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This work presents a gradient index device for insulating from vibrations a circular area of a thin

plate. The gradient of the refractive index is achieved exploiting the thickness-dependence of the

dispersion relation of flexural waves in thin plates. A well-like thickness profile in an annular

region of the plate is used to mimic the combination of an attractive and repulsive potentials,

focusing waves at its bottom and dissipating them by means of an absorptive layer placed on top.

The central area is therefore isolated from vibrations, while they are dissipated at the bottom of the

well. Simulations have been done using the multilayer multiple scattering method and the results

prove their broadband efficiency and omnidirectional properties. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4839375]

I. INTRODUCTION

The study of the propagation of flexural waves in thin

plates has received an increasing attention recently, due to

the possibilities in their control offered by new structures

like phononic crystals,1–6 arrays of attached resonators,7–9 or

transformation-coordinate based devices.10,11 Therefore,

applications such as cloaking shells12 or negative refractive

lenses4,13 have been experimentally demonstrated, opening

the door to new and exciting devices for the control of

vibrations.

In addition to all these phenomena related with classical

waves in general, the propagation of flexural waves in thin

plates presents the peculiarity that it can be controlled by

means of thickness variations, as was theoretically studied

by Krylov.14 Known as wedges, these structures produce a

gradual reduction in the velocity of the wave by changing

the plate’s local thickness. Experimental investigations have

been carried out on a variety of plate-like and beam-like

structures.15,16

The principle of wave control by locally changing the

plate’s thickness has been applied to achieve efficient damp-

ing of flexural waves in plate-like structures using the so

called “acoustic black holes” (ABH),17 which consist of spe-

cifically designed pits with small pieces of absorbing materi-

als attached in the middle.18 Recently, O’Boy and Krylov19

introduced a modification in the ABH by perforating a hole

in the center of the pit, and Bowyer and coworkers20 studied

the effect of imperfections in the fabrication method of the

ABH and the result of placing multiple ABH together in a

plate.21 For more information on these topics, see Ref. 22.

In this work, a device for isolating a given area in a thin

plate from vibrations is designed and numerically tested.

This objective is accomplished by surrounding it by a prop-

erly designed thickness-inhomogeneous region, which will

attract and dissipate vibrations on the plate, accomplishing

then a double objective. From one side, the central region

will be properly isolated, and from the other one, the device

will dissipate the vibrations on the plate. Our work is based

on the work introduced by Krylov et al.14–17 and the Ross-

Ungar-Kerwin (RKU) model.18

The paper is organized as follows: Section II introduces

the Kirchoff-Love approximation for modeling the behavior

of flexural waves in thin plates and the method to design the

structure is explained. Section III explains the RKU theory

used to model the behavior of an absorbing layer placed on

top of an elastic plate. In Sec. IV, the design and optimiza-

tion of the device are explained and in Sec. V the perform-

ance of the device is tested using a numerical simulator

based on a multiple scattering algorithm. Finally, the conclu-

sions are presented in the last section and the numerical algo-

rithm is explained in the Appendix.

II. THEORY

The equation of motion describing flexural waves in thin

plates is modeled using the Kirchoff-Love approximation23–25

in which the vertical displacement W(x, y) of the plate is

obtained from the bi-Helmholtz equation (assuming harmonic

time dependence of frequency x)

Dr4Wðx; yÞ � qhx2Wðx; yÞ ¼ 0; (1)

where D ¼ Eh3=12ð1� �2Þ is the flexural rigidity, q the

mass density, h the thickness of the plate, E the Young

Modulus, and � the Poisson ratio. For plane wave propaga-

tion with wavenumber k, the above equation gives a quad-

ratic dispersion relation

k4 ¼ qhx2

D
; (2)

and a phase velocity

c4 ¼ x
k

� �4

¼ x2 Eh3

12ð1� �2Þqh
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It can be seen that the phase velocity c is a function not

