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Abstract

Parameter identification is an essential step in constructing a groundwater model. The process of recognizing

model parameter values by conditioning on observed data of the state variable is referred to as the inverse

problem. A series of inverse methods has been proposed to solve the inverse problem, ranging from trial-

and-error manual calibration to the current complex automatic data assimilation algorithms. This paper

does not attempt to be another overview paper on inverse models, but rather to analyze and track the

evolution of the inverse methods over the last decades, mostly within the realm of hydrogeology, revealing

their transformation, motivation and recent trends. Issues confronted by the inverse problem, such as dealing

with multiGaussianity and whether or not to preserve the prior statistics are discussed.

Keywords: Heterogeneity; parameter identification; data assimilation; uncertainty; groundwater modeling.

∗Corresponding author
Email addresses: haiyanzhou@utexas.edu (Haiyan Zhou), jaime@dihma.upv.es (J. Jaime Gómez-Hernández),
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1. Introduction1

Mathematical modeling of subsurface flow and mass transport is needed, for instance, for groundwater2

resources management or for contaminant remediation. The forward model requires specification of a variety3

of parameters, such as, hydraulic conductivity, storativity and sources or sinks together with initial and4

boundary conditions. However, in practice, it is impossible to characterize the model exhaustively from sparse5

data because of the complex hydrogeological environment; for this reason, inverse modeling is a valuable tool6

to improve characterization. Inverse models are used to identify input parameters at unsampled locations by7

incorporating observed model responses, e.g., hydraulic conductivities are derived based on hydraulic head8

and/or solute concentration data. Deriving model parameters from model state observations is common in9

many other disciplines, such as petroleum engineering, meteorology and oceanography. This work mostly10

focuses on inverse methods used in hydrogeology.11

1.1. The forward problem and the inverse problem12

The forward problem involves predicting model states, e.g., hydraulic head, drawdown and solute con-13

centration, based on a prior model parameterization. Combining mass conservation and Darcy’s laws, the14

forward groundwater flow model in an incompressible or slightly compressible saturated aquifer can be15

written as (Bear, 1972)16

∇ · (K∇h) = Ss

∂h

∂t
+Q (1)

subject to initial and boundary conditions, where ∇· is the divergence operator ( ∂
∂x

+ ∂
∂y

+ ∂
∂z
), ∇ is the17

gradient operator ( ∂
∂x

, ∂
∂y

, ∂
∂z
)T , K is hydraulic conductivity [LT−1], h is hydraulic head [L], Ss is specific18

storage [L−1], t is time [T ], and Q is source or sink [T−1]. The differential equation governing non-reactive19

transport in the subsurface is:20

φ
∂C

∂t
= −∇·

(

qC
)

+∇·
(

φD∇C
)

(2)

subject to initial and boundary conditions, where C is the concentration of solute in the liquid phase [ML−3],21

φ is porosity [–], D is the local hydrodynamic dispersion tensor [L2T−1] usually defined as Di = αi|q|+Dm22

where αi refer to the longitudinal and transverse dispersivities [L] andDm is the molecular diffusion coefficient23

[L2T−1], and q is the Darcy velocity [LT−1] given by Darcy’s law as q = −K∇h.24

The inverse problem aims at determining the unknown model parameters by making use of the observed25

state data. In the early days of groundwater modeling, it was common to start with a prior guess of the26

model parameters, run the forward model to obtain the simulated states, and then enter in a manual loop27
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iteratively modifying the parameters, and then running the forward model, until observed and simulated28

values were close enough so as to accept the model parameter distribution as a good representation of the29

aquifer. This “trial and error” method falls into the scope of “indirect methods” as opposed to the “direct30

methods” which do not require multiple runs of the forward model to derive the model parameters (Neuman,31

1973) as will be discussed below.32

1.2. Why is the inverse problem necessary?33

Sagar et al. (1975) classified the inverse problem into five types according to the unknowns, i.e., model34

parameters, initial conditions, boundary conditions, sources or sinks and a mixture of the above. Most35

documented inverse methods fall into the first type, that is, they try to identify model parameters, which36

contribute largely to the model uncertainty due to the inherent heterogeneity of aquifer properties. Parameter37

identification is of importance considering the fact that no reliable predictions can be acquired without a38

good characterization of model parameters. Parameter identification is a broad concept here including not39

only the property values within facies but the facies distribution, or in other words, geologic features. The40

effect of geologic uncertainty in groundwater modeling is examined, for instance, by He et al. (2013) in a41

real case study. Furthermore, data scarcity deteriorates the characterization of the model parameters and42

raises the uncertainty. Besides estimating aquifer parameters, the inverse methods also play a critical role in43

assessment of uncertainty for the predictions. Furthermore, the inverse problem might be used as a guide for44

data collection and the design of an observation network. The reader is referred to Poeter and Hill (1997)45

who discussed the benefits of inverse modeling in depth. In this work we are mainly concerned with the46

uncertainty introduced by the unknown model parameters and thus the inverse methods that are used to47

characterize these parameters.48

1.3. Why is the inverse problem difficult?49

A problem is properly posed if the solution exists uniquely and varies continuously as the input data50

changes smoothly. However, most of the inverse problems in hydrogeology are ill-posed and they cannot be51

solved unless certain assumptions and constraints are specified. Ill-posedness may give rise to three problems:52

non-uniqueness, non-existence and non-steadiness of the solutions, among which non-uniqueness is the most53

common. Non-uniqueness primarily stems from the fact that the number of parameters to be estimated54

exceeds that of the available observation data. Another reason is that the observations are sometimes not55

sensitive to the parameters to be identified; in other words, the information content of the observations is56

very limited. For instance, hydraulic heads close to the prescribed head boundaries are more influenced by57
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the boundaries than by the nearby hydraulic conductivities (i.e., the hydraulic heads are not so sensitive58

to the conductivities), and on the contrary, the hydraulic heads close to the prescribed flux boundaries are59

determined to a large extent by the hydraulic conductivities nearby (Carrera and Neuman, 1986b).60

A series of suggestions have been proposed to alleviate the ill-posedness:61

1. Reduce the number of unknown parameters, e.g., using zonation, or collect more observation data so62

that the numbers of data and unknowns are balanced.63

2. Consider the prior information or some other type of constraint to restrict the space within which64

parameters may vary.65

3. Impose regularization terms to reduce fluctuations during the optimization iterations (Neuman, 1973).66

4. Maximize the sensitivity of observations to model parameters, for instance, by designing properly the67

observation network.68

5. Minimize the nonlinearity in the model equation. Carrera and Neuman (1986b) argued that working69

with the logarithm of hydraulic conductivity reduces the degree of non-convexity during optimization.70

An alternative is to infer hydraulic conductivity using fluxes rather than heads as done by Ferraresi71

et al. (1996), since the relationship between hydraulic conductivity and flux is linear (Darcy’s law)72

while the relationship between hydraulic conductivity and head is nonlinear.73

Detailed discussions on this subject can be found in Emsellem and De Marsily (1971), Neuman (1973),74

Carrera and Neuman (1986b) and McLaughlin and Townley (1996) among others.75

Besides the ill-posedness problem, computational burden is the second main hurdle for inverse problems76

(Neuman, 2006). There are several reasons for the high CPU time requirement. Since many inverse models77

are iterative, the forward model has to be run many times until an acceptable parameter distribution is ob-78

tained. The time needed to run the forward model grows exponentially with the degree of discretization and79

the level of heterogeneity. When multiple realizations are sought, CPU demand grows with the number of80

realizations. For those methods that use gradient minimization, the sensitivity matrices of model variables on81

parameters are computed, which is very time consuming. A few measures to reduce computational demand82

have been proposed, for instance, (a) certain kernel techniques render it possible to select representative real-83

izations from a large ensemble so that the size of the ensemble can be reduced (e.g., Scheidt and Caers, 2009;84

Ginsbourger et al., 2013); (b) upscaling can be performed prior to any forward simulation in order to reduce85

solution time (e.g., Tran et al., 2001; Li et al., 2012c; Myrseth et al., 2013); (c) use of parallel/distributed86

computing technologies (e.g., Tavakoli et al., 2013; Xu et al., 2013a); (d) use of efficient surrogate models to87
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reduce the number of unknowns that must be computed at each time step, i.e., reduced-order flow modeling88

(e.g., He et al., 2012; Pau et al., 2013; Awotunde and Horne, 2011).89

The problem of scales is the third difficulty to be confronted in the application of the inverse method.90

Measurements from boreholes (made in situ or in the laboratory), local pumping tests, and regional aquifer91

estimates are the three common scales (Dagan, 1986; Kitanidis and Vomvoris, 1983) at which information is92

handled in aquifer modeling. As Emsellem and De Marsily (1971) pointed out, “permeability is a parameter93

with no punctual value but with an average value in a region of a given size”. The support of the permeability94

measured from the field is normally smaller than the cell size of the numerical model. In practice, permeability95

should be upscaled to a scale consistent with that of the numerical model discretization, otherwise the96

forward model would be computationally very expensive. A variety of approaches to calculate the upscaled97

permeability or hydraulic conductivity are available (e.g., Renard and Marsily, 1997; Sanchez-Vila et al.,98

