the value of the nor-
malized total intensity at the position indicated in Fig. 3.6(d) depending on
frequency is represented, validates the previous statement. It is noted that
the resonant peaks are due to Fabry-Pérot resonances where the equivalent
length is that of the brilliant plane at each frequency.

3.2.2 Time-domain analysis.

While harmonic analysis is suitable to understand several characteristics of the
soft reflection of waves inside chirped sonic crystals, wave propagation inside
chirped sonic crystals in time domain adds a different point of view of the
problem and facilitates a fully understanding of this effect. The effects on the
character of the time spreading of a pulse penetrating on a chirped crystal are
analyzed here. Numerical simulations are carried out using the finite element
method in time-domain for the same linear chirped crystal used previously,
with gradient o = 0.028 and the same frequencies, 2425, 2650 and 2850
Hz. A gaussian pulse centered at these frequencies with a fixed bandwidth
Af =100 Hz is emitted from the left boundary of the domain propagating in
+z direction.

Figure. 3.7 illustrates the time-space scenario for f = 2650 Hz by com-
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3.2. Wave dispersion in chirped structures. Soft reflection

paring the reflection of a gaussian pulse from a periodic structure, designed
to have a band gap at this frequency, with the soft reflecion ocurring in a
chirped crystal. The lattice constant of the periodic structure is a = 6.72 cm,
the same as the 15" plane of the chirped crystal, and it is placed at the same
point, x = 123.88 cm, which corresponds to the turning plane of the chirped
structure at the working frequency, in order to facilitate the comparison be-
tween both cases.
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Figure 3.7: Time spreading of the input signal in for f = 2650 Hz. Top insets represent
the time-space scenario for a longitudinal cut along the propagation direction z, for (a)
a periodic structure with fixed lattice constant a = 6.72 cm, placed in the range x =
[123.8,217.9] cm, as a reference. (b) linear chirped structure with a gradient o = 0.028,
placed in the range x = [0,200] cm. Dashed grey lines indicate the area covered by the
structures. The spatial distribution of the scatterers is included in top of insets (a), (b).
Recorded time signals for (c) periodic structure and (d) linear chirped structure at the
positions indicated by green solid lines, where the maximum value of pressure is found.

The relation between x and ¢ is a straight line and its slope is given by
the sound velocity in air. The gaussian pulse is almost totally reflected by
the periodic structure and only a very small part of it penetrates having an
exponential decay (evanescent wave). Reflection inside the chirped crystal
is different, the incident wave is gradually slowing down and soft reflected
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3. Reflection in chirped sonic crystals

at the turning plane, resulting in a bright plane due to the reduction of the
group velocity, as shown in previous sections. Afterwards, the pulse travels
back out of the structure. It is also observed that the impedance constrast
between the homogeneous medium and the chirped crystal causes the wave
to be reflected back and forth between the entrance and the turning plane of
the chirped crystal until the amplitude is vanished. As it will be discussed
later, the estimation of the delay in time between these contributions allow
to evaluate and compare the sound velocity within the chirped crystal to that
obtained by the analysis of the group velocity extracted from the dispersion
curves, validating the assumption of a local dispersion relation. Figure. 3.8 is
intended to illustrate the validity of the aforementioned assumption.
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Figure 3.8: Time-space maps showing the time signals recorded for a longitudinal cut along
the propagation direction z, for (a) 2425 Hz, (¢) 2650 Hz and (e) 2850 Hz. (b), (d) and (f)
represent the time signals at x = —100 cm. Amplitude is given by the normalized absolute
value of the pressure |p|/|po|-.

Time-space maps for 2425, 2650 and 2850 Hz are illustrated in Fig. 3.8(a),
(c), (e), where grey dashed lines indicate the area covered by the chirped struc-
ture. Time profiles evaluated at x = —100 cm are represented in Fig. 3.8(b),
(d) and (f), where different contributions are clearly observed. A closer look
to any of these time signals, i.e., Fig. 3.8(d), allows to identify the incident
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pulse (0 — 5 ms), the reflected wave in the input plane of the crystal due
to a certain impedance contrast between the homogeneous medium and the
chirped structure (7—12 ms), the soft reflected wave in the bright plane inside
the chirped structure (12 — 20 ms), and finally a secondary soft reflected con-
tribution, corresponding to some part of the first soft reflected wave scattered
back to the chirped structure (22 — 30 ms). From the time delay between
different contributions, the slowing down of the wave can be quantified and
compared to the results extracted from the slopes of the band structures at
each plane in the chirped structure (vy = dw/0k). Table 3.1 shows the group
velocity for each plane of the structure for the three frequencies analyzed in
this Section. Taking into account these values as well the sound velocity and
propagation distance in air, the delay between different contributions (high-
lighted by coloured dashed lines in Figs. 3.8(b), (d) and (f)) can be calculated
using the following expressions

Tai dx Zai Al a;
dp e o) 2 () e

Cair v () Cair (=] Vf,i

delay dx ali g
to z/vf(m) 2;%, (3.21)
where the integral has been replaced by a sum considering that the velocity
is constant and equal to the value deduced from the band structures that
corresponds to the lattice constant, a;, for every crystal plane till reaching
the corresponding turning plane at each frequency. These values are included
in Table 3.1 and compared to the ones obtained by time-domain simulations,
named t1 gim, t2sim, for the time delay between incident and first soft re-
flected, and first and second soft reflected pulse, respectively. The agreement
between these estimations validates the local dispersion relation assumption
and is consistent with the results obtained for the exponential chirped struc-
ture presented in the work “Enhancement of sound by soft reflections in ex-
ponentially chirped crystals”.

This chapter has been devoted to the study of linear and exponential
chirped sonic crystals. A mechanism for sound field enhancement has been
predicted and demonstrated numerically and experimentally. The acoustic
wave energy can be concentrated at a particular depth of the crystal depend-
ing on the frequency and on the parameters of the structure. At these bright
planes, a substantial increase of the energy is observed for frequencies around
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Lattice constant | vg (ms™ 1)

a (cm) 2425 Hz | 2650 Hz | 2850 Hz
10,00 297.64 | 295.62 | 285.04
9,72 20356 | 293.69 | 284.10
9,45 290.51 | 290.76 | 281.12
9.18 284.46 | 285.46 | 277.55
8.92 275.90 | 281.43 | 273.85
8.67 263.29 | 276.55 | 270.08
8.43 243.88 | 270.37 | 266.14
8.20 212.88 | 262.00 | 256.04
7.97 163.45 | 255.83 | 252.20
7.74 48.51 24417 | 247.40
7.52 0 226.14 | 240.71
7.32 0 197.21 | 230.52
711 0 85.18 222.52
6.91 0 4471 207.22
6,72 0 0 181.54
6,53 0 0 42,58
6.35 0 0 0

15 (ms) 15.4 18.4 18.8
t1 sim (ms) 14.2 15.9 18.0
tye (ms) 9.6 12.6 12.9
tz sim (M) 8.4 10.1 12.7

Table 3.1: Values of the group velocity deduced from the band structures calculated using
FE.

the first gap along the x-direction of the structure. The CMT employed to
predict the effect has been desccribed, as well as numerical simulations and
experimental results. Further conclusions wil be given in Chapter 6.
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This chapter is devoted to the study of absorption phenomena in periodic
structures. Section 4.1 is devoted to the work Enhanced transmission band
in periodic structures with loss modulation, published in the journal Applied
Physics Letters (see Appendix A.5). In this work the propagation of in-plane
sound waves in a periodic array of absorbing layers is studied, reporting an
enhancement of wave transmission around the Bragg frequencies. Section 4.2
is devoted to the work Eztraordinary absorption of sound in porous lamella-

ystals published in the journal Scientific Reports (see Appendix A.6). It
consists in the design of a structured material supporting complete and broad-

band absorption of out-of-plane waves that penetrate into a periodic array of
porous layers. This work is the result of a colaboration of our research group
with people from the Technical University of Denmark. A detailed descrip-
tion is given on the experimental measurements, carried out in our research
facilities.




4. Absorption in periodic structures

In the previous chapters the propagation of acoustic waves in periodic me-
dia has been considered for conversative systems, where losses are neglected in
the derivation of the inhomogeneous wave equation. This assumption is valid
in situations where dissipation is insignificant, allowing the study of different
interesting phenomena in periodic media, such as focalization, reflection of
waves at the band gaps, scattering or even localization inside crystals. How-
ever, dissipation is an inherent property of all forms of matter and its effects
in periodic media are of great interest, as waves cannot be absorbed unless
dissipation is considered.

The fact that light and sound waves behave in the same manner in linear
media, obeying similar wave equations, has inspired a number of analogies
between both fields. However, the motivation for the study of losses in acous-
tics and optics may be different in some cases. In optics, several recent works
have been devoted to minimize losses. Some of them investigate how the ab-
sorption is reduced in a multilayered magneto-photonic crystal [Figotin and
Vitebskiy, 2008, Figotin and Vitebskiy, 2010], while others report an enhanced
transmission through a stack of dielectric layers having contrast only in at-
tenuation Refs. [Erhokhin et al., 2008, Kumar et al., 2012]. Extensions to
two-dimensional modulation of losses have shown to provide nontrivial light
beam propagation effects, analogous to flat photonic crystal lensing reported
in conservative systems [Staliunas et al., 2009, Kumar et al., 2013]. In acous-
tics, the situation is different, since achieving maximum absorption is often
the goal. The effect of viscoelastic losses on phononic crystals has been dis-
cussed in terms of the modification of dispersion relations [Psarobas, 2001, Lee
et al., 2010,Laude et al., 2013, Hwan Oh et al., 2013]. Damping of elastic waves
in solid phononic crystals has also been discussed [Hussein, 2009, Andreassen
and Jensen, 2013]. However, the behaviour of lossy periodic media for waves
near Bragg resonances is much less known than in the long-wavelength limit
[Tournat et al., 2004]. Motivated by the aforementioned studies in optics [Er-
hokhin et al., 2008, Kumar et al., 2012], section 4.1 is devoted to the study
of wave propagation within a layered material with periodically distributed
losses, showing how the periodicity of the absorbing media can modify the
global absorption of the system as well as its reflection and transmission prop-
erties.

In the context of enhancing the absorption for acoustic waves in audible
regime, the acoustic equivalent to an ideal black body in optics would be some-
thing similar to a "deaf” body, which is an object absorbing sound coming
from all directions at any given frequency. Absorption of sound waves is gov-
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erned by the effects of viscosity and thermal conduction in fluids. In order to
deal with these dissipative processes at the macrospopic level the mass density
p and the bulk modulus K are to be considered as complex quantities, leading
to a finite penetration length into the dissipative medium. While the concept
of a deaf body remains to be the ideal case, various composites and artificial
structures have been designed in the attempt of pursuing this ultimate goal.
In this sense, a distinction between resonance-based and broadband systems
is made. Locally resonating materials have been fabricated in the form of
mass-loaded thin membranes, gas-bubble arrays and elastic beams, featuring
sharp and narrow absorption peaks [Mei et al., 2012, Leroy et al., 2009b, Leroy
et al., 2009a, Thomas, 2009, Romero-Garcia et al., 2011]. Broadband absorp-
tion, on the other hand, has been demonstrated for low frequencies by lattices
of perforated shells [Garcia-Chocano et al., 2012].

Periodic penetrable structures, generally speaking, have been fabricated
with many facets for different kinds of waves. Electromagnetic (EM) struc-
tured materials, in that regard, such as gratings with finite conductance, con-
vex grooves or the moth eyes, comprise anti-reflective systems with a broad
spectral response [Botten et al., 1981, McPhedran et al., 1982, Kravets et al.,
2009, Sgndergaard et al., 2012, Clapham and Hutley, 1973]. However, to sus-
tain a spectrally and angularly rich performance with complete absorption
and little material use remains a challenge to be solved.

The system analyzed in section 4.2 is motivated by recent EM experiments
where a forest of vertically aligned single-walled carbon nanotubes showed
extremely low reflectance [Garcia-Vidal et al., 1997, Yang et al., 2008, Garcia-
Vidal, 2008, Mizuno et al., 2009, Lidorikis and Ferrari, 2009]. The mechanism
consists in the attempt of matching the material index to free-space to prevent
back-reflected waves but at the same time providing sufficient material losses
to guarantee intensity attenuation. The system, a low-density porous lamella
array, in analogy to its electromagnetic counterpart made of nanotube arrays,
behaves most closely like a true deaf body. Within this framework, we show
how these constructed crystals become more absorptive when less material is
chosen.
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4. Absorption in periodic structures

4.1 Enhanced transmission band in periodic struc-
tures with loss modulation

4.1.1 Dissipative coupled mode theory

The CMT described in Chapter. 3 in the context of acoustic periodic media
is of application in conversative systems. However, this model constitutes a
particular case of a more general problem in which dissipation is involved.
Our interest now is to study a multilayered medium formed by a finite num-
ber of lossy paralel and equidistant layers and calculate the influence of losses
in the transmission and reflection spectrum. Hence, the model is now for-
mulated including the effect of the dissipation. Consider the aforementioned
multilayered lossy medium irradiated by an incident plane wave. The total
field is described in terms of forward and backward propagating waves

P= A(:c)eika*m + B(a:)eiikafm +c.c (4.1)

where A(z), B(x) are the normalized forward and backward waves amplitudes,
such that their absolute square is proportional to the energy flux in the corre-
sponding direction. kp = 7/a is the Bragg wavenumber (the edge of Brillouin
zone), a the lattice constant and w is the angular frequency. Considering fre-
quencies near a Bragg resonance, the dynamics of the coupled forward and
backward waves can be described by the dissipative coupled-mode equations

A
Z— = iAkA +mB + A, (4.2)
x
_4B = iAkB +mA+ B,
dx

where Ak = k—kp = 2w /A\—7/a is the detuning from the Bragg wavenumber,
m = Mpe + 9Mpy, is the coupling between forward and backward waves and
v is the gain coefficient, which is always negative in acoustic lossy media
(v < 0, since there are no gain acoustic materials, in contrast to an optical
gain medium, etc.). The coupling coefficient, m, is generally complex; real for
conservative media (wave velocity modulation for the acoustic case, see Eqs.
(3.3), (3.4) in Chapter 3) and imaginary for absorptive media. Consider now
an absorptive layer placed in a host medium, the coupling coefficient m is
related to the impedance mismatch between them. If the coupling coefficient
from medium 1 to medium 2 is r19 and ro; = —rq9, and the same acoustic
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4.1. Enhanced transmission band in periodic structures with loss modulation

thickness (or equivalently, the optical path, etc.) d is considered for both
materials, the coupling coefficient reads

T2 —T21 2712

m g pi (4.3)
For the case of an acoustic wave:
A
rg = ——~, 4.4
2 Zy+ 2y (44)

where Z; stands for the acoustic impedance of the i-th medium.

Let consider now solutions of Egs. 4.2 exponentially growing/decaying
oscillating waves, A(x), B(x) = e’ where ) represent the complex eigenvalues
of the matrix of the coefficients of Eqs. (4.2)

[ Ak +y m
M= < -m  —iAk+ ) (45)

s = /(7 +iAk)2 + m2. (4.6)

Full solution for forward and backward propagating waves contain the inte-
gration constants ci, ca:

Ax) = 1M 4 e, (4.7)
B (1-) — CIA_(Z?ZM@)\:E + ¢y —A— (ZAk + 7) e/\x. (4.8)

For a finite system of length L, formed by N layers, transmission and
reflection coefficients can be obtained analytically by imposing boundary con-
ditions at the entrance face (z = 0) for the forward field, A(x = 0) = 1, and
at the rear face (x = L) for the backward field B(z = L) = 0. This leads to

A
I= Acosh(AL) — (v + iAk) sinh(AL) (4.9)
msinh(AL) (4.10)

r= Acosh(AL) — (v + iAk) sinh(AL)

with A given by Eq. (4.6) with the negative sign (physical solutions of the
problem).
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4. Absorption in periodic structures

4.1.2 Enhanced transmission in dissipative media

The behavior of conservative periodic materials (7 = 0) at frequencies belong-
ing to the band gap (around the Bragg frecuency f, = 7/2a) is well-known.
The destructive interference occuring due to Bragg resonances at this fre-
quencies cause incident waves to be efficiently back reflected. In terms of
the transmission and reflection coefficients, shown in Egs. (4.9), (4.10) by
solving the CMT equations, this effect results in a decrease of the former and
corresponding increase of the latter, as shown in Fig. 4.1(a).

1 1
(a) (b)
——— R
0.8 0.8 <~
0.6 0.6 —_—
— — R ?
T
0.4 0.4 -—-—
A
0.2 /\ 0.2
/ ~
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Ak a/2m Ak a/27
() @ 2
2 1
0 0
0 2 4 0 2 4
x/a x/a

Figure 4.1: Transmission (solid line) reflection (dotted line) and absorption (dash-dotted
line) spectra for waves in a periodic structure (5 periods, L/a = 5) as calculated from
Egs. (4.9) and (4.10) for (a) conservative system (with coupling ma = 0.125 and no losses
~va = 0). (b) periodic system (with pure imaginary coupling valued ma = i0.125 and losses
~vya = —0.2) predicting the anomalous transmission. (c¢) and (d) show the total intensity at
the Bragg frequency, Ak = 0, for the configurations shown in (a) and (b) respectively.

The situation is different when losses come into play. Consider an acoustic
wave impinging a periodic lossy material formed by N layers of purely absorp-
tive material embedded in a host medium. Let the acoustic impedance of the
absorber have the same real part as the host medium and a non-null imaginary
part (i.e. pure imaginary m and negative 7). Such a case is analogous to that
considered for photonics in [Erhokhin et al., 2008] and [Kumar et al., 2012]
and is depicted in Fig. 4.1(b), where the transmission (solid line), reflection
(dashed line) and absorption (dash-dotted line) coefficients are represented.
It is noted that, by energy balance, the absorption coefficient is calculated as
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4.1. Enhanced transmission band in periodic structures with loss modulation

a = 1 — |R?| —|T?|. In this case, the reflection is increased at frequencies
around the Bragg frequency, as expected. However, an anomalous transmis-
sion is observed at these range of frequencies, being maximum at the Bragg
resonance (Ak = 0). The origin of such anomalous phenomenon is explained
in Figs. 4.1(c) and 4.1(d), where the field distribution along the structure
is shown for conservative and lossy cases at the Bragg frequency (Ak = 0),
respectively. For a purely absorbent structured material, at these frequencies,
the total field within the structure partially forms a standing wave, with the
nodes of the particle velocity (maximum values of the acoustic field) located
precisely inside the absorbing medium. As the nodes correspond to low par-
ticle velocity, there is few energy to be absorbed. As a consequence, such a
configuration results in smaller absorption: both forward and backward waves
are less absorbed, and the overall transmission is increased, as shown in Fig.
4.1(b).

4.1.3 Experimental study

The predictions of anomalous transmission observed solving the dissipative
coupled-mode equations are tested experimentally. It is worthy to note that
the dissipative CMT used previously to illustrate this effect is independent of
the particular type of wave. Hence, the coupling and gain (loss) coefficients
are generic and do not represent the specifical physical parameters of a sys-
tem in particular. Our interest here is the study of sound waves propagating
through a finite system of periodically spaced porous layers embedded in a
fluid medium (air). Thus, the experimental study has to be divided in two
different stages: the first one involves the experimental evaluation of the re-
flection and absorption coefficients of the porous material. Once the material
is properly characterized, the second step consist in the realization of an ex-
periment designed to check the predictions of the anomalous transmission in
a periodic structure formed by porous layers.

Porous material characterization

The porous material is characterized experimentally following the standard
ISO-10534-2 (see Fig.4.2(a) for a schematic diagram), which specifies the
methodology to determine the sound absorption coefficient in impedance
tubes following the transfer-function method (TFM) for a single porous layer
of a given thickness [Chung and Blaser, 1980a,Chung and Blaser, 1980b]. The
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4. Absorption in periodic structures

physical parameters of the porous material are shown in Tab. 4.1. These pa-
rameters are used to evaluate the reflection and absorption coefficients of the
porous layer using the analytical transfer-matrix method (TMM), described
in detail in Ref. [Allard and Atalla, 2009]. These coefficients are illustrated
in Fig. 4.2 for a single porous layer of thickness D = 8 mm, showing a good
agreement between analytical predictions (TMM), and experimental results
using the standard ISO-10534-2. It is noted that the absorption of the porous
material is quite low, thus the effective impedance of the porous layer is sim-
ilar to that of the air. This constitutes a key factor with regard to a succesful
realization of the experimental verification of the anomalous transmission ef-
fect in a periodic array of porous layers, as this material allows to measure
the transmitted signals with an amplitude above the noise level, and at the
same time posses enough losses to induce the anomalous properties expected
in the layered media.

(a)

Coefficients

500 1000 1500 2000 2500
Frequency (Hz)

Figure 4.2: (a) Schematic diagram of the experimental setup for the characterization of the
porous material using the standard ISO-10534-2. (b) Reflection, absorption coefficients of a

single layer of porous material measured using the standard ISO-10534-2 (black, gray dots)
calculated using TMM (black, gray solid lines).

Periodic array of absorbing layers

The layered material used in experiments is analytically characterized using
the TMM. We consider here the most general case in which the frame of
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4.1. Enhanced transmission band in periodic structures with loss modulation

Densitiy (kg/m?), p 50
Porosity, ¢ 0.97
Young’s Modulus (kPa), £ 150
Poisson’s coefficient 0.35
Tortuosity, as 1
Flow resistivity, o 13000
Characterisitic length (m), A 120x10~°

Characterisitic thermal length (m), A’ 200x10~°

Table 4.1: Physical parameters of the porous material used in the experiments and numerics.