only of the physical properties of the plate, but it also

depends on its thickness. This dependence allows the design

of gradient index devices for flexural waves easily by means

of local variation of the plate’s thickness. Thus, the refractive

index as a function of the plate’s thickness is (in polar

coordinates)

nðr; hÞ ¼ cb

cðr; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hb

hðr; hÞ

s
; (4)

cb being the wave speed in the background, hb the back-

ground’s thickness, and h(r, h) the position-dependent thick-

ness. It has been assumed that all the other elastic properties

of the plate remain unchanged. Equation (4) describes how

the refractive index increases with decreasing thickness. It is

important to notice that, despite of being an intrinsically dis-

persive medium, the refractive index does not depend on the

frequency of the wave; thus, the functionality of the designed

devices will be limited by the accuracy of the flexural wave

model only.

Figure 1 shows a schematic view of the gradient index

device analyzed in this work. It consists of a circularly sym-

metric region in which the thickness of the plate is gradually

changed according to the desired functionality. In this case, a

well-like profile is drilled surrounding a central area, which

is the region to be isolated from external vibrations.

Following the analogy with acoustic and electromagnetic

waves for similar devices,26,27 the objective of the decreas-

ing height (increasing refractive index) region is to act as an

“attractive” potential, so that it tends to concentrate vibra-

tions, while the inner region of increasing height (decreasing

refractive index) will act as a “repulsive” potential, isolating

in this way the central region. All waves traveling around

this device will be concentrated at the bottom of the well

where they will be dissipated.

The proposed structure is theoretically studied by means

of a multiple scattering method, where the variation of the

height is discretized and then the structure is modeled as a

multilayered shell. This method requires the application of

the proper boundary conditions at each layer, for which it is

necessary to know their physical properties. Note that the

only parameter that changes from layer to layer is the plate’s

thickness, except at the bottom of the well, where a dissipa-

tive material is placed. Section III describes the model

employed in analyzing the absorbing layer.

III. ABSORBING LAYER MODEL

The goal of the proposed device is to concentrate waves

in a given region where they are dissipates. This dissipation

is made by placing an absorptive material of thickness d in

contact with the plate of thickness ha in the region of inter-

est, as shown in Fig. 2. To properly apply the multiple scat-

tering method described in the Appendix, this region must

be modeled as a single layer with a given Young modulus

Ec, thickness hc, Poisson ration �c, and density qc.

Absorption is introduced in the model by adding a complex

part in the Young modulus called the loss factor g, such that

Ê ¼ Eð1þ igÞ; therefore, the model must also provide the

composite loss factor gc.

Using the RKU model,18 it is possible to describe the

system plate-absorptive material as a single composite. This

model states that the wavenumber of the composite material

is

k4
c ¼

12x2qað1� �2
aÞ

Eah2
a

1þ qrhr

ð1� igaÞ þ ð1� ig‘ÞhrEra

� �
; (5)

where the subindices a and ‘ stands for the parameters of the

plate and absorbing layer, respectively, and qr ¼ q‘=qa;
hr ¼ d=ha; Er ¼ E‘=Ea, and a ¼ 3þ 6hr þ 4h2

r .

The thickness of the composite is simply the total thick-

ness of the two layers

hc ¼ ha þ d; (6)

while its density is the volume average of the densities of the

two materials

qc ¼
qaha þ q‘d

hc
: (7)

It is assumed that the Poisson ratio of the composite is the

same as that of the plate

�c ¼ �a: (8)

From Eqs. (5)–(8) and (2), the flexural rigidity is

obtained as

Dc ¼
x2qchc

k4
c

¼ h3
a

12ð1� �2
aÞ

� Ea ð1þ hrEraÞ � iðga þ g‘hrEraÞ½ �: (9)

FIG. 1. Schematic view of the structure studied in the present work. The

central circular region is surrounded by a thickness-varying shell so that it is

isolated from the propagation of flexural waves on the plate.

