Document downloaded from:

http://hdl.handle.net/10251/57518

This paper must be cited as:
Calabuig Rodriguez, JM.; Rodríguez Ruiz, J.; Sánchez Pérez, EA. (2012). Interpolation subspaces of L^1 of a vector measure and norm inequalities for the integration operator. Contemporary Mathematics. 561:155-163. doi:10.1090/conm/561/11113.

The final publication is available at
http://dx.doi.org/10.1090/conm/561/11113

Copyright American Mathematical Society

Additional Information

Interpolation subspaces of L^{1} of a vector measure and norm inequalities for the integration operator

J.M. Calabuig, J. Rodríguez, and E.A. Sánchez-Pérez

Abstract

Let m be a Banach space valued measure. We study some domination properties of the integration operator that are equivalent to the existence of Banach ideals of $L^{1}(m)$ that are interpolation spaces. These domination properties are closely connected with some interpolated versions of summing operators, like (p, θ)-absolutely continuous operators.

1. Introduction

Let (Ω, Σ) be a measurable space, X a Banach space and $m: \Sigma \rightarrow X$ a vector measure. For $1 \leq p<\infty$, let $L^{p}(m)$ be the Banach lattice of all p-integrable functions with respect to m. The domination properties (i.e. vector norm inequalities) of the integration operator $I: L^{1}(m) \rightarrow X, f \mapsto \int_{\Omega} f d m$, are directly related to the structure of $L^{1}(m)$ and determine the existence of some characteristic subspaces. From this point of view, the existence of Lebesgue subspaces of $L^{1}(m)$ has recently been studied in [2] (cf. [10, Section 3.4 and Chapter 6]): geometric or summability properties of I (namely, p-concavity on $L^{p}(m)$ or positive p-summability on $L^{1}(m)$) are shown to characterize either the inclusions $L^{p}(m) \hookrightarrow L^{p}(\nu) \hookrightarrow L^{1}(m)$ or the order isomorphism $L^{1}(m) \simeq L^{1}(\nu)$, for some control measure ν of m.

The aim of this paper is to continue this research by showing which vector norm inequalities for I characterize the inclusion of some special Calderón-Lozanovskii lattice interpolation spaces in $L^{1}(m)$. Our results can be applied to analyze the inclusion of such subspaces in a broad class of Banach lattices by means of the

[^0]well-known representation technique via vector measures (cf. [10, Chapter 3]). In particular, we center our attention in the following problem (left open in [2, p.31]): find a domination property of I which is equivalent to the existence of a control measure ν of m and $0 \leq \theta<1$ such that
$$
\left(L^{p}(\nu), L^{p}(m)\right)_{\theta} \hookrightarrow L^{1}(m)
$$
where $\left(L^{p}(\nu), L^{p}(m)\right)_{\theta}$ is the Calderón-Lozanovskii lattice interpolation space of $L^{p}(m)$ and $L^{p}(\nu)$. We will show that the requested domination property of I is a concavity-type property which we call (p, θ)-concavity (Theorem 2.3). At the end of the paper we analyze some summability properties related to (p, θ)-concavity, like the largely studied (p, θ)-absolute continuity (see $[\mathbf{7}, \mathbf{9}]$ and the references therein). Along this line, in Theorem 2.8 we prove that the positive (p, θ)-absolute continuity of I has the same structural consequences on $L^{1}(m)$ than its non-interpolated version (i.e. positive p-summability), namely: $L^{1}(m)$ is order isomorphic to the L^{1} space of a non-negative scalar measure.

