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Depto. de Ingenieŕıa Mecánica y de Materiales,
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Abstract

In this work, the orientation and propagation of a crack in a fretting fa-

tigue problem is analyzed numerically and correlated experimentally. The

analysis is performed using a 2D model of a complete-contact fretting pro-

blem, consisting of two square indenters pressed onto a specimen subjected

to cyclic fatigue. For the simulation, we use the extended finite element

method (X-FEM), allowing for crack face contact during the correspond-

ing parts of the fatigue cycle. The problem is highly non-linear and non-

proportional and an orientation criterion is introduced to predict the crack

direction in each step of the crack growth simulation. It is shown that

the proposed criterion predicts crack orientation directions that are in good

agreement with those found experimentally, in contrast to the directions

found by application of conventional orientation criteria used in LEFM,

such as the MTS criterion.
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1. Introduction

Fretting fatigue problems involve two or more solids in contact that

experience relative displacements of small amplitude. A general feature of

fretting fatigue problems is that the contact region acts as a stress raiser

causing crack initiation and subsequent crack propagation until the eventual

failure of the component [1]. Due to the contact stresses, fretting fatigue

problems are highly non-linear. In addition, a non-proportional evolution of

the stress state often exists along the loading cycle. After initiation, crack

propagation occurs in regions dominated by this complex stress state, which

usually induces crack face contact and closure. It is also found that there is

also a crack-contact interaction at the early stages of the crack growth, by

which the contact stresses have an influence on the crack and, reciprocally,

the crack presence alters the contact stress distribution [2, 3].

All these features make fretting fatigue problems difficult to analyze

and numerical approaches often become necessary. In this work, we study

a simple geometrical configuration under complete contact conditions, as

sketched in Fig. 1: a specimen subjected to cyclic loading σBulk is pressed

by two square indenters on two opposite sides through the action of a normal

load P . In complete contacts, the contact area is independent of the load P

due to the abrupt change of the indenter geometry, in contrast to incomplete

contacts, such as hertzian contacts. The abrupt change in geometry found

in complete contacts also exhibit edges that behave as theoretically singular

lines at the end of the contact area (four corner points in the 2D model of

Fig. 1 that behave as singular points [4, 5]). This stress state at the corner

points leads to a rapid crack initiation stage as compared to incomplete

fretting fatigue problems and a large percentage of the fatigue life is spent
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in the propagation stage [1, 6]. As an indicative example, we estimated that

the percentage of initiation life was mostly in the range 40−75% for the in-

complete contacts analyzed in [3] (using a variable initiation length model),

whereas for the complete contacts analyzed in [6], the initiation life was

about 5 − 15% (using the same initiation model). Therefore, propagation

clearly dominates in complete contacts and predicting the right propagation

direction is essential to integrate crack growth laws in order to estimate the

remaining life until failure. In this work, we assume that a small scale yield-

ing condition prevails, both at the corner points [4] and at the crack tips,

with a linear elastic material behaviour.

σBulkσBulk
Relative slip

P

P

Figure 1: Sketch of the fretting fatigue problem under complete contact conditions.

The fretting configuration is analyzed both experimentally and numer-

ically using the extended finite element method (X-FEM). The aim is to

predict numerically the observed crack paths. The analysis of a 2D model

of the physical tests is carried out using the X-FEM implementation de-

veloped by the authors [7–9]. The implementation is performed as a user’s

subroutine in the commercial code ABAQUS and can take into account

crack face contacts along the loading cycle, which has been proved to be

essential for the correct crack prediction. Several crack orientation criteria

are reviewed in next section, together with the proposed approach based on
3



the minimum shear stress range ∆τmin. In Section 3, the performed tests

in aluminum 7075-T6 are described and micrographs of the experimental

paths are provided. Finally, the numerical results in the last section show

that the numerically predicted crack paths agree well with the experimental

results.