FIG. 2. Geometry employed to dissipate the vibrations on the plate. An

absorbing layer (thickness d) is placed on the top of the plate (thickness ha).

Each layer has its own elastic parameters that combine to produce a compos-

ite material (thickness ha), with new elastic parameters. This effective mate-

rial is the one considered in the model.
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Finally, knowing that Ec ¼ Dc12ð1� �2
cÞ=h3

c , the Young

modulus of the composite is obtained and its loss factor is

found as

gc ¼
= Ecf g
< Ecf g

¼ ga þ g‘hrEra
1þ hrEra

: (10)

In this work, an aluminum plate and a moulded

Polystyrene layer has been used. Table I reports the materials’

properties.28 Figure 3 shows how the variation of the compos-

ite loss factor with the relative Young modulus Er ¼ E‘=Ea

for different values of g‘. The thickness of the aluminum plate

is ha¼ 0.5 mm, and the thickness of the layer is d¼ 0.5 mm. It

is observed that gc approaches the loss factor of the absorptive

layer g‘ as the normalized Young Modulus Er � 0:5, as

expected from Eq. (10).

Figure 4 shows how the loss factor changes with the

thickness of the plate and the layer. The material properties

are given in Table I. Note that when the thickness of the

plate decreases, a minor change in the thickness of the layer

changes the loss factor greatly. Given that the thickness of

both the absorptive layer and the plate can be tailored, their

values are optimized in order to maximize the device’s effi-

ciency. The optimization method is explained in Sec. IV.

IV. DESIGN AND OPTIMIZATION

The full studied device consists of five regions as shown

in Figure 5 (upper panel), where each region is drawn in a

different color. Figure 5 (lower panel) shows the variation of

the thickness of the plate according to the following function:

hðrÞ ¼

h ¼ hb r � Rc

h ¼ hb � hmin

ðRc � RrpÞ2
ðr� RrpÞ2 þ hmin Rc < r � Rrp

h ¼ hmin Rrp < r � Rab

h ¼ hb � hmin

ðRap � RabÞ2
ðr� RabÞ2 þ hmin Rab < r � Rap

h ¼ hb Rap < r;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(11)

where hb¼ 10 mm is the thickness of the plate in the back-

ground, hmin¼ 0.5 mm is the minimum thickness of the plate

(prior to the optimization process), Rc¼ 15 cm is the radius of

the core, Rrp¼ 30 cm is the radius of the “repulsive potential”

shell, Rab¼ 45 cm is the radius of the absorptive shell, and

Rap¼ 60 cm is the radius of the “attractive potential” shell.

To maximize the energy transfer through all the layers,

the system requires a good matching between each interface,

so that the reflections of incoming waves be minimum.

Boundary conditions of the Kirchoff-Love approximation

are continuity of the displacement W, its radial derivative

@rW, the conservation of the bending moment and the gener-

alized Kirchoff stress, as given by Eqs. (A12) in the

Appendix. These equations are functions of the flexural ri-

gidity D(r) and the wavenumber k(r) (� does not change), so

that, in order to minimize reflections when changing from

one region to the other one, these values have to be

continuous.

Although the thickness values given from Eq. (11) pro-

vide this continuity, once the effect of the absorbing layer is

added, a mismatch between the layers surrounding the

absorptive shell occurs. An optimization process solves this

problem. Two parameters have been optimized, the thickness

of the absorbing layer (d) and the thickness of the absorbing

plate (ha� hmin). Figure 5 (lower panel) shows, in the

absorption region, the original value hmin (dashed line), the

new thickness value ha< hmin (continuous line) and, finally,

FIG. 3. Variation of the composite loss factor gc with the normalized Young

Modulus Er¼E‘/Ea, for different values of the loss factor of the absorptive

layer g‘ and for ha¼ 0.5 mm and d¼ 0.5 mm.