Source
4

BOSE

l ‘ I Mierophone A

Figure 4.3: (a) Experimental set-up, consisting in an array of four plates of porous material;
showing the source, a loudspeaker located in front of the structure, and the microphone to
measure intensity at either side of the structure. (b) View of the system from a different
angle.

(b)
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4. Absorption in periodic structures

the porous material presents an elastic behaviour, so Biot’s theory can be
used to characterize the porous material. The layered structure is assumed
to be laterally infinite (1D) and made of homogeneous and isotropic porous
layers embedded in air. The transfer matrices are calculated assuming two
compressional waves and one shear wave in the porous medium and one com-
pressional wave in the fluid medium. All these waves are coupled by the
boundary conditions and the result is a global transfer matrix which gives
the propagation properties of the stratified media made of N layers, and in
particular its reflection and transmission coefficients.

The experimental set-up consists of a set of 4 parallel porous layers of
D = 8 mm thickness embedded in air, as shown in Fig.4.3. The lattice con-
stant is selected as a = 20 cm. The acoustic source was placed in front of the
first layer and two microphones A, B, were used to record the transmitted
and reflected signals (placed in front and behind the first and last layer of
the array, respectively). All the measurements were conducted in an anechoic
chamber in order to avoid unwanted reflections. The range of frequencies of
the measurements and the distance separating the source and the first layer
have to be chosen with caution, as the system is modelled as one-dimensional,
thus the wave field impinging the structure must be planar. With this regard,
the acoustic source (Genelec 8030A commercial loudspeaker with a radius
r = 6.35 cm) can be roughly approximated as a circular baffled piston. The
highest frequency considered is finae = 2500 Hz ensuring a nearly omnidi-
rectional directivity pattern of the radiation, and the loudspeaker is placed
at a sufficient distance (over 2 m) in such a way that plane waves propagate
through the periodic system.

Reflection, transmission and absorption coefficients are calculated from
the acoustic pressure measurements registered by microphones A, B, in both
sides of the periodic structure. The spectral characteristics were measured us-
ing the above described experimental scheme. The intensity coefficients were
determined experimentally by measuring the sound field before (reflection R)
and after (transmission T') the structure. It is noted that the incident wave
was measured without the structure and then removed from the measured

reflected field.

Figure 4.4 illustrates the comparison between the numerical predictions,
obtained by applying the TMM and the experimental results, in good agree-
ment. As predicted previously by the CMT, the usual increase of the reflection
in the band-gap and the anomalous increase (decrease) of the transmission
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4.2. Extraordinary absorption of sound in porous lamella-crystals

(absorption) at frequencies around the band gap (fp = 850 Hz (fp = 1700Hz)
is observed, for the first (second) band gap).

R
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Figure 4.4: Reflection (black line/circles), transmission (gold line/circles) and Absorption
(gray line/circles) of the periodic array of porous absorbers. Continuous lines represent
theoretical predictions and circles represent experimental results.

The utilization of lossy materials in acoustics is usually aiming an opposite
goal, which is the reduction of the wave energy, or specifically, reduction of
noise. While a great variety of absorbing materials with different properties
are already available, the design of acoustic insulators capable of absorbing
sound waves in a broadband frequency range, for any direction of incidence
and little material is still a great technological challenge. In the next section,
a structured material fabricated out of porous lamellas, designed for that
purpose, is presented.

4.2 Extraordinary absorption of sound in porous
lamella-crystals

The concept of enhanced absorption in lossy lamella crystals is related to the
time delay of sound waves propagating inside the system. For a bulk porous
material (p) of length L, backed by a perfect reflector, the acoustical path
becomes 2L and consequently the time delay is 7, = 2L/c, where ¢, is the
sound speed in the porous material. In contrast, for a porous periodic crystal
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4. Absorption in periodic structures

composed of the same base material (see Fig.4.5 for a schematic diagram),
¢p is replaced by the group velocity v, associated with the phononic crystal
dispersion relation. The enhancement factor is defined following considera-
tions developed in the context of absorption in chaotic cavities [Beenakker

and Brouwer, 2001]
I'r
= — 4.11
(v (4.11)
where I', T',, are the absorption rates for the bulk porous material and the
porous periodic crystal (i.e., lamella crystal), respectively. The absorption
rate in an asymmetric system (i.e., supported by a rigid backing) is related
to the complex reflection coefficient

Ir(w)|* =1-2Ir, (4.12)

The enhancement factor expresses the acoustic interaction strength of the
crystal, that is to say, enhanced absorption is achieved for v > 1, meaning the
dissipation inside the crystal exceeds the intrinsic material losses of the porous
layer. In other words, for sufficiently long time delay, the reflectance can be
minimal and the absorption extremely high, even for a modest absorption rate.
Thus, from Eq. (4.12) it follows that reflectance (absorption) will decrease
(increase) whenever wave slowing or increased dissipation is encountered. The
reflection coefficient is calculated numerically simulating the complex wave
interaction by coupling free-space sound radiation to Bloch-states inside the
crystal, which is done using a plane wave expansion technique that comprises
in-plane Bloch waves and out-of-plane harmonic waves.

Figure 4.5: a Schematic of the crystal made of lamellas of width W, lattice constant a and
length L. The crystal is backed by a rigid support into which no sound waves penetrate.

Specific details on the theorical methods, as well as numerical simulations
performed to analyze the behaviour of the structure, or the influence of the
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4.2. Extraordinary absorption of sound in porous lamella-crystals

filling fraction and length of the porous layers in the absorption of the system,
are beyond the scope of this section. Hence, the reader is referred to Appendix
A.6 for a detailed description of the formulation. We will concentrate here in
the description of experimental measurements and results.

4.2.1 Experimental verifications
Experimental setup

As mentioned in Section 4.1.3, the characterization of the reflection and ab-
sorption coefficients of a porous material is usually performed in the impedance
tube with a rigid backing, following the TFM, described in the standard ISO-
10534-2. However, taking into account the size and configuration of the de-
signed structure (see Fig.4.6), this methodology results rather impractical in
this particular case. Instead, the characterization is made using a modified
TFM applied in an anechoic chamber. Thus, the experiments account for a
first stage where the reflectance and absorption coefficients for a porous mate-
rial of a given thickness are characterized in an anechoic chamber for a normal
incident acoustic wave, and compared to the same material measured in the
impedance tube, with the aim of validating the experimental characterization
in the anechoic chamber. Once the methodology is validated, the lamella
crystal is characterized in the anechoic chamber following the modified TFM.

Figure 4.6: Bottom view on the suspended crystal made out of porous foam lamellas and
supported by a rigid backing. The lamellas have the width W = 4 ¢cm and length L = 0.5 m.

The lamella crystal used in the experiments is backed by a rigid wood
panel, containing 9 unit cells of lamellas of width W = 4 cm, length L = 50
cm and depth D = 100 cm that are mounted upside down without weight
suspensions, as depicted in Fig.4.6. The filling fraction of the lamella crystal
is ff = 0.36. The performance of the lamella crystal for different incident
angles of the acoustic wave is also studied. For this purpose, the crystal was
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mounted on a rotatable frame with a vertical axis. For the sound excitation
we use a Genelec 8130A loudspeaker placed at a distance of d = 2 m to the
first microphone to ensure propagation of plane waves for the entire range of
frequencies analysed. Two B&K 4189 microphones of 1/2 inch are placed at
the equatorial plane of the crystal and aligned with the central unit cell. Data
from the two microphones are acquired with a CLIO 10 FW (Audiomatica)
and then processed in a computer.

TFM applied in anechoic chamber

We verify the use of the modified TFM in the anechoic chamber and se-
lect a specific range of frequencies to be compared to measurements in the
impedance tube. The TFM used for measuring in-duct acoustic properties
of materials is a well-known method for the determination of the absorption
and acoustic impedances [Chung and Blaser, 1980a,Chung and Blaser, 1980b].
Using this method, the complex reflection coefficient reads as follows

Hyy — Hy pi2kol

r(w) = , 4.13

(@) = T (4.13)
where kg is the wave number in air and [ is the distance from the last micro-
phone position to the sample as shown in Fig.4.7(a). The acoustic transfer

functions expressed in Eq.(4.13) are written as

Hl — e—i/’{:os7
Hy = et (4.14)
9,
pie’
Hyy = o
pae'”?

where p; and 0; are the amplitude and the phase, respectively, measured at the
position i, following the scheme shown in Fig.4.7(a). The absorbing material
is placed at the end of the tube and supported by a rigid backing which leads
to the simple expression for the absorption A = 1 — |r(w)|?. This method is
widely used in acoustics to characterize bulk absorbing materials.

The experimental set-up for the adapted method is illustrated in Fig.4.7(b).
Notice that the distribution of the elements is the same as in the case of the
impedance tube (Fig.4.7(a)). To ensure plane wave generation, the distance
between the source and the first microphone should be long enough for the
range of frequencies analysed. Moreover, to avoid the finite size effects of the
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Figure 4.7: Schematic diagrams of the experimental set-up for the experimental charac-
terization of reflection and absorption coefficients in (a) the impedance tube and (b) the
anechoic chamber.

sample, the distance [ between the sample and the second microphone should
be sufficiently small. Notice also that the periodic crystal is mounted onto a
rigid end. This rigid end is a wood panel, which is characterized later in this
section.

The porous lamella crystal studied in this work is made out of sheets of
a homogeneous foam, consisting of a mixture of polyurethane, polyester and
polyether, compacted and compressed. The exact prediction of the effective
density and dynamic modulus of the saturating fluids in real porous materials
is generally rather difficult because of the very complicated pore geometries.
However, in the case where the foam is considered as a porous material sat-
urated with a Newtonian fluid that is incompressible on the scale of the pore
size, several models are readily available to determine effective acoustic pa-
rameters used for the complex scattering coefficients [Lafarge et al., 1997].

Fig.4.8(a) illustrates the reflectance |r(w)|?> and the absorption A of a
sample of foam of length L = 4 cm measured in the impedance tube using the
TFM and predicted theoretically. The discrepancies at high frequency appear
when approaching the cut-off of the tube. Based on the same technique, we
also conducted measurements in the anechoic chamber of a foam sheet of 1
m? and with a length L = 4 cm. This sheet is placed over the rigid end
following the scheme of Fig.4.7(b). In Fig.4.8(b) we plot the reflectance and
absorption measured in the anechoic chamber, which are comparable with the
corresponding results in the impedance tube. With this comparison we have
validated the feasibility of the TFM in the anechoic chamber over a selected
range of frequencies.

We also characterize the wood panel used as a rigid support in the experi-
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Figure 4.8: Theoretical and experimental characterization of a sample of porous mateiral
with length L = 4 cm obtained by the TFM in (a) the impedance tube and (b) the anechoic
chamber.

mental set-ups. Frequency independent full reflectance and zero absorption is
measured for sound irradiating the panel, validating the assumption of a rigid
backing, as observed in Fig.4.9(a). Additionally, no spectral phase contribu-
tions (evaluated from the complex reflection coefficient) are observed when
waves are fully reflected at the panel, as shown in Fig.4.9(b).
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Figure 4.9: Reference measurements of the rigid end. (a) Theoretical (solid lines) and
experimental (dots) reflectance |r(w)|?® (gray) and absorption A (black). (b) Theoretical
(solid line) and experimental (dots) evaluation of the phase of the reflection coefficient.
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Experimental results
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Figure 4.10: (b,c) Measured (open circles) and simulated (full lines) absorption and re-
flectance versus frequency for three different filling fractions, f = 40%, 70% and 100%. All
data are obtained for a normal incident acoustic plane wave.

From the numerical study (see Appendix A.6), it is predicted that lowering
the crystal filling fraction will improve the absorption of sound due to the
enhancement of the interaction strength. To validate this experimentally
we have constructed various samples made out of the same lamellas with
three different filling fractions, varying the size of the unit cell. Results are
depicted in Fig.4.10. Bulk material properties are obtained measuring the
response of the structure with a filling fraction of 100% from which relatively
strong absorption stems from intrinsic material losses and the slab length L.
When lowering the filling fraction down to 70% and 40%, we observe increased
performances with mean absorption of 0.97 and 0.99, respectively, over an
extended spectral range spanning from 0.7 to 3kHz. Due to a finite number
of unit cells we detect oscillations in the spectrum, overall however, the theory
agrees very well with the average absorption evaluated from experiments.

Due to the interaction strength exceeding unity, complete sound absorp-
tion extends much further away from normal incidence for various directions.
We conducted angular-resolved absorption measurements where we vary the
angle 6 from the normal to the crystal surface. Caused by diffraction asso-
ciated by momentum transfer to the lattice (dash-dotted lines), regions of
higher reflections are predicted, as seen in Fig.4.11 (see Appendix A.6 for a
detailed explanation on the origin of these reflections). This narrow region
is however being surpassed by a spectrally broad region of strong absorption
spanning from 6 = 0° —40°. Both, the finite number of unit cells and the rigid
rotatable frame used for the angular measurements are causing additional un-
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Figure 4.11: Measured and simulated angle-resolved absorption spectrum. (a) Measured
and (b) simulated absorption as a function of frequency and angle of incidence for the
same structure as in the previous measurements, now just with f = 36%. The dash-dotted
line on both contour-maps indicate the condition where |k + G| = w/co. (c), Angular
response of the absorption, representing three measured (open circles) and simulated (full
lines) frequency cuts from the contours in (a) and (b).

wanted reflections in the measurements, as observed in Fig.4.11(a). However,
upon inspecting both experimentally and numerically the absorption for three
different frequencies within the entire resolved spectra, we find overall good
agreement validating broadband absorption for almost any direction as seen
in Fig.4.11(c).

In section 4.1 an anomalous phenomena related to periodic structures
formed by absorptive materials is described and measured experimentally for
the case of sound waves. The study indicates an enhancement and reduction
of transmission and absorption at frequencies around the band gaps, which is
described by the dissipative CMT equations showing the differences encoun-
tered when comparing to the well known reflection and transmission from
conservative periodic structures. On the other hand, experimental results are
in good agreement with TMM analytical predictions.

The concept of enhanced absorption in porous lamella crystals is described
in section A.6. A modified TFM is firstly verified by comparison to the
standard TFM in the impedance tube, and then applied to measure a system
made out of lossy lamellas mounted onto a rigid backing in the anechoic
chamber, demonstrating the ability to increase absorption by lowering the
effective amount of material, not only for normal incident radiation but for
all-angle incidence, and for a broadband frequency range. Conclusions will be
presented in Chapter 6
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In this chapter we present a methodology for elastic band structure and
Bloch mode shape calculations in time-domain. We describe the discretiza-
tion of the equations of motion in space, using the finite element method, and
time, using an explicit Newmark method. The model accounts for a single
unit cell by implementing Bloch boundary conditions. By applying a wide-
band excitation signal the resonant modes in the unit cell are excited and the
conditions set for the analysis of the time-history data, leading to the compu-
tation of the band structures and the Bloch mode shapes. The performance
of the method is analyzed in terms of accuracy, convergence and computation
time and compared to the results obtained by solving an eigenvalue problem
using the finite element method. Finally, the usefulness of the method for a
particular application is briefly discussed.
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5. Band structure calculations in time-domain

The band structure is the main characterization tool to understand wave
propagation characteristics in periodic materials as it represents the disper-
sion properties of waves in periodic media. A great effort has been made
over the last few decades on the development of techniques for band structure
calculations. These include plane wave expansion (PWE) [Ho et al., 1990,
Meade et al., 1993, Johnson and Joannopoulos, 2001, Kushwaha et al., 1993,
Sigalas and Economou, 1993], the transfer matrix method (TMM) [Pendry
and MacKinnon, 1992], multiple scattering theory (MST) [Leung and Qiu,
1993, Wang et al., 1993, Kafesaki and Economou, 1999, Kafesaki et al., 2000,
Liu et al., 2000], the finite-element method (FEM) [Axmann and Kuch-
ment, 1999, Dobson, 1999, Pask et al., 2001], the finite-difference (FD) method
[Yang, 1996], and the finite-difference time-domain method (FDTD) [Ward
and Pendry, 1998,Qiu and He, 2000, Tanaka et al., 2000,Cao et al., 2004, Hsieh
et al., 2006], among others [Jun et al., 2003, Moreno et al., 2002, Checoury
and Lourtioz, 2006, Yan and Wang, 2006, Chiang et al., 2007]. Reviews of
periodic materials and band structure calculations methods can be found in
[Busch et al., 2007, Hussein et al., 2014] for photonic and phononic crystals,
respectively.

Most of these methods assume steady-state solutions (i.e., harmonic time
dependence) and account for Bloch theory [Kittel and Holcomb, 1967], allow-
ing the calculation of the band structure to be performed over a single unit
cell. The dispersion relation of the periodic system is obtained after solv-
ing an eigenvalue problem, which is expressed in terms of a frequency ver-
sus wave vector diagram spanning the latter along the Brillouin zone (BZ).
Among these methods, PWE has been extensively used for acoustic and elas-
tic composites [Kushwaha et al., 1993, Sigalas and Economou, 1993] and it
is appropriate for solid-solid and fluid-fluid composites, while FD methods
are more suited for phononic systems composed of multiple states (e.g. solid-
fluid) [Garcia-Pablos et al., 2000]. However, both methods are not suitable
when dealing with irregularly shaped scatterers. Other approaches, such as
MST, first reported in [Kafesaki and Economou, 1999, Kafesaki et al., 2000, Liu
et al., 2000] for phononic systems, are applicable to media composed of cylin-
drical/spherical scatterers in a host medium (in contrast to square inclusions
in a host medium or layered phononic systems). This method can handle
multiple media states, such as elastic scatterers in fluids or air holes in an
elastic solid medium, and accurately analyze high-contrast problems, where
other methods (PWE, FD, FE) may exhibit slow convergence. Nevertheless,
the geometry of the unit cell is highly restricted. Ultimately, FE has been
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employed as an efficient method for band structure calculation in phononic
systems by formulating an eigenvalue problem where Bloch boundary condi-
tions are also enforced, thus considering a single unit cell. In the context of
FE methods, an alternative approach to the usual implementation of Bloch
boundary conditions [Krattiger and Hussein, 2014] is based on considering a
Bloch operator transformation of the governing differential equations to ob-
tain the strong form of the Bloch eigenvalue problem [Hussein, 2009]. A great
advantage of FE over the previous methods is the ease to deal with complex
geometries.

While the aforementioned methods assume harmonic time dependence to
solve the governing elastic wave equation, some authors have reported on
band structure calculation by computing the time-domain response. Specif-
ically, FDTD method, where the governing equation is discretized in both
space in and time, has been used for that purpose. The time-history data re-
sulting from the simulation is Fourier-transformed into the frequency domain
to get the dispersive characteristics of the medium. However, if Bloch bound-
ary conditions are not imposed, the computational domain has to include
many unit cells and a proper choice of boundary conditions must be realized
[Garcia-Pablos et al., 2000]. By varying the source’s excitation frequency, the
dependence of attenuation (due to evanescence) with the frequency can be ob-
tained and used to identify the bandgaps. Following this approach (i.e., using
several unit cells) the band structure can be computed by analyzing phase
differences at the input and the output of a finite-size structure [Robertson
and Rudy III, 1998, Rubio et al., 1999]. In contrast, Tanaka et al. [Tanaka
et al., 2000] presented an FDTD approach for phononic systems in which
Bloch boundary conditions were imposed, thus reducing the simulation over
a single unit cell, and the band structure was computed by varying the wave
vector through the BZ, using the Fourier transforms of the time-history data.

The computational effort associated with band structure calculations is
usually high because it involves solving a complex eigenvalue problem, in the
case of harmonic time dependence, or a large number of time iterations, in
case of time-domain methods. Moreover, this process is done numerous times
as the value of the wave vector, k, is varied along the BZ (or the Irreducible
BZ (IBZ)). The size of the problem, and hence the computational load, is
particularly high when the unit cell configuration requires a large number of
degrees of freedom (DOF) to be properly described. This could be due to
a complex unit cell material phase topology, requiring a finely resolved de-
scription. Another case is when the presence of defects is incorporated in the
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5. Band structure calculations in time-domain

calculations. Defects are known to have a physical influence extending over
very long ranges in space. This, in turn, requires choosing correspondingly
large unit cells, known as supercells, for the band structure calculations. Con-
sequently, large cells imply large numbers of DOF. The computational com-
plexity of eigenvalue problems is usually higher than matrix inversion, which
is a bottle-neck in terms of computational effort in time-domain algorithms.
For a small to moderate number of DOF the former is far more efficient but,
as it will be demonstrated here, for a certain number of DOF the latter will
become more efficient.

In this chapter, a new methodology based on the finite-element in time-
domain method (FETD) for elastic band structure calculation of 1D and
2D phononic crystals is presented. The proposed method implements a one-
dimensional model for longitudinal wave propagation and a two-dimensional
plane-strain model of a phononic crystal that accounts for coupled in-plane
longitudinal and shear vertical wave propagation modes. Band structure cal-
culations are performed incorporating Bloch boundary conditions so that the
space discretization of the domain is reduced to a single unit cell. A slight
but highly efficient modification of the 2D method incorporated and analyzed
in this work consists in the diagonalization of the mass matrix (i.e., lumped
mass), as the computational efficiency of time domain integration methods is
greatly improved if the process of matrix inversion is done using sparse ma-
trices. The performance of the method is analyzed by computing the elastic
band structures (1D, 2D) and Bloch mode shapes (2D) of a phononic crystal
consisting of a beam lattice of aluminum and an ABS thermoplastic polymer
in 1D, and square inclusions of aluminum embedded in a ABS matrix in 2D.
Results are compared to the standard eigenvalue problem in FE, which is
chosen as the reference method to evaluate the accuracy, convergence and
computational efficiency of the proposed method.