2. Crack orientation criteria for fretting fatigue problems

2.1. Review of existing criteria

As commented above, fretting fatigue problems are characterized by the

existence of multiaxial and high stress gradient zones subjected to mixed

mode non-proportional loading [10], i.e. the directions of the principal

stresses change along the cycle. The literature concerned with the direction

of crack propagation in fatigue is vast and is not our aim to make a thor-

ough review of existing criteria. Therefore, we will restrict this section to

some of the works most relevant to the fretting fatigue conditions.

Following the classical description by Forsyth [11], usually two stages

can be distinguished in the development of cracks: stage I for the initiation

process and stage II for the subsequent propagation. Here we will assume

that the crack is already initiated. In the initiation stage, cracks can exhibit

a shallow angle with respect to the surface, called type 1 crack in stage I

according to [12], which are dominated by the range of shear stresses ∆τ .

This is not always the case and some cracks initiate with an angle much

larger with respect to the surface (type 2 crack in stage I, according to the

same reference [12]). This type 2 initiation cracks are controlled by the

normal stress range ∆σn where a high level of tensile stress exists. Type

2 initiation cracks are the case observed in our experimental tests with
4



complete contact. It is important to note that we will concentrate only on

the propagation phase (stage II, which is the dominating stage in complete

contacts). Hence, we will assume that a type 2 crack already exists for the

numerical model (i.e. stage I has already occurred).

It is well known [10, 13, 14] that classical orientation criteria, such as the

maximum tangential (circumferential or hoop) stress σθθ criterion (MTS)

[15] or the minimum of the strain-energy-density factor S [16] among others,

are only valid for proportional loading. In the literature, several crack

orientation criteria have been applied to fretting fatigue problems. For the

analysis of fretting fatigue propagation (stage II) under non-proportional

loading in an incomplete contact, Baietto-Dubourg and Lamacq [12] and

Ribeaucourt et al. [17] considered the following criteria based on the work

of Hourlier and Pineau [18]:

1. max(kI(θ, t)) criterion: direction θ for which kI attains its maximum

along the cycle (absolute maximum in direction and time). Note that

kI is the mode I SIF associated with a virtual, infinitesimally small

kinked segment emanating from the original crack with an angle θ (see

Fig. 2).

2. max(∆kI(θ)) criterion: direction θ for which ∆kI attains its maximum

along the cycle.

3. max( da
dN

(θ)) criterion: direction θ for which da
dN

is maximum (maxi-

mum crack growth rate criterion).

The relations that enable to compute kI, kII from KI, KII are of the form:

kI(θ) = K11(θ)KI + K12(θ)KII

kII(θ) = K21(θ)KI + K22(θ)KII

(1)
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Figure 2: Prospective infinitesimal crack emanating from the original crack.

The angular functions Kij(θ) are reported in [17] and are based on previous

analysis by Amestoy et al. [19]. For the orientation angles usually found in

practice, Eqs. (1) and the angular functions Kij(θ) are essentially the same

as the ones reported by Cotterell and Rice for proportional loading [20].

The relations proposed by Cotterell and Rice are simply the trigonometric

functions of the crack tip singular fields expressed in polar stress compo-

nents. They can also be found in fracture mechanics texts, such as [21]. The

same equations are involved in the previously derived Nuismer criterion [22]

for proportional loading. This criterion is based on the principle that the

crack will propagate in such a way as to maximize the strain energy release

rate G. For proportional loading, it can be shown [22] that it leads to the

same result as the MTS criterion.

The above criteria by Hourlier et al. use the critical plane concept in the

sense that the sought direction (plane) is the one in which the maximum

magnitude is reached. The second of these criteria provided good results in

[12] when applied to spherical (incomplete) contacts acting on prestressed

specimens, although in [14] it is mentioned that this is not always the case.