2006; Wen and Gómez-Hernández, 1996; Zhou et al., 2010; Li et al., 2011). Besides, the scale inconsistency99

between field measurement support and numerical model discretization extends also to the observations,100

which can be obtained at different supports, too.101

1.4. Outline of the paper102

Despite all sorts of difficulties, many inverse methods have been proposed to solve the inverse problem. In103

the present paper we do not intend to review all current inverse methods, since several others have reviewed104

the topic from different points of view (e.g., Carrera et al., 2005; De Marsily et al., 2000; McLaughlin and105

Townley, 1996; Oliver and Chen, 2010; Yeh, 1986). But rather, we would like to analyze the evolution of106

the inverse models, from the simple trial-and-error approaches of yesterday to the sophisticated ensemble107

Kalman filters of today, pointing out the incremental improvements that happened in the way.108

In the remainder of this paper we mainly focus on seven key topics, as follows:109

• Section 2.1 discusses the direct method. Then, in the following sections, we focus on the indirect110

approaches.111

• Section 2.2 shows a linear inverse method in which the groundwater flow model is solved by linearizing112

the partial differential equation under certain assumptions. Its shortcoming motivates development113

of the nonlinear inverse methods in which the forward problem is solved numerically. The inverse114

methods in the remaining sections all belong to the nonlinear type.115

• Section 2.3 highlights the importance of considering uncertainty and introduces the inverse method116
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based on Monte Carlo simulation in which multiple plausible realizations are used to represent the real117

system.118

• Section 2.4 discusses sampling the posterior distribution rather than minimizing an objective function119

as the solution to the inverse problem.120

• Section 2.5 focuses on integrating new observations sequentially without the need to reformulate the121

problem.122

• Section 2.6 discusses whether the prior statistical structure of the model should be preserved through123

the inversion algorithm.124

• Section 2.7 addresses the issue of multiGaussianity in inverse modeling and the difficulties to get away125

from it.126

In each section, we will introduce a typical inverse method explaining its principle, implementation127

details, advantages and shortcomings. Recent trends of the inverse modeling are summarized in Section 3.128

The paper ends with some conclusions.129

2. Evolution of inverse methods130

Many approaches have been proposed to solve the inverse problem. Several comparison studies have been131

carried out to evaluate their performances, among them Zimmerman et al. (1998) and Hendricks Franssen132

et al. (2009) both compared seven different inverse methods. The former work focused on the transmissivity133

estimation and subsequent forecast of transport at the Waste Isolation Pilot Plant (WIPP). The latter used134

a different set of seven inverse methods to characterize well catchments by groundwater flow modeling. Some135

methods, such as the maximum likelihood method, the self-calibration method and the pilot point method136

were analyzed in both works. In this section we would like to track the evolution of inverse methods along137

with the objectives that cope with the pitfalls of the inverse methods.138

2.1. Direct or indirect approach?139

Inverse methods fall into two groups: direct ones and indirect ones (Neuman, 1973). Nowadays, only140

indirect methods are considered; however, it was the direct method that, somehow, gave rise to the indirect141

one. The move from direct methods to indirect ones would be the first major evolution in solving the inverse142

problem, and for this reason we start this analysis by recalling the direct method and why it had to be143

discarded in favor of the indirect one.144
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The forward problem of groundwater flow can be expressed as F (K) = h, where F (·) is an equation such145

as Equation 1 relating the system parameters (e.g., hydraulic conductivity K) to the model responses (e.g.,146

hydraulic head h). The forward problem requires that model parameters be known over the entire domain.147

In such a case, the inverse problem can be simply formulated as K = F−1(h), provided, that h is known148

exhaustively. (The boundary conditions, source and sink terms could also be identified if necessary (Sagar149

et al., 1975).)150

Although the theory is straightforward, it is virtually impossible to obtain a realistic solution by solving151

the algebraic equations resulting after the discretization of the inverse equation due to the serious ill-posedness152

and the singularity of the matrices involved in the numerical formulation (Sun, 1994). Some modifications153

were proposed to cope with these difficulties, such as, considering more equations than there are unknowns154

to build an over-determined system so that the effect of measurement errors is reduced (Ponzini and Lozej,155

1982); or, imposing a constraint on the objective function, which converts the inverse problem into a linear156

programming problem (Kleinecke, 1971; Neuman, 1973) or a minimization problem (Navarro, 1977).157

The main shortcoming of the direct method is that it requires that piezometer heads have been measured158

at all nodes of the discretized domain, and for it to yield stable results, head measurements are needed159

everywhere for several orthogonal boundary conditions in the sense explained by Ponzini and Lozej (1982).160

It is worthwhile mentioning that, recently, Brouwer et al. (2008) proposed a direct approach called the161

“double constraint method” to determine permeability. Although it is not strictly a direct method, since162

it does not require having observations extensively over the entire domain, the final step of the method,163

computing the permeabilities, uses a direct approach. The method assumes that pairs of pressure/flow rates164

are available at a number of points in the domain. A guess of the spatial distribution of the permeabilities165

is made and two forward runs are performed, the first one considers the measured pressures as prescribed166

boundary conditions (disregarding the flow rate data), the second one uses the flow rates as prescribed167

boundary conditions (disregarding the pressure data), then the prior permeability guess is forgotten and168

new permeabilities are computed “directly” at each block interface using the pressure gradients derived from169

the first run and the flow rates derived from the second one. The process is repeated, and eventually the170

spatial distribution of permeabilities converges to a stable one. The method was compared in a synthetic171

example with the results obtained by the ensemble Kalman filter yielding good results. Another direct inverse172

method was proposed recently (Irsa and Zhang, 2012), in which the hydraulic conductivity is determined173

using steady-state flow measurements with unknown boundary conditions. In this method the groundwater174

flow equation is solved analytically using a Trefftz-based approximation, then a collocation technique enforces175
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the global flow solution. The method is mainly applied on homogenous aquifers and also on heterogeneous176

aquifers with a known prior distribution of hydraulic conductivities.177

The virtual impossibility of having state observation data over the entire domain gave rise to the indirect178

methods capable of handling limited numbers of observations. In the following, only indirect methods are179

discussed.180

2.2. Linearization or not?181

Kitanidis and Vomvoris (1983) proposed the geostatistical approach (GA) as a very clever way to reduce182

the number of unknown values and subsequently mitigate the ill-posedness problem. Conductivities are not183

the subject of the identification problem, but rather the parameters of the variogram that describe the spatial184

correlation of the conductivities. Once the variogram has been identified, conductivities are interpolated by185

kriging onto the model cells.186

The procedure of the GA can be summarized into two main parts: structure analysis and linear estimation.187

Structure analysis consists of three steps as follows:188

1. Select a geostatistical model, e.g., decide a variogram function and whether the model is stationary or189

not. The model structure is selected based on all available information.190

2. Estimate the parameters characterizing the model structure such as trend (if any), variance and corre-191

lation ranges. The joint probability function of log-permeability and head is assumed multiGaussian,192

and the hydraulic heads are expressed as a linear function of log-permeability, after linearizing Equa-193

tion 1. Then, the parameters of the geostatistical model (generally no more than five) are estimated194

through maximum likelihood. The Gauss-Newton method is used to solve the iterative maximization195

of the likelihood function.196

3. Examine the validity of model. The estimated structure is either accepted or modified during the test197

(i.e., the variogram function is changed, or anisotropy is introduced).198

As soon as the geostatistical model is accepted, the log-permeability field is estimated by cokriging, a199

best linear unbiased estimation algorithm, which is capable of providing estimations with minimum error200

variance. Later, Dagan (1985) and Rubin and Dagan (1987) proposed an extension of the GA using Bayesian201

conditional probabilities.202

The advantages of the GA reside in two main aspects. First, it reduces the number of the effective203

parameters to be estimated by introducing the concept of random function into the inverse problem. In this204

way, the ill-posedness is alleviated since (a) the number of unknown values is far less than the number of205
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observations and (b) the estimated parameters are independent of grid discretization. Second, this method206

is computationally efficient arising from two facts: hydraulic head is obtained by a first-order approximation207

of the flow equation instead of numerically solving it; a linear estimation (cokriging) is applied as soon as208

the geostatistical structure is identified with no iterative optimization involved, saving CPU time to a large209

extent. The method was first verified on a one-dimensional test and found stable and well-behaved (Kitanidis210

and Vomvoris, 1983).211

Despite the several advantages of this method, we have to mention some shortcomings. First, the ap-212

proximation of the hydraulic head after linearizing the flow equation is only valid if the log-conductivity213

exhibits a small variance. Hoeksema and Kitanidis (1984) alleviated this problem by applying the method to214

a two-dimensional isotropic confined aquifer in which hydraulic heads are obtained by solving numerically the215

partial differential equation, and then Kitanidis (1995) further generalized it onto a quasi-linear approach,216

which was applied to condition on concentration data in a steady-state flow by Schwede and Cirpka (2009).217

Second, the final conductivity map is obtained by kriging, this has two implications: first, and most impor-218

tant, the final maps are smooth since they represent an ensemble expected value of the random function219

model, and therefore cannot represent a real aquifer, and second, since kriging only uses the covariances for220

the estimation, as soon as the heads cannot be approximated as a linear combination of the conductivities,221

the solution of the flow equation in the final conductivity maps will not honor the measured piezometric222

heads.223

The need to apply the inverse model to hydraulic conductivity spatial distributions with large hetero-224

geneity forced moving from the linearized approaches to other approaches in which this linearization is not225

necessary. The inverse methods involved in the following sections do not apply linearization of the forward226

problem.227

2.3. Deterministic estimation or stochastic simulation?228

A typical example of nonlinear inverse approaches is the maximum likelihood method (MLM) devel-229

oped by Carrera and Neuman (1986a). The method is able to estimate simultaneously such parameters230

as hydraulic conductivity, specific storage, porosity, dispersivity, recharge, leakage and boundary conditions231

by incorporating head and concentration measurements as well as prior information (Medina and Carrera,232