5.1 Unit-cell finite-element model

The continuum equation of motion for a heterogeneous medium is
V.o =pu, (5.1)

where o is the stress tensor, u is the displacement field, p is the density and
dots indicate differentation with respect to time. For an elastic medium,

o=C: Vo, (5.2)
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5.1. Unit-cell finite-element model

where C is the elasticity tensor and V° denotes the symmetric gradient op-
erator,

Vou = % (Vu+ (vw)"). (5.3)

Substituting Eq. (5.2) into Eq. (5.1) the strong form of the general
elastodynamic problem is obtained,

V. C: Vu = pi, (5.4)
Finite-element discretization

The FE method is used for the spatial discretization of the unit cell. The
solution domain € is defined to span the range 0 < (z,y) < a, where a is the
lattice constant. The strong form of the general elastodynamic problem in
Eq. (5.4) is converted into the weak form introducing a weighting function w
and integrating over the solution domain

—/Q (sz :C: Vsu) dQ) = /Q (pw - u) dQ. (5.5)

Note that a force term is not included as the loading is made in terms of
prescribed displacement. The solution domain is discretized into n.; element
domains 2°¢,

n
Q=[] (5.6)
e=1

A typical weighting function for an element in the domain has the form,
w1 = Nagwia, A=1nep, (5.7)

where Ny is a shape function associated with the node A, wi4 is the A™
component of the approximate weighting function, and ne, is the number
of element nodes. The time dependent displacement field is discretized in a

similar way,
u:NBdlB, B = 1,nen, (5.8)

where d;p is time dependent and express the nodal displacement. Substitut-
ing Eq. (5.7) and Eq. (5.8) into Eq. (5.5) yields

—/ (VSNAwlA:C:VSNBdlB) dQ:/ (pNaw1ia - Npdip)dQ. (5.9)
Q Q
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5. Band structure calculations in time-domain

Equation (5.9) can be expressed as a system of algebraic equations in the
following matrix form,

~MU + KU =0, (5.10)

where U and U are the nodal displacement and acceleration, respectively. M
and K are the mass and stiffness matrices, respectively, and are assembled
from the element mass and stiffness contributions following the direct stiffness
method,

el

M=> M- (5.11)
e=1
Nel

K=> K" (5.12)
e=1

The time-evolving elastodynamic wave propagation can be analyzed by
the time integration of Eq. (5.9). Together with the application of periodic
Bloch boundary conditions and a proper transient excitation, this equation
can be solved for different values of the Bloch vector to obtain the band
structure of a periodic system.

Bloch boundary conditions

Bloch theory describes the behavior of a particle wavefunction in an infi-
nite periodic medium in terms of wave functions at the reciprocal space [Kittel
and Holcomb, 1967]. A function accomplishing this feature may be written
as the product of the unit-cell Bloch function, which is periodic over the unit
cell, and a periodic function having the same periodicity

u(x,k;t) = u(x,k) el (K x—uwt) (5.13)

in a two-dimensional geometry, x = (z,y) is the position, k = (k;, k) is the
Bloch wave vector and u is the Bloch function. Consider now the unit cell
represented in Fig. 5.1(a). The set of edge nodes belonging to the top and right
edges (dashed lines in Fig.5.1(a)) constitute redundant DOF as they actually
belong to neighbouring unit cells. Hence, these sets of DOF are removed by
linking them to those DOF belonging to bottom and left edges (continuous
lines in Fig. 5.1(a)). The equations representing boundary conditions are
collected in matrix form and inserted into the mass and stifness matrices
through a transformation matrix. Specific details on how these sets of DOF
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5.2. Unit-cell time-domain simulation

are defined, linked and inserted into the Bloch transformation matrix can be
found in [Krattiger and Hussein, 2014].

5.2 Unit-cell time-domain simulation

Time integration method

Equation (5.9) is discretized in time using one of the several forms of
Newmark’s time-integration methods [Newmark, 1959], yielding in the com-
putation of displacements, velocities and accelerations for increasing values of
time, ¢t. The subsequent system of equations obtained from Newmark’s family
of methods are

1
Dyi1 = Dy + AtV + (At)? [(2 _ 5) At BAa|. (a9
Vii1 =Vi+At[(1—7) A; + vAi11], (5.15)
MA;i1 +KD; 1 = Fiq1. (5.16)

In these equations, D, V and A denote the vector displacement, velocity
and acceleration, respectively. The time interval is denoted At and 7 indicates
the time step. M and K are the mass and stiffness matrices, respectively. 3
and v are the Newmark parameters determining the specific type of Newmark
scheme, affecting stability and accuracy of the numerical simulation. For this
work these parameters are chosen to be § =0, v = 1/2, providing an explicit
center difference Newmark scheme, which is computationally efficient and less
storage is required than for implicit methods. However, an explicit Newmark
scheme is conditionally stable and thus, time interval is defined such that the
Courant-Friedricks-Levy (CFL) lies at the stability limit

e
Ar= 21 (5.17)

Cmax

where At is the time interval, Ah€ is the element size and cyay is the highest
phase velocity of any of the media in the domain. For time intervals below
this criterium some accuracy is compromised but stability is still guaranted.

The procedure for solving elastodynamic wave propagation using New-
mark scheme is done as follows: given K, M, F and proper initial conditions
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5. Band structure calculations in time-domain

for prescribed displacement, the following steps are needed to compute dis-
placement, velocity and acceleration:

1. First step consist of obtaining acceleration for ¢ = 0 applying Eq. (5.16).

2. Time iteration starts to evolve and acceleration, displacement and ve-
locity for future times are calculated. Eq. (5.16) is used to evaluate
A

3. Then, future displacement D;; is obtained using Eq. (5.14).

4. Finally, Eq. (5.15) allows to determine V1.

Transient excitation
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Figure 5.1: Input and output signals used for 2D time-domain simulations. The excitation
signal is placed at two random and different locations. (a), (b) illustrate the Ricker wavelet
used as excitation and the recorded signal at a random point in the unit cell, respectively.
(c), (d) represent the Fourier transform of the previous mentioned signals. (e) show the
location of both sources and detector in the unit cell.

A wide-band frequency signal is applied to excite all the modes needed to
calculate the dispersion relation of the system. A ricker wavelet (the so-called
Mexican hat signal) is applied as a prescribed displacement at a random point
in the unit cell, as shown in Fig. 5.1(a), where a squared unit cell of L =1 m
is represented. The ricker wavelet is the second derivative of a gaussian pulse,
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5.2. Unit-cell time-domain simulation

defined as
a2t2
u(t) = a? (a2t2 - 1) e 2, (5.18)
where fiax = \/?a is the central frequency of the spectrum. The main ad-

vantage of this signal is the absence of zero-frequency component, which is
susceptible to introduce numerical artifacts in the scheme and should be fil-
tered out from the recorded field displacement if present [Ward and Pendry,
1998]. However, due to the limited band-width of this signal, several ricker
wavelets of different central frequencies are defined and added in time do-
main to cover a wide spectrum as illustrated in Figs. 5.1(b), 5.1(d), where
the excitation signal is represented in time and frequency domains. Here, a
combination of 4 ricker wavelets is designed to cover the desired frequency
range (i.e., 12 first branches).

Calculation of frequency band structure and Bloch mode shapes

The procedure to obtain the band structure starts by setting up a value for
the Bloch wave vector k, which is inserted into the mass and stiffness matrices
through the Bloch boundary transformation matrix (due to the dependence on
the wave vector, the Bloch boundary transformation must be applied at each
k point). Then, a transient excitation is applied at a random point within
the unit cell for ¢ = 0. As time starts to evolve, Eqgs. (5.14), (5.15) and
(5.16) are used to solve for future displacements, velocities and accelerations
at every node. A detector is randomly placed at one node in order to record
the temporal signal for the displacement, as illustrated in Fig. 5.1(a). For a
sufficiently large number of time iterations, the displacement field signal is
long enough to capture all the resonant modes in the unit cell (see Section 5.4
for details). The time-history data is Fourier transformed into the frequency
domain obtaining a set of resonant modes, as illustrated in Fig. 5.1(e). Each
of the peaks of these resonant modes in the frequency domain constitute the
eigenvalues of the vibrational modes for the given Bloch wave vector k. The
spanning of k along the IBZ allows for the obtention of the resonant modes,
and hence, the dispersion relation.

In addition to the band structure calculation, the computation of Bloch
mode shapes is also considered to fully characterize the response of the struc-
ture to dynamic loading. In opposition to the resolution of an eigenvalue
problem, in which eigenvectors and eigenvalues result in the band structure
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5. Band structure calculations in time-domain

and Bloch mode shapes, the proposed time-domain method allows for the
obtention of the eigenvalues solely. However, the well-known experimental
modal analysis can be considered to compute the Bloch mode shapes from
the frequency response functions (FRF). Moreover, the Modal Assurance Cri-
terion (MAC) [Allemang, 2003] is also employed in order to identify and solve
degenerate modes at high symmetry points by comparing Bloch mode shapes
obtained from sources placed at two different points in the unit cell (see
Fig. 5.1(a)). The computation of Bloch mode shapes imply to record the
displacement field signals at every node in order to obtain the FRF’s. Hence,
the number of detectors used is equivalent to the number of nodes in this
case.

5.3 Numerical examples

The FETD method is used to compute the band structure of 1D and 2D
phononic crystals in this section. Results are presented and compared to the
solutions obtained by solving the standard eigenvalue problem by FE, selected
as a reference method. A FDTD approach considering Bloch-Floquet bound-
ary conditions is developed for the 1D case. All the numerical calculations
are unit cells made of aluminum and ABS. The elastic properties of both
materials are, density p = 2700%, Young Modulus, £ = 70G Pa, Poisson co-
efficient, v = 0.34 for Aluminum and p = 1050%, FE =23GPa and v = 0.34
for ABS.

1D phononic crystal

The one-dimensional case accounts for longitudinal wave propagation (ax-
ial modes) along a beam composed of ABS and aluminum with a filling frac-
tion ff = 0.5. Periodic boundary conditions (Bloch-Floquet) are applied on
both ends of the beam. Hence, the beam constitutes a unit cell and represents
a periodic medium of infinite length. Band structure results are depicted in
Fig. 5.2, including calculations using FE (eigenvalue problem), FDTD and
FETD. The unit cell is discretized into n. = 256 elements and, for time-
domain methods, the time evolution is simulated over ng = 229 (1.048.576)
steps with a time interval At = 5.4 x 1077 s, as stated in Eq.(5.17). As ob-
served in Fig. 5.2 similar eigenvalues are obtained using FEM and FETD, and
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Figure 5.2: Phononic band structure for longitudinal elastic waves in a 1D unit cell. An
aluminum and ABS matrix unit cell is studied, with a filling fraction, ff = 0.5. The unit-
cell is discretized into n.; = 256 elements. Black solid lines, blue dots and green triangles
correspond to FE, FETD and FDTD methods, respectively.

some discrepancies are found for FDTD case. These differences are analyzed
in detail in Section 5.4.

2D phononic crystal

The two-dimensional case consists of a square lattice composed of an
ABS matrix and an aluminum solid inclusion in the center of the unit cell,
as depicted in Fig. 5.1(a). The filling fraction of the periodic structure is
ff = 0.25. Longitudinal and shear wave propagation is considered. Fig-
ure 5.3 illustrates the FETD (blue/purple dots) and FEM (black solid lines)
calculations of the band structure along the boundaries of the IBZ for (a)
consistent and (b) lumped mass matrices. Both schemes assume a uniform
grid of n x n = 322 two-node elements, resulting in ngor = 2178 total nodal
degrees of freedom, which, after the application of Bloch BC’s are reduced to
Ndof = 2048, since nodes lying at top and right sides of the unit cell belong
to neighboring unit cells and are condensed out. The k-space is discretized
such that [ = 17. Hence, a total of niy = 49 k-points are evaluated to gen-
erate the band structure. The time interval is set to At = 1.57 x 107% s and
ne = 28 (262.144) time steps. The corresponding frequency resolution is
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5. Band structure calculations in time-domain

Af =1/(At - ngeps) = 2.4 Hz. An excellent agreement is noted between the
proposed method and the standard eigenvalue problem in FEM. A detailed
analysis of the accuracy in terms of the number of time steps and degrees of
freedom and computational efficiency for k = (7/2a,7/2a) (grey dashed lines
in Fig. 5.3(a)-(b)), is presented later in section V.

(@ (b)
s | )

. FE (CM)

. — FE (LM)
FETD (CM)

°o  FETD (LM)

s

w*a/c
w*a/c

Normalized frequency; Q
Normalized frequency; Q

r X M T r X M r

Figure 5.3: Phononic band structure for longitudinal and shear vertical elastic waves in a
2D square unit cell along the IBZ. FE and FETD methods for (a), consistent, (b) lumped
mass cases are shown. Black solid lines and blue/purple dots corresponds to FE and FETD,
respectively.

Bloch mode shapes

The periodic Bloch mode shapes computed with the time-domain algo-
rithm, ¢4, are obtained from FRF’s (experimental modal analysis) and ex-
panded to full size using the transformation operation [Krattiger and Hussein,
2014]. A comparison of the Bloch mode shapes using FE and FETD for the
3" branch, k = (7/2a,7/2a), is depicted in Fig. 5.4 for consistent and
lumped mass matrices, indicating an almost identical structure. The Bloch
mode-shape error is quantified by comparing the FETD mode shapes, ¢4,
and the FEM mode shapes, ¢y, and defined as

e —1— abs [¢tdl¢fe]
" |Gl |Ppel

where abs|-] denotes the complex modulus, and | - | denotes the vector two-
norm. The resulting error is €, ¢m = 1.42 - 1074, em,im = 4.66 - 1075 for the
case shown in Fig. 5.3 corresponding to consistent and lumped mass matrices,

(5.19)
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respectively. It is also noted that the error is of the same order for the 10 first
branches, below the following limits e, ¢ < 1.94 - 1074, em,im < 1.56 - 1074,

FE (CM) FETD (CM)

FE (LM) FETD (LM)

Figure 5.4: Mode shapes corresponding to branch 3, k = (7 /2a, 7/2a) for the 2D phononic
crystal. (a), (c) illustrate mode shapes extracted from FE calculations for consistent, and
lumped mass, respectively. Bloch mode shapes calculated using FETD method are depicted
for (c) consistent, and (d) lumped mass matrices.

5.4 Method performance

Accuracy

We evaluate the error on the total number of steps by comparing the
eigenvalues using FETD to the ones obtained by FE for a unit cell of the
same size (n x n = 322), defined as

= e g, (5.20)

e
° ffe
where fi4, fre are the computed eigenvalues for the 3" branch, k = =« for

time-domain methods, FDTD and FETD, and FE, respectively. 1D results
are shown in Fig. 5.5(a). The error converges to a minimum and constant
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(b) 2D

FETD (CM)

— FETD (LM)

Error (%)
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Figure 5.5: Error in frequency for increasing number of steps on time-domain methods
for (a), 1D, k = w/a, and (b), 2D, k = (w/2a,7/2a). Results are shown for branch
3. Vertical dashed black lines indicate the number of time iterations used in this work,
nst1p = 1.048.576, ngop = 262.144.

value as the number of steps is increased, falling quickly below 1 % and being
almost negligible for ny > 220, In contrast, the finite-difference approach
converges to a slightly larger value of 1.5 %. Similar results are found in 2D
for the comparison between consistent and lumped mass matrices, as shown
in Fig. 5.5(b). As stated previously, the frequency resolution, Af, is inversely
proportional to the product of time interval and total number of steps, re-
sulting in a higher resolution (lower Af) as the number of steps is increased.
This is clearly observed in the sawtooth pattern of the error signals, where
Af is related to the difference between the local maxima and minima.

Convergence

The error in band structure calculations as a function of DOF is calculated
using the following expression

iy = Paotis ~ Ioepfe g0 (5.21)

fNrefvfe

where fn,,;,, are the eigenvalues computed in time-domain for increasing
number of DOF and [, , se are eigenvalues computed with a FE model
discretized into n. = 512 and ng.y = 512 periodic DOF in 1D, and ng =
128 * 128 and ng4,y = 32768 periodic DOF in 2D. The total number of set
for these calculations is highlighted in Fig. 5.5 by vertical dashed lines. Error
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(b) 2D

FETD (CM)
FETD (LM)
FE (CM)
FE (LM)

Figure 5.6: Error in frequency estimation for increasing number of DOF for (a), 1D, k = T,
and (b), 2D, k = (7/2a,7/2a). Results are shown for branch 3. Vertical dashed black lines
illustrate the number of DOF used in Figs. 5.2, 5.3, ndof,10 = 256, Ndof,2p = 2048.

results are depicted in Figs. 5.6(a)-(b). The convergence is slower for FDTD
approach in 1D, as for FE and FETD the error is reduced to values below
1% for a moderate number of DOF (32 in 1D, 2048 in 2D). It is noted that
noticeable differences are not found when comparing FE and FETD methods,
both for consistent and lumped mass matrices.

Computational efficiency

The computation time of the proposed method in time-domain depends
mainly on the computational complexity of the matrix inversion needed to
compute Eq. (5.16), which has to be done ng times for each k point. On
the other side, the computational complexity of the eigenvalue decomposi-
tion determines the computation time for FE approach. A similar trend is
observed in Fig.5.7 for (a) 1D, and (b) 2D models, where computation time
for models of increasing DOF is depicted in logarithmic scale. For low num-
ber of DOF eigenvalue decomposition is much more efficient. However, as
the model is discretized into more elements, time-domain algorithms turn to
be faster, as the computational complexity of the matrix inversion is slighlty
lower than eigenvalue decomposition. It is noted that time-domain algorithms
are strongly speeded-up when sparse matrices are used. Such a case is de-
picted in Fig.5.7(b) by comparing FETD results for consistent (blue line) and
lumped mass (purple line) matrices. Moreover, the break-even point is found
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for Npor = 32768 for the lumped mass case.
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Figure 5.7: Computation time for increasing number of degrees of freedom for (a), 1D,
k =, and (b), 2D, k = (7/2,7/2). Results are shown for branch 3. Vertical dashed black
lines illustrate the number of DOFs used, ndos,10 = 256, Ndaof,2p = 2048.

A methodology for elastic band structure calculation in time-domain is
presented in this chapter. The domain is discretized in space in finite ele-
ments and time using an explicit Newmark time-stepping scheme, and in-
corporates Bloch boundary conditions to reduce the model to a single unit
cell. Band structure and modeshapes are calculated and compared to the re-
sults obtained using standard eigenvalue problem in FE for 1D and 2D cases,
showing good accuracy and fast convergence. In 1D, band structure results
are also compared with the finite difference approach showing faster conver-
gence and lower error estimating eigenvalues regardless of the total number
of steps. Ultimately, computation times are calculated for unit cells with
increasing number of DOF showing a lower computational complexity for
the time-domain approach in comparison to the resolution of an eigenvalue
problem. Further conclusions will be presented in Chapter 6.
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6.1 Conclusions

The work reported in this thesis can be divided in two different parts. On
the first part we concentrated in the study of transmission, reflection and
absorption of acoustic waves in phononic crystals, considering wave focus-
ing and collimation in transmission in Chapter 2, field enhancement due to
soft reflection in chirped structures in Chapter 3, and the control of losses in
layered dissipative systems in Chapter 4. The second part of the study is pre-
sented in Chapter 5 and was devoted to the development of a computational
methodology for elastic band structure calculation in the framework of the
finite element in time-domain method. We present here conclusions on the
topics considered in this work and future lines of research as well potential
technological applications.

97



6. Concluding remarks

6.1.1 Control of wave propagation in transmission

In Chapter 2 we illustrated the concept of focalization and collimation of
beams in terms of the relation between the curvature of the spatial dispersion
curves of the sonic crystal and the angular components of the incident beam,
and we performed numerical simulations in a simple 2D geometry to explain
the concept. In general terms, for a finite size sonic crystal, the focalization
of waves behind the crystal is related to the negative diffraction experienced
by the wave inside the structure. In this situation, a wave front acquires
positive curvature inside the periodic structure due to negative diffraction,
when the wave front go through the crystal and propagates in the homoge-
neous medium with positive diffraction, the accumulated phase differences
are compensated at a given distance where the beam is focused. However,
the focusing mechanism is strongly influenced by the angular spectrum of the
incident beam which in turn depends on the size of the source, a narrower
source posses a broader angular spectrum and viceversa. It was observed
that the interplay between the angular spectrum of the source and the spatial
dispersion curves of the crystal determines the beam quality and amplitude
of the focused beam. Considering the optimum case, where the main angular
components of the source fitted completely with the corresponding isofre-
quency contour at a given frequency, a well focused beam was obtained and
the focusing distance predicted from the curvature of the spatial dispersion
curves of the crystal. Moreover, the focusing distance depends on frequency,
adding an interest feature to the focusing mechanism, as slight variations in
the frequency of the incident beam result in a considerable variation in the
focusing distance.

A two-dimensional case was considered in this part of the chapter for con-
venience, allowing the use of sources of different sizes. However, similar results
were obtained for a 3D wood-pile sonic crystal and an acoustic source that
possess radial symmetry (see Appendix A.1). However, the strong scattering
inside the sonic crystal in the diffractive regime and the absence of symmetry
between the source and the sonic crystal reduces the efficiency of the focus-
ing system in terms of gain. In the second part of Chapter 2 we presented
a different approach to increase the efficiency of the focusing system. With
this regard, an axisymmetric structure composed of rigid toroidal scatterers
that match the symmetry of the source and working in the long-wavelength
regime was designed, as a gradient index lens. Using the homogenization
theory, that allow to consider the structure as an homogeneous medium with
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effective properties, we considered a hiperbolic secant profile to define the re-
fractive index variation in the radial direction. We compared the results from
the ray tracing trajectories, the effective fluid medium approximation and nu-
merical simulations using the axisymmetric structure, all in good agreement.
Finally, the efficiency in terms of gain of the proposed system was also vali-
dated numerically, showing a remarkable value of sound amplification higher
than 8 dB was obtained, which is also in agreement with the experimental
results shown in Appendix A.2.