In [12], the first criterion did not correlate well with the experimental results

and the third criterion was not applied due to the lack of experimental data

(application of criterion 3 can be found in [17]). On the other hand, Baietto-

Dubourg and Lamacq [12] also proposed the following criterion:
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4. max(∆σθθ,eff(θ)) criterion: direction θ for which the effective range

of the circumferential stress ∆σθθ is maximum along the cycle (by

effective, it is meant that σθθ = 0 when σθθ < 0).

In [12] this criterion led to similar results to criterion 2. The results in

[12] emphasize the importance of evaluating the ranges ∆ of the magnitude

and not simply the maximum values: criteria 2 and 4 are both based on

the concept of the maximum amplitude of crack opening. In this work, σθθ

will also be denoted as σn, indicating the normal stress to the prospective

direction.

2.2. The criterion of minimum shear stress range

From the numerical analyses and for the geometric and loading config-

uration considered in this work, it is found that the crack remains closed

during a large part of the loading cycle. The application of some of the

criteria reviewed in the previous section did not lead to good predictions

of the actual crack path as observed in the experimental tests performed.

Consequently, it can be argued that the stress state existing under a crack

face contact condition has an important influence to be considered. Assum-

ing an elastic behaviour, the stress state under crack face contact conditions

must be essentially controlled by KII, the only stress intensity factor that

can exist for a totally closed crack in 2D.

The criterion proposed here is a generalization for non-proportional load-

ing of the so-called “criterion of local symmetry” well established for propor-

tional loading, see Cotterell and Rice [20]. The criterion of local symmetry

states that the crack will propagate in the direction that KII = 0. For non-

proportional loading, the condition of KII = 0 cannot be reached in general,
7



and therefore, the proposed criterion seeks the angle for which the range

∆KII is minimized. This obviously reduces to the condition KII = 0 when

applied to proportional loading problems1.

In practice, computing KII values under crack face contact must include

the effect of friction tractions on crack faces, as in [17, 23], which can be

cumbersome and prone to inaccuracies when using domain and contour

integrals. Instead, and equivalently, we will seek the angle for which the

shear stress range ∆τ at the crack tip is minimized. Shear stresses develop

always in two orthogonal planes and there are two orthogonal planes on

which ∆τ is minimum. From these two potential crack growth directions,

we choose the plane with the maximum ∆σn, because it will be the plane

where less frictional energy is lost and there is more energy available for

propagating the crack. This approach is in line with the principle that a

crack will grow in the direction which maximizes the strain energy release

rate G [20, 22].

As verified in the results presented in Section 6, the ∆τmin direction coin-

cides with the direction of the maximum range of normal stress, max(∆σn).

This is due to the in-plane stress tensor transformation that yields both

extremes in the same direction, although this may not be the general case.

However, the direction predicted by the maximum range of the effective

normal stress, max(∆σn,eff), does not lead to good results, at least in the

problem studied here, despite the intuitive idea that only the positive nor-

mal stresses (effective) will govern the crack behaviour under an elastic

material behaviour.

1We note in passing that, for proportional loading, the criteria of KII = 0, Nuismer
and MTS lead to the same result [20, 22].
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Fig. 3 sketches the convention used in the procedure. When applying the

proposed criterion to the propagation stage, ∆τ(θ) is evaluated ahead the

current crack tip. For each crack growth increment, stresses are evaluated

ahead the crack tip and the prospective local direction θ is searched for

which ∆τ is minimum (see example of the estimation of the third increment

direction in Fig. 3, left). In Section 6, the predicted angle is reported with

respect to a fixed reference: β is the predicted angle measured from the

specimen surface. This way, a crack segment growing inwards (with respect

to the indenter contact zone) has an angle β > 0 and β < 0 indicates a

crack segment growing outwards.

θ

σBulk

P

∆τ(θ)

−β

β

−β
θ

σBulk

P

∆τ(θ)

−β

β

−β

Figure 3: Application of the ∆τmin criterion to predict the third crack-growth increment
direction. Sign convention for direction angles of a crack growth increment.