1996). Zonation is employed to reduce the number of parameters to be estimated, that is, hydraulic con-233

ductivities are assumed constant or vary gradually over large patches of the aquifer, thus, the number of234

unknowns is proportional to the number of patches. Then, the groundwater problem (Equation 1, or 2 or235

both) is solved numerically subject to initial and boundary conditions. Let x be a vector of all the unknown236
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parameters, yobsi be a vector of available measurements of type i and yobs be a vector with all measurements237

of all types, a set of optimum parameter estimates is obtained by maximizing the likelihood L(x | yobs).238

Under the hypothesis that all the data could be transformed to jointly follow a multiGaussian distribution,239

the likelihood function can be expressed as follows:240

L(x | yobs) ∝ exp{−
1

2

Nm
∑

i=1

(yi − yobsi )TC−1

y,i (yi − yobsi )} (3)

where yi is a vector of computed model states (e.g., head and concentration), Cy,i is the corresponding241

covariance of observation errors and Nm is the number of types of measurements. Maximizing L(x | yobs) is242

equivalent to minimizing −2ln(L), and the optimization problem turns to minimizing the objective function:243

J =

Nm
∑

i=1

(yi − yobsi )TC−1

y,i (yi − yobsi ). (4)

Iterative minimization algorithms are applied on the objective function until certain convergence criteria are244

met. The uncertainty of parameter estimates is evaluated by a lower bound of the covariance matrix. Note245

that a regularization term can be included in the objective function above in order to ensure stability of the246

optimization problem (Medina and Carrera, 1996). The objective function becomes then247

J =

Nm
∑

i=1

(yi − yobsi )TC−1

y,i (yi − yobsi ) + (x− xpri)TC−1

x (x− xpri) (5)

where xpri is the prior model parameter vector and Cx is the covariance of x.248

One of the important features of using zonation is that the number of unknown parameters is reduced249

significantly so that the potential ill-posedness problem is circumvented to some extent. Furthermore, the250

MLMmight be used as a conceptual model identification tool, i.e., to identify the best model structure among251

several alternatives; in this respect, Carrera (1987) argued that the criterion KIC proposed by Kashyap (1982)252

is the most effective. Recently Riva et al. (2011) demonstrated the discriminatory power of KIC numerically253

concluding that the Bayesian model quality criterion KIC is well suited for the estimation of statistical data-254

and model-parameters in the context of nonlinear maximum-likelihood geostatistical inverse problems.255

However, some limitations of the MLM are apparent. Although the zonation scheme does help to reduce256

the number of the unknowns, it causes over-smoothness, i.e., inherently heterogeneous geologic properties are257

represented by a few patches of homogeneous conductivities, and at the same time the zonation scheme may258

introduce unacceptable discontinuities between zones. Although it is also true that the maximum likelihood259
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formulation could also be used to estimate a posterior covariance map that could be used, together with260

the estimated map to generated stochastic realizations. Furthermore, some zone discretizations may cause261

bias, depending on the number of zones and measurements (Kitanidis, 1996). Also, as stated earlier, the262

objective function is constructed under the assumption of a multinormal distribution, i.e., the prior residuals263

and estimates follow a multiGaussian distribution. The implications of this assumption will be discussed264

further in Section 2.7.265

The MLM was probably the first widely successful inverse method, it could incorporate many types of266

observations, it included a regularization term to prevent wide fluctuations during the optimization phase,267

and, because it did not use any approximation for the relationship between the state variables and the aquifer268

parameters, it yielded a zoned map of hydraulic conductivities that reproduced very well the observed data.269

However, the MLM method produced a single map, too smooth to really describe the heterogeneity observed270

in nature.271

Small scale variability had already being identified as one of the important factors controlling aquifer272

response. Recognizing this, De Marsily et al. (1984) developed the pilot point method (PiPM) as a procedure273

to introduce more variability into an aquifer model obtained by kriging interpolation. Starting from a kriging274

map of the hydraulic conductivities, smooth as all kriging estimation maps are, De Marsily et al. (1984)275

position a fictitious datum where no observation exists, and assigns to it a value so that when kriging is276

performed again with this new datum, the new kriging map provides a better approximation to the observed277

piezometric head data. New pilot points are introduced sequentially into the model until there is enough278

heterogeneity in the model so as to reproduce the observed head data. This procedure had several advantages:279

the aquifer could be discretized at any scale, since after each iteration, (block) kriging was performed on the280

entire aquifer; the heterogeneity was consistently treated throughout the process, since the same variogram281

model was used for all kriging estimations; and, because of the way the procedure is implemented, the282

fictitious data introduced at the pilot points were always within the local limits of variability of the variable283

as induced by the underlying random function model. The PiPM was successfully applied to model the284

Culebra formation overlying the Waste Isolation Pilot Plan (WIPP) (Cooley and Hill, 2000; LaVenue et al.,285

1995; RamaRao et al., 1995, 2000). The main problem of the PiPM was still that, at the end, there was286

only a single representation of the aquifer, a single kriging map that, although more heterogeneous than the287

kriging map computed from the conductivity data alone, still was too smooth.288

Moreover, the PiPM has been criticized recently by Rubin et al. (2010) stating that first it uses prior289

as a constraint rather than a starting point of parameter identification; second, it causes instability and290
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artifacts of the generated field. Alternatively Rubin et al. (2010) present the anchored distribution method,291

and subsequently Murakami et al. (2010) and Chen et al. (2012) applied this method for three-dimensional292

aquifer characterization at the Hanford 300 Area.293

An estimated map, let it be obtained by kriging, maximum likelihood or Bayesian conditional proba-294

bilities, is an average map, and the average does not necessarily represent reality. The same way that the295

average outcome of throwing a dice (3.5) does not correspond to any of the dice face pips, the average of an296

ensemble of potential realizations, does not correspond with any realization. The smooth fields obtained by297

these methods fail to reflect the local spatial variability and will necessarily fail in properly predicting mass298

transport (e.g., Gómez-Hernández and Wen, 1994).299

It is then when the self-calibrated method is proposed (SCM) and the concept of inverse stochastic model-300

ing starts being considered. The idea is not to seek a single smooth representation of the spatial variability of301

hydraulic conductivity capable of reproducing the observed piezometric head and/or concentration data, but302

to generate multiple realizations, all of which display realistic patterns of short scale variability, all of which303

reproducing the observed piezometric head and/or concentration data. In the scope of the stochastic inverse304

methods, non-uniqueness is not anymore a problem but an advantage, since all alternative solutions to the305

inverse problem are considered likely realizations of the aquifer heterogeneity, and all solutions are treated306

as an ensemble of realizations that must be further analyzed to make uncertainty-qualified predictions.307

The concept of the SCM was first outlined by Sahuquillo et al. (1992) and then elaborated by Gómez-308

Hernández et al. (1997) accompanied with two applications and an implementation program (Capilla et al.,309

1997, 1998; Wen et al., 1999). The SCM is based on the PiPM with the following rationale: instead of310

starting from a kriging map and introducing local perturbations by adding fictitious pilot points, let’s start311

from multiple realizations generated by a conditional simulation algorithm; and instead of identifying the312

optimal location of the next pilot point and introducing them sequentially, locate what Gómez-Hernández313

et al. (1997) call “master points” all at once (as many as two or three per correlation length) and determine314

the values of the perturbations in a single optimization step. Master point locations can be randomly selected315

and vary at different iterations. To understand the SCM, one has to recall that a conditional realization is316

the sum of a conditional mean (kriging map) plus a correlated residual map (Journel, 1974), what SCM does317

is to apply the pilot point method with multiple points at once to modify the conditional mean with the318

objective that the new conditional mean plus the correlated residuals would match the observation data. By319

applying this optimization approach to all the realizations of an ensemble, the SCM is capable of generating320

multiple realizations, all of which are conditional to the state observation. Thus, it comes the term inverse321
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stochastic modeling.322

With such an ensemble of realizations, it was possible to make transport predictions in each of the323

realizations and collect all of these predictions to build a model of prediction uncertainty based on realistic324

realizations.325

It was soon realized that the concept of the SCM could be implemented in the original PiPM, and it has326

been applied multiple times since then (e.g., Alcolea et al., 2006, 2008; Lavenue and De Marsily, 2001).327

Gómez-Hernández et al. (2003) reviewed stochastic conditional inverse modeling showing the strengths328

of SCM. The SCM was extended to incorporate concentration data (Hendricks Franssen et al., 2003; Wen329

et al., 2002a) for the characterization of hydraulic conductivity, and also to incorporate breakthrough data of330

both reactive and nonreactive data to characterize the spatial variability of the sorption coefficient (Huang331

et al., 2004). Recently, genetic algorithms have been coupled with the SCM to search for the optimal332

locations of the master points as well as the optimal perturbation at these locations (Wen et al., 2005, 2006);333