6.1.2 Soft reflection in chirped sonic crystals

Chapter 3 was devoted to the study of reflection phenomena in chirped sonic
crystals. We demonstrated a mechanism for sound field enhancement for plane
waves propagating along chipred sonic crystals in which the lattice constant is
reduced along the propagation direction. This mechanism is related to the soft
reflection of waves due to a progressive slowing down of the sound velocity as
it propagates through the crystal until it reaches a local band gap, and occurs
for frequencies around the first band gap. In this situation, the acoustic wave
energy is selectively concentrated at different planes of the crystal depending
on the parameters of the structure and the frequency. It is concluded that the
theoretical approach based in a coupled mode theory predicts adequately the
sound field enhancement mechanism for different chirped profiles. The results
and insights from the CMT, as well as the numerical harmonic analysis and
experimental results confirm the validity of the main assumption adopted,
the consideration of our structure as locally periodic. This is also validated
by means of the analysis in time-domain, that allow to measure the time
spreading of the reflected pulse and compare this results to the ones extracted
from the analysis of the band structure, showing a good agreement.

6.1.3 Absorption in periodic layered media

In Chapter 4 an anomalous phenomena related to periodic structures formed
by absorptive materials is described and measured experimentally in the con-
text of sound waves. The study indicates an enhancement and reduction of
transmission and absorption at frequencies around the band gaps. The effect
is described in a general context (for different types of waves) by the disipa-
tive CMT equations, calculating the transmission, reflection and absorption
coefficients, and showing the differences encountered when comparing to the
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well known reflection and transmission from conservative periodic structures.
The experimental study is particularized to the case of sound waves, demon-
strating a simultaneous enhancement of reflection and transmission as well
as a reduction in the absorption at frequencies around the band gap in good
agreement the TMM predictions.

The concept of enhanced absorption in porous lamella crystals is also
demonstrated . A modified TFM is firstly verified by comparison to the
standard TFM in the impedance tube, and then applied to measure a sys-
tem made out of lossy lamellas mounted onto a rigid backing in the anechoic
chamber, demonstrating the ability to increase absorption by lowering the
effective amount of material, not only for normal incident radiation but for
all-angle incidence, and for a broadband frequency range. Applying this con-
cept, highly absorptive materials can be engineered by means of increasing
the sound material interaction strength (i.e., the group time delay) resulting
in a dramatic decrease of reflectance. The counter intuitive ability to increase
absorption by lowering the effective ammount of material provides an inter-
esting feature for minimizing noise in different technological applications by
producing an efficient acoustic sealing.

6.1.4 Band structure calculations in time-domain

A new methodology for elastic band structure calculation in time-domain was
presented in chapter 5. Band structure and modeshapes were calculated and
evaluated in terms of accuracy and convergence, using the standard eigenvalue
problem in FE as the reference. In terms of computational efficiency, when a
high number of DOF is needed to discretize the unit cell, the computational
complexity of the eigenvalue decomposition turns into higher computation
times than the proposed approach in time-domain. In conclusion, a variety
of studies making use of complicated geometries or even the introduction of
time-dependent designs, (ie., unit-cells incorporating fluid flow channels, etc.)
can benefit from this methodology.

On the other hand, further improvements can be implemented in order
to increase the computational efficiency while maintaining similar accuracy.
A pseudperiodic initial field distribution, consistent with the periodicity en-
forced at the boundaries of the unit cell, can reduce considerably the total
number of time steps needed to compute the band structure [Cao et al., 2004].
Moreover, the length of the time-history data can be dramatically reduced
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considering a post-processing method for the transformation to the frequency
domain different from the fourier transformation, the high-resolution spectral
estimation method [Su and Wang, 2010].

6.2 Future work

Focalization and collimation of acoustic waves is a topic that has received a
lot of attention over the years and the time to move to technological applica-
tions is arriving. With this regard an interesting application in the audible
regime is found in Ref. [R, 2009] in the context of phase control in line array
waveguides. In this work, the use of multiple scatterers with lenticular shape
is proposed. These scatterers ara arranged periodically to form a triangular
shaped structure an placed inside a horn aiming to equal the pase at the out-
put of the horn. We are interested in an improvement of this design using the
concepts presented in this work under two different approaches, the design of
a structure to work in the long wavelength regime and the improvement of the
shape, size and distribution of the scatterers using optimization techniques.

In the field of acoustics and considering conservative systems, the results
are independent of the spatial scale of the structure, and in principle, the
soft reflection phenomenon could be scaled-down and observed in micro- or
nanoscale phononic (so called hypersonic) crystals [Gorishnyy et al., 2005]. At
these scales, sound waves are described in terms of phonons, and the ideas pre-
sented in this work could find application for heat management in acoustical
or acousto-optical devices. Recent works in this direction show indeed that
manipulation of phonon dispersion properties can allow thermal transport
control [Hopkins et al., 2010]. Generally, the effect of wave energy concen-
tration demonstrated here opens a possibility of increasing the efficiency of
detectors and absorbers, both in acoustics and optics, since slow phonons and
photons can be absorbed and harvested with a higher probability.

An interesting effect observed during the realization of this work was the
appearence of an intense field enhancement in chirped structures at very high
frequencies that cannot be explained using the coupled mode theory. This
enhancement seems to be of a different nature than the one reported in this
work and could be explained in terms of resonances or defect modes. We will
explore this effect and try to find the physical principle.

Dissipation in periodic structures is probably the topic less explored so far
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and it is now a hot topic in the phononics community. The concept of critical
coupling to achieve maximum absorption is clearly a valuable line of research
to explore [Romero-Garcia et al., 2015] in the pursuit of a real deaf body, i.e.,
a system capable of a broadband absorption and minimum reflection.

In the context of band structure calculations, we have succesfully ap-
plied the methodology presented in this work to the computation of the band
structure in phononic crystals and metamaterials incorporating an embedded
network of fluidic channels, where the resolution of an eigenvalue problem in
finite element is not suitable to compute the band structure. In this work,
presented in Phononics 2015: 3rd International Conference on Phononic Crys-
tals/Metamaterials, Phonon Transport and Phonon Coupling, under the title:
An elastic medium with a time-changing band structure, we demonstrated how
the band structure of these structures can be tuned by incorporating fluidic
channels. For this system, we utilized and integrated computational method-
logy based on a finite-element time-domain scheme, channel fluid dynamics
and fluid-structure interaction, and demonstrated how the band structure is
tuned ”on the fly” by varying the composition of the fluid. However, in this
work we assumed an incompressible fluid flow at low Reynolds numbers for
the fluid channels. The next step in this research line is to implement the
full Navier-Stokes equations in order to increase the influence of the fluid
properties in the band structure.
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Appendices A.1, A.2, present the publications “Formation in collimated
sound beams in 8D sonic crystals” and ”Wawve focusing using symmetry match-
ing in axisymmetric acoustic gradient index lenses”, which constitute most of
the contents included in Chapter 2 and describe phenomena related to trans-
mission of waves through finite structures. Appendices A.3, A.4, include two
papers related to reflection of waves in chirped sonic crystals, named ”“En-
hancement of sound in chirped sonic crystals” and “Enhancement of sound
by soft reflections in exponentially chirped crystals”, which are the subject of
Chapter 3. Finally, Appendices A.5, A.6, present two publications devoted to
the study of absorption in periodic structures, described in Chapter 4, which
are entitled "Enhanced transmission band in periodic media with loss modu-
lation” and “Extraordinary absorption of sound in porous lamella-crystals”.
Finally, another publication describing the work included in Chapter 5 is not
included here, as it will be submitted after the publication of this thesis.
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Appendix A1

Formation of Collimated Sound
Beams in 3D Sonic Crystals

A theoretical and experimental study of the propagation of sound beams
inside and behind three-dimensional sonic crystals at frequencies close to the
band edge is presented in this paper. Focusing and collimation of the beam be-
hind the crystal is predicted theoretically and numerically and demonstrated
through experimental measurements. The presented effects are analyzed and
interpreted in terms of the curvature of spatial dispersion curves and surfaces

of the sonic crystal and are related to the negative diffraction close to the
edge of the propagation band. The author of this thesis participated in the
numerical simulations and carried out the experimental measurements and
post-processing of these results.
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A theoretical and experimental study of the propagation of sound beams in- and behind three-dimensional
sonic crystals at frequencies close to the band edges is presented. An efficient collimation of the beam behind
the crystal is predicted and experimentally demonstrated. This effect could allow the design of sources of

high spatial quality sound beams.

PACS numbers: 43.35.-c

Focusing and propagation of sound beams is of funda-
mental importance in several branches of applied acous-
tics, such as tomography, acoustic microscopy and imag-
ing or sonar communication. To achieve optimal focus-
ing, and to maximize spatial quality of the sound beams,
several mechanisms have been proposed in acoustics, like
the use of acoustic lenses' or the design of Gaussian beam
transducers.” Recently it has become apparent that the
materials whose properties are modulated in space, also
known as sonic crystals (SCs) in acoustics’ or photonic
crystals in optics®, can modify the spatial dispersion of
propagating waves. This feature opens new possibilities
to control the diffractive broadening of sound beams. In
particular the beams can propagate in modulated mate-
rial without diffraction (the effect also referred to as self-
collimation), as predicted and demonstrated in optics’
and in acoustics.” Self-collimation is based on the exis-
tence of flat segments of spatial dispersion curves (the
curves of constant frequency in l;—space). More recently
the three-dimensional (3D) self-collimation by SCs was
experimentally demonstrated,” which is based on the for-
mation of flat areas of the isofrequency surfaces.

In addition to non-diffractive propagation inside the
SCs, the modification of the spatial dispersion can also
produce phenomena outside the crystal such as lensing™”
and superlensing.'’ These beam propagation effects be-
hind the SCs are related with the negative diffraction
inside the periodic structure. The character of the beam
propagation behind the SC depends on the wave front of
the beam acquired in the system. In particular, if the
wave front of the beam acquires positive curvature (due
to propagation in a material with negative, or anomalous
diffraction), the beam can be focused behind the modu-
lated medium, which enables above discussed lensing and
superlensing effects.

Although the focusing of sound beams behind a 2D
SCs is being intensively investigated'' the overall picture
of the beam formation and propagation is still unclear.

a)Electronic mail: alcebrui@epsg.upv.es

FIG. 1. (Color online) (a) Experimental configuration, (b)
unit cell of the 3D SC, (c) isofrequency surfaces and (d) cross-
section of dispersion surfaces.

Apart from the above mentioned phase transformation
effects due to the negative diffraction of waves propagat-
ing inside of the SC, spatial (or angular) filtering effects
also come into play. The negatively curved segments of
dispersion lines are generally surrounded by the angular
bandgaps, which are angular areas where sound cannot
propagate. The latter results in a modification of the
angular spectrum of the beams,'” recently demonstrated
in both optics'® and acoustics.'" These two beam forma-
tion mechanisms combine, and give rich possibilities of
formation of the beams with desired spatial characteris-
tics (angular distributions) and with desired character of
focusing.

In the present work we study, experimentally and theo-
retically, the sound beam formation behind a 3D SC with
a woodpile-like structure. We experimentally demon-
strate the formation of high spatial quality and well-
collimated beams behind the SC, based on the above
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described spatial filtering and negative diffraction effects.
In this letter, we present first the isofrequency contours of
SC, and identify the ranges of the frequencies where the
curvature of the isofrequency surfaces is positive. Based
on these results we design the samples, and perform the
sound beam propagation experiments. The most impor-
tant result is the experimental demonstration of the for-
mation of a well focused beam. Finally, we investigate
the beam propagation in a simplified paraxial approxi-
mation, and obtained a good quantitative interpretation
of the experimental measurements.

Figure la shows the experimental setup. The 3D SC
is formed by two 2D structures of square symmetry, em-
bedded one into another after a relative rotation by 90
degrees, which results in a 3D woodpile-like structure.
Each of 2D structures consist of 20x20 matrix of steel
cylinders of a radius » =0.8 mm, and the lattice constant
a = 5.25 mm (see unit cell in Fig. 1b). The beam, emit-
ted by an ultrasonic source, propagates through the SC
along the z direction. The acoustic field is measured by a
needle hydrophone positioned by a three motorized axes
governed by acquisition system. As shown in Fig. la,
the experimental set up is immersed in a plexiglass tank
filled with distilled water.

The eigenfrequency analysis of the sound wave propa-
gation was performed numerically using Finite Element
Method."” The periodicity of the system is considered by
imposing Bloch-Floquet boundary conditions of the unit
cell (Fig. 1b). The path around the first irreducible Bril-
louin zone represents the main directions of symmetry in
3D. We analyze the propagation along I'X direction in
the present work.

Figure 1c shows the isofrequency surfaces for three dif-
ferent frequencies (230, 240 and 250 kHz) in the second
band as well as the cross sections of the isofrequency
surfaces by k. = 0, k; = 0 and k, = 0 planes respec-
tively. Fig. 1c shows the quarter of the isofrequency
“bubble” for these three frequencies. The isofrequency
lines in k,=0, plane are shown in detail in Fig. 1d. The
lowest of highlighted frequencies (230 kHz) corresponds
to non-diffractive propagation inside the SC (flat isofre-
quency line). The isofrequency surfaces (and the lines
in the cross plane) at slightly higher frequencies have ar-
eas with a positive curvature, which cause the desired
focusing behaviour.

The experimental measurements of the beams propa-
gating behind the SC are summarized in Fig. 2. Three
different frequencies are represented in (a) upper, (b)
middle, and (¢) bottom panels. The upper panel (235
KHz) shows the beam propagation for frequency corre-
sponding to self-collimation inside the crystal.” The bot-
tom panels in Fig. 2 (260 kHz) show the beam prop-
agation for the case when a strongly curved and rela-
tively small “bubble” of isofrequency surface occurs (Fig.
1c). As the area of the isofrequency surface responsible
for the negative diffraction and eventually for focusing
is very small, just the central (paraxial) part of the an-
gular spectrum is focalized. One part of the remaining
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FIG. 2. (Color online) Experimental measurements and sim-
ulations of the acoustic field pattern behind the SC at (a) 235
kHz, (b) 250 kHz and (c) 260 kHz. (1) XZ-cross-section of
the beam behind the SC; experimental (2) and numerical (3)
ultrasound field distribution in the XY plane at point z;=195
mm behind the SC.

angular components is reflected, as it corresponds to the
angular bandgaps. The other part of angular compo-
nents propagates along different directions, giving rise to
side-lobes as seen in Fig. 2c. The intermediate situa-
tion, corresponding to the frequency 250 kHz, is shown
in the middle panels of Fig. 2. The diffraction is neg-
ative for the propagation inside the SC due to positive
curvature of the dispersion curves (see Figs. 1c and 1d).
The isofrequency “bubble” is large enough to transmit
a sensible portion of the angular spectrum. This case is
most relevant for the goals of this work.

We interpret the focusing of the beam in the terms
of Ref. : the sound beam propagating in bulk of SC
with negative diffraction accumulates the increasing pos-
itive (anomalous) curvature of the beam wave front. Be-
hind the SC, the propagation in the (normally diffract-
ing) homogeneous medium compensates the accumulated
negative diffraction acquired inside the SC. The beam is
focalized at some distance zy where the negative diffrac-
tion inside the SC and positive diffraction behind the SC
compensate one another.

The analytical estimation of the focal distance is possi-
ble considering the approximation of small filling fraction
of the SC, f = V,/Vyue (Vs and V,,. are the volume oc-
cupied by the scatterer and the unit cell respectively).
In this approximation the diffraction coefficient (i.e. the
curvature of the spatial dispersion curve, and/or surface)
can be analytically calculated.'' Following the above in-
terpretation, the negative diffraction of the SC is com-
pensated at a distance zy behind the SC (measured from
the input plane of the SC):

A @

where L is the length of the SC, and AQ = (2, —Q)/Q,
with Q, = wga/27wc), being the normalized Bragg fre-
quency and ¢, the speed of sound of the host medium,
i.e. in water.
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FIG. 3. (Color online) (a) Density plot representing the
measurements of the on-axis intensity distribution on the
frequency-z plane (distances measured from the transducer).
Continuous green line corresponds to analytical fit (see text).
Black area represents the space occupied by the SC. The white
dashed line represents the point z1 (b) Continuous line rep-
resents the measured beam amplitude in normalized units at
point z1 and red dotted line represents the measured beam
width. (c) Experimental profiles in the z-axis of the beam at
z1 point and (d) measured amplitude in normalized units on
the z-axis at 250 kHz.

The experimental results were compared with the an-
alytical study of beam focusing, as shown in Fig. 3. In
Fig. 3a the absolute value of the intensity behind the
crystal on the z-axis is mapped depending on the fre-
quency. Green continuous line represents the analytical
fit of the focal distance calculated from Eq. (1) consid-
ering L = 20a, Q4 = 1, and f = 0.05. The parameter f
is a fit parameter. We notice that due to the fact that
Eq. 1 has been obtained for 2D structures with low filling
fraction, we use a fit parameter to take this into account.
For this case, the frequency of zero diffraction point or
self collimation corresponds to Qzpp = (1 — /)0,
(VZDP =238 kHZ).

The focusing for a frequency range around the optimal
one is evidenced in Figs.3b-d. Fig.3b shows both the
amplitude at point z; (black continuous line) and the
beam width (red dots) depending on the frequency. Figs.
3c and 3d show the profile at z; along the z-axis and the
transversal cross-section along the z direction in z = 0
for the focusing frequency 250 kHz respectively.

In summary, we have experimentally demonstrated the
collimation of the beams behind a 3D SC. The obtained
results are interpreted and analyzed in terms of curva-
tures of spatial dispersion curves and surfaces of the SC,
and rely on the negative diffraction close to the edge of

the propagating band. The experimental results fit well
with the numerical simulations as well as with analyti-
cal predictions in Ref. 11. The tunability of the focal
distance has been also demonstrated, showing that the
beam intensity in the focus as well as the broadening
of the beam along the propagation depends on the fre-
quency, which give additional options for applications.
The overall focusing process is interpreted in terms of
the interplay between two related but different effects:
the focusing of the beam, due to curvature of spatial dis-
persion curves; and the spatial filtering effect, due to the
size of the isofrequency “bubble”. The optimum result
comes from a compromise between these two ingredients.
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Wave Focusing Using Symmetry
Matching in Axisymmetric
Acoustic Gradient Index Lenses

The design and modelling of an axisymmetric gradient index (GRIN) lens
made of toroidal scatterers embedded in air is presented here. The system is
designed to work in the long wavelength regime where it can be considered as
an equivalent medium with effective properties, characterized by the theory
of homogenization. The numerical and experimental results presented here
demonstrate a remarkable sound amplification. In this regard, axisymmetric
structures are good candidates for the development of technological applica-
tions. The author of this thesis designed the sample for its fabrication and
collaborated in numerical simulations and experimental measurements.
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Wave focusing using symmetry matching in axisymmetric acoustic gradient

index lenses

V. Romero-Garcia,l'® A. Cebrecos,2 R. Picé,? V.J. Sdnchez-Morcillo,2 L.M. Garcia-Raffi,® and J.V.
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The symmetry matching between the source and the lens results of fundamental interest for lensing appli-
cations. In this work we have modeled an axisymmetric gradient index (GRIN) lens made of rigid toroidal
scatterers embedded in air considering this symmetry matching with radially symmetric sources. The sound
amplification obtained in the focal spot of the reported lens (8.24 dB experimentally) shows the efficiency
of the axisymmetric lenses with respect to the previous Cartesian acoustic GRIN lenses. The axisymmetric
design opens new possibilities in lensing applications in different branches of science and technology.

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20.Mv, 63.20.-¢

Photonic’? and phononic®* crystals have been re-

vealed in the last years as promising alternatives to
control the propagation of electromagnetic and acous-
tic waves respectively and, based on new physical con-
cepts, with extensive applications in both optics® and
acoustics®. Depending on the ratio between the wave-
length of the incident wave, A, and the lattice constant of
the crystals, a, the basic mechanism describing the action
of the crystal on the wave can be best interpreted in terms
of refraction” or diffraction®. In the long wavelength
regime, i.e., A >> a, crystals can be considered as homo-
geneous materials with effective properties'®!!, therefore
one can design refractive” or gradient index (GRIN)!2
lenses to control waves. In this direction, metamate-
rial acoustic GRIN lenses have recently been designed
by using unit cells based on cross-shape scatterers'® and
on coiling up space'4, providing a high transmission effi-
ciency and small size. On the other hand, the case A ~ a
corresponds to diffractive regime, where the crystal is
strongly dispersive. Yang et al.'® reported the first three
dimension (3D) phononic crystal showing the focusing
of ultrasonic waves in this regime. Since then several
phononic lenses have been designed by using the cur-
vature properties of the isofrequency contours, making
use of the all angle negative refraction'® and the convex
isofrequency contours'”.

In most of the practical situations the sound wave
sources have radial symmetry. Examples can be found
in domains as aeroacoustics, microfluidics or medical ul-
trasound. In this situation the symmetry of the lens be-
comes relevant and one should consider the full source-

a)Instituto de Investigacion para la Gestién Integrada de zonas
Costeras, Universitat Politécnica de Valéncia, Paranimf 1, 46730,
Grao de Gandia, Valencia, Spain
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FIG. 1. (Color online) (a) Parameters used in the axisym-
metric GRIN lens. (b) Axysimmetric distribution of the re-
fraction index used in the axisymmetric GRIN lens.

lens system in order to improve the efficiency of the joint
focusing device. Most of the focusing mechanisms de-
scribed above have been conceived for cartesian lenses
(those presenting translational symmetry, as for exam-
ple a squared array of cylinders), which do not match
with the radial symmetry of the source. A cartesian lens
in general match with a semi-infinite rectangular radiat-
ing surface, which in the asymptotic limits, corresponds
to a plane (radiating an unbounded plane wave) or to
a line (radiating a cylindrical beam). The axisymmetric
lenses however present a symmetry matching with radial
symmetric sources as, for example, the circular radiating
piston. The asymptotic limits of this circular radiating
piston are the infinite radiating plane (radiating an un-
bounded plane wave) and the point sources.