3. Experimental tests

In [6] we performed fretting fatigue tests with a square-ended indenter

in a partial slip regime. The symmetrical relative slip produced by this

complete contact configuration is sketched in Fig. 1. Tests were carried out

with a uniaxial servo-hydraulic fatigue test machine with a load capacity of
9



100 kN. The assembly rig used to apply the normal load P can be observed

in Fig. 4. The cyclic bulk loading was performed at constant amplitude,

stress ratio R = −1 at a frequency of 15 Hz.

Ball and

socket joint

Load cell
Indenters

Normal 

load

Specimen

σBulk

P P

σBulk

Figure 4: Complete contact testing rig, showing the contact elements.

Fifteen load combinations were analyzed in [6]. For this study, the fol-

lowing tests No. 1, 3, 5, 8, 11 and 15 were selected. The applied loads

for each test and the experimentally registered number of cycles to fail-

ure are listed in Table 1. The nominal contact pressure is defined as

σP = P/(2ct), where 2c is the contact width and t the specimen and in-

denter thickness. The specimens are dog-bone shaped, with a rectangular

section t × 2B = 5 × 10 mm, where 2B is the width of the specimen (see

also Fig. 7). The material for both specimens and indenters is an aluminum

alloy 7075-T6, with a Young’s modulus of 72 GPa and a Poisson’s ratio of
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0.3. The indenters have a rectangular cross section of t× 2c = 5× 10 mm,

i.e. the same thickness as the specimens. Further details regarding the

experimental tests and material characterization can be found in [6].

Table 1: Loads and experimental number of cycles to failure for the tests considered.
Test number P (kN) σP(MPa) σBulk(MPa) Nf (cycles)

1 2 40 110 105958
3 8 160 110 82549
5 4 80 130 47714
8 4 80 150 32905
11 4 80 170 27391
15 8 160 190 8760

After failure, specimens were ground on the plane of Fig. 1 in order to

take micrographs of propagated cracks initiated at the corners of Fig. 1.

Fig. 5 shows the micrographs for the propagation stage (the total length

shown for the longer cracks in the picture is about 1.2 mm). These are

cracks that did not lead to final failure and that emanated from one of

the four corners of Fig. 1. It can be observed that the crack paths are

very similar for all of them: the crack grows inwards and deviates from

the initiation angle β ≈ 60◦ to about β ≈ 80◦. Note that, despite the

irregularities due to the local microstructure, experimental evidence shows

that the growth trend is always inwards in this region.

4. Numerical modelling with the extended finite element method

In this work, the extended finite element method [24] is used to model

the crack propagation. The main feature of the X-FEM is the enrichment

of the FEM model with additional degrees of freedom (DOFs). These ad-

ditional DOFs are associated with the nodes of the elements that are ge-

ometrically intersected by the crack location (called enriched nodes and
11



Figure 5: Micrographs for the propagation of non-failure cracks. Tests 1, 5, 8 and 15.

elements, respectively). Thus, the discontinuity is included in the numeri-

cal model without modifying the discretization. Fig. 6 shows a portion of a

mesh where the enriched nodes are marked. Nodes located next to the crack

faces (marked as circles in Fig. 6) are enriched with 2 additional DOFs (one

for each direction of the domain space) to represent the physical displace-

ment discontinuity by means of a Heaviside function H(x). The Heaviside

function can only take the values H(x) = ±1, depending on the relative

position of the enriched node with respect to the crack face.