Hendricks Franssen et al. (2008) applied SCM to integrate the pattern information from remote sensing334

images; Heidari et al. (2012) coupled SCM with ensemble Kalman filter to assimilate the dynamic data in335

real-time; Li et al. (2013a) applied the master points concept of the SCM into the ensemble pattern matching336

method that have a capability to preserve the geologic structures as well as the static and dynamic data (Li337

et al., 2013b).338

The MLM, the PiPM and the SCM are closely related in that they follow a very similar perturbation and339

updating scheme. The update process for the PiPM is illustrated in “Figure 1” of RamaRao et al. (1995)340

and in “Figure 1” of Alcolea et al. (2006). For the sake of completeness and comparison, we graphically show341

a sketch of the updating algorithm for all the three methods (Figure 1). In the MLM, it is as if there is a342

pilot point in each zone, and the perturbation in the pilot point extends uniformly constant over the entire343

zone, in the PiPM, the pilot point perturbation dies out with the correlation length of the random function344

model, and in the SCM, the perturbation of the entire field is obtained by kriging the perturbations in each345

master point. All three methods seek finding those perturbations that added to the initial guess will result346

in a new field that is conditional to the observed state data.347

It is worth to point out that the widely used program PEST (Doherty, 2004), a model-independent non-348

linear parameter estimation program, which is also based on the minimization of an objective function, could349

be framed in the family of PiPM-based methods. In this approach, the regularized inversion is commonly used350

when the model has many different parameters or when a number of models are simultaneously simulated351

(e.g., Hunt et al., 2007; Fienen et al., 2009; Doherty and Hunt, 2010). In the pilot point implementation of the352
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PEST code, parameters are estimated at the predefined pilot point locations and then spatial interpolation353

is used to complete the field; then, a regularization term is included in the penalty function to control354

the stability and uniqueness of the solution of a highly parameterized model (Hunt et al., 2007). The355

truncated singular-value decomposition and Tikhonov regularization (i.e., hybrid subspace) schemes (Tonkin356

and Doherty, 2005) have been proposed and integrated into this approach, which was subsequently extended357

to account for the uncertainty of estimated parameter within a Monte Carlo framework in the so-called358

subspace Monte Carlo technique (Tonkin and Doherty, 2009; Yoon et al., 2013). Note that, Moore and359

Doherty (2005) and Moore and Doherty (2006) show that the regularized inversion method produces fields360

relatively smoother or simpler than the true conductivity field. Clearly, this regularized inversion method,361

like the PiPM, only optimizes a few parameters (simple model) in the groundwater flow model, which is362

commonly insufficient for transport predictions such as travel times that require a higher level of system363

detail, as demonstrated in the case study by Moore and Doherty (2005). As a consequence, optimization364

of the whole aquifer, with millions of degrees of freedom (complex model), in a stochastic framework is365

warranted. The issue of simplicity versus complexity in model conceptualization has already been subject366

of debate between hydrogeologists (e.g., Hunt and Zheng, 1999; Hunt et al., 2003; Gómez-Hernández, 2006;367

Hill, 2006; Haitjema, 2006; Hunt et al., 2007; Renard, 2007).368

An alternative to the Monte Carlo approach within the framework of maximum likelihood is a moment369

equation based inverse algorithm as proposed by Hernandez et al. (2003, 2006). Optimum unbiased estimates370

of model states such as hydraulic head and flux are obtained by their first ensemble moments. Additionally371

the approach is able to provide the second order moments which can be used to measure the estimate uncer-372

tainty of model parameters and states. The moment equation inverse algorithm is applied at the Montalto373

Uffugo research site (Italy) by Janetti et al. (2010). The method has been extended from steady state flow374

to transient flow (Riva et al., 2009) and from model state prediction to model parameter identification (Riva375

et al., 2011). Compared with the SCM, the moment equation method is computationally efficient but it only376

provides a single smooth estimate of the random functions in that it utilizes the conditional mean as the377

estimate.378

2.4. Minimization or sampling?379

Up to here all inverse methods discussed are based on the minimization of an objective function that380

measures the mismatch between the simulated state and the observed values. However, there are alternative381

ways to achieve the same results without resorting to an optimization problem, but rather to sampling a382

multivariate probability distribution.383
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Suppose that model parameter x is characterized by a multiGaussian distribution with mean µ and384

variance Cx, x ∼ N(µ,Cx), with a prior probability density given by385

π(x) ∝ exp{−
1

2
(x− µ)TC−1

x (x− µ)}. (6)

Assuming that the discrepancies between observed state variables yobs and their corresponding model simu-386

lations ysim = F (x) is also multiGaussian with error covariance Cy, the joint probability distribution of yobs387

given x is,388

π(yobs | x) ∝ exp{−
1

2
(yobs − F (x))TC−1

y (yobs − F (x))}. (7)

Using Bayes’ theorem, the posterior distribution of x given the observations yobs can be written as389

π(x | yobs) =
1

c
π(x) · π(yobs | x)

∝ exp{−
1

2
(x− µ)TC−1

x (x− µ)−
1

2
(yobs − F (x))TC−1

y (yobs − F (x))}

(8)

with c being a normalization constant. The Markov chain Monte Carlo method (McMC) (Hastings, 1970;390

Metropolis et al., 1953; Oliver et al., 1997) is suitable for drawing samples from the posterior conditional391

distribution π(x | yobs). If a sufficiently large chain is generated following the procedure described below,392

the chain will converge so that its members will be drawn from the posterior conditional distribution. The393

procedure of McMC is the following (Robert and Casella, 2004)394

1. Initialize the first realization x.395

2. Update x according to the Metropolis-Hastings rule:396

• Propose a candidate realization x∗ conditional on the last realization by drawing from the tran-397

sition kernel x∗ ∼ q(x∗ | x).398

• Accept the candidate x∗ with probability min{1, α} and399

α =
π(x∗ | y)

π(x | y)
·
q(x | x∗)

q(x∗ | x)
. (9)

3. Loop back to the second step.400

The two critical points on the McMC method are the selection of the transition kernel q(x∗ | x) and401

how to compute the acceptance probability α. The first attempt to apply the McMC in hydrogeology is402

by Oliver et al. (1997) who generated permeability realizations conditioned to variogram and pressure data403
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using a local transition kernel. This local kernel only modifies a single cell in the realization of x when404

making the transition from x to x∗. Such a localized perturbation, specially if the aquifer discretization is405

large, makes the method quite slow, since after each proposal there is a need to evaluate the state equation406

(groundwater flow model) and to decide whether the proposal is accepted or not. If the transition kernel407

is global, producing a new realization which changes in every cell of the aquifer, the probability that the408

candidate is rejected is quite high. An alternative is to use a block kernel in which the proposed realizations409

differs from the previous one only over a certain region inside the aquifer (Fu and Gómez-Hernández, 2009b).410

The so-called blocking McMC gives better results than either the local or global transition kernels. If, in411

addition, the evaluation of the state of the system, for the purposes of computing the acceptance probability,412

is made on a coarse scale with the aid of upscaling, and only the high acceptance probability members are413

submitted to the fine scale evaluation, the convergence rate of the chain will be improved.414

As mentioned, the McMC is not an optimization algorithm, it aims at generating multiple independent415

realizations by sampling from the posterior parameter distribution conditioned on the observations. It is416

also important to notice that, since the posterior distribution is built from the prior parameter distribution,417

the realizations generated are consistent with the prior model. We will return later to the issue of whether418

it is important or not to preserve the prior model structure throughout the inversion process in Section 2.6.419

The original McMC is computationally demanding since each proposed realization is subject to forward420

simulation that involves solving a partial differential equation over a large domain and, possibly, a long time421

period. Furthermore, these proposed realizations are not necessarily accepted, which generally requires that422

a large number of candidate realizations have to be generated and evaluated. A lot of work has been devoted423

to increase the efficiency of McMC by means of increasing the acceptance rates or reducing the dimensionality424

of the forward simulation. A “limited-memory” algorithm has been used to accelerate sampling using low-425

dimensional jump distributions (Kuczera et al., 2010). A two-stage McMC has been proposed to improve the426

efficiency of McMC (Dostert et al., 2009; Efendiev et al., 2009), in which fine scale simulations are performed427

only if the proposal at the coarse scale is accepted. Another drawback of McMC is related with the low428

mixing speed of the chain, in other words, the McMC should sample from the entire posterior distribution,429

but it takes quite a long chain until this happens (Fu and Gómez-Hernández, 2009b,a; Romary, 2010).430

2.5. Real time integration or not?431

The trajectory of inverse modeling up to here shows quite a large evolution from the initial methods. At432

this stage, there are still two main problems. The first, and most important one, is CPU requirements; the433

second is the need to reformulate the problem from the beginning if new data in space or time are collected.434
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Inverse stochastic modeling supposed a big leap in aquifer characterization, but, in essence, it was equivalent435