Some recent works introduce axisymmetric discrete
systems?!22 with the aim of focalizing optical or acousti-
cal waves. In the refractive regime, a transformational
design of an axial symmetric three-dimensional GRIN
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FIG. 2. (Color online) Comparison between the acoustic field
(absolute value of pressure, |p|) behind the equivalent fluid
lens (a) and the axisymmetric GRIN lens (b) at A = 4.25a.
Blue lines represent the ray-tracing trajectories calculated
from the derivative of Eq. (4) at the interface of the GRIN
lens and then considering Snell’s law of refraction.

lens was theoretically proposed in Ref. [21]. On the
other hand, in the diffractive regime, in Ref. [22] the
authors propose to maximize the focusing properties in
a 2D system of cylindrical rigid scatterers embedded in
air and obtain, by rotation of the optimized structure, an
axial symmetric lens formed by rigid toroidal scatterers.
The structure was validated experimentally and the ob-
tained sound amplification in the focus was remarkably
high, showing that the rotational symmetry of the sys-
tem increases its efficiency. However, the structure was
designed and optimized for a cartesian system, where the
wave equation is different than that of the axisymmetric
case. In the axisymmetric situation the equation presents
a term proportional to 1/r, making the symmetry axis of
singular relevance.

In this work we propose the model and the experimen-
tal realization of an axisymmetric GRIN lens working
with a circular piston source radiating Gaussian beams
in the long wavelength regime (A > 4a). In this range of
frequencies the axisymmetric lens can be considered as an
equivalent fluid. Due to the symmetry matching between
the radiated beam and the GRIN lens, a high sound level
is found in the focus spot. We have characterized the fo-
cusing properties of the complete system, demonstrating
values of the sound amplification (gain) higher than those
obtained previously with acoustic GRIN lenses. The lens
is modeled in the axial plane (horizontal plane) without
loss of generality as shown in Fig. 1(a), and it is made
of rigid toroidal scatterers embedded in air. Each scat-
terer is represented by a major radius, R’, and a minor
radius, R. In the axial plane the distance between neigh-
bor scatterers is a, forming a square array as shown in
Fig. 1(a).

In the long wavelength regime, the minor radius of
each scatterer can be selected to fix the filling fraction,
f(r) = mR(r)?/a?, at a position r from the center of the
lens”, and the index of refraction, n(r), can be written in
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FIG. 3. (Color online) Views of the experimental set-up show-
ing the lens-source system.

terms of f as”8

n(r) = ot — 11 7). 1)

Ceff

Then, by a gradual change of the filling fraction we can
design a refraction index profile in the vertical plane of
the lens, perpendicular to the axial z-direction. In this
work we use the hyperbolic secant profile that has been
proved to reduce the aberration of the focal spot?3, de-
fined as

n(r) = ngsech(ar), (2)

where ng = n(r = 0) is the refractive index on the z-axis
(r =0) and « is the gradient coefficient,

1 -1 no

a= hcosh (nh> , (3)
with h the half-height of the lens, and nj, the refraction
index at the lens edges (r = +h). Figure 1(b) shows
the hyperbolic secant refractive index profile, where we
have selected ng = 1 and n;, = 1.33, being h = 7a the
thickness of the lens, so we have used a sample with 7
planes of toroidal scatterers as shown in Fig. 1(a).

The numerical results are obtained by solving the
acoustic wave equation using the finite element method
(FEM) applied in an axisymmetric domain surrounded
by perfectly matched layers, in order to simulate the
Sommerfeld radiation conditions. The scatterers are
assumed acoustically rigid (infinite impedance), corre-
sponding to Neumann boundary conditions at the inter-
face with the fluid. The incident field was generated by
a circular piston of diameter D = 5a placed at a dis-
tance of 5a from the source. Figure 2 shows the compar-
ison of the acoustic field behind an axisymmetric slab of
thickness 7a made of the equivalent fluid medium with
the index profile defined by Eq. (2) (see Fig. 2(a)) and
the acoustic field behind the real axisymmetric structure
made with toroids shown in Fig. 1(a) at A = 4.25a (see
Fig. 2(b)). In both cases, the hyperbolic secant refrac-
tive index profile was used to determine the ray-tracing
trajectory within GRIN lens as follows!?:

d’U,()
dz
where ug = sinhyo; Hq(z) = sin(az)/a and Hy(x) =
cos(ax). Taking the derivative of Eq. (4) at the interface

y(o) = 3 sinh ™ (woHy (@) + SO H,(x), (4
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FIG. 4. (Color online) Experimental results of the axisymmetric GRIN lens. (a) and (b) show the experimental intensity axial
map (|p|?) without and with the lens respectively at A = 4.4a. Blue lines in (b) show the focal spot position obtained by using
the ray-tracing calculations. (c) shows the experimental intensity radial map at the position of the focus. (d) and (e) show
the transversal (at z/a = 5) and longitudinal (at r/a = 0) cuts respectively. Blue open circles (red open squares) show the
intensity in free field (behind the axisymmetric GRIN lens). As an eye-guide for comparison the red continuous line represents

the numerical simulation results obtained using FEM.

of the GRIN lens and considering Snell’s law of refraction
one can obtain the focus position behind the GRIN lens.
Blue continuous lines in Fig. 2 represent the ray-tracing
trajectories behind the samples for the case considered
in this work, showing the focal point at z ~ 5a. A good
agreement between simulations for the equivalent fluid,
Fig. 2(a), and the real structure, Fig. 2(b), is observed.

An experimental set-up was designed to characterize
the focusing properties of the axisymmetric GRIN lens
in an anechoic chamber and to obtain quantitative data
of the acoustic field behind the lens. The dimensions of
the echo-free chamber are 8 x 6 x 3 m®. The autom-
atized acquisition system 3DReAMS (3D Robotized e-
Acoustic Measurement System)?* was used to scan the
acoustic field distribution. Both the source and the lens
were hanged and accurately oriented. We notice that the
system is based on the axisymmetric properties, so the
alignment between the source and the lens is found crit-
ical to experimentally obtain a high sound level in the
focal spot. Figure 3 shows two views of the experimen-
tal set-up. The toroidal scatterers of the lens are made
of plexiglass, which acoustic impedance is ~ 6000 times
bigger than that of the air. Therefore, the toroidal scat-
terers can be considered acoustically rigid. A loudspeaker
is excited with a white noise signal. The diameter of the
circular source is D = 5a and it is placed at a distance of
5a from the lens. In this work we present all the results
in normalized units with respect to the lattice constant of
the sample, so it is worth noting that for our experiments
we have used ¢ = 4 cm.

The acoustic axisymmetric GRIN lens has been de-
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signed to operate as a focusing device in the homogeniza-
tion regime. The lens presents a broadband behavior in
the low frequency range, with modulations in amplitude
due to the Fabry-Pérot resonances of the slab. Here we
evaluate the intensity maps (|p|?) at A = 4.4a. We mea-
sured the case of free propagation (Fig. 4(a)) and the
case of the propagation through the GRIN lens in the
axial (Fig. 4(b)) and the radial planes (4(c))). As in Fig.
2, the blue continuous lines in Fig. 4(b) represent the
ray-tracing trajectory behind the sample showing the fo-
cal spot at z ~ 5a in good agreement with the predictions
shown in Fig. 2.

Figures 4(d) and 4(e) represent the experimental
transversal (at z/a = 5) and longitudinal (at r/a = 0)
cross-sections respectively. Blue open circles and red
open squares show the intensity in free propagation and
behind the axisymmetric GRIN lens respectively. One
can observe a considerably gain in the symmetry axis
with respect to the case of free field propagation. Red
continuous line in Fig. 4(d) represents the numerical
transversal cut obtained using FEM. Using the data of
Fig. 4(d) we can quantitatively characterize the sound
amplification (SA) produced in the focal point as well
as the Full Width at Half Maximum (FWHM). From
Fig. 4(d) the FWHM= 1.04\. Considering as a ref-
erence pressure the value of the experimental measure-
ment in free field, |p\fcmc = 0.013 Pa, we can evaluate
the sound amplification in the focal point as SA(dB) =
1010g19([p[7.,s/ 1P| ree) = 824 dB. The high value of SA
for the case of the axisymmetric lens obtained in this
work is in contrast with the value of the SA obtained



using cartesian lenses?®26. In the case of the cartesian

lenses the focus is extended over the third dimension (z
goes from —oo to 4+00) while in the case of the axisym-
metric lenses the focus forms in a finite volume because
in this case one dimension is bounded (# goes from 0
to 2m). Then, the symmetry matching in axisymmet-
ric structures is revealed of fundamental relevance to in-
crease the focusing properties of the full source-lens sys-
tem in practical situations.

In the homogenization limit, it is possible to obtain the
acoustic impedance of the lens material as a function of
the filling fraction as follows,

Zesy(r) = 11_%{:;)2}1- (5)

where Z), = ppcp is the acoustic impedance of the host
medium” (in the current work, air, p, = 1.29 kg/m?
and ¢, = 343 m/s). In our design, the maximum
impedance contrast appears in the center of the lens
(f(r = 0) = m/4) and its value is Z(0) = 6.2Z;,. The
impedance profile is governed by the refraction index
profile, therefore presenting a decrease of the impedance
along the radial coordinate. This impedance profile as-
sures that the acoustic waves are strongly refracted and
weakly reflected, which reinforces the high sound focus-
ing obtained by the axisymmetric GRIN lens presented
here.

In this work we have designed an axisymmetric GRIN
lens presenting a geometry matching with the source. To
do that, we have built a system made of rigid toroidal
scatterers embedded in air, by varying the filling fraction
in the radial plane in order to produce a hyperbolic secant
profile. The ray-tracing of the paraxial approximation,
the effective fluid medium approximation, the numerical
prediction of FEM and the experimental results, all are
in good agreement showing enhanced focusing properties
never observed before in this kind of GRIN lenses. Sound
amplifications of 8.24 dB have been observed in the focus-
ing spot by our axisymmetric GRIN lenses. This macro-
scopic lens, due to its axial symmetric design and the ge-
ometry matching with most of the acoustic sources could
be the motivation for several applications in science and
technology ranging from aeroacoustics to microfluidics or
ultrasound therapy.
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chirped sonic crystal.

Enhancement of Sound in Chirped
sSonic Grystals

A novel mechanism of sound wave concentration based on the concept of
soft reflection is presented in this publication for linear chirped sonic crystals.
This effect is related to a progresive slowing down of the sound wave as it
propagates along the material and arises at particular planes of the crystal.
At these planes, a substantial enhancement of the intensity is obtained for
frequencies around the band gap. A coupled mode theory is proposed to
predict and interpret the effect and numerical simulations in harmonic regime
are performed to estimate the enhancement. Experimental measurements are
also carried out and the results are in good agreement with analytical and
numerical predictions. The author of this thesis participated in the realization
of numerical simulations and experimental measurements.
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Enhancement of sound in chirped sonic crystals

V. Romero-Garcia,! R. Picé,! A. Cebrecos,! V. J. Sdnchez-Morcillo,! and K. Staliunas?
Y Instituto de Investigacion para la Gestion Integrada de zonas Costeras, Universitat Politécnica de Valéncia,

Paranimf 1, 46730, Grao de Gandia, Valéncia, Spain

2 JCREA, Departament de Fisica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11,

E-08222 Terrasa, Barcelona, Spain

We propose and experimentally demonstrate a mechanism of sound wave concentration based on soft re-
flections in chirped sonic crystals. The reported controlled field enhancement occurs at around particular
(bright) planes in the crystal, and is related to a progressive slowing down of the sound wave as it propagates
along the material. At these bright planes, a substantial concentration of the energy (with a local increase up
to 20 times) was obtained for a linear chirp and for frequencies around the first band gap. A simple couple
mode theory is proposed, that interprets and estimates the observed effects. Wave concentration energy can
be applied to increase the efficiency of detectors and absorbers.

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20.Mv, 63.20.-¢

Manipulation and control of wave propagation, a prob-
lem of fundamental interest, is at root of many appli-
cations in different branches of science and technology.
One important issue of wave manipulation is the lo-
calization and concentration (or local enhancement) of
the wave energy. Artificial materials, and among them,
artificial crystals are emerging as promising tools for
manipulating wave propagation. In the case of sound
waves considered here, such artificial periodic materi-
als are called sonic crystals, structurally similar to pho-
tonic crystals in the field of optics. They are synthetic
materials formed by a periodic distribution of elements
or scatterers, whose properties (i.e., elasticity and den-
sity) differ from those of the host medium. This re-
sults in a periodic modulation of the acoustic properties
of the medium at the scale of wavelength. The strong
interest in these materials comes from their ability of
manipulating the propagation of sound waves, due to
their peculiar dispersive properties. A number of exotic
and useful effects such as the formation of band-gaps,’*?
negative refraction,® birefraction,* self-collimation,® ex-
traordinary transmission,®, among others, have been
so far demonstrated for sound waves. Utilizing these
wave propagation effects, novel devices such as acous-
tic frequency filters,” spatial (angular) filters,® lenses,’
or diodes'? have been proposed and demonstrated.

We present here a wave propagation effect, consisting
in specifically the wave energy concentration due to pro-
gressive decrease of the group velocity in chirped sonic
crystals, in which the lattice constant, i.e. the distance
between scatterers in longitudinal (the wave propaga-
tion) direction, gradually changes along the propagation
direction. We propose and demonstrate here a substan-
tial increase of the wave intensity in controlled zones
inside the crystal. Chirped (sometimes called graded
or adiabatic tapered) crystals have been introduced in
optics' and acoustics!?>'* for different purposes, such
as opening wide full band gaps in tandem structures'?
or waveguiding of beams. An intriguing phenomenon
shown in chirped crystals is the smooth deflection of a
light beam from the straight trajectory as it propagates
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FIG. 1. (Color online) (a) Dependence of the local band gaps on
the local lattice constant along the chirped sonic crystal. (b) Band
structure (local dispersion curves) evaluated at different depths: at
the entrance (top), at the middle (center) and at the exit (bottom)
of the sonic crystal. (c) Intensity of the acoustic field calculated
using Multiple Scattering technique inside the chirped structure for
the frequencies in (a) and (b).

through the crystal, the so-called mirage effect!®.
Another interesting effect reported recently is the so-
called rainbow trapping effect, the dependence of the
turning point position on the color of radiation. It has
been predicted for one-dimensionally modulated chirped
photonic structures'® and tapered optical and plasmonic
waveguides!”18. Rainbow trapping and wave enhance-
ment are two different physical effects (the latter occurs
even for monochromatic radiation), although they may
occur simultaneously in chirped structures when the inci-
dent radiation is broadband. In this letter, in addition to
the extraordinary sound wave enhancement effect, which
is the main result reported, we also present a sound rain-
bow trapping effect for acoustic waves as a secondary
result. Wave reflection from a band-gap in a chirped
structure is peculiar. The dispersion curves w(k) at- and
close to the band-edges, develop nearly horizontal seg-



ments, which corresponds to small or zero group velocity
of the wave, since vy = dw/0k. The occurrence of the
controlled sound enhancement requires that the crystal
at the entrance plane be within the transparency range
for the incoming wave, whose frequency is above the first
band-gap, as shown in Fig. 1. Note that here, not the
wave frequency but the central (Bragg) frequency and
the width of the band-gap is considered variable along
the structure. Figures 1(a) and 1(b) show the variation
of the band-gaps along the chirped sonic crystal, and the
local dispersion curves at different depths, respectively.
By local dispersion relation we mean the dispersion of an
infinitely extended periodic crystal, for parameters (lat-
tice constant, filling factor) corresponding to a particular
depth of the chirped crystal. The wave entering into the
crystal is gradually slowing down, as the local band-gaps
are approaching the wave frequency in the course of prop-
agation. Finally at a particular depth corresponding to
the band-edge, the wave, literally speaking, stops, turns
around, and starts propagating back. In other words it
experiences a soft reflection. This effect is demonstrated
in Fig. 1(c), which shows the wave propagating through
the crystal as obtained by numerical simulation using the
multiple scattering theory approach'®2°. The frequen-
cies of the incident waves in the simulations correspond
to local band-gaps at different depths. Figure 1(c) evi-
dences that the intensity of the wave increases substan-
tially in the soft reflection area. Most importantly and
in opposition to the case of perfectly periodic crystals
(constant lattice period) in which only some discrete fre-
quencies can be enhanced by the Fabry-Pérot resonances,
chirped crystals can localize the energy for a wide range
of frequencies in a controlled way by the gradually change
of the lattice constant.

An experimental setup was designed to demonstrate
the predicted extraordinary enhancement effect, and to
obtain quantitative data of the acoustic field inside the
structure. It consists in a two-dimensional sonic crystal
with rectangular local symmetry, as illustrated in Fig. 2,
made of acoustically rigid aluminum cylinders, of radius
r = 2 cm, embedded in air. The spatial period is con-
stant in transverse-to-propagation direction y, a, = 10
cm, while a longitudinal chirp is introduced in the pe-
riod along the propagation direction . The adimensional
chirp parameter is defined as & = (aj—a;41)/a;, where a;
is the local longitudinal lattice constant at j-th layer. For
our particular crystal case ap = 10 cm (initial period),
a13 = 4.8 cm (final period), and a gradient a = 0.055.
The sign of the chirp can be either positive or negative,
corresponding to lattice constant decreasing or increas-
ing along the propagation direction. In case of identical
scatterers, as used in our study, the filling fraction for
the positive (negative) chirped structures increases (de-
creases) in the propagation direction. This has a conse-
quence of broadening of the local bandgap shown in Fig.
1(a).

The measurements were performed using the autom-
atized acquisition system 3DReAMS (3D Robotized e-
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FIG. 2. (Color online) Photographs of the experimental setup. (a)
the grid of hanging points of the cylinders. (b) the chirped sonic
crystal hunging vertically in the anechoic chamber.

Acoustic Measurement System).?! Figures 2(a) and 2(b)
show the grid of hanging points of the cylinders and a
photograph showing the source (a loudspeaker) and the
crystal inside the chamber respectively (for propagation
directed downwards in Fig. 2(a)). The experimental
measurements are in excellent agreement with numerical
calculations, as shown in Figs. 3 and 4. We recorded the
sound intensity profile along a fixed transverse position
by translating the microphone along the x-axis through
the void space between the rows of scatterers. In this
way, we obtained two-dimensional space-frequency plots
as shown in Fig. 3, from numerical (a) and experimental
(b) data. White continuous lines mark the positions of
the boundaries of the first band gap. Note the concen-
tration of acoustic energy at positions corresponding to
just before the upper band edge.

Figure 4(a) shows the axial distributions obtained ex-
perimentally (dots) and theoretically (continuous lines)
for three particular frequencies. In both cases small-scale
fringes are observed, corresponding to the local Bloch
mode, as well as a large-scale oscillations or envelope
(dashed line) of the Bloch mode, to be discussed below.
Figure 4(b) represents the theoretical calculation of the
position of the maximum value of concentration of acous-
tic energy inside the crystal depending on the frequency.
In correspondence with the results in Fig. 1, the position
of the maximal energy concentration shifts deeper into
the bulk of the structure as the frequency is increased
(rainbow effect). Note also that, since the incident am-
plitude was normalized to unity, at the maximum value,
the intensity has been recorded up to around 20 times
higher than incident. For usual reflection between two
different homogeneous media or from a purely band-gap
material in the range of the band-gap, only an increase of
4 times of the local intensity is possible (as the interfer-
ence pattern is formed from forward and fully reflected
backward wave). For the case of periodic structures the
wave penetrates into the reflecting material evanescently,
i.e. with exponential decay?! and never shows an increase
of intensity. The increase of the intensity field observed
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FIG. 3. (Color online) Acoustic intensity inside the crystal, along
the z-axis, for varying frequencies (a) Multiple Scattering simula-
tion and (b) experiment. White continuous lines show the spatially
varying edges of local band-gaps.

in Fig. 4, can be understood from a coupling between
the forward and backward waves inside the chirped crys-
tal. In order to interpret the results, we propose a sim-
ple coupled mode analytical theory for the propagation
of acoustic plane waves inside a one-dimensional chirped
crystal (in optics also known as chirped mirror). This
dimension reduction is possible because the first band
gap in I'X direction essentially appears due to a resonant
coupling between the forward and the backward waves.
The contributions of the wave components propagating
to transverse directions are negligible. Assuming that the
full pressure field consists of forward and backward prop-
agating waves, P = A(x)e®@ ! 4 B(x)e Wl 4 cc.
the following coupled amplitude equations can be sys-
tematically obtained from wave equations,

dA =3 \/g Be?qu(at)z7

dr a(x)
dB NG
) A ‘721A(1(.’L‘).T, 1
dx 7(1,(:5) ¢ ) (1)

where s is the back-reflection coefficient by one row
of scatterers, a(z) the variable longitudinal period and
Ag(z) = 2m/\ — m/a(x) is the detuning from the Bragg
frequency.

From the numerical study of the scattering by only
one row of the structure, we estimate that the back re-
flected intensity is around 40% of the incident, so s ~ 0.4.
The same numerical study reveals that the scattering
into field components propagating at transverse direc-
tion is only around 5%, which justifies the followed one-
dimensional approach, neglecting transverse modulations
in the vicinity of the first bandgap. We notice that
the detuning from the Bragg resonance Ag(z) is a func-
tion of the longitudinal position x for chirped crystals.
Recall that in our study the chirp is linear, given by
a(z) = ap + a(x — x9).