The X-FEM formulation allows for a further type of enrichment for those

nodes that surround the crack-tip. These nodes (marked as squares in Fig. 6

are enriched with 8 additional DOFs: four crack-tip functions Fl(x) times

the two directions of the domain space. The crack-tip functions constitute

the basis functions that represent the first term of the LEFM displacement

field, and consequently, can reproduce the classical singular behaviour of

12



-0.02

0

-0.04

-0.06

-0.08

-0.1

-0.06 -0.04 -0.02 0 0.02
mm

m
m

Crack tip
enrichment

Heaviside 
enrichment

Specimen

Indenter

Figure 6: Enriched nodes in the X-FEM.

the LEFM strain and stress fields. These functions are given by [24]:

[Fl(r, θ), l = 1− 4] =

[√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

]

(2)

where r, θ are polar coordinates defined with respect to the local refer-

ence system at the crack tip. Thus, for the 2D case, the extended finite

element approximation to the displacements using the so-called “shifted”

basis formulation at a point of the domain x is [25, 26]:
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uxfem(x) =
∑
i∈I

Ni(x)ui +
∑
i∈J

Ni(x) [H(x)−H(xi)] ai+

+
∑
i∈K

[
Ni(x)

4∑

l=1

[Fl(x)− Fl(xi)]bil

]

(3)

where I is the set of all nodes and the subsets J ,K contain the enriched

nodes with either the Heaviside function H(x) or with the crack-tip func-

tions Fl(x), respectively. Ni(x), ui are the standard shape functions and

displacements of each node i, respectively, and ai, bil are the additional

DOFs associated with the Heaviside function H(x) and the crack-tip func-

tions Fl(x). Note that the introduction of the crack-tip functions enhances

the quality of the calculated singular stress field in the vicinity of the crack

tip. This is a further advantage of the X-FEM over the standard FEM [24].

In this work, we used the implementation proposed by the authors [7, 27],

in which the X-FEM approach is integrated in ABAQUS by defining a

user element that allows 12 DOFs/node. The combination of the powerful

contact procedures available in ABAQUS with the X-FEM implementation

has proved successful. The SIFs calculation can then be performed by means

of the path or domain independent interaction integral (further details are

given in [7]).

As is widely known, one to the major complications in the study of

mixed mode fatigue crack growth is the frictional contact of the mating

crack faces [28]. An essential feature of the current implementation is the

capability of modelling crack face contact and closure with X-FEM. During
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the loading cycle, crack remains closed during a large part of the cycle (we

recall that the loading stress ratio is R = −1). Therefore, the numerical

model must capture the crack opening and closure, including crack face

friction, because the stress fields in the vicinity of the crack tip change

substantially during the cycle. Our analyses show that the consideration of

crack closure is the only way to predict growth directions in good agreement

with the experimental results. The numerical details related to the X-FEM

implementation incorporating crack face contact with friction are beyond

the scope of this work. The interested reader is referred to [8, 23]. Recent

works in the literature by Baietto, Gravouil et al. [29, 30] also apply X-FEM

to fretting problems considering crack face contact.

5. Description of the numerical model

Due to symmetry conditions, a quarter 2D finite element model has been

considered to represent the fretting fatigue tests, as shown in Fig 7. The

rectangle L × B corresponds to the portion of the analyzed specimen and

has a length of L = 4B = 20 mm, the half length of the indenter c is 5 mm,

and the distance between the contact plane and the point of the indenter at

which loads are applied is h = 10 mm. Four node, plane strain quadrilateral

elements were used with a thickness t = 5 mm. The smallest element size

considered is 5 µm at the right end of the contact zone.

The friction model assumed for the contact zone is a Coulomb model

and the ABAQUS contact formulation based on Lagrange multipliers is

used to model the contact between the indenter and the specimen. The

friction coefficient is taken as µ = 0.8 [31]. The material behaviour is

assumed linear elastic, despite the high stress concentration at the contact
15
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Figure 7: Model geometry and enlarged view of the FE discretization.

edge. The application of the linear regime is deemed valid, due to the very

small edge radius of the indenter and the relative high yield stress of the

aluminum alloy. As a consequence, the existing plasticity is very localized

and a small scale yielding assumption can be applied, analogous to the small

scale yielding assumption admitted in LEFM around the crack tip. This

is confirmed by the observation of the tested specimens, which showed no

macroscopic evidence of plasticity (see micrographs in Fig. 5 in which crack

faces match very well each other and a view of the specimen contact surface

in Fig. 7 of our previous work [6]).