(from a computational point of view) to performing inverse modeling seeking a single best estimate, but as436

many times as realizations were needed. It was necessary to find an alternative capable of generating multiple437

conditioned realizations of conductivity in a more efficient manner. If this could be achieved, it would be438

interesting that as new data are collected, as it happens in any monitoring network, the newly collected439

piezometric heads or concentrations could be incorporated into the inverse model naturally without any440

modification of the algorithm. The ensemble Kalman filter (EnKF) is an example of such methods capable441

of it (Evensen, 1994; Burgers et al., 1998).442

The EnKF is based on the Kalman filter, a data assimilation algorithm for systems in which the relation443

between model parameters and states is linear (Kalman, 1960). This linearity renders an exact propagation444

of the covariance with time. However, the equations depicting groundwater and solute transport model are445

nonlinear (Equations 1 and 2), which prevents the computation of the covariance evolution in time. As a446

solution to this problem, the extended Kalman filter was proposed, the nonlinear function is approximated447

linearly by a Taylor-series expansion and this linearization is used for covariance propagation. The problem448

with the extended Kalman filter is that the covariance approximation deteriorates as time passes, especially449

in highly heterogeneous fields for which the Taylor-series approximation is poor. The method is also very450

time-consuming when the aquifer is finely discretized (Evensen, 2003).451

The EnKF circumvents the problem of covariance propagation in time by working with an ensemble of452

realizations. The forward problem is solved on each realization, and the ensemble of resulting states is used453

to compute the covariance explicitly. This is one of the reasons that the EnKF is computationally efficient.454

Another reason resides in that the EnKF is capable of incorporating the observations sequentially in time455

without the need to store all previous states nor the need to restart groundwater simulation from the very456

beginning.457

The theory and numerical implementation of the EnKF is described extensively in Evensen (2003, 2007).458

Here we will only recall the basics of the EnKF. The EnKF deals with dynamic systems, for which observed459

data are obtained as a function of time and used to sequentially update the model. The joint state vector460

xi, for realization i, including both the parameters controlling the transfer function and the state variables,461

is given by:462

xi =







A

B







i

=







(a1, a2, . . . , aN )T

(b1, b2, . . . , bN)T







i

(10)

where A is the vector of model parameters such as hydraulic conductivities and porosities, and B is the463
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vector with the state variables such as hydraulic heads and concentrations. The size of the state vector464

ensemble x is determined by the number of grid cells in which the domain has been discretized (N) and the465

number of realizations in the ensemble (Nr), i.e., x = (x1, x2, . . . , xNr
). Note that the boldface indicates the466

vector ensemble.467

The EnKF consists of two main steps: forecast and update. The forecast step involves the transition of468

the state vector from time t− 1 to time t, i.e., xt = F (xt−1), where F (·) is the transfer function. Normally469

this transfer function leaves the model parameters unchanged and forecasts the state variables to the next470

time step using the groundwater model (Equations 1 and/or 2). After observation data are collected the471

state vector is updated by Kalman filtering:472

xu
t = x

f
t +Gt(y

obs
t + ε−Hx

f
t ), (11)

where xu
t is the joint vector ensemble with the updated states at time t and x

f
t is the vector ensemble473

with the forecasted states; yobs
t is the observation at time t; ε is an observation error with zero mean and474

covariance R; Gt is the Kalman gain, derived after the minimization of a posterior error covariance,475

Gt = P
f
t H

T (HP
f
t H

T +R)−1, (12)

it multiplies the residuals between observed and forecasted values to provide an update to the latter; H is476

the observation matrix; Pf
t is the ensemble covariance matrix of the state x

f
t computed through477

P
f
t ≈

1

Nr − 1
(xf

t − x̄
f
t )(x

f
t − x̄

f
t )

T , (13)

where x̄f
t is the ensemble mean, x̄f

t ≈ 1

Nr

∑Nr

i=1
xf
t,i; and xf

t,i is a realization of the ensemble of state vectors.478

It is worth noting that we do not have to compute the whole covariance matrix explicitly because we can479

compute directly P
f
t H

T and HP
f
t H

T taking advantage of the fact that most of the entries of H are zeroes.480

Most inverse methods need to store the previous states when conditioning to new observed data, and481

the forward simulation has to be restarted from the initial time until the time when the new observation482

data are collected. On the contrary, the EnKF is able to assimilate the real time observation data storing483

only the latest state. Once the updating is done, the forward model is run from the last time step, and484

the assimilated observation data can be discarded. A new forecast is performed, new data collected, and485

updated repeated. This is one of the reasons why the EnKF is computationally efficient. The sequential486
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data assimilation scheme of the EnKF is shown in Figure 2. The EnKF has been widely applied as a data487

assimilation tool in diverse disciplines such as oceanography, meteorology and hydrology (e.g., Bertino et al.,488

2003; Chen and Zhang, 2006; Houtekamer and Mitchell, 2001; Moradkhani et al., 2005; Nowak, 2009; Wen489

and Chen, 2006).490

Notice that the EnKF is neither an optimization method nor a sampling one, it is a data assimilation491

filter based on the minimization of a posterior covariance. For this reason, the EnKF is optimal when param-492

eter and states are linearly related and follow a multiGaussian distribution (Evensen and Leeuwen, 2000).493

However, in hydrogeology, hydraulic conductivity is likely not to be properly modeled as multiGaussian, and494

even if it were, the states (heads and concentrations) would never be linearly related to the parameters or495

propagate in time with a linear transfer function. Some work has been done attempting to circumvent the496

problem of nonGaussianity, but this issue will be discussed later in Section 2.7.497

Besides the issue of multiGaussianity, some disadvantages related with the EnKF include: (a) underes-498

timation of model variability, especially when the ensemble size is small and the parameter field is highly499

heterogeneous; (b) non-physical and spurious update of state vectors. These disadvantages can lead to filter500

inbreeding or divergence. To address this problem, several regularization strategies are proposed such as501

covariance inflation (Anderson, 2007), distance-based covariance localization (Chen and Oliver, 2010; Nan502

and Wu, 2011), adaptive localiztion with wavelets (Chen and Oliver, 2012), the use of damping factors503

(Hendricks Franssen and Kinzelbach, 2008) and the application of the confirming approach (Wen and Chen,504

2006). Wen and Chen (2007) addressed some practical issues in applying EnKF, such as non-linearity via505

iteration, the selection of initial models, and non Gaussianity.506

The EnKF has been successfully applied for building geological models conditioned on piezometric head507

data (e.g., Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008; Hendricks Franssen and Kinzel-508

bach, 2009; Kurtz et al., 2012; Panzeri et al., 2013; Xu et al., 2013a,b). With regard to conditioning on con-509

centration data, Huang et al. (2009) applied the EnKF to update a conductivity field by assimilating both510

steady-state piezometric head and concentration data; Liu et al. (2008) simulated multiple parameters (e.g.,511

hydraulic conductivity, dispersivities, mobile/immobile porosity) for the MADE site; Li et al. (2012a) applied512

EnKF to jointly calibrate hydraulic conductivity and porosity by conditioning on both piezometric head and513

concentration data in a fully transient flow; Schöniger et al. (2012) assimilated the normal-score transformed514

concentration data to calibrate conductivities. Jafarpour and Tarrahi (2011) assessed the performance of515

EnKF in subsurface characterization accounting for uncertainty in the variogram.516
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2.6. Preserve prior structure or not?517

The inverse methods based on optimization attempt to minimize the deviation between predicted states518

and observation data, disregarding, sometimes, the prior model used to generate the initial guess fields from519

which the optimization starts. Kitanidis (2007) stated that “the degree of data reproduction is a poor520

indicator of the accuracy of estimates” questioning whether seeking the best reproduction of the observed521

data justifies any departure from the prior model. There has been some debate on whether the prior model522

structure should be preserved through the inverse modeling process, or, on the contrary, the optimization523

process may allow the final set of realizations to depart (drastically) from the original model as driven by the524

need to reproduce the observed states. The best option, probably, lies in between; the prior model should525

be taken into account and should be used as a regularization element, while the new data should allow to526

introduce some deviations on the prior model when this is the only way to approximate them. In this respect,527

Neuman (1973) proposed the multiple-objective algorithm in which the model parameters are constrained528

not only by the minimization of the reproduction error but also by a physical plausibility criterion. A similar529

strategy is used by Carrera and Neuman (1986a) and Medina and Carrera (1996) in the MLM method, in530

which prior information is combined into the likelihood functions, or by Alcolea et al. (2006) in the PiPM,531

in which a regularization term is added to the objective function.532

There are methods which, by construction, will produce realizations consistent with the prior model533

structure, such as the McMC, in which the prior model is implicitly built into the definition of the posterior534

conditional probability distribution from which the chain of realizations is drawn.535

There are two other methods that, by construction, will preserve the prior model during the inversion536

process, thus ensuring that the parameter distributions are physically plausible at the end of the inversion537

process: the gradual deformation method (GDM) and the probability perturbation method (PrPM).538