Equations (1) can be rewritten in canonical form as

2A A
A _ ze(m)d— + A, (2)
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FIG. 4. (Color online) (a) Numerical simulation results (continu-
ous line) and experimental results (dots) for the acoustic intensity
at the central section inside the crystal for the three frequencies:
2500 Hz, 2600 Hz, and 2700 Hz. The shaded (yellow) rectangle
denotes the area covered by the crystal. (b) Position of the maxi-
mum value of concentration of energy inside the crystal depending
on the frequency of the incident wave.

where the space scaling dX = dz+/s/a(x) was chosen
to make the normalized coupling coefficient unity, and
€(z) = 2d(XAq(X)/dX is the normalized detuning from
the Bragg frequency.

The wave, roughly speaking, reflects from the bandgap,
i.e. from the position X corresponding to the Bragg fre-
quency, with ¢(Xo) = 0. In general (for arbitrary chirp)
Eq. (2) cannot be solved analytically. However, in a
simple case when the normalized detuning varies linearly
around zero €(X) = €1 (X —Xj), Eq. (2) has an analytical
solution in the form

A(X):ClH;/gl(X\/Z€1/2)7 (3)

where H,, is the Hermite polynomial of imaginary order.
The counter-propagating field obeys a similar expression.
The integration constant ¢; = H, /¢, (Xr+/2€1/2) is deter-
mined by the boundary conditions, by imposing that the
amplitude of the forward wave at the front face X = Xp
equals unity. € = de(X)/dX|x=x, or, in terms of initial
variables, €; = 4ra/s, which estimated for experimental
parameters results ¢; = 3.

In Fig. 5 we present the amplitude of the acoustic in-
tensity of the forward and backward waves for linearly
chirped crystals as follows from Eq. (3). The acoustic
field is nearly exponential in the bandgap, and oscillatory
in front of it. The oscillations, with the period and am-
plitude increasing as the wave approaches the band-gap,
are large-scale oscillations, which originate from the en-
ergy exchange between the forward and backward waves.
These large-scale oscillations correspond to oscillations of
the envelope of the Bloch modes observed in Fig. 4, and
are not due to conditions imposed at the entrance of the
sonic crystal, e.g. some possible impedance mismatch.

The controlled field enhancement effect is clearly vis-
ible again in Fig. 5. From the analytical estimations in
Egs. (1)-(3) and from Fig. 5 it follows that for maximal
field enhancement of the wave intensity, the chirp must
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FIG. 5. Solutions of (3), i.e. the intensity of the forward (con-
tinuous line) and backward (dashed line) field along the chirped
structure. (a) (with € = 3) corresponds to experimental configura-
tion, (b) (with e = 0.3) is shown for comparison, to illustrate soft
reflections for a substantially smaller chirp. The vertical dashed
lines indicate the center of the bandgap, and the shaded areas the
bandgap itself.

be as small as possible. For ¢; = 0.3 the maximum field
enhancement could be around 6 times (in terms of inten-
sities) if one compares the maximal and minimal values
of the plot in Fig. 5(b). In order to realize such enhance-
ment the entrance to the sonic crystal must be placed
to correspond to the deepest minimum of the solution
(3), in this particular case at around the point X ~ 10.
For the parameters of the experiment, e; = 0.3, the en-
hancement of more than two times is predicted in this
simplified approach. Also, as Fig. 5(a) shows, a small
portion of radiation is transmitted, i.e. leaks through the
band gap. Such tunneling, analogous to Landau-Zenner
tunneling, is due to slightly too fast (no more adiabatic)
chirp.

Concluding, in this Letter we have predicted and ex-
perimentally demonstrated a mechanism for sound field
enhancement in a chirped crystals, specifically in chirped
sonic crystals. The acoustic wave energy can be selec-
tively concentrated at particular depth of the crystal de-
pending on the frequency and on the parameters of the
structure. At these bright planes, a substantial increase
of the energy was recorded for linear chirp and for fre-
quencies around the first gap along the X direction of
structure. The experimental study was performed in a
macroscopic sonic crystal irradiated by acoustic waves in
audible regime, where the measurements in the interior
of the crystal are possible.

In the field of acoustics the results are independent of
the spatial scale of the structure, and in principle the phe-
nomenon could be scaled-down and observed in micro-
or nano-scale phononic (so called hypersonic) crystals?2.
At these scales sound waves are described in terms of
phonons, and the ideas presented in this work could
find application for heat management in acoustical or
acousto-optical devices. Recent works in this direction
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show indeed that manipulation of phonon dispersion
properties can allow thermal transport control®>. Gen-
erally, the effect of wave energy concentration demon-
strated in the present work, opens a possibility of in-
creasing the efficiency of detectors and absorbers, both
in acoustics and optics, since slow phonons and photons
can be absorbed and harvested with a higher probability.
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sonic crystal at a particular time.

Reflections in Exponentially
Chirped Crystals

The study of soft reflection in chirped sonic crystals, presented previously,
is extended in this work. The analytical predictions extracted from the cou-
pled mode theory are employed here to obtain solutions for a chirped sonic
crystal with an exponential variation of the lattice constant, demonstrating
that the sound enhancement depends on the variation of the spatial profile.
The numerical analysis is expanded to investigate the behavior of the system
in time-domain, showing the slowing down of the wave along the propagation
direction. The author of this thesis participated in numerical simulations,
experimental measurements and writing of the time spreading section.




124



@ CrossMark
AIP ADVANCES 4, 124402 (2014) <

Enhancement of sound by soft reflections in exponentially
chirped crystals

A. Cebrecos,'? R. Picé," V. J. Sanchez-Morcillo," K. Staliunas,?

V. Romero-Garcia,® and L. M. Garcia-Raffi*

Unstituto de Investigacion para la Gestion Integrada de zonas Costeras, Universitat
Politecnica de Valéncia, Paranimf 1, 46730, Grao de Gandia, Valéncia, Spain

2ICREA, Departament de Fisica i Enginyeria Nuclear; Universitat Politecnica de Catalunya,
Colom 11, E-08222 Terrasa, Barcelona, Spain

SLUNAM Université, Université du Maine, CNRS, LAUM UMR 6613, Av. O. Messiaen,
72085 Le Mans, France

*Instituto Universitario de Matemdtica Pura y Aplicada, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022, Valencia, Spain

(Received 7 October 2014; accepted 12 November 2014; published online 20 November 2014)

The enhancement of sound inside a two dimensional exponentially chirped crystal
during the soft reflections of waves is experimentally and theoretically explored in
this work. The control of this enhancement is achieved by a gradual variation of
the dispersion in the system by means of a chirp of the lattice constant. The sound
enhancement is produced at some planes of the crystal in which the wave is softly
reflected due to a progressive slowing down of the sound wave. We find that the
character of the sound enhancement depends on the function of the variation of disper-
sion, i.e., on the function of the chirp. A simple coupled mode theory is proposed
to find the analytical solutions of the sound wave enhancement in the exponentially
chirped crystal. Harmonic and time domain numerical simulations are performed to
interpret the concept of the soft reflections, and to check the analytically calculated
field distributions both in good agreement with experiments. Specially we obtain
stronger sound enhancement than in linearly chirped crystals. This sound enhancement
could motivate applications in energy harvesting, e.g., to increase the efficiency of
detectors and absorbers. © 2014 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4902508]

I. INTRODUCTION

During the last decades, many efforts have been done to use periodic structures for the con-
trol of wave propagation. Such periodic structures, having a period of the order of the wave-
length, are the so-called photonic crystals' for electromagnetic waves and the phononic crystals?
for the elastic/acoustic waves. A phononic crystal consists of a periodic distribution of scatterers,
whose bulk properties (i.e., elasticity and density) differ from those of the host medium. Based
on their dispersion properties, many interesting effects can be observed such as the formation
of band-gaps,>* negative refraction,’ birefraction,® self-collimation,”® extraordinary transmission,’
giving rise to novel devices and effects such as spatial'®!! and frequency'? filters, far field'® and near
field'* focusing, or sound diodes.'> Of special interest is the possibility to enhance both spatially
and temporally the wave at particular locations inside the crystal, with potential applications as, for
example, energy harvesting or enhanced absorption.

Different mechanisms can be used to enhance the waves inside a crystal. At low frequencies
(with A > a, being A the wavelength of the incident frequency and a the distance between the
scatterers, or lattice constant), Fabry-Pérot resonances can enhance the wave inside the structure due

2Electronic mail: alcebrui @epsg.upv.es

®
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to the finite thickness of the crystal, L, at frequencies related with this thickness, f = nc/2L being
n an integer number. At higher frequencies, in the highly dispersive regime of the periodic structure
in which A ~ a, enhanced localized modes can be excited by the presence of point defects. The
periodicity can be locally broken by creating the point defects producing a localized enhanced mode
around the defect at a frequency inside the band gap.'®!” In both cases, the low frequency and the
dispersion regime, the wave can be enhanced for a set of narrow bands (modes), but no broadband
enhancement is possible. On the other hand, random systems, in the regime where the wavelength
of the incident wave is comparable with the size of the scatterers, present a transition from its
diffusion regime to a localized regime, where enhanced localized modes appear in the structure
for a broader frequency regime.'®!” In this case the strong deviation from Rayleigh statistics is
interpreted as a signature of Anderson localization.

Recently, some of us presented an acoustic wave propagation effect, consisting of the wave
enhancement due to the progressive decrease of the group velocity along the propagation direc-
tion.? Such a progressive slowing-down of the waves was predicted and demonstrated in a two-
dimensional chirped (also known as graded or adiabatic tapered) sonic crystal, a structure made of
rigid scatterers embedded in air in which the lattice constant along the wave propagation direction
gradually changes with a profile, a = a(x), depending on the position, x. Sound enhancement and
slowing down are two related phenomena that occur as the wave approaches to the bandgap; at this
position, the waves reaches a zero group velocity and starts propagating backwards, in a proccess
that we call a soft reflection. For particular chirp profiles, the wave can be substantially enhanced
around the turning plane, whose position inside the crystal depends on the wave frequency. Chirped
structures have been also used in optics®'*> and acoustics?>> for different purposes such as
rainbow trapping,”®->® mirage formation,” the opening of wide full band gaps,? or also to control
the spatial dispersion and focalizing beams in reflection.??

From a practical point of view, it is desirable to obtain the highest enhancement or wave
concentration (highest intensity in a shorter distance). The previous study considered a chirped
structure with a adiabatic and linear change of the period,?” where a moderate enhancement was
demonstrated. In this work we explore the properties of a sonic crystal with exponential one. This
profile of chirp is of interest because it possess simple analytical solutions, a unique feature that
shares with a linear chirp. This allows easier estimations of wave propagation properties depending
on system parameters. Most importantly, the exponential chirp is shown to produce a stronger wave
enhancement in comparison to the linear profile in Ref. 20. Therefore in this work we report new
analytical, numerical and experimental results about a sonic crystal with exponential chirp, and
compare the predictions from different methods, showing good agreement between them. Special
attention is paid to the interpretation in time domain of the soft reflections produced in the crystal,
which are related to the spatial enhancement of the wave in the spatial domain. Simulations are
performed in harmonic and time-domain by Finite Element Method (FEM), showing very good
agreement with both analytical and experimental results measured in an echo-free chamber.

Il. DISPERSION IN CHIRPED STRUCTURES AND SOFT REFLECTIONS

Dispersion curves w(k) in periodic structures predict very small group velocity (v, = dw/dk)
of the propagating waves close to the band edges, and correspondingly a large dispersion of the
incident wave packet. In chirped structures in which the lattice constant gradually varies according
to a predetermined profile, the dispersion relation also evolves gradually inside the crystal following
the variation of the profile along the structure. The main assumption in these structures is that the
variation of the profile is so slow that each point in the chirped crystal can be characterized by
a local dispersion relation, which is the dispersion of an infinitely extended periodic crystal with
values of the parameters (lattice constant and filling fraction) at the evaluation point. As an example
we show in Fig. 1(a) the evolution of the band gap in a chirped crystal with an exponential profile
(inset of Fig. 1(a) shows the spatial distribution of the rigid scatterers inside the chirped crystal.
See Section IV for more details about the definition of the profile @ = a(x)). In each point inside
the chirped crystal we have considered a rectangular array with the local lattice constant and the
local filling fraction. Then, using the plane wave expansion,'” we have calculated the band structure
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Amplitude

FIG. 1. (a) Local band gaps in exponential chirped structures. Left (right) panel shows the band structures at the entrance
(exit) of the system calculated using plane wave expansion. Middle panel shows the evolution of the bandgap within the
discrete structure. Inset shows the position of the scatterers inside the system obtained from the exponential chirped shown
in Sec. IV. (b), (c) and (d) respectively show the spatial profile of a pulse evaluated at an instant #; before the pulse reaches
the turning plane, at the instant o when the pulse reaches the turning plane and at the instant 73 after the pulse reaches the
turning plane.

in each point. The number of the plane waves considered for the calculation is enough to ensure
the convergence of the plane wave expansion, in our case 1089 plane waves. In the left part, we
represent the dispersion relation at the entrance of the crystal, showing the band gap in the range
[w1=1197, w,=1468] Hz. In the central part of Fig. 1(a), we represent the evolution of the width
of the first band gap in the I'X direction along the chirped crystal. As the filling fraction gradually
increases along the chirped crystal, the width of the band gap also gradually increases, as shown by
the red area in Fig. 1 (a) up to the exit of the crystal, where the width of the band gap [w3=2073,
w4=4988] Hz corresponds to the periodicity and filling fraction at the exit of the crystal, as shown in
the right part of Fig. 1 (a).

In order to have propagation of waves inside the crystal, the frequency of the incident wave
must belong to some of the propagating bands of the dispersion relation at the entrance of the crys-
tal. In a general way, we consider now an incident gaussian packet centred at ws which, as shown in
Fig. 1(a), is in the propagating region at the entrance of the crystal. However, as ws < w4, the wave
will arrive to a band gap inside the crystal corresponding to a lattice constant and filling fraction
that covers ws. The wave entering into the crystal is gradually slowing down because, in the course
of propagation, it approaches to the edges of local local band gap inside the crystal. At a particular
depth corresponding to the band-edge, where the group velocity is zero (in absence of losses), the
forward propagating wave stops, turns around, and starts propagating backwards, suffering, what
we call here, a “soft” reflection. This reflection effect is observed in the temporal domain in Figs.
1(b)-(d). We show the wave packet at three different instants inside the crystal: (b) before (c) at the
instant and (d) after the wave packet reaches the reflecting plane. Figure 1(c) shows how the wave
enhancement in the soft reflection area.

Ill. COUPLED MODE THEORY: ANALYTICAL RESULTS

We propose an analytical description of the problem of the enhancement in an exponential
chirp profile, based in the so called coupled mode theory. The approach is valid under some
approximations. We first notice that at frequencies close to the first band gap, an incident plane
wave basically propagates along the direction of incidence (the energy flow along other transversal
directions is negligible), and a one-dimensional plane wave description is justified, as shown in
Ref. 20. Under such conditions, the medium is roughly equivalent to a multilayered structure, with
each plane of scatterers behaving as a layer of a different material. In coupled mode theory, the
bandgaps appear as a result of the resonant coupling between the forward and the backward waves.
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Coupled mode theory is applicable for media with periodic modulation of the parameters, but also
for a smooth chirp profile (when the period changes adiabatically) and for frequencies close to the
band-gap. It is based on the following assumptions: (i) the full pressure field consists of forward and
backward propagating waves, P = A(x)e’** %! 4+ B(x)e "**~'¢! with amplitudes slowly evolving
in space, and (i) the crystal is accounted as a periodic variation of the sound velocity ¢ with the
period of the crystal, ¢ = ¢ + Ac cos(Qx) where Q = 27/a. Substituting in the linear wave equation
and scaling the space as X = x/a, the following coupled amplitude equations system is readily
obtained

dA )

— jBeMACX 1

Ix = iBe , (e
B

;i_X = jAe 200X 2

where AQ = a(k — kp) is the detuning from normalized Bragg resonance, with kg = 7/a(X). After
some manipulation, a single second order equation for the slow amplitudes can be obtained, as
2

% = im(X)Z—i + A, 3)
where m(X) = d(AgX)/dX is a slowly varying function of distance, related to the normalized
chirp profile a(X) by a simple transformation, which vanishes at Bragg resonance Ag = 0. For
several particular cases the above equation has analytical solutions. One case, considered in Ref. 20,
corresponds to a linear chirp profile m(X) = a(X — Xp). In this case the field distribution in space
is described by a Hermite function with complex index, and presents sound enhancement at
planes close to Bragg resonance. We consider here the case of an exponential chirp, in the form
m(X) = X — 1. In this case an analytical solution also exists, given by

bX

AX) = e0X13 (WT) , @

where L? is a generalized Laguerre polynomial,’® with the indexes defined as n = (=1)*/%/b and
s =V3/b.

In Fig. 2 the profile of the squared amplitude of the wave (normalized intensity) is shown along
the chirped structure. We consider here wave incoming form the left side. Continuous blue line
represents the results from Eq. (4) for a chirp parameter b = —0.05, and green open dots represents

40

T
100 120

FIG. 2. Continuous line represents the amplitude profile in the exponentially chirped crystal, as given by the analytical
solution of Eq. (4) calculated using b = —0.05. Green dots represents the envelope for the of the experimental case as shown
also in Fig. 4(d).
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the envelope of the experimental data for the case of 2700 Hz. Recall that we represent here the
wave envelope, so additional field oscillations with the period of the structure are also present
(not shown). The effect of the exponential variation of the lattice constant is evident. A significant
enhancement of the wave amplitude appears at the end of the path of the wave (bright plane), just
before the turning plane (local band gap). We notice that due to the range of validity of the model, is
in the range of frequencies near the band gap in which the theory agrees well with the experiments,
as expected. The region in which these oscillations become important is much smaller than in the
case of linear chirp (see Fig. 5 (b) in Ref. 20) and the amplitude is more localized. This is one of the
main advantages of the chirp profile with respect to the linear one.

IV. EXPERIMENTAL SETUP

Experimental measurements were carried out with a two-dimensional sonic crystal with rectan-
gular local symmetry, as illustrated in Fig. 3(a). The crystal is made of acoustically rigid aluminum
cylinders, with radius » = 2 cm, and height 7 = 1 m, embedded in air. The spatial period is con-
stant in transverse-to-propagation direction y, a,, = 10 cm, whereas an exponential chirp profile is
introduced for the period along the propagation direction x: a, = age”**n-1, where qy is the lattice
constant at the entrance of the chirped structure, « is the exponential chirp parameter and x; the
local position in direction x of the j-th layer. A chirped crystal formed by 14 rows and 6 columns is
considered in this work, with ag = 12.5 cm, a3 = 4.88 cm, and @ = 0.01 m™..

We performed experiments in an echo-free chamber sized 8 x 6 x 3 m? with an automatized
acquisition system, 3DReAMS (3D Robotized e-Acoustic Measurement System).'®!” This system
enables the measurement of pressure fields along complex trajectories as well as inside the crystals.
Fig. 3(a) shows the grid of hooks used for hanging cylinders to design the chirped structure which is
covered in the setup with an absorbent material to avoid additional reflections in our measurements.
Fig. 3(b) shows the negative chirped crystal (decreasing lattice constant) made of Al cylinders
inside the echo-free chamber (for propagation directed upwards in Fig. 3(a)) used in this work.

V. SPATIAL ENHANCEMENT OF THE ACOUSTIC FIELD

Sound pressure amplitude, |p|, was recorded along a line path by moving the microphone
along the x-axis in the space between two rows of scatterers. The recorded amplitude has been
normalized with respect to the amplitude of the incident wave, [po|. As a result, a two-dimensional

FIG. 3. Photographs of the experimental setup. (a) The grid (14 rows by 6 columns) of hanging points of the cylinders.
(b) The chirped sonic crystal made of aluminium cylinders of 1 m length and 2 cm radius, hanging vertically in the anechoic
chamber.
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FIG. 4. (a) Numerical simulations and (b) experimental results of the normalized acoustic field with respect to the incident
waves, i.e., |p|/|pol, inside the chirped sonic crystal. White continuous lines define the limits of the upper and lower edges
of the first band gap as the periodicity changes inside the structure. Green lines illustrate the frequencies shown in (c), (d),
(e) and the corresponding positions of the turning planes inside the crystal. (c), (d) and (e) show the normalized acoustic
intensity, 1/Iy = |p|*/|po|* for a longitudinal cut inside the crystal at three frequencies 2450 Hz, 2700 Hz and 2900 Hz
respectively (shown also in (a) and (b)). Grey shaded rectangle denotes the area covered by the exponential chirped crystal.

frequency-space map representing the normalized acoustic field, |p|/|pol, inside the structure is ob-
tained. The map shown in Fig. 4(a) is numerically calculated using FEM in harmonic analysis and
Fig. 4(b) shows the normalized map directly obtained from experimental measurements. As an eye
guide, we plot also in Figs. 4(a) and 4(b) the evolution of the band gap along the exponential chirped
crystal (white continuous lines), obtained using plane wave expansion as described in Section II.
It is worth noting here the wave enhancement at positions just before the upper band edge. We
notice here that the turning planes at these frequencies appear at the positions x = 50 cm, 60 cm
and 64.5 cm, respectively, as numerically and experimentally shown in Figs. 4(a)-4(b). As expected,
the upper edge of the local band gaps corresponds to the turning planes at different frequencies in
different locations inside the crystal.