The loading sequence is represented in Fig. 8, where six load steps have

been considered in the analysis. Due to the non-linearity of the contact

problem, loads were applied in sufficiently small time increments. In order

to give a physical insight into the mechanics of the model under this loading,

Fig. 9 shows enlarged views of the von Mises stress field at four instants of

the loading sequence. For the sake of clarity, the X-FEM model in Fig. 9
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σBulk [MPa]c·t [MPa] Time (load step)
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

0 1 2 3 4 5 610050
50100150P/2

σBulk [MPa]c·t [MPa] Time (load step)
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Figure 8: Loads applied to the numerical model for test 1.

represents a propagated crack after ten crack growth increments ∆a, as

explained in the following Section 6.

At time t = 2.00 the maximum σBulk is being applied, which produces a

clear opening of the crack (displacements are magnified by 10×). The ex-

pected von Mises stress field characteristic of a dominating mode I can be

observed in the vicinity of the crack tip. The zone in grey between the open

crack faces represents the deformation of the X-FEM enriched elements that

introduce the mathematical discontinuity to model the crack face separa-

tion. When the bulk load is decreased (t = 2.75), mode I is reduced and the

von Mises stress field indicates a clear mixed mode condition. Note that

the vertical load due to the indenter is kept constant during the cycle and

mode II increases its dominance over mode I as σBulk is reduced. At time

t = 3.00 crack face contact is produced and a mode II condition is present

at the crack tip. Note also that kinks along the crack faces behave as local

stress raisers when entering into contact with the opposing face. At time

t = 4.00 the bulk load is completely reversed and the load is transmitted

through the crack faces. The end of the contact zone acts now as a strong

17
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Figure 9: Enlarged view of the von Mises stress field at four instants of the loading
sequence shown in Fig. 8. Displacements are magnified by a factor of 10×.

stress raiser, as the specimen is compressed against the contact corner.

Results in the following section are presented for the load steps 5 and 6

(when “shakedown” of the numerical model response is produced). It has

been verified that the stress states at t = 5 and t = 6 are very similar to

those at t = 3 and t = 2, respectively.

6. Crack growth simulation and comparison with experimental

results

18



6.1. Model with no crack

The first objective is to estimate the crack growth angle at the very early

stages of propagation, i.e. for crack lengths of 50 − 75 µm. This implies

that the crack is still small but significantly larger than the grain size of

the material, which in our problem is about 35 µm [27]. For the complete

contact configuration of this work, the experimental evidence shows that the

initiation crack is a type 2 crack, i.e. the initiation angle is not shallow [12].

To this aim, we used the numerical model of Fig. 7 prior to the presence of

any crack, i.e. X-FEM is not used and a standard FE analysis is performed.

Crack initiation in the specimen is expected in the neighbourhood of the

contact corner. Therefore, the stresses at the integration points of an ele-

ment in this region were recorded along the cycle. A critical plane analysis

was carried out to compute ∆τ , ∆σn and ∆σn,eff for different prospective

angles β and the results are plotted in Fig. 10. This figure shows the estima-

tion of the initial direction for Test 1. It can be observed that the criterion

of ∆τmin yields two minima. Choosing the one with the highest ∆σn a good

prediction of the initiation angle is found (β ≈ 60◦). Note that the applica-

tion of the criterion 4, max(∆σn,eff), yields the estimation β ≈ 90◦, which

is not correct. This means that compressive part of the cycle cannot be

disregarded when estimating the range of variation of σn.

On the other hand, it is verified that max(∆σn) leads to the same es-

timation as ∆τmin. However, the ∆τmin criterion always gives a sharper

indication of the predicted angle in comparison with max(∆σn). The slopes

around the points of ∆τmin are greater than the slopes around the points of

max(∆σn), enabling a better estimation of the angle β.