Terminology. Unexplained terminology can be found in our standard references $[\mathbf{3}, \mathbf{4}, \mathbf{6}]$. All our linear spaces are real. Given a Banach space Z, the symbol Z^{\prime} stands for the topological dual of Z and the duality is denoted by $\langle\cdot, \cdot\rangle$. We write B_{Z} to denote the closed unit ball of Z. The norm of Z is denoted by $\|\cdot\|_{Z}$ if needed explicitly. A Banach space E is called Banach function space over a finite measure space (Ω, Σ, μ) if E is a linear subspace of $L^{0}(\mu)$ such that: (i) if $f \in L^{0}(\mu)$ and $|f| \leq|g| \mu$-a.e. for some $g \in E$, then $f \in E$ and $\|f\|_{E} \leq\|g\|_{E}$; (ii) the characteristic function χ_{A} of each $A \in \Sigma$ belongs to E. Then E is a Banach lattice when endowed with the μ-a.e. order. We write B_{E}^{+}to denote the intersection of B_{E} with the positive cone E^{+}of E.

Let E and F be two Banach function spaces over a finite measure space (Ω, Σ, μ). Given $0 \leq \theta \leq 1$, the Calderón-Lozanovskii lattice interpolation space $(E, F)_{\theta}$ is the Banach function space over (Ω, Σ, μ) made up of all $h \in L^{0}(\mu)$ for which there are $e \in E$ and $f \in F$ such that $|h|=|e|^{1-\theta}|f|^{\theta}$, endowed with the norm

$$
\|h\|_{(E, F)_{\theta}}=\inf \left\{\|e\|_{E}^{1-\theta}\|f\|_{F}^{\theta}:|h|=|e|^{1-\theta}|f|^{\theta}, e \in E, f \in F\right\} .
$$

We write $F \hookrightarrow E$ if the 'identity' mapping is a well-defined operator (i.e. linear continuous map) from F to E. In this case, we have $F \hookrightarrow(E, F)_{\theta} \hookrightarrow E$. The space $(E, F)_{\theta}$ is sometimes denoted by $E^{1-\theta} F^{\theta}$ and coincides with the complex interpolation space $[F, E]_{1-\theta}$ under mild assumptions on E and F. For detailed information on Calderón-Lozanovskii spaces, we refer the reader to $[\mathbf{1}]$ and $[\mathbf{8}]$.

Throughout the paper (Ω, Σ) is a measurable space, X is a Banach space and $m: \Sigma \rightarrow X$ is a (countably additive) vector measure. A control measure of m is a non-negative scalar measure ν on (Ω, Σ) such that $\nu(A)=0$ if and only if $\|m\|(A)=0$, where $\|\cdot\|$ stands for the semivariation of m. We fix a Rybakov
control measure μ of m, that is, a control measure of the form $\mu=\left|\left\langle m, x_{0}^{\prime}\right\rangle\right|$ with $x_{0}^{\prime} \in B_{X^{\prime}}$, cf. [4, p. 268]. For each $x^{\prime} \in X^{\prime}$, we write $\left\langle m, x^{\prime}\right\rangle$ to denote the scalar measure defined by $\left\langle m, x^{\prime}\right\rangle(A):=\left\langle m(A), x^{\prime}\right\rangle$ for all $A \in \Sigma$. A Σ-measurable function $f: \Omega \rightarrow \mathbb{R}$ is m-integrable if it is integrable with respect to $\left\langle m, x^{\prime}\right\rangle$ for every $x^{\prime} \in X^{\prime}$ and, for each $A \in \Sigma$, there exists a vector $\int_{A} f d m \in X$ such that $\left\langle\int_{A} f d m, x^{\prime}\right\rangle=\int_{A} f d\left\langle m, x^{\prime}\right\rangle$ for all $x^{\prime} \in X^{\prime}$. Given $1 \leq p<\infty$, the space $L^{p}(m)$ is the Banach function space over (Ω, Σ, μ) made up of all (equivalence classes of) functions f such that $|f|^{p}$ is m-integrable, endowed with the norm

$$
\|f\|_{L^{p}(m)}:=\sup _{x^{\prime} \in B_{X^{\prime}}}\left(\int_{\Omega}|f|^{p} d\left|\left\langle m, x^{\prime}\right\rangle\right|\right)^{\frac{1}{p}}
$$

For the basic properties of this space, we refer the reader to [5] and [10, Chapter 3]. The mapping $I: L^{1}(m) \rightarrow X$ given by $I(f):=\int_{\Omega} f d m$ is an operator which is usually called integration operator.