In order to analyze the sound enhancement and its properties, we analyze the cases of three
frequencies, 2450, 2700 and 2900 Hz. Figures 4(c)-4(e) show the axial distributions of the normal-
ized intensity, |I|/|lo] = |p|*/|po|’ obtained experimentally (dots) and theoretically (continuous
lines) for these three frequencies respectively. In both cases, small-scale fringes are observed, cor-
responding to the local Bloch mode, as well as a large-scale oscillations or envelope (dashed line)
of the Bloch mode, as it is previously analyzed in Section III. On the other hand, at the same
frequencies, the maximal sound enhancement are placed at x = 43.18 cm, 50.48 cm and 57.68 cm
respectively as it can be seen in Figs. 4(c)-4(d). Therefore, in correspondence with the results shown
in Fig. 2 from our coupled mode theory, the position of the bright plane (corresponding to the sound
enhancement) for every case is shifted back with respect to the turning plane. Moreover, the position
of the maximal sound enhancement shifts deeper into the bulk of the structure as the frequency is
increased, which is a clear sign of the acoustic rainbow eftect produced by this kind of structures.

We pay attention now to the maximum value of the wave enhancement. Since the plots are
normalized with respect to the incident wave, we can see that at the maximum value of wave
enhancement, the intensity is around 60 times higher than that of the incident one. This result
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improves the previously obtained for a linear chirped crystal,?® which produces an enhancement
of 20. We notice here that for usual reflection between two different homogeneous media or from
a purely band-gap material in the range of the band-gap, only an increase of 4 times of the local
intensity is possible.

The envelopes shown in Figs. 4(c)-(e) with red dashed lines, connect the experimental and
numerical results with those obtained with our model based on coupled mode theory. As we previ-
ously described in Fig. 2 this red dashed lines correspond to the envelopes of the Bloch modes and
they are not due to conditions imposed at the entrance of the sonic crystal as for example some
possible impedance mismatch.

VI. TIME SPREADING

In this part we analyze the effects of chirped lattice constant on the wave propagation evaluated
in time domain, i.e. the effects on the character of the time spreading of the pulse reflected from the
chirped structure. For that purpose, FEM simulations in time domain were carried out for the three
frequencies previously mentioned, 2450, 2700 and 2900 Hz. For the simulations we use a gaussian
pulse centered at these frequencies with fixed bandwidth Aw = 100 Hz. During the simulations we
consider here that the gaussian beam propagates from left to right.

Figure 5 shows the time-space scenario for f = 2700 Hz, where the sound pressure amplitude,
p, is shown. Figure 5(a) shows the pulse propagating in air and reflecting from a rigid wall placed at
the position corresponding to the turning plane of the chirped structure for this specific frequency. As
expected, the relation between x and ¢ is a straight line and its slope is given by the sound velocity in
air. The amplitude is modulated in x due to the interference between the incident and reflected wave.

Figure 5(b) shows the pulse propagating in air from x = [0, 1] m, and along the chirped structure
(placed in the range x = [1,2] m). The effect of soft reflection is clearly observed here. The incident
wave is reflected first at the turning plane corresponding for the central frequency, around x = 1.6 m,
producing the bright plane just a bit before due to the reduction of the group velocity (as shown in
previous Sections). After this first reflection, the pulse travels back out of the structure. In contrast
to the rigid wall case, the wave here is reflected back and forth between the entrance and the turning
planes of the chirped structure, giving rise to multiple contributions propagating back.

Time profiles of the signals are shown in Figs. 5(c) and 5(d) evaluated at the positions marked by
the green vertical lines in Figs. 5 (a) and (b). Whereas the recorded signal for the case of a rigid wall
is the superposition of incident and reflected waves with a determined duration, the recorded signal

ty, =6.19ms

-0.5= L L

20 25 30 35 40 45 50

}":v\rw’u’\n'\J‘\AJ‘\I¢Jw~um,m'mnzm}mumww.f.\.wmm»w‘m}wam@f'f

20 25 30 35 40 45 50
t(ms)

P (Pa)
-

FIG. 5. Figure accounting for the time spreading of the input signal in the chirped sonic crystal. (a), (b) show the time signals
recorded for a longitudinal cut in x direction, for an homogeneous medium (air), and the exponential chirped structure placed
in the range x =[1, 2] m, respectively. A rigid wall is placed in x = 1.765 m for the homogeneous case. Green solid lines
indicate the position of the time signals shown in (c), (d). Recorded time signals for (c) an homogeneous medium and
(d) exponential chirped structure, at x = 1.505 m.
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FIG. 6. (a), (c) and (e) Show the time-space maps for 2450, 2700 and 2900 Hz, and (b), (d), (f) the time profiles evaluated
at x =0.1 m. The amplitude for every inset is given by the absolute value of the pressure, |p|. Green lines shown in (a),
(c), (e) illustrate the corresponding positions of the bright planes for the frequencies 2450, 2700 and 2900 Hz, respectively.
Black solid lines in insets (b), (d), (f), represent the fitted Gaussian functions used to estimate the delay between consecutive
contributions, which are £ = 3.62, 5 = 4.94 and ¢3 = 6.23 ms, for 2450, 2700 and 2900 Hz, respectively.

for the chirped structure has a longer duration due to the slowing down of the group velocity and it is
modulated by the several contributions due to multiple reflections back and forth of the wave inside
the chirped crystal. The duration of the whole signal is determined using the criteria that the duration
is the time between the instants at which the amplitude is a 5 % of the maximum amplitude of the
pulse. This instants are marked in Figs. 5(c) and 5(d) by vertical lines. With this criteria, the time
duration of the pulse for the reflection in a rigid wall is 14.5 ms (see Fig. 5(c)), while the duration of
the pulse in the chirped crystal is 40.5 ms (see Fig. 5(d)). A similar phenomenon of pulse spreading is
reported in Ref. 31, where sound diffusers based on biperiodic sonic crystal structures are presented.

Time-space maps for 2450, 2700 and 2900 Hz and time profiles evaluated at x = 0.1 m are rep-
resented in Fig. 6. As it was previously mentioned, several contributions appear in the upper part
of every map x-t corresponding to the successive reflections of the wave packet inside the chirped
structure. The wave packet, as it propagates inside the structure, is slowed down and reflected in the
turning plane, propagating back to the entrance, but also reflected again in the entrance. This process
is repeated until the amplitude of the wave is vanished. This modulation effect by reflections is clearly
shown in the signals recorded at x = 0.1 m, shown in Figs. 6(b), (d),and (f), where the amplitude is
given by the absolute value of the sound pressure, |p|. From the time delay between two different
reflections, as we will see immediately, we can obtain information about the slowing down in the
crystal. To evaluate this delay between two consecutive reflections from the numerical time domain
simulations, time signals are fitted using gaussian functions.?? Calculating the distance between the
two centroid marked in the same Figs. 6(b), (d) and (f), these values are 3.6, 4.9 and 6.2 ms.

This delay is related to the acoustic path of the pulse inside the chirped structure in which the
group velocity gradually changes. Following our approach we can calculate the value of the group
velocity in every plane of the structure at each frequency using the corresponding band structures
(v, = 0w/ 0k, Fig. 1), i.e., we are able to evaluate the group velocity profile inside the structure.
Table I shows the group velocity values for the three frequencies evaluated in this Section. Taking
into account these values and the position of the turning plane for every frequency, we can calculate
the delay between two consecutive reflections of the pulse simply by the following expression

N

f
(=2 / x4 5)
vr(x) S ooy

where the integral has been replaced by a sum considering that the velocity is kept constant and
equal to the value deduced from the band structures that corresponds to the lattice constant a; for
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TABLE I. Values of the group velocity deduced from the band structures calculated with Plane Wave Expansion, for every
frequency analyzed and for the different values of the lattice constant a, associated to every plane of the chirped structure.

Lattice constant vg (ms™h)

a (cm) 2450 Hz 2700 Hz 2900 Hz
12,50 254.92 94.24 89.75
11,03 292.86 278.36 5291
9,87 296.37 296.37 284.52
8,95 276.88 287.53 292.49
8,18 196.34 265.07 274.88
7,54 0 154.80 245.86
6,99 0 0 83.77
6,52 0 0 0

every crystal plane. The time delay depend on frequency, as it is explicitly indicated in the summa-
tion. Ny depends on f because this sum extends up to the turning plane which depends on the
frequency f, because of the chirped. The values obtained applying Eq. (5) are respectively 3.9, 6.3
and 11.1 ms. Although these values are compatible with the ones obtained by the gaussian fitting
of the selected peaks in Figs. 6(b), (d) and (f), some differences are found for 2700 and 2900 Hz.
These can be explained considering that the difference in the group velocity between air and the
first two planes of the chirped structure, according to the values shown in Table I, is very large. A
wave packet travelling into a perfectly periodic structure having the lattice constant of either of the
two first planes of the chirped structure, a = 12.5 or a = 11.03 cm, will slow down gradually till
the theoretical value of the group velocity is achieved, after travelling through several planes of the
structure. Hence, the same wave packet entering the chirped structure will not reach this theoretical
value of the group velocity, but slow down slightly before passing the first two planes.

VIl. CONCLUSIONS

Sound enhancement in chirped crystals has been revealed as an efficient mechanism for the
wave spatial localization depending on its frequency and on the parameters of the structure. The
acoustic wave can be selectively enhanced at particular depth of the crystal, producing bright planes
for the frequencies around the first gap along the propagation direction. We reveal here that an
exponential chirp can present a stronger enhancement than that produced by a linear chirp, showing
an enhancement of 60 times in intensity. A simple couple mode theory is proposed, that captures
well the observed effects. For testing these ideas an experimental setup was constructed based on
chirped sonic crystal in the audible regime. Measurements of the acoustic field inside of the chirped
structure were obtained. On the other hand, numerical calculations using FEM in the spatial and
time domain have been performed, showing a perfect agreement with the experimental results. The
results and insights from our simple analytical model based on coupled modes theory allow us to
keep confidence over the approaches adopted, specially the consideration of our structure as locally
periodic. In addition, the reflection from chirped structures was also studied in time domain, by
numerical simulations, which show a measurable time spreading of the reflected pulse. The latter
result is in accordance with our concept of field slowing down and spatial localization at the turning
plane of chirped crystal. Generally speaking, the effect of wave enhancement opens new possibil-
ities for increasing the efficiency of detectors and absorbers, both in acoustics and optics, since slow
phonons and photons can be absorbed and harvested with a higher probability.
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Schematic of the experimental
setup used for the study of the
propagation of in-plane waves
in an array of porous layers

Enhanced Transmission Band in
Periodic Media with Loss
Moduiation

This paper is devoted to the propagation of in-plane waves in a periodic ar-
ray of absorbing layers. An anomalous increase of wave transmission through
the structure, related to a decrease in the absorption around the Bragg fre-
quencies, is found. The coupled mode theory, used in previous works, is

extended here to include the effect of losses, allowing to predict and discuss
this intriguing phenomena. Experimental measurements are carried out for
the case of sound waves in an array of porous layers embedded in air, demon-
strating the existence of an enhanced transmission band. The author of this
thesis participated in numerical simulations and experimental measurements.
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Enhanced transmission band in periodic media with loss modulation
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We study the propagation of waves in a periodic array of absorbing layers. We report an anomalous increase of
wave transmission through the structure related to a decrease of the absorption around the Bragg frequencies.
The effect is first discussed in terms of a generic coupled wave model extended to include losses, and its
predictions can be applied to different types of waves propagating in media with periodic modulation of the
losses at the wavelength scale. The particular case of sound waves in an array of porous layers embedded in
air is considered. An experiment designed to test the predictions demonstrates the existence of the enhanced

transmission band.
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Keywords: Periodic media, Layered lossy media, Band gap materials

‘Wave propagation in periodic media has become a sub-
ject of intensive study with numerous applications in dif-
ferent fields. The simplest form of periodic media consist
of alternating material layers with different properties
(such as the refraction index in optics, or the density
or elasticity parameters in acoustics) forming a layered
medium, also referred as 1D crystal or superlattice. Orig-
inally formulated to explain the propagation of electrons
in solids!, the basic theory of wave propagation in lay-
ered media was soon extended to optics? and acoustics®*.
Most of the previous work on periodic media focused on
conservative systems where waves can be reflected (at the
bandgaps), deflected, scattered, or even localized inside
the crystal. However, waves cannot be absorbed unless
dissipation is considered in the system. While dissipation
is an inherent property of all forms of matter, few atten-
tion has been paid to its effects in periodic media. More-
over, especially in real experiments, often one or more
of the constituent materials present some non-negligible
losses in the frequency range of interest.

Light and sound waves behave in the same manner
in linear media, obeying similar wave equations. This
has inspired a number of analogies between both fields.
However, the motivation for the study of losses in acous-
tics and optics may be different. In optics, where ef-
forts are devoted to minimize losses, dissipation in peri-
odic systems has been considered recently®*°. While in
Refs. [5] and [6] absorption is reduced in a multilayered
magneto-photonic crystal, in Refs. [7] and [8] enhanced
transmission through a stack of dielectric layers having
contrast only in attenuation is reported. Extensions to
two-dimensional (2D) modulation of losses has shown to
provide nontrivial light beam propagation effects, analo-

gous to flat photonic crystal lensing reported in conser-
vative systems? !0, In acoustics the situation is different,
since achieving maximum absorption is often the goal.
The effect of viscoelastic losses on phononic crystals was
first discussed in Ref. [11], and more recently in Refs.
[12-14], in terms of the modification of dispersion rela-
tions. Damping of elastic waves in solids phononic crys-
tals has also been discussed in [15] and [16]. In the au-
dible regime, viscothermal losses dominate, and absorp-
tion is mainly achieved by using resonators or porous
materials!”. The behaviour of lossy periodic media for
waves near Bragg resonances is much less known than
the long-wavelength limit. In this regime, there are stud-
ies about wave propagation in acoustic absorbing media
with rigid periodic inclusions'®, and in 2D arrays made
of absorbent'® and, absorbent and resonant scatterers
embedded in air?’. The combination of periodicity and
absorption in substructured materials produces complete
absorption of sound with a broadband response and func-
tional for any direction of incident radiation?'.

In this work we investigate the wave propagation
within a layered material with periodically distributed
losses. We show how the periodicity of the absorb-
ing media can modify the global absorption of the sys-
tem as well as its reflection and transmission properties.
The main prediction is a simultaneous increase of trans-
mission and reflection around the Bragg frequency, an
anomalous behavior in contrast to classical, conservative
bandgaps that always result in a decrease of transmis-
sion. First, a generic model based on the coupled-mode
theory and valid for different types of waves (light, sound
or matter waves) and media is presented, and its trans-
mission/reflection characteristics are analytically deter-
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FIG. 1. Transmission (solid lines) reflection (black dotted

lines) and absorption (gray dotted lines) spectra for waves in
a periodic structure (5 periods, L/a = 5) as calculated from
Egs. (3) and (4) for (a) conservative system (with coupling
ma = 0.125 and no losses ya = 0) showing the well known
band-gaps, (b) periodic system (with pure imaginary coupling
valued ma = ¢0.125 and losses ya = —0.2) predicting the
anomalous transmission. (c) and (d) show the total intensity
at the Bragg frequency, Ak = 0, for the configurations shown
in (a) and (b) respectively. Grey areas represent the absorbing
material in (d).

mined. Next, we particularize the study to the case of
sound waves propagating in a 1D periodic structure of
porous layers embedded in air, which is theoretically and
experimentally examined. The anomalous of transmis-
sion band around bandgap frequencies is experimentally
observed, showing good agreement with theory even for
a minimal number of layers.

Waves in layered media can be studied by using dif-
ferent theoretical tools. One approach very popular in
photonics is the coupled-mode theory?2. Here we ex-
tend the theory to include the effect of losses, and cal-
culate its influence in the transmission/reflection spec-
trum. Consider a medium formed by a finite number
of lossy parallel identical and equidistant layers irra-
diated by an incident plane wave. The total field is
composed of forward and backward propagating waves
P = A(z)etksr—iwt 4 B(g)e~hpo—iwt 4 cc which am-
plitudes are normalized so that their absolute square is
proportional to the energy flux in the corresponding di-
rection. kg = m/a is the Bragg wavenumber (the edge of
Brillouin zone, being a the lattice constant of the system)
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and w is the frequency. Forward and backward waves are
coupled by the modulation. If the contrast of impedances
between layers is small, and for frequencies near a Bragg
resonance, the dynamics of the forward and backward
waves can be approximately described by the dissipative
coupled-mode equations,
a4 =iAkA+mB + A,
dx
7% =iAkB +mA+vB, (1)
where Ak = k — kp is the detuning from the Bragg
wavenumber, m is the coupling between forward and
backward waves which is generally complex: real for
reflections from conservative (rigid or penetrable with-
out losses) materials, and imaginary for reflections from
purely absorptive media. A complex value of m allows
representing any realistic material. The coupling coeffi-
cient m is related to the impedance mismatch between
the absorber and the host medium. If the reflection coef-
ficient from medium 1 to medium 2 is r15 and ro; = —719,
and considering the same acoustic thickness (or equiva-
lently, the optical path) d for both materials, the cou-
pling coefficient is: m = (r12 — r21)/d = 2r12/d. For the
case of an acoustic wave: ro = (Zy — 21)/(Z2 + Z1),
where Z; stands for the impedance of the i-th medium.
Finally v is the gain coefficient, being negative for the
case of a lossy media. Its worth noting that v is always
negative for an acoustic media (y < 0, since there are no
gain acoustic materials). Note that the following relation
holds |y| > [ITm(m)|.

The solutions of Egs. (1) are exponentially grow-
ing/decaying oscillating waves, A(x), B(x) = e**, where
A are the complex eigenvalues of the matrix of the coef-
ficients of Egs. (1), which read

Ar ==+

(v + iAk)? + m2. (2)

For a finite system of length L, formed by N layers,
transmission and reflection coefficients can be obtained
analytically by imposing boundary conditions at the en-
trance face (z = 0) for the forward field, A(z = 0) = 0,
and at the rear face (x = L) for the backward field
B(xz = L) = 0. This leads to

A
T = N Cosh(MD) = (7 + iAK) sinb(AL) 3)
msinh(AL) @

R = S eosh(AD) — (7 + iAK) sinb(AL)

with A given by Eq. (2) with the negative sign (physical
solutions of the problem).

These expressions can be used to evaluate the response
of the structure in two opposite cases: the well-known
conservative periodic system v = 0 and pure real mod-
ulations parameter and a fictional material called here
purely absorptive material, that is a medium with the
same real part of the impedance as the host, but a non-
null imaginary part, i.e. pure imaginary m and nega-
tive 7. The latter case is analogous to that considered



for photonics in Refs. [7] and [8]. As it is well known,
for conservative periodic materials, the waves around the
Bragg frequency fp = ¢/2a (being ¢ the velocity of the
wave in the medium) are efficiently back reflected due
to Bragg resonance and transmission is correspondingly
reduced, as shown in Fig. 1(a).

However, in the case of lossy periodic media, the situ-
ation is different since the material parameters may have
a complex value due to dissipation. In the ideal case of a
purely absorbent material, we observe that an anomalous
transmission is maximum at Bragg resonance (Ak = 0),
as observed in Fig. 1(b). The origin of such anomalous
phenomenon is explained in Figs. 1(c) and 1(d), where
the field distribution along the structure is shown for
both cases. For a purely absorbent structured material,
at these frequencies, the total field within the structure
partially forms a standing wave, with the nodes of the
particle velocity (maximum values of the field) located
precisely inside the absorbing media. As the nodes cor-
respond to low particle velocity, there is few energy to be
absorbed. As a consequence, such a configuration results
in smaller absorption: both forward as well as backward
waves are less absorbed, and the overall transmission is
increased as well as the absorption is reduced as shown
in Fig. 1(b).

Migrophone A

Vo

FIG. 2. (Color online) (a) Experimental set-up, consisting in
an array of four plates of porous material; showing the source,
a loudspeaker located in front of the structure, and the mi-

crophone to measure intensity at either side of the structure.
(b) View of the system from a different angle.

The coupled wave formulation presented above is in-
dependent of the particular type of wave. Then, the co-
efficients are generic and do not contain information on
the physical characteristics of the considered system. We
concentrate now in the particular case of sound waves
propagating through periodically spaced porous layers,
of thickness D embedded in a fluid media (air) being a
the distance between the center of two consecutive layers
(lattice constant). This study will be used to check the

predictions of the general model as well as to compare
with experiments.

0.03 1 1 ‘
(a) —R?|
g 0.02 0.9 0.9f|---12 o5
X o
k] L
S §’0-01 0.8 08 o g? 1000 2000
o T2 Frequency (Hz)
0 0.7 0.7f o 00|
o
° 0.6 0.6 R 0
2 002 T
£ 0.5 0.5 E
E £ .01 | &
0.4 0.4F X o?ho 1
0 ~~
03 0.3f %oo|
o
g _002 02 02 (@
ZE
E 0.01 gl yjo.1 0.1r
0)

0 — = %0
500 F}ggge;]ggq”ezgoo 2500

HeGuency 18
FIG. 3. (Color online) (a), (b) and (c) Dependence of the ab-
sorption, reflection and transmission coefficients on the thick-
ness of the porous layer and on the frequency for the strati-
fied media, calculated with TMM for N = 3 layers. (b) Re-
flection (blue continuous), Transmission (green dashed) and
Absorption (red dotted) of our system (corresponding to the
white dashed line in (a)-(c)). Continuous lines represent the
theoretical predictions and circles represent the experimental
results. Inset shows the reflection (blue continuous) and ab-
sorption (red dotted) coefficients of a single porous layer for
its characterization using the ISO-10534-2.