TABLE I. Elastic parameters of the materials used in this work.28

Aluminum Moulded Polystyrene

Young modulus E 78.97 Gpa 7.8 Gpa

Mass density q 2700 kg/m3 1400 kg/m3

Poisson ratio � 0.33 0.34

Loss factor g 0.0001 0.1

FIG. 4. Variation of the composite loss factor gc with the thickness of the

layer d for different plate thickness ha.
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and the total thickness after adding the absorbing layer

haþ d (dashed-dotted line). The goal is to obtain a relative

error lower than 0.1% for the flexural rigidity and the wave-

number, i.e.,

�DðrÞ ¼ jDðrÞtarget � DðrÞj=DðrÞtarget; (12)

�kðrÞ ¼ jkðrÞtarget � kðrÞj=kðrÞtarget; (13)

of less than 0.1%. After the optimization, the values for the

new thickness of the plate and the layer are ha¼ 0.44hmin

and d¼ 0.55 mm, respectively. Also, the composite loss fac-

tor achieved was gc� 0.1.

V. RESULTS AND DISCUSSION

Using the design described in Sec. IV and the numerical

algorithm described in the Appendix, simulations have been

done to test the performance of the device. Each region has

been discretized into N¼ 100 layers, which has been shown

to be a good approximation to the ideal continuous device

for the wavelengths of interest.

For comparison purposes, the three configurations

shown in Fig. 6 have been studied. The first one is a device

with the same geometrical characteristics as the designed

one, but without the repulsive potential (Fig. 6(a)); the sec-

ond one is a device with the same geometrical characteristics

as the designed one, but without the absorptive layer and the

optimization (Fig. 6(b)); and the third one is the designed de-

vice (Fig. 6(c)).

To further understand what is occurring inside the three

configurations, let us consider the displacement field illus-

trated in Fig. 7. It shows the modulus of the displacement in

the z-direction when a plane wave with wavenumbers

kRap¼ 15 (left panels) and kRap¼ 35 (right panels),

impinges the devices under study. The white circles repre-

sent the boundaries defined by Eq. (11). Panels (a) represent

the plot of the device without the repulsive potential. Notice

that, although the system presents absorption, the wave is

focused into the core and a high amplitude is achieved.

Panels (b) are for the device without the absorptive layer, but

adding the repulsive potential shell. It is observed that the

wave is expelled from the core and the amplitude decreases

in comparison to the previous panels, even though it does

not have absorption. Finally, panels (c) correspond to the

designed optimum device. By introducing the absorptive

layer, the wave amplitude in the core is further reduced.

Notice that the panel in the second row has the same pattern

as the one in the third row but without the attenuation.

For comparison purposes, we have introduced the vibra-

tion average in the region i defined as

hjWj2ii ¼
1

Si

ð ð
Si

jWðr; hÞj2dS; (14)

where Si is the area defined by Ri < r < Riþ1, with

Ri 2 ½1;Rap;Rab;Rrp;Rc; 0�.
Figure 8, panels a–d, shows the vibration average pro-

duced in the four regions defining the device: the attractive

FIG. 5. Different regions defined in the gradient index device (upper panel)

and variation of the thickness of the plate (lower panel). The core is defined

by r<Rc (yellow) and corresponds to the area to be isolated from vibrations.

Region Rc < r � Rrp is the repulsive potential shell (green), region Rrp <
r � Rab is the absorbing shell (red), and region Rab < r � Rrp is the attrac-

tive potential shell (blue). The grey region corresponds to the background

and it extents towards infinity.

FIG. 6. Thickness variation as a function of the distance r for the three struc-

tures studied in this work. The region wanted to be free of vibration is

r�Rap/4. (a) Attractive potential with the absorptive layer. (b) Attractive

and repulsive potentials without the absorptive layer. (c) Full isolating

device.
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potential shell, the absorbing shell, the repulsive shell, and

the core, respectively. Each figure shows the values of the

vibration average for the designed device (continuous line),

the device without absorption shell (dashed line), and the de-

vice without the repulsive potential shell (dotted line).