We recall that each functional $\varphi \in L^{1}(m)^{\prime}$ can be represented as $\varphi(f)=$ $\int_{\Omega} f h d \mu$ for some $h \in L^{1}(m)^{\times}$. The Köthe dual $L^{1}(m)^{\times}$of $L^{1}(m)$ is the Banach function space over (Ω, Σ, μ) made up of all $h \in L^{0}(\mu)$ such that $f h \in L^{1}(\mu)$ for every $f \in L^{1}(m)$. Given $h \in L^{1}(m)^{\times}$, if the scalar measure $h d \mu$ on (Ω, Σ) defined by $A \mapsto \int_{A} h d \mu$ is a control measure of m, then $L^{1}(h d \mu)$ is a Banach function space over (Ω, Σ, μ) and we have $L^{1}(m) \hookrightarrow L^{1}(h d \mu)$.

2. (p, θ)-concave integration operators

Definition 2.1. Let E be a Banach function space over (Ω, Σ, μ) and let Y be a Banach space. We say that an operator $T: E \rightarrow Y$ is (p, θ)-concave (where $1 \leq p<\infty$ and $0 \leq \theta<1$) if there is a constant $K>0$ such that

$$
\left(\sum_{i=1}^{n}\left\|T\left(h_{i}\right)\right\|_{Y}^{\frac{p}{1-\theta}}\right)^{\frac{1}{p}} \leq K\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|^{\frac{\theta p}{1-\theta}}\right)^{\frac{1}{p}}\right\|_{E}
$$

whenever $h_{i}, f_{i}, g_{i} \in E$ satisfy $\left|h_{i}\right|=\left|f_{i}\right|^{1-\theta}\left|g_{i}\right|^{\theta}$ for every $i=1,2, \ldots, n$.
Notice that $(p, 0)$-concavity is just the usual notion of p-concavity.
REmARK 2.2. Every (p, θ)-concave operator is p_{θ}-concave in the sense of $[\mathbf{1 1}]$. We stress that an operator $T: E \rightarrow Y$ is p_{θ}-concave if and only if it factorizes through a specific real interpolation space, see [11, Theorem 3.7].

Theorem 2.3. Let $1 \leq p<\infty$ and $0 \leq \theta<1$. The following statements are equivalent:
(a) The integration operator $I: L^{p}(m) \rightarrow X$ is (p, θ)-concave.
(b) There exist $C>0$ and $h_{0} \in B_{L^{1}(m)^{\prime}}^{+}$such that

$$
\left\|\int_{\Omega} v d m\right\|_{X} \leq C\left(\int_{\Omega}|f|^{p} h_{0} d \mu\right)^{\frac{1-\theta}{p}}\|g\|_{L^{p}(m)}^{\theta}
$$

whenever $v, f, g \in L^{p}(m)$ satisfy $|v|=|f|^{1-\theta}|g|^{\theta}$.
(c) There is $h_{0} \in B_{L^{1}(m)^{\prime}}^{+}$such that $h_{0} d \mu$ is a control measure of m and $\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta} \hookrightarrow L^{1}(m)$.
(d) There is a control measure ν of m such that

$$
L^{1}(m) \hookrightarrow L^{1}(\nu) \quad \text { and } \quad\left(L^{p}(\nu), L^{p}(m)\right)_{\theta} \hookrightarrow L^{1}(m)
$$

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let $K>0$ be a constant like in Definition 2.1 applied to the integration operator $I: L^{p}(m) \rightarrow X$.