The GDM method, as initially proposed by Hu (2000), is based in the successive linear combination of539

pairs of realizations. A single parameter controls this linear combination, the value of which is computed540

by a simple optimization procedure. The optimal value produces a linear combination that improves the541

reproduction of the observed state. In addition, if both realizations are multiGaussian with the same mean542

and covariance it is easy to show that, after the linear combination, the resulting realization will also be543

multiGaussian with the same mean and covariance. This pairwise combination is repeated until an acceptable544

match to the observed data is attained. This simple, but extremely effective, approach, which only worked545

for multiGaussian fields was soon extended to work with other random function fields in conjunction with546

sequential simulation algorithms. In sequential simulation algorithms, each node of the realization is visited547
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sequentially, a random number is drawn and a nodal value is obtained from the local conditional distribution,548

which has been computed accordingly to the random function model. There are sequential simulation549

algorithms to generate multiGaussian realizations (e.g., Gómez-Hernández and Journel, 1993), realizations550

with arbitrary indicator covariance functions (e.g., Gómez-Hernández and Srivastava, 1990) or realizations551

based on the multiple-point patterns derived from a training image (e.g., Strebelle, 2002). In all cases, it all552

reduces to mapping a set of independent uniform random numbers into a realization of correlated values using553

as a transfer function the local conditional probabilities computed according to Bayes’ rule. When the GDM554

is applied to generate realizations of independent uniform random numbers, the resulting realizations will555

always be consistent with the prior random function model, which was used to compute the local conditional556

probabilities.557

The attractiveness of GDM is that each iteration is a simple optimization step, and that it preserves the558

prior spatial structure. The GDM algorithm can be summarized as follows:559

1. Generate two independent Gaussian white noises, z1 and z2, with zero mean and unit variance. The560

two noises are combined to form a new Gaussian white noise vector z with zero mean and unit variance561

according to562

z = z1 sin(ρπ) + z2 cos(ρπ) (14)

where ρ is a deformation parameter ranging from -1 to 1. If ρ = 0, z is the same as z2 and if ρ = 1/2,563

z is the same as z1. Note that more than two noises could be combined to increase the convergence564

rate (Ying and Gomez-Hernandez, 2000; Le Ravalec-Dupin and Noetinger, 2002).565

2. The random vector z, is transformed into a uniform white noise vector u = G−1(z), with G(·) being566

the Gaussian cumulative distribution function, and u is used with a geostatistical sequential simulation567

algorithm to yield a realization x, x = S(z).568

3. Run the forward model F (·) (e.g., Equation 1) on the generated property realization to obtain the569

simulated model responses, such as flow rates and hydraulic heads.570

4. An objective function measuring the mismatch between the simulated model response and the observed571

data is built as572

J(ρ) =
n
∑

i=1

ωi(F (x(ρ))i − F (x(ρ))obsi )2. (15)

where ωi is a weight and n is the number of observed data.573

5. Minimize the objective function to obtain the optimal ρ, and update the random vector z.574

6. The updated random vector z will replace the previous z1 and will be combined with a newly generated575
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vector z2 to construct a new random vector. Then loop back to the second step until all the observed576

data are matched up to some tolerance.577

The drawback of the GDM is related to the convergence rate. Le Ravalec-Dupin and Noetinger (2002)578

found that the convergence rate is strongly influenced by the number of realizations which are combined in579

each iteration. Caers (2003) proposed an efficient gradual deformation algorithm by coupling the traditional580

GDM, multiple point geostatistics and a fast streamline-based history matching method with the aim to581

reduce CPU demand for parameter identification in highly heterogeneous reservoir. Another criticism to582

GDM has been whether it generates realizations spanning the entire space of variability coherent with the583

observed data; in this respect, Liu and Oliver (2004) assessed the performance of the GDM through a one-584

dimensional experiment; after comparison of the GDM with other inverse methods, such as the McMC, they585

concluded that the GDM is able to produce reasonable distributions of permeability and porosity. Wen et al.586

(2002b) compared the SCM and a specific variant of GDM that they call geomorphing applied to a binary587

aquifer (sand/shale).588

Another method that attempts to preserve the prior structural model is the probability perturbation589

method (Caers, 2003). The probability perturbation is also based on the sequential simulation algorithm,590

therefore, it will preserve the random function model that is implicit to the algorithm used. Given a591

fixed random path to visit the nodes of the aquifer, a fixed set of random numbers, and a fixed set of592

conditional probability distributions, the PrPM will freeze the random numbers and perturb the conditional593

probability distributions in order to achieve the match to the observed data. Recall that the GDM freezes the594

probability distributions and modifies the random numbers. The perturbation of the conditional probabilities595

is performed by means of a single parameter rD that is subject to optimization. This parameter can be596

interpreted as the degree of perturbation needed to apply to the seed realization in order to match the state597

data, if rD is close to zero, the actual realization gives a good reproduction of the state data and there is no598

need to change anything, if rD is close to one, the current realization is far from matching the observation599

data and there is a need to generate another realization independent of the previous one, any value in between600

would generate a realization that represents a transition between these two independent realizations. Caers601

(2007) compared the performances of the GDM and the PrPM in several simple examples from such aspects602

as preservation of prior structure and accuracy of posterior sampler.603

The PrPM method has been extended to allow different perturbations in different geological zones of the604

aquifer, that is, rD is allowed to vary piecewise within the aquifer according to pre-defined zones (Hoffman and605

Caers, 2005). The PrPM was initially applied to categorical variables, and later it was extended to continuous606
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ones (Hu, 2008). Hoffman et al. (2006) applied PrPM in a real oil field. The PrPM has been mostly used in607

petroleum engineering although recently it has been applied in groundwater modeling, e.g., combined with a608

multiple-point geostatistical method to locate high permeability zones in an aquifer (Ronayne et al., 2008).609

Before Caers proposed the PrPM, the idea of perturbing probabilities had already been proposed by610

Capilla et al. (1999) although in a slightly different context. They used the concept of the SCM method,611

but instead of working with the conductivity values directly, they transformed these conductivity values612

onto cumulative probabilities using the local conditional probability distributions obtained by kriging (the613

probability field of Froidevaux (1993)). The type of kriging used could be indicator kriging and could614

incorporate soft conditioning data, and therefore, the spatial structure associated to such type of kriging615

would be preserved through the optimization process. Once the probabilities had been computed, the SCM616

method would be applied to seek the best spatial distribution of probabilities that when backtransformed617

onto conductivities would result in the best match to the observed state data. Later, to improve its efficiency,618

the optimization step of the probability fields was combined with the GDM by Capilla and Llopis-Albert619

(2009).620

The problem associated to theses latter methods is: what if the prior model is not correct? What if the621

prior model implies an isotropic spatial correlation, but, in reality conductivities are highly anisotropic with622

channels of high permeability and quasi impermeable barriers? Some studies have analyzed the impact of a623

wrong a priori model choice, for instance, Kerrou et al. (2008) applied the SCM method on a fluvial sediment624

aquifer in a steady-state flow with a wrong prior model (i.e., multiGaussian instead of non-multiGaussian)625

and concluded that the channel structures cannot be retrieved, even when a large number of direct and626

indirect data are used for conditioning; Freni and Mannina (2010) analyzed the impact of different a priori627

hypotheses and found that improper assumptions could lead to very poor parameter estimations; Li et al.628

(2012b) and Xu et al. (2013b) assessed the performance of normal-score EnKF (NS-EnKF) in a transient629

flow in non-multiGaussian media and they argued that, if the monitoring net was designed properly, the630

localized NS-EnKF was able to identify the channel structure even when an erroneous prior random function631

model was used. A possible solution to account for the prior model uncertainty is to use multiple prior632

models as done by Suzuki and Caers (2008) although at a very large computational demand.633

2.7. MultiGaussian or not?634

Ever since the publication of the seminal paper on stochastic hydrogeology by Freeze (1975), hydraulic635

conductivity has been assumed to follow a univariate lognormal distribution. His assumption was based636

on experimental data, and it was later corroborated by Hoeksema and Kitanidis (1985) who analyzed the637
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histogram and covariance of hydraulic conductivity data from 31 regional aquifers to conclude that, indeed,638

hydraulic conductivity is best modeled by a logGaussian histogram. However, there are still many cases, such639

as aquifers in fluvial deposits, in which several highly contrasting facies coexist and in which conductivities640

are better characterized by a multimodal distribution. Multimodal distribution also applies when one lumps641

data in a single sample and tries to homogenize a composite medium (Winter et al., 2003). But, the most642

important issue is not whether the histogram of the conductivities is normal or not, after all, it is always643

possible to apply a normal-score transformation to the data so that the transformed data follows a Gaussian644

histogram; the most important issue is whether the best model to characterize the spatial continuity of645

hydraulic conductivity is the multiGaussian model or not. Applying a normal-score transform to the data646

will render them univariate normal, but it does not imply that the higher-order moments (the ones controlling647

the continuity of the extreme values, or the curvilinear arrangements of some conductivity values) should648

follow a multiGaussian model.649

The nonGaussian models have been explored for some time (e.g., Rubin and Journel, 1991; Gómez-650

Hernández and Wen, 1998; Journel and Deutsch, 1993; Woodbury and Ulrych, 1993; Zinn and Harvey,651

2003; Kerrou et al., 2008; Renard and Allard, 2011), and the dangers of using a multiGaussian model in652

aquifers with high continuity of extreme values were already exposed by Journel and Deutsch (1993) and653