An experiment was designed to check the predictions of
anomalous transmission around Bragg frequencies. The
set-up consists of a set of 3 to 5 parallel porous layers
of D = 8 mm thickness embedded in air, as shown in
Fig. (2). The lattice constant was chosen as a = 20 cm.
A loudspeaker was placed in front of the first layer in
such a way that plane waves propagate through the sys-
tem. All the measurements were conducted in an ane-
choic chamber in order to avoid unwanted reflections.
The coefficients (reflection, transmission and absorption)
were calculated from the acoustic pressure measurements
registered by two microphones, in both sides of the pe-
riodic structure. The spectral characteristics were mea-
sured using the above described experimental scheme.
Experimentally, we determined the intensity coefficients
by measuring the sound field before (reflection R) and
after (transmission T') the structure. Finally, by en-
ergy balance, the absorption coefficient is obtained as
a=1—|R?-|T].

We consider here the most general case in which the
frame of the porous material presents an elastic be-
haviour, so Biot’s theory can be used to characterize the
porous material. The layered material used in experi-
ments is analytically characterized by the transfer ma-
trix method (TMM) described in Ref. [17]. We consider
that the layered structure is laterally infinite (1D) and
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made of homogeneous and isotropic porous layers em-
bedded in air. We calculate the transfer matrices in the
porous medium where two compressional waves and one
shear wave can be supported and in the fluid medium
with only one compressional wave. All these waves are
coupled by the boundary conditions and the result is a
global transfer matrix which gives the propagation prop-
erties of the stratified media made of N layers, and in
particular its reflection and transmission coefficients.

Densitiy (kg/m?), p 50
Porosity, ¢ 0.97
Young’s Modulus (kPa), E 150
Poisson’s coefficient 0.35

Tortuosity, oo 1
Flow resistivity, o 13000
Characterisitic length (m), A 120x10°°
Characterisitic thermal length (m), A" 200x10~°

TABLE I. Physical parameters of the porous material used in
the experiments and numerics.

In a first step, the material has been characterized.
Parameters of the material are shown in Tab. I. These
parameters have been used to evaluate the transmission
and absorption coefficients of the porous layer using the
TMM. These properties are shown in the inset of Fig.
3(d), showing that the parameters of Tab. I represents
in good agreement the transmission and absorption prop-
erties obtained using the standard ISO-10534-2. We can
see that the absorption of the porous material is very low,
therefore the effective impedance of the porous layer is
similar to that of the air. This situation is optimal to
allow transmission with small but enough losses to in-
duce the anomalous properties of a layered media made
of layers of this porous material.

Once the material is characterized, we use the TMM
to evaluate the properties of a layered material made of
3 porous layers embedded in air. The dependence of the
absorption, «, reflection, |R|?, and transmission, |T|?,
coefficients on the thickness of the porous layer, d, and on
the frequency, f, are shown in Figs. 3(a), 3(b) and 3(c)
respectively. We can observe, as predicted previously by
the general coupled-mode model, the usual increase of
the reflection in the band-gap and the anomalous increase
(decrease) of the transmission (absorption) at frequencies
around the band gap (fg = 850 Hz (fg = 1700Hz) for
the first (second) band gap).

Finally, we particularize for the case we have in the
experimental set-up. Figure 3(d) shows the comparison
between the numerical predictions, obtained by applying
the TMM and the experimental results. As predicted,
maxima of transmission and reflection are observed at
Bragg frequencies and, as a consequence, at these fre-
quencies the structure is absorbing less energy.

We determine transmission and reflection of waves in
a general layered lossy structure and measure it experi-
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mentally in a particular acoustic system. The study in-
dicates the existence of spectral regions of enhanced and
reduced overall absorption with anomalous transmission
around the band gap. A simple couple mode theory is
proposed to explain these results, which is essentially a
forward wave linearly coupled with the backward wave.
Depending on the character of the systems (rigid, lossy,
or complex), the coupling coefficient is set (real, imag-
inary or complex), which also captures the above pre-
dicted and measured spectral characteristics. In good
agreement with the TMM predictions, we experimentally
observe that the transmission of sound waves trough a
periodic arrangement of absorbing plates is enhanced at
resonance. Such anti-bandgap effect is expected to be
generic for any kind of waves in a periodic modulation of
losses on the wavelength scale, at the Bragg frequency.

The work was supported by Spanish Ministry of
Science and Innovation and European Union FEDER
through projects FIS2011-29731-C02-01 and -02, also
MAT2009-09438. A. M. Y. would like to thank the Eras-
mus Mundus project (WELCOME program) for support-
ing him.
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Schematic of the experimental setup
used for the study of the propagation
of out-of-plane waves in a porous
lamella-crystal

Extraordinary Absorption of Sound
in Porous Lamella-Crystals

This publication is the result of a joint work between scientists from the
Technical University of Denmark, Institucié Catalana de Reserca i Estudis
Avancats, Université du Maine and our research group in Universidad Poliéc-
nica de Valencia (UPV), under the proposal of Prof. Johan Christensen (Tech-
nical University of Denmark). In this work, the design of a structured mate-
rial supporting complete and broadband absorption of out-of-plane waves that
penetrate into a periodic array of absorbing porous layers is presented. The
concept of enhanced absorption in lossy lamella crystals is directly related to
the time delay of sound waves propagating inside the structure. Our research
group were in charge of the experimental measurements, carried out in the
research facilities of Escuela Politécnica Superior de Gandia (UPV) with the
participation of the author of this thesis.
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Extraordinary absorption of sound in
porous lamella-crystals
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We present the design of a structured material supporting complete absorption of sound with a broadband
response and functional for any direction of incident radiation. The structure which is fabricated out of
porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental
measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a
frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases
the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making
the system more absorptive with less material.

he damping of sound waves can be understood by conversion of the mechanical energy into heat. The

acoustic equivalent to an ideal black body would be something similar to a “deaf” body which is an object

absorbing sound coming from all directions at any given frequency. Absorption of sound waves is governed
by the effects of viscosity and thermal conduction in fluids. In order to give a macroscopic picture of these
dissipative processes one must interchange the mass density p and the bulk modulus K with complex quantities,
leading to a finite penetration length into the dissipative medium. In a first approximation, damping can be
neglected for audible sound in free space and therefore the utilization of lossy materials is essential for screening
noise and designing acoustic insulators. Thus, it is desirable to create structures with the capability of efficient
dissipation, preferably in a way that energy conversion causes all waves to be absorbed such that no back- and
through-radiation takes place. While this remains to be the ideal case, various composites and artificial structures
were designed in the attempt of pursuing this ultimate goal. We distinguish between resonance-based and
broadband systems. Locally resonating materials have been fabricated in the form of mass-loaded thin mem-
branes, gas-bubble arrays and elastic beams, featuring sharp and narrow absorption peaks'~®. Broadband absorp-
tion, on the other hand, has been demonstrated for low frequencies by lattices of perforated shells®. Sound
blocking screens made out of, e.g., phononic crystal or metamaterials with one single negative effective parameter
prevent waves to penetrate through these structures resulting in full reflection of sound’*°. These effects are
caused by diffraction properties and evanescent modes, respectively, and will not easily lead to broadband
absorption of sound. Periodic penetrable structures, generally speaking, have been fabricated with many facets
for different kinds of waves. Electromagnetic (EM) structured materials, in that regard, such as gratings with finite
conductance, convex grooves or the moth eyes, comprise anti-reflective systems with a broad spectral res-
ponse''"'*. However, to sustain a spectrally and angularly rich performance with complete absorption and little
material use remains a challenge worth pursuing.

We present a system inspired by recent EM experiments where a forest of vertically aligned single-walled
carbon nanotubes showed extremely low reflectance and making it the darkest man-made material ever'**°. The
mechanism consists in the attempt of matching the material index to free-space to prevent back-reflected waves
but at the same time providing sufficient material losses to guarantee intensity attenuation. Here, we show how a
low-density porous lamella array, in analogy to its electromagnetic counterpart made of nanotube arrays, behaves
most closely like a true deaf body. Within this framework, we show how these constructed crystals in a most
counter intuitive way become more absorptive when less material is chosen.

| 4:4674 | DOI: 10.1038/srep04674 1
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Figure 1| Controlling the absorption by lowering the crystal filling
fraction f. (a), Schematic of the crystal made of lamellas of width W, lattice
constant a and length L. The crystal is backed by a rigid support into which
no sound waves penetrate. (b,c), The enhancement factor 7Y and the
absorption are plotted for various filling fractions with constant lamella
width W = 4 cm and length L = 0.5 m. In all cases, we implemented
complex dispersive material dependence for p and K within the lamellas®.

Results

Concept of enhanced absorption in lossy lamella-crystals. To
illustrate this surprising behaviour, we begin by analysing a simple
asymmetric system consisting of an inhomogeneous lossy medium of
length L supported by a rigid backing as illustrated in Fig. 1a. The
general complex scattering matrix can be written as:

()—r@>ﬂ,

where r(w) is the complex reflection coefficient. In the absence of
losses the scattering matrix is unitary and consequently |r(w)| = 1,
ie. perfect reflection due to the rigid backing. This changes
dramatically in the presence of weak absorption provided that the
time delay is comparable to 1/2I". To see this explicitly, we follow
considerations developed in the context of absorption in chaotic
cavities*'. For a weak absorption rate I" the full scattering matrix S
is related to its loss-less counterpart Sp

s(0)=s(0) (1~ 5 0)). @)

(1)
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Figure 2 | Acoustic response of crystals made out of porous lamellas.
(a), Absorption versus frequency and lamella length L for normal incident
radiation where f = 30% and W = 4 c¢m. (b,c) Simulated angular
dependence of the structure in (a) with L = 0.5 m within the first Brillouin
zone. We take illustrative examples corresponding to four frequency cuts
in (c) and show the dependence of absorption with parallel momentum k.

where Q(w)= —ng(w) 6832}0})
matrix. Since S, is Hermitian so is Q and its positive eigenvalues
are interpreted as the group delay time 7 for a wavepacket centered
around w. Conservation of energy in the asymmetric system requires
|[r(w)]* + A = 1, where A is the absorption, hence, to a first
approximation we can write

[r(o)?=1—2It. (3)

is the Wigner-Smith delay-time

Provided a sufficiently long time delay, the reflectance can be
minimal and the absorption perfect, even for a modest intrinsic
absorption rate. The perspective of acoustic functional materials is
to support delay times much exceeding the delay time of their bulk
counterparts (t>>7;). For a bulk material lamella (/) of length L,
backed by a perfect reflector, the acoustical path becomes 2L and
consequently the time delay is 7, = 2L/c; where ¢; is the sound speed
in the lamella material. On the other hand, composing a porous
periodic crystal from the same base material, ¢; is replaced by the
actual group velocity v, associated with the phononic band
dispersion relation. In this context, we define the enhancement

I't
factor V= T that expresses the acoustic interaction strength in
1

the crystal. In other words, enhancement is reached whenever
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Figure 3 | Measured and simulated absorption and reflectance demonstrating increased dissipation when lowering the filling fraction. (a), Bottom
view on the suspended crystal made out of porous foam lamellas and supported by a rigid backing. The lamellas have the width W = 4 cm and length L =
0.5 m. (b,c), Measured (open circles) and simulated (full lines) absorption and reflectance versus frequency for three different filling fractions, f = 40%,
70% and 100%. All data are obtained for a normal incident acoustic plane wave.

7Y > 1, meaning that dissipation inside the crystal exceeds the
intrinsic material losses of the lamellas. From Eq. (3) it follows that
reflectance (absorption) will decrease (increase) whenever wave
slowing or increased dissipation take place. Since we will not
operate within the long wavelength regime, we apply this model in
our interpretation of the enhanced absorption because homogeni-
zation of the lamella-crystal cannot be applied safely.

We examine the structure depicted in Fig. 1a where the goal is to
explore the tunability for maximal absorption. The basic structure is
a 1D sonic crystal consisting of an array of lossy slices supported by a
perfectly rigid backing. With translational invariance in the y dir-
ection we numerically simulate the complex wave interaction by
coupling free-space sound radiation to Bloch states inside the crystal
(detailed derivations are found in the Methods section). This leads to
the following expression for the reflection coefficient

rg= 2 ZPjGBjCOS q}L — 50(;, (4)
J

where pf, Bjand g; are the j'th eigenvector, modal amplitude and out-
of-plane wave vector of the crystal respectively, from which we derive
the overall absorption

kz
A:lsz:Re(k—G)\r(;lz, (5)

where k¢ =\/k2— (k,+G,)*. We begin by analysing the spectral
absorption A (Eq. (5)) for sound incident along the out-of-plane
crystal orientation at normal incidence. In the experimental set-up
we utilize a porous material based on homogeneous foam, hence to
conduct numerical simulations we have implemented dispersive
material dependence for these lossy materials and calculated the
acoustical response of the crystal to an incoming sound wave®. In

order to lower the filling fraction and by this controlling the overall
dissipation, we need to change the lattice constant for a fixed lamella
width. By inspecting the bulk properties for the case when f = 100%
or equivalently ¥ = 1 we predict overall weak absorption for low
frequencies as seen in Fig. 1c. Obviously this is the regime to be
challenged since porous materials naturally perform most efficient
at higher frequencies. Changing the crystal filling fraction f by vary-
ing the lattice parameter a causes the lattice singularities to shift
accordingly as seen in Fig. 1c. These spectral dips resulting in low
absorptions arise from diffracted waves becoming grazing and take
place when |k, + G,| = w/cy”. If the filling fraction is lowered, a
growth in the enhancement factor is seen, which is giving rise to
increased absorption. This increase in dissipation is simply explained
by the fact that sound is trapped more efficiently inside the crystal as
compared to the bulk (f = 100%) meaning that Y must be larger than
unity as depicted in Fig. 1b. We obtain enhanced absorption caused
by an increased acoustic interaction strength (7 > 1) that for higher
frequencies slightly grows inversely with the filling fraction, see
Fig. 1b. On the other hand, one could in as much create systems with
complete absorption Y > 1 of sound by designing lamellas made out
of an intrinsic lossier material. It is the choice of materials with high
absorption rates and the resulting delay time within the dispersive
crystal which dictates the performance.

Further to this, we simulate the dependence of the absorption with
lamella length L. At a given frequency the waves penetrate into the
crystal with a characteristic length that should not surpass the crystal
length L > I, to avoid strong back-reflection at the rigid support. For
this reason, either the wave needs to decay rapidly or travel a suf-
ficient long distance to undergo enough intensity attenuation as
plotted in Fig. 2a, showing that absorption increases when the struc-
ture becomes lengthy. In Fig. 2a we also observe some fine oscilla-
tions in the mapping of which the spectral locations scale with 1/L as
known from cavity resonances. More importantly however, although
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we predict high absorptions in the range 0.95-0.999 in a representa-
tive band between 2.0 to 2.5 kHz for L = 0.1 m, as seen in Fig. 2a the
bandwidth of complete sound absorption is easily broadened by
increasing the lamella length L. Unlike membrane type absorbers
decorated with rigid platelets where the absorption is resonance-
based and overall narrow in width', the present scheme relying on
diffraction constitutes an acoustically thick layer which is essential
for broadband applications. Next, we investigate the angular sens-
itivity for the crystal, which up to this point has been simulated for
normal incident acoustic plane waves only. For this, it is useful to
calculate the absorption versus frequency and parallel momentum k,
within the first Brillouin zone. Fig. 2c shows this band diagram con-
taining Bragg-folded sound lines which are responsible for the lattice
singularities of low absorption. The entire angular and spectral res-
ponse resembles the one seen with bandgap materials with no mater-
ial contrast, but for the present case comprising out-of-plane
propagation, it is shown that near to 100% absorption sustains for
the angles shown within the first Brillouin zone (see Fig. 2b for
specific frequency cuts). Beyond this zone, absorption remains high
up to grazing incidence and the limits are met only whenever irra-
diation is in phase with the crystal lattice and full reflection takes
place.

Experimental verifications. The crystal is constructed out of thin
layers of homogeneous foam that is created by compaction and
compression of a polyurethane, polyester and polyether mixture.
These lamellas have a width of W = 4 ¢cm and are arranged into a
1D lattice, which is suspended and backed by a rigid wood support as
illustrated in Fig. 3a. We have applied the transfer function method
consisting of a loudspeaker and two microphones for the phase and
amplitude measurements to detect complex reflections. In the
experimental set-up the loudspeaker is placed at a sufficient
distance from the microphones and the sample to ensure plane
wave generation for all relevant frequencies (see Methods and
supplementary material). Spectrally, we evaluate the reflectance
[r(w)]> and the resultant absorption A over frequency ranges
relevant to road and air traffic-noise screening. From the previous
study we predicted that lowering the crystal filling fraction will
improve the absorption of sound due to the enhancement of the
interaction strength. To validate this experimentally we have
constructed various samples made out of the same lamellas but
varied the size of the unit cell resulting in three different filling
fraction as seen in Fig. 3. Bulk material properties are obtained
measuring the response of the structure with a filling fraction of
100% from which relatively strong absorption stems from intrinsic
material losses and the slab length L. When lowering the filling
fraction down to 70% and 40%, we observe increased perfor-
mances with mean absorption of 0.97 and 0.99, respectively, over
an extended spectral range spanning from 0.7 to 3 kHz. Due to a
finite number of unit cells (see Methods) we detect oscillations in the
spectrum, overall however, the theory agrees very well with the
average absorption evaluated from experiments. The crystal
fabricated with a filling fraction of 40% does not only outperform
the other samples measured, see insets of Fig. 3, but further to this we
measure a reflectance on the order of 107* in a representative
frequency range.

Due to the interaction strength exceeding unity, complete sound
absorption extends much further away from normal incidence for
various directions (k, = kosinf) as rendered in Fig. 2c. We conducted
angular-resolved absorption measurements where we vary the angle
0 from the normal to the crystal surface. Caused by diffraction assoc-
iated by momentum transfer to the lattice (dash-dotted lines), again
we predict regions of higher reflections as seen in Fig. 4. This narrow
region is however being surpassed by a spectrally broad region of
strong absorption spanning from 0 = 0°-40°. Both, the finite num-
ber of unit cells and the rigid rotatable frame used for the angular
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Figure 4 | Measured and simulated angle-resolved absorption spectrum.
(a), Measured (see Methods for details) and (b), simulated absorption as a
function of frequency and angle of incidence for the same structure as in
the previous measurements, now just with f = 36%. The dash-dotted line
on both contour-maps indicate the condition where |k, + G,| = w/c.
(c), Angular dependence of the absorption, representing three measured
(open circles) and simulated (full lines) frequency cuts from the contours
in (a) and (b).

measurements (see Methods) are causing additional unwanted
reflections in the measurements, Fig. 4a. However, upon inspecting
both experimentally and numerically the absorption for three differ-
ent frequencies within the entire resolved spectra (Fig. 4a and 4b,
respectively), we find overall good agreement validating broadband
absorption for almost any direction as seen in Fig. 4c.

Discussion

We have shown a new concept to engineer highly absorptive acoustic
materials by means of increasing the sound-material interaction
strength which is leading to vanishing reflectance, hence, perfect
absorption of sound. We have achieved this goal by fabricating crys-
tals made out of intrinsically lossy lamellas and mounted them onto a
rigid backing. For a representative broad range of frequencies we
show that absorption can be controlled by the crystal density and
tuned up to 99%. The counterintuitive ability to increase absorption
by lowering the effective amount of material is providing many
interesting opportunities for minimizing noise pollutions by pro-
ducing efficient acoustic sealing.
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Methods
Numerical simulation. We have implemented a plane wave expansion technique
comprising in-plane Bloch waves and out-of-plane harmonic pressure waves

p=e"e" Z pCelk T ¥ where q is the out-of-plane wave vector, k, + G with
G

2
G =G, =n—x, the in-plane wave vector and p° the eigenvector. After expanding the
a

fields and the complex material parameters p and K we end up with the following set
of equations:

J=o ©

1 1
ke+G) (ke +G )+ —— —a?
%: <l’cfc'< <+ G) (ks )t Po-c Ko-c
Since external radiation impinges onto the crystal that is backed by a rigid support
(see Fig. 1a), we need to treat those two regions separately. We write the free-space
wave radiation in the form of an incident and back-scattered wave

or = ofkex gikez + Z rGei(kX +G)xg rkfzq (7)
G

and the crystal cavity modes as

PIIZZZZP]GBJ cos gj(z—L)el ™+, (8)
G

J

In this cavity, the wave amplitudes are weighted over the j’th eigenvector ij and
modal amplitude B;as shown in Eq. (8). When imposing continuity of the fields at the
interface, we solve the unknows as for example the reflection coefficient r and the
overall absorption A (Eq. (4) and Eq. (5) respectively).

Experimental set-up. The crystal, which is backed by a rigid wood panel, contains 9
unit cells of lamellas of width W = 4 cm, length L = 50 cm and depth D = 100 cm
that are mounted upside down without weight suspensions, see Fig. 3a. For the angle-
resolved measurements, the crystal was mounted on a rotatable frame with a vertical
axis. In order to fit the 9 unit cells inside this frame, the crystal was constructed with a
filling fraction of f = 36%.

As rendered in Fig. S1 (supplementary material), the experimental set-up con-
structed to measure the complex reflection coefficient r(w) is based on the transfer
function method and applied in the anechoic chamber. The first microphone has been
placed at a sufficiently large distance to the source to ensure propagation of plane
waves for the entire range of frequencies analysed. Moreover, to avoid finite size
effects of the truncated crystal, the second microphone is placed in the nearest
proximity to the crystal. For the sound excitation we use a Genelec 8130A Digital
Monitoring System placed with a distance of d =4 m to the first microphone. Two
B&K 4189 microphones of 1/2 inch are placed at the equatorial plane of the crystal
and aligned with the central unit cell. Data from the two microphones are acquired
with a CLIO 10 FW (Audiomatica) and then processed in a computer.
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