19



−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
−200

0

200

400

600

800

1000

β (°)

τ(
β)

, σ
n(β

) 
[M

P
a]

PREDICTION USING FE MODEL (NO CRACK)

≈ 60°

∆τ

∆σ
n

∆σ
n,eff

IndenterIndenter βIndenterIndenter β

Figure 10: Predicted initial direction for a type II crack using the ∆τmin criterion for
test 1. The analysis is performed with no crack, using standard FEM.

6.2. Model with X-FEM crack

Fig. 10 shows a good correlation with the experimental results at the first

stages of the crack growth. Therefore an initial crack with angle β = 60◦

is introduced in an X-FEM model. The length of this initial crack is taken

as a0 = 50 µm as discussed in [27]. This length a0 is of the order of several

grains for this material [9], a necessary condition for the applicability of

the LEFM. The introduction of the initial crack through X-FEM presents

the enormous advantage that it does not need remeshing to simulate the

initial crack or any subsequent crack propagation, because the element sides

do not need to conform to the crack faces. In addition, the numerical

approximation of the stress fields in the vicinity of the crack tip is enhanced

by the crack-tip enrichment functions.

For the application of the ∆τmin criterion, the stresses at the integration

points of the element ahead of the crack tip are recorded along the steps 5

and 6, i.e. in the range t ∈ [4.0, 6.0]. Fig. 11 shows the variation of τ and

σn with the prospective direction β and for the different time increments
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Figure 11: Prediction of crack growth direction ahead of the initial crack a0 = 50 µm,
β0 = 60◦ with the ∆τmin criterion for test 1. The crack is modelled using X-FEM.

t ∈ [4.0, 6.0]. Note that the position of the maxima and minima for each

time increment varies, which is indicative of the non-proportionality of the

loading. Taking the maximum and minimum envelopes of the curves, the

ranges ∆τ and ∆σn can be easily computed. The effective range ∆σn,eff is

also provided.
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The predicted angle is chosen as the one that leads to ∆τmin in combi-

nation with the greatest ∆σn. In this case, the predicted angle is β = 82◦,

which according to the convention of Fig. 3, indicates a slightly inwards

direction, in good agreement with experimental evidence. Note that the

criterion 4 based on max(∆σn,eff) would predict an angle about −80◦, i.e.

slightly outwards. This is incorrect due to ignoring the influence of the

compressive part of the cycle. Application of the MTS criterion leads to

a very similar wrong value owing to the same reasons, as can be seen in

[27] for similar problems. Note also that ∆τ at the angle of max(∆σn,eff) is

substantially greater than ∆τmin.

The procedure is repeated adding new crack increments. The subse-

quent crack growth increments are taken as ∆a = 50 µm, a value that it

is recommended to be greater than four or five times the element size in

the region analyzed. Fig. 12 shows the application of the ∆τmin criterion

after four crack growth increments, i.e. a = a0 + 4∆a. In this case, the

direction of the next crack growth increment is predicted to be β = 70◦,

again pointing inwards beneath the indenter contact zone.

Fig. 13 plots the prediction for the propagation stage of Test 1 after six

crack growth increments, a = a0 + 6∆a. The figure on the left represents

the predicted propagation path with the proposed criterion ∆τmin using X-

FEM and taking into account crack face contact as explained above. It is

observed that the predicted path is in good agreement with the experimental

observations. Note in Fig. 13 (right) that the simple application of the MTS

criterion at the instant of maximum σBulk, i.e. when the crack is fully open

and disregarding what happens at the rest of the cycle, does not yield correct

predictions of the crack path.
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Figure 12: Prediction of crack growth direction ahead of the propagated crack after four
crack growth increments, a = a0 + 4∆a, with the ∆τmin criterion for test 1. The crack
is modelled using X-FEM.