Gómez-Hernández and Wen (1998).654

Of all the methods discussed, all of those which are based on the minimization of the sum of square655

deviations have a tendency to generate multiGaussian realizations, even if the seed realizations prior to the656

start of the inverse procedure are nonGaussian. Basically, all methods that use only moments up to the657

order two (covariance) in their formulation will behave in this way as a consequence that the multiGaussian658

distribution is the only one fully characterized by a mean value and a two-point covariance function. This659

is the case of the GA, the SCM, the PiPM, or the MLM. Even the EnKF, which only uses the ensemble660

derived covariance to update the realizations after each data collection stage, will end up with realizations661

with a multiGaussian flavor even if the initial ensemble is not.662

Some of the methods discussed can handle non-multiGaussian patterns of variability, such as the McMC,663

the GDM or the PrPM. It is apparent that those methods that can benefit from techniques such as mul-664

tiple point geostatistical simulation, which can generate realizations of conductivity with realistic patterns665

according to a training image (Mariethoz, 2009), are very promising. There have been some attempts to666

modify the EnKF to handle non multiGaussian ensembles. For example, Zhou et al. (2011, 2012b) proposed667

to transform both the parameter and state variables from non-multiGaussian to Gaussian ones through668
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normal-score transformation, and then perform the updating of transformed variables using EnKF; Sun669

et al. (2009) coupled EnKF with Gaussian mix models to handle the nonGaussian conductivity realiza-670

tions; Sarma and Chen (2009) developed a kernel EnKF to handle the connectivity of conductivity based671

on multiple point statistics; Jafarpour and Khodabakhshi (2011) suggested to update the mean of ensemble672

conductivity realizations and then use this mean as soft data to regenerate the updated model using multiple673

point statistics; Hu et al. (2012) proposed to update the uniform-score random number that is used to draw674

the local conditional probability in the multiple point statistics, using the EnKF; Zhou et al. (2012a) and Li675

et al. (2013b) presented an ensemble pattern matching method, which is an update of EnKF method by using676

the multiple point statistics (i.e., pattern) to quantify the correlation between parameter and state variables677

instead of the two-point statistics (i.e., mean and covariance), and thus it has a capability to handle dynamic678

data integration in the complex formations such as the fluvial depositions; Li et al. (2013b) further improved679

the computational efficiency by coupling ensemble pattern matching method with the master points concept680

of SCM method.681

2.8. Evolution of inverse approaches to date682

Table 1 summarizes the inverse methods discussed so far. As time has passed, inverse models have,683

sequentially, gotten away from the linearization of the state equation, become stochastic, attempted to684

preserve the prior structure (or at least introduce some controls which will give the prior structure information685

some weight during the inverse modeling process), and become capable of handling non-multiGaussian686

realizations. In our opinion the best inverse model should be the one that is stochastic, is capable to deal687

with multiple sources of state data governed by a complex state equation, is not limited to multiGaussian688

realizations, can weight in prior information, and can generate multiple realizations in an efficient manner.689

At the same time we have to mention that some preliminary methods in the evolution of the inverse modeling690

are revisited and modified to propose new approaches, for instance, a variant of the direct method (Irsa and691

Zhang, 2012) and a zonation-kriging method (Tsai, 2006).692

3. Recent trends of inverse methods693

The methods discussed so far have already been thoroughly tested and their advantages and pitfalls are694

well known. In the last few years, new issues have been brought into the inverse model formulation that we695

would like to mention next.696
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3.1. Integrating multiple sources of information697

Direct measurements of parameters of interest (usually known as “hard data”) represent the first con-698

straint that the model must meet. These data are easily handled by standard geostatistic methods (Deutsch699

and Journel, 1998). Then, there are soft data, that is, indirect measurements of the parameters. Recent700

developments in physical and geophysical techniques provide indirect measurements that are non-linearly701

related to the parameter of interest and that should be used also to constrain our aquifer model. Examples702

of these techniques are ground-penetrating radar (Dafflon et al., 2009; Kowalsky et al., 2004), time-lapse703

electrical resistivity (Irving and Singha, 2010), 4D-seismic (Le Ravalec-Dupin, 2010), spatial altimetry (Ge-704

tirana, 2010), and remote sensing (Brunner et al., 2007; Hendricks Franssen et al., 2008). It is worth noting705

that certain techniques (e.g., remote sensing) are able to provide information over a large area rather than706

at quasi-point scale. Besides the hard and soft (geo)physical measurements, state data other than hydraulic707

heads or flow rates should be used to infer aquifer parameters, for instance peak concentration arrival times708

(Bellin and Rubin, 2004) or groundwater ages (Sanford, 2010).709

Two other types of data have been used to identify aquifer structure, i.e., water table fluctuations due710

to tides, and connectivity data. Tidal induced water table fluctuations carry information about the aquifer711

properties in coastal aquifers. Head fluctuations have been used to identify possible preferential flow paths712

between the sea and the coastal aquifer (Alcolea et al., 2007; Park et al., 2011; Slooten et al., 2010). The713

other rarely applied constraint is connectivity, which is found to play a critical role in transport modeling.714

In a synthetic example, Zinn and Harvey (2003) demonstrated how the same conductivity values when715

rearranged in space to induce different connectivity patterns have very different flow and transport behavior.716

Some indicators has been proposed to measure the connectivity (e.g., Knudby and Carrera, 2005, 2006; Le717

Goc et al., 2010), and some attempts to include connectivity information in inverse modeling have been718

carried out (Alcolea and Renard, 2010; Renard et al., 2011).719

3.2. Combining high order moments720

To include curvilinear features in the spatial distribution of the hydraulic conductivities amounts to go721

beyond the two point covariance (a second-order moment) and to account for high order moments. A possible722

approach is with multiple point geostatistics (Guardiano and Srivastava, 1993; Strebelle, 2002). We have723

already discussed how the GDM and the PrPM take advantage of the sequential simulation methods based724

on multiple point geostatistics to generate inverse conditional realizations following the patterns extracted725

from a training image (such as the one in Figure 3). An alternative avenue is the use of spatial cumulants726
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(Mustapha and Dimitrakopoulos, 2010). Other examples include those by Alcolea and Renard (2010) who727

proposed a block moving window algorithm taking advantage of multiple point simulations, Mariethoz et al.728

(2010) who proposed an iterative resampling algorithm, and Zhou et al. (2012a) and Li et al. (2013b) who729

presented an ensemble pattern matching inverse method.730

3.3. Handling multiscale problem731

Observation data may be available at different support scales. If the aquifer model is discretized very fine732

to characterize the extreme heterogeneity of the geological parameters, it can be computationally impossible733

to solve a stochastic inverse problem as we stated in the Section 1.3. On the contrary if the model discretiza-734

tion is coarse in order to integrate the coarse scale observation data, it might lose some small scale but735

important features of the aquifer. A scale balance must be reached. Some authors have combined upscaling736

and inverse modeling to address the scale problem. For instance, upscaling is introduced into the McMC737

and forms a block McMC method (Fu and Gómez-Hernández, 2009b; Fu et al., 2010); upscaling is combined738

with EnKF to assimilation coarse scale observations and at the same time honor the small scale properties739

(Li et al., 2012c; Li and Ren, 2010); a multiresolution algorithm is proposed by applying regression in the740

space of wavelet transformation (Awotunde and Horne, 2011).741

3.4. Parameterizing the conductivity field742

Reducing the number of unknowns of a heterogeneous conductivity field (i.e., parametrization) remains743

an active research area in inverse modeling. This approach usually consists of two steps: (a) reconstruct the744

hydraulic conductivity field using a relatively small number of parameters, (b) and then apply an optimization745

method in the new parameterized space. The purpose of parameterizing the conductivity field is apparent:746

to mitigate the ill-posedness in the inverse modeling.747

The covariance-based principal component analysis (PCA) or the Karhunen-Loeve expansion are com-748

monly used to represent the geological model in a reduced space for the multiGaussian media, (e.g., Oliver,749

1996; He et al., 2012). Jafarpour and McLaughlin (2009) introduced a discrete cosine transformation to750

parameterize the conductivity field. Sarma et al. (2008) developed a kernel PCA to parameterize, not the751

covariance, but multiple point statistics of the conductivity field. In this approach, the high-dimensional data752

is transformed into a feature space by defining a kernel transformation function, and the parametrization753

is accomplished in the corresponding kernel feature space; a model is obtained by transforming back from754

the feature space to the model space (i.e., pre-image problem), which raises another non-linear optimization755

problem in this process (e.g., Borg and Groenen, 2005; Scheidt et al., 2011; Park, 2011). Li and Jafarpour756
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(2010) proposed to use discrete wavelet transform to reconstruct the conductivity field. Bhark et al. (2011)757

developed a generalized grid-connectivity based parametrization method to integrate dynamic data into ge-758

ological models. More recently, there is a set of papers dealing with the reconstruction of conductivity field759

by using sparse representatives and dictionaries (e.g., Khaninezhad et al., 2012a,b; Elsheikh et al., 2013).760

3.5. Assessing the uncertainty of prediction761

Ensemble based inverse methods have a capability to assist assessing the uncertainty of prediction that762

is routinely required by the decision maker. Any method based on Bayes’ theorem definitely is able to763

model a posterior probability. Examples of this method include traditional reject sampling (Von Neumann,764

1951), iterative spatial resampling (Mariethoz et al., 2010) and McMC-based methods (Oliver et al., 1997;765

Fu and Gómez-Hernández, 2009b; Alcolea and Renard, 2010). All the methods mentioned above could be766

formulated as resampling methods and are extremely computational expensive due to the iterative evaluation767

of the forward simulation on thousands of conductivity realizations. On the contrary, minimization-based768

methods, such as the EnKF and the pattern-search based method (e.g., Zhou et al., 2012a; Li et al., 2013b)769

are computational efficient and are able to assess the uncertainty of predictions using updated ensemble con-770

ductivities. However, both methods work with ensembles of realizations what implies that a large ensemble771

size is commonly required, resulting in a high computational cost, too.772

4. Conclusions773

We have given an overview of the evolution of inverse methods in hydrogeology, i.e., how the algorithms774

have evolved during the last decades to solve the inverse problem, from direct solutions to indirect methods,775

from linearization to non-linearization of the transfer function, and from single estimate to stochastic Monte776