Notice that in general, the vibration average decreases with

increasing frequency, due to the frequency response of the

absorptive layer. Some peaks are observed in the device

without the absorption shell due to resonances of the struc-

ture, which disappear once dissipation is introduced in the

device. Overall, the designed device has the minimum vibra-

tion average in all the regions, which shows its efficiency not

only for dissipating vibration energy but also for isolating a

given region from these vibrations.

VI. SUMMARY

An omnidirectional and broadband device allowing the

isolation of a given circular region from the flexural waves

propagating in a thin plate has been theoretically demon-

strated. It is based on a circular gradient index lens that guide

flexural waves to an annular region where the vibrations are

dissipated. The dissipation in the annular region has been

modeled using the RKU approach by considering an

absorptive lamina on top of the plate. An optimization pro-

cess has been performed in order to minimize reflections

between the different regions defining the device. Moreover,

the numerical simulations have been done using an algorithm

based on multiple scattering, which has been here developed

and described. Since the properties of the materials

employed are existent in nature, the proposed device is feasi-

ble and, then, an experimental verification is expected in the

near future.

The gradient index device has been implemented by

exploiting the dependence of the dispersion relation of flex-

ural waves with the plate’s thickness. This dependence,

which is also found in other types of elastic and electromag-

netic open waveguides, could be used to develop similar

devices in other systems. For example, devices for vibration

isolation in elastic plates immersed in water are one interest-

ing possibility.

FIG. 7. Modulus of the displacement in the z-direction when a plane wave

with wavenumber kRap¼ 15 (left panels) and kRap¼ 35 (right panels)

impinges on the three devices tested in this work. Displacement produced by

the device without the repulsive potential (a), by the device without absorp-

tion (b), and by the designed device (c).

FIG. 8. Vibration average in the attractive potential shell (panel a), the

absorptive shell (panel b), the repulsive shell (panel c), and the core (panel

c). The lines correspond to the designed device (continuous line), the device

without absorption (dashed line), and the device without repulsive potential

shell (dotted line).
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APPENDIX: SIMULATION METHOD

The structures studied here are radially inhomogeneous,

that is, their parameters depend only on the radial coordinate.

The model employed to make numerical simulations is the

multilayer scattering method, where the continuous variation

of the parameters is discretized into a number N of homoge-

neous cylindrically symmetric layers.29 Figure 9 shows, as

an example, the cylindrical structure discretized into N¼ 10

layers, each one with different elastic properties. Note that

the plate thickness is not a geometrical parameter anymore,

but it is introduced in the boundary conditions through the

elastic properties of the material. The layers are numbered

such that the background corresponds to n¼ 0 and the core

layer corresponds to n¼Nþ 1.

The displacement Wn in each layer is a solution of Eq. (1)

then, in polar coordinates (r, h), it can be expanded as

Wnðr; hÞ ¼ Wð1Þn ðr; hÞ þWð2Þn ðr; hÞ; (A1)

where Wð1Þn ðr; hÞ and Wð2Þn ðr; hÞ are solutions of the

Helmholtz and Modified Helmholtz equations, respectively,

corresponding to Bessel and Hankel functions (and their

modified versions).25 Thus, the solution can be explicitly

expressed as

Wnðr; hÞ ¼
X

q

Að1Þn;qJqðknrÞ þ Að2Þn;qIqðknrÞ
h i

eiqh

þ
X

q

Bð1Þn;qHqðknrÞ þ Bð2Þn;qKqðknrÞ
h i

eiqh; (A2)

being A
ð1Þ
n;q;A

ð2Þ
n;q;B

ð1Þ
n;q;B

ð2Þ
n;q the coefficients of the expansion (A

for the incoming wave towards the center of the cylinder and

B for the scattered one) and kn being the wavenumber in the

n-th layer.