Given finitely many $v_{i}, f_{i}, g_{i} \in L^{p}(m), i=1, \ldots, n$, such that $\left|v_{i}\right|=\left|f_{i}\right|^{1-\theta}\left|g_{i}\right|^{\theta}$, let us consider the function $\Phi: B_{L^{1}(m)^{\prime}}^{+} \rightarrow \mathbb{R}$ defined by

$$
\Phi(h):=\sum_{i=1}^{n}\left\|\int_{\Omega} v_{i} d m\right\|^{\frac{p}{1-\theta}}-K^{p} \int_{\Omega}\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right) h d \mu .
$$

Clearly Φ is w^{*}-continuous on the w^{*}-compact set $B_{L^{1}(m)^{\prime}}^{+}$, so it attains its infimum at some $h_{\Phi} \in B_{L^{1}(m)^{\prime}}^{+}$. We claim that $\Phi\left(h_{\Phi}\right) \leq 0$. Indeed, for each $h \in B_{L^{1}(m)^{\prime}}^{+}$, the inequality $\Phi\left(h_{\Phi}\right) \leq \Phi(h)$ implies

$$
\int_{\Omega}\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right) h d \mu \leq \int_{\Omega}\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta_{p}}{1-\theta}}\right) h_{\Phi} d \mu .
$$

Therefore

$$
\begin{align*}
& \left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right)^{\frac{1}{p}}\right\|_{L^{p}(m)}^{p}=\left\|\sum_{i=1}^{n}\left|f_{i}\right|^{p}\right\| g_{i}\left\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right\|_{L^{1}(m)}= \tag{2.1}\\
= & \sup _{h \in B_{L^{1}(m)^{\prime}}^{+}} \int_{\Omega}\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right) h d \mu \leq \int_{\Omega}\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right) h_{\Phi} d \mu .
\end{align*}
$$

On the other hand, since $I: L^{p}(m) \rightarrow X$ is (p, θ)-concave, we have

$$
\left(\sum_{i=1}^{n}\left\|\int_{\Omega} v_{i} d m\right\|_{X}^{\frac{p}{1-\theta}}\right)^{\frac{1}{p}} \leq K\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|^{\frac{\theta p}{1-\theta}}\right)^{\frac{1}{p}}\right\|_{L^{p}(m)}
$$

which combined with (2.1) yields

$$
\sum_{i=1}^{n}\left\|\int_{\Omega} v_{i} d m\right\|_{X}^{\frac{p}{1-\theta}} \leq K^{p} \int_{\Omega}\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right) h_{\Phi} d \mu
$$

and so $\Phi\left(h_{\Phi}\right) \leq 0$, as claimed. Notice also that Φ is convex (in fact, it is affine).
It is easy to check that the collection of all Φ 's as above is a convex cone in $\mathbb{R}^{B_{L^{1}(m)^{\prime}}^{+}}$. An appeal to Ky Fan's Lemma (cf. [3, Lemma 9.10]) ensures the existence of $h_{0} \in B_{L^{1}(m)^{\prime}}^{+}$such that $\Phi\left(h_{0}\right) \leq 0$ for every function Φ as above. In particular, if $v, f, g \in L^{p}(m)$ satisfy $|v|=|f|^{1-\theta}|g|^{\theta}$, then

$$
\left\|\int_{\Omega} v d m\right\|_{X}^{\frac{p}{1-\theta}} \leq K^{p}\left(\int_{\Omega}|f|^{p} h_{0} d \mu\right)\|g\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}
$$

and taking $C:=K^{1-\theta}$ we have

$$
\left\|\int_{\Omega} v d m\right\|_{X} \leq C\left(\int_{\Omega}|f|^{p} h_{0} d \mu\right)^{\frac{1-\theta}{p}}\|g\|_{L^{p}(m)}^{\theta}
$$

This completes the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$. Since $L^{p}(m) \hookrightarrow L^{p}\left(h_{0} d \mu\right)$, we have

$$
L^{p}(m) \hookrightarrow\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta} \hookrightarrow L^{p}\left(h_{0} d \mu\right)
$$

We divide the proof of $(\mathrm{