Further examples of inaccurate growth orientations using the MTS cri-

terion under non-proportional fretting loading can be found in Figs. 6 and

7 of one of our former works [27]. In that work, the MTS criterion was

applied at the instant of maximum bulk load. All of our analyses predicted
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Figure 13: Predicted propagation path using X-FEM and the ∆τmin vs. MTS criteria
for test 1.

growth paths outwards the contact zone, which is in contradiction with

experimental evidence. In [32], the application of the MTS criterion to a

fretting fatigue analysis at the instant of maximum load is also reported,

yielding growth directions outwards the contact zone as well.

6.3. Sensitivity to ∆a and the friction coefficient µ

Thanks to the versatility of the proposed procedure based on X-FEM,

it is possible to study the influence of different parameters considered in

the model. Fig. 14 (left) shows the influence of the assumed length ∆a for

the crack propagation increment. It can be seen that the global trend is

preserved, despite quite different values of ∆a, thus proving the robustness

of the procedure.

A more important issue from the physical viewpoint is the assumed value

of the friction coefficient between crack faces. The above analyses have been
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Figure 14: Sensitivity to different crack growth increments ∆a and friction coefficients µ
for test 1.

carried out with µ = 0.8 according to [31], but it is clear that the estimation

of this parameter is elusive. Fig. 14 (right) shows that the influence of µ

is not large. This is due to the kinks existing along the crack faces. The

kinked segments prevent any sliding, blocking the crack faces after entering

into contact. While this is obviously a numerical effect, it is presumed that

a similar behaviour may happen in actual cracks due to the irregularities

and asperities along the crack faces that can be observed in the micrographs

of Figs. 5 and 10. Hence the right path can be predicted with the proposed

procedure.

7. Conclusions

Crack propagation paths have been predicted for fretting fatigue tests

under complete contact conditions. This type of problem is subjected to
25



non-proportional loading, which invalidates the application of conventional

orientation criteria usual in LEFM and that are only useful for proportional

loading. To achieve these results, a criterion has been proposed based on

the minimum value of ∆τ evaluated ahead the crack tip and along the

entire cycle. The prediction has been performed numerically using X-FEM

including a formulation that allows for crack face contact, which is essential

to take into account the effects during the compressive part of the cycle. The

numerical results are in good agreement with the experimental observations.
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[24] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth with-

out remeshing, Int. J. Numer. Methods Engng. 46 (1999) 131–150.

[25] G. Zi, T. Belytschko, New crack-tip elements for XFEM and applications to cohesive

cracks, Int. J. Numer. Methods Engng. 57 (2003) 2221–2240.

[26] G. Ventura, E. Budyn, T. Belytschko, Vector level sets for description of propagating

cracks in finite elements, Int. J. Numer. Methods Engng. 58 (2003) 1571–1592.

[27] E. Giner, N. Sukumar, F.D. Denia, F.J. Fuenmayor, Extended finite element method

for fretting fatigue crack propagation, Int. J. Solids Struct. 45 (2008) 5676–5687.

[28] S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, 1998.

[29] M.C. Baietto, E. Pierres, A. Gravouil, A multi-model X-FEM strategy dedicated to

frictional crack growth under cyclic fretting fatigue loadings, Int. J. Solids Struct.

47 (2010) 1405–1423.

[30] E. Pierres, M.C. Baietto, A. Gravouil, G. Morales-Espejel, 3D two scale X-FEM

28



crack model with interfacial frictional contact: Application to fretting fatigue, Tri-

bol. Int. 43 (2010) 1831–1841.

[31] Y. Mutoh, J.Q. Xu, K. Kondoh, Observations and analysis of fretting fatigue crack

initiation and propagation, in: Y. Mutoh, S.E. Kinyon, D.W. Hoeppner (Eds.),

Fretting Fatigue: Advances in Basic Understanding and Applications, ASTM STP

1425, West Conshohocken, 2003, pp. 61–75.

[32] H.A. Fadag, S. Mall, V.K. Jain, A finite element analysis of fretting fatigue crack

growth behaviour in Ti-6Al-4V, Engng. Fract. Mech. 75 (2008) 1384–1399.

29