The objective now is to relate the coefficients of each

layer with the ones of the previous and next layer. Defining

Ân ¼
A
ð1Þ
n;q

A
ð2Þ
n;q

" #
; B̂n ¼

B
ð1Þ
n;q

B
ð2Þ
n;q

" #
:

and from Fig. 9, we can deduce that the relation between the

coefficients of layers n and n – 1 is given by

Ân ¼ Tn�1n � Ân�1 þ Rnn�1 � B̂n; (A3)

B̂n�1 ¼ Rn�1n � Ân�1 þ Tnn�1 � B̂n; (A4)

where Tn�1n and Rn�1n are the reflection and transmission

coefficient matrix (size 2 � 2) from layer n – 1 to n, respec-

tively. Defining the layer elastic impedance matrices (size

2 � 2) as B̂n ¼ Zn � Ân , the above equations read as

Ân ¼ ðI � Rnn�1 � ZnÞ�1 � Tn�1n � Ân�1; (A5)

Ân ¼ ðTnn�1 � ZnÞ�1 � ðZn�1 � Rn�1nÞ � Ân�1; (A6)

from which we can obtain the recursive relation for the coef-

ficient Zn as

Zn�1 ¼ Rn�1n þ Tnn�1 � Zn � Xn; (A7)

Xn ¼ ðI � Rnn�1 � ZnÞ�1 � Tn�1n: (A8)

Starting at the last layer n¼N, since B̂Nþ1 ¼ 0, the im-

pedance in the last layer ZN is simply

B̂N ¼ RNNþ1 � ÂN ! ZN ¼ RNNþ1: (A9)

The iterative process continues till n¼ 1, so all Zn and

Xn matrix are obtained, then the incoming and scattering

coefficients of each layer can be obtained as a function of

Â0, which is defined by the external incident field, applying

the following relationships:

B̂n ¼ Zn � Ân; (A10)

Ânþ1 ¼ Xn � Ân: (A11)

The calculation of the reflection and transmission coeffi-

cients of every layer in both propagation directions (to and

from the center of the structure), required to realize the

aforementioned procedure, is detailed below.

Let us consider a single layer with only one boundary

where an incoming wave Âi impinges on the interface. In

Fig. 10(a), the incoming wave Ân travels towards the center

of the cylinder, producing a reflected wave B̂n in the opposite

direction and a transmitted one Ânþ1 to the next layer. On

FIG. 9. Multilayered structure

employed in the multiple scattering

algorithm with N¼ 10 layers. The back-

ground layer is n¼ 0 and corresponds to

the region r>R1) and the core layer is

n¼Nþ 1 and corresponds to the region

r<RNþ1.
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the other hand, in Figure 10(b), the incoming wave Ânþ1

travels towards infinity, producing a reflected wave B̂nþ1

towards the center of the cylinder and a transmitted one Ân

to the previous layer.

To obtain these reflection and transmission matrices, the

following boundary conditions23–25,30 are imposed:

Wnðr; hÞ
����
r¼Rn

¼ Wnþ1ðr; hÞ
����
r¼Rn

; (A12a)

@Wnðr; hÞ
@r

����
r¼Rn

¼ @Wnþ1ðr; hÞ
@r

����
r¼Rn

; (A12b)

MrðWnðr; hÞÞjr¼Rn
¼ MrðWnþ1ðr; hÞÞjr¼Rn

; (A12c)

VrðWnðr; hÞÞjr¼Rn
¼ VrðWnþ1ðr; hÞÞjr¼Rn

; (A12d)

where Mr(f) is the radial moment and Vr(f) is the Kirchoff-

Stress defined as

Mrðf Þ ¼ �D
@2f

@r2
þ � 1

r

@f

@r
þ � 1

r2

@2f

@h2

� �
; (A13)

Vrðf Þ ¼ �D
@

@r
Df � Dð1� �Þ 1

r2

@

@h
@2f

@r@h
� 1

r

@f

@h

� �
:

(A14)

D being the flexural rigidity and � the Poisson ratio. For the

first system, after applying these boundary conditions, the

coefficients of layers n and nþ 1 are related by30

HqðjnÞ KqðjnÞ �Jqðjnþ1Þ �Iqðjnþ1Þ
jnH0qðjnÞ jnK0qðjnÞ �jnþ1J0qðjnþ1Þ �jnþ1I0qðjnþ1Þ
SH

n ðjnÞ SK
n ðjnÞ �SJ

nþ1ðjnþ1Þ �SI
nþ1ðjnþ1Þ

TH
n ðjnÞ TK

n ðjnÞ �TJ
nþ1ðjnþ1Þ �TI

nþ1ðjnþ1Þ

2
66664

3
77775

B
ð1Þ
n;q

B
ð2Þ
n;q

A
ð1Þ
nþ1;q

A
ð2Þ
nþ1;q

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ ð�1Þ

JqðjnÞ IqðjnÞ
jnJ0qðjnÞ jnI0qðjnÞ
SJ

nðjnÞ SI
nðjnÞ

TJ
nðjnÞ TI

nðjnÞ

2
66664

3
77775

A
ð1Þ
n;q

A
ð2Þ
n;q

( )
; (A15)

where

SX
n ðjnÞ ¼ Dn ðq2ð1� �nÞ7 j2

nÞXqðjnÞ�ð1� �nÞjnX0qðjnÞ
h i

; (A16)

TX
n ðjnÞ ¼ Dn ðq2ð1� �nÞÞXqðjnÞ�ðq2ð1� �nÞ6 j2

nÞjnX0qðjnÞ
h i

; (A17)

and X¼ J, I, H, K; the upper sign is used for (J, H) and the lower sign for (I, K) and jn¼ knRn, kn being the wavenumber of the

n-th layer and Rn the radius of the boundary between the layer nþ 1 and n.

Similarly, for the second system, the coefficients of layers nþ 1 and n are related by the following system of equations:

Jqðjnþ1Þ Iqðjnþ1Þ �HqðjnÞ �KqðjnÞ
jnþ1J0qðjnþ1Þ jnþ1I0qðjnþ1Þ �jnH0qðjnÞ �jnK0qðjnÞ
SJ

nþ1ðjnþ1Þ SI
nþ1ðjnþ1Þ �SH

n ðjnÞ �SK
n ðjnÞ

TJ
nþ1ðjnþ1Þ TI

nþ1ðjnþ1Þ �TH
n ðjnÞ �TK

n ðjnÞ

2
66664

3
77775

B
ð1Þ
nþ1;q

B
ð2Þ
nþ1;q

A
ð1Þ
n;q

A
ð2Þ
n;q

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ ð�1Þ

Hqðjnþ1Þ Kqðjnþ1Þ
jnþ1H0qðjnþ1Þ jnþ1K0qðjnþ1Þ

SH
nþ1ðjnþ1Þ SK

nþ1ðjnþ1Þ
TH

nþ1ðjnþ1Þ TK
nþ1ðjnþ1Þ

2
66664

3
77775

A
ð1Þ
nþ1;q

A
ð2Þ
nþ1;q

8<
:

9=
;:

(A18)

Now, by knowing the definition of the reflection and

transmission matrices in the first system

Rnnþ1 ¼ B̂n � ðÂnÞ�1; (A19)

Tnnþ1 ¼ Ânþ1 � ðÂnÞ�1; (A20)

and the second system,

Rnþ1n ¼ B̂nþ1 � ðÂnþ1Þ�1; (A21)

FIG. 10. Mono-layer systems employed to obtain the reflexion and transmis-

sion matrices from layer n to nþ 1 (a) and from layer nþ 1 to n (b).
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Tnþ1n ¼ Ân � ðÂnþ1Þ�1: (A22)

It is straightforward to obtain them from Eqs. (A15) and (A18).
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