Carlo simulation. Furthermore, we consider a few issues involved in solving the inverse problem, e.g., whether777

the multiGaussian assumption is appropriate and whether the prior structure should be honored. Inverse778

models have gone a long way since their inception, and they keep evolving with the aim of improving aquifer779

characterization while, at the same time, respecting all the information and data available.780

Overall, the development of inverse methods shows some features:781

• The goal of inverse problem is not just parameter identification, but also improved predictions.782

• Stochastic inverse methods are becoming the trend for the generation of multiple realizations, which783

will serve to build a model of uncertainty on both parameters and states.784
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• There is a need for methods that are capable to generate geological models as diverse as possible while785

matching observed data to ensure that the uncertainty in the predictions is properly captured.786

• Multiple sources of observations are integrated in the inverse modeling, multiple scale problems are787

handled and multiple new algorithms are introduced into the inverse modeling, for instance, multiple788

point geostatistics and wavelet transform.789
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Capilla, J. E., Rodrigo, J., Gómez-Hernández, J. J., 1999. Simulation of non-Gaussian transmissivity fields837

honoring piezometric data and integrating soft and secondary information. Mathematical Geology 31 (7),838

907–927.839

Carrera, J., 1987. State of the art of the inverse problem applied to the flow and solute transport equations.840

In: Custodio, E., Gurgui, A., Ferreira, J. L. (Eds.), Analytical and Numerical Groundwater Flow and841

Quality Modelling. Series C, Mathematical and physical sciences. Vol. 224. D. Reidel, Norwell, MA, pp.842

549–583.843

Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., Slooten, L. J., 2005. Inverse problem in hydrogeology.844

Hydrogeology Journal 13 (1), 206–222.845

Carrera, J., Neuman, S. P., 1986a. Estimation of aquifer parameters under transient and steady state condi-846

tions: 1. Maximum likelihood method incorporating prior information. Water Resources Research 22 (2),847

199–210.848

Carrera, J., Neuman, S. P., 1986b. Estimation of aquifer parameters under transient and steady state con-849

ditions: 2. uniqueness, stability, and solution algorithms. Water Resources Research 22 (2), 211–227.850

Chen, X., Murakami, H., Hahn, M. S., Hammond, G. E., Rockhold, M. L., Zachara, J. M., Rubin, Y., 2012.851

Three-dimensional bayesian geostatistical aquifer characterization at the hanford 300 area using tracer852

test data. Water Resources Research 48 (6).853

Chen, Y., Oliver, D. S., 2010. Cross-covariances and localization for EnKF in multiphase flow data assimi-854

lation. Computational Geosciences 14 (4), 579–601.855

Chen, Y., Oliver, D. S., 2012. Multiscale parameterization with adaptive regularization for improved assim-856

ilation of nonlocal observation. Water Resources Research 48 (4).857

Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic formations via ensemble Kalman858

filter. Advances in Water Resources 29 (8), 1107–1122.859

Cooley, R. L., Hill, M. C., 2000. Comment on RamaRao et al.[1995] and LaVenue et al.[1995]. Water860

Resources Research 36 (9), 2795–2797.861

Dafflon, B., Irving, J., Holliger, K., 2009. Use of high-resolution geophysical data to characterize heteroge-862

neous aquifers: Influence of data integration method on hydrological predictions. Water Resources Research863

45 (9), W09407.864

32



Dagan, G., 1985. Stochasti modeling of groundwater flow by unconditional and conditional probabilities:865

The inverse problem. Water Resources Research 21 (1), 65–72.866

Dagan, G., 1986. Statistical theory of groundwater flow and transport: Pore to laboratory, laboratory to867

formation, and formation to regional scale. Water Resources Research 22 (9), 120S–134S.868

De Marsily, G., Delhomme, J. P., Coudrain-Ribstein, A., Lavenue, A. M., 2000. Four decades of inverse869

problems in hydrogeology. In: Zhang, D., Winter, C. L. (Eds.), Theory, modeling, and field investigation870

in hydrogeology: a special volume in honor of Shlomo P. Neumans 60th birthday. Geological Society of871

America Special Paper 348, Boulder, Colorado, pp. 1–17.872

De Marsily, G., Lavedau, G., Boucher, M., Fasanino, G., 1984. Interpretation of interference tests in a well873

field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Verly, G.,874

David, M., Journel, A. G., Marechal, A. (Eds.), Geostatistics for natural resources characterization. D.875

Reidel, Hingham, Mass., pp. 831–849.876

Deutsch, C. V., Journel, A. G., 1998. GSLIB, Geostatistical Software Library and User’s Guide, 2nd Edition.877

Oxford University Press, New York, 384pp.878

Doherty, J., 2004. Pest: Model-independent parameter estimation, user manual, watermark numer. Comput.,879

Brisbane, QLD, Australia.880

Doherty, J. E., Hunt, R. J., 2010. Approaches to highly parameterized inversion: a guide to using PEST for881

groundwater-model calibration. US Department of the Interior, US Geological Survey.882

Dostert, P., Efendiev, Y., Mohanty, B., 2009. Efficient uncertainty quantification techniques in inverse prob-883

lems for Richards’ equation using coarse-scale simulation models. Advances in Water Resources 32 (3),884

329–339.885

Efendiev, Y., Datta-Gupta, A., Ma, X., Mallick, B., 2009. Efficient sampling techniques for uncertainty886

quantification in history matching using nonlinear error models and ensemble level upscaling techniques.887

Water Resources Research 45 (11), W11414.888

Elsheikh, A. H., Wheeler, M. F., Hoteit, I., 2013. Sparse calibration of subsurface flow models using nonlinear889

orthogonal matching pursuit and an iterative stochastic ensemble method. Advances in Water Resources890

56, 14–26.891

33



Emsellem, Y., De Marsily, G., 1971. An automatic solution for the inverse problem. Water Resources Re-892

search 7 (5), 1264–1283.893

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo894

methods to forecast error statistics. Journal of Geophysical Research 99 (C5), 10143–10162.895

Evensen, G., 2003. The Ensemble Kalman Filter: Theoretical formulation and practical implementation.896

Ocean dynamics 53 (4), 343–367.897

Evensen, G., 2007. Data assimilation: The ensemble Kalman filter. Springer Verlag, 279pp.898

Evensen, G., Leeuwen, P. J. V., 2000. An ensemble kalman smoother for nonlinear dynamics. Monthly899

Weather Review 128, 1852–1867.900

Ferraresi, M., Todini, E., Vignoli, R., 1996. A solution to the inverse problem in groundwater hydrology901

based on Kalman filtering. Journal of Hydrology 175 (1-4), 567–581.902

Fienen, M. N., Muffels, C. T., Hunt, R. J., 2009. On constraining pilot point calibration with regularization903

in pest. Ground water 47 (6), 835–844.904

Freeze, R. A., 1975. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform905

homogeneous media. Water Resources Research 11 (3), 725–741.906

Freni, G., Mannina, G., 2010. Bayesian approach for uncertainty quantification in water quality modelling:907

the influence of prior distribution. Journal of Hydrology, doi: 10.1016/j.jhydrol.2010.07.043.908

Froidevaux, R., 1993. Probability field simulation. In: Soares, A. (Ed.), Geostatistics Tróia ’92, volume 1.909
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Soares, A. (Ed.), Geostatistics Tróia ’92. Vol. 1. Kluwer Academic Publishers, Dordrecht, pp. 85–94.927
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Table 1: Details of the inverse methods mentioned in the paper. The attributes of each inverse method are reported based on its most popular implementation.

Lineari-
zation

Stochas-
tic

Structure
preserva-
tion

Gaussian
assump-
tion

M or S1 References2

Direct method
Yes No No - M Navarro (1977)

Indirect method
GA Yes No No Yes M Kitanidis and Vomvoris

(1983); Kitanidis (1995)
MLM No No No Yes M Carrera and Neuman

(1986a)
PiPM No No3 No -4 M De Marsily et al. (1984);

RamaRao et al. (1995); Al-
colea et al. (2006)

SCM No Yes No -4 M Gómez-Hernández et al.
(1997); Hendricks Franssen
(2001)

McMC No Yes Yes No S Oliver et al. (1997)
GDM No Yes Yes No M Hu (2000)
PrPM No Yes Yes No M Caers (2002); Hoffman and

Caers (2005)
EnKF No Yes No Yes - Evensen (1994, 2007)

1: Minimization of an objective function (M) or Sampling from a distribution (S).
2: References of original work and to main improvements
3: In its inception PiPM pursued a single aquifer map, but it was later converted onto a stochastic approach.
4: Although implicitly there is no multiGaussian assumption in its formulation, the final realizations tend to become
multiGaussian given the way the optimization model is formulated
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Figure 1: Schematic illustration of MLM, PiPM and SCM. Suppose the parameter to be estimated is the log hydraulic conduc-
tivity. The prior guess is updated by adding a perturbation, logKupdate = logKprior +∆logK. The PiPM adds a perturbation
around each pilot point sequentially. A seed logK field of the realization ensemble is shown for the SCM, which is modified by
adding a perturbation that is computed by interpolating the perturbations at the master points.
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Figure 2: Workflow of the EnKF.
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Figure 3: Conceptual model of a fluvial deposited aquifer used as a training image by the multiple point based simulation
algorithms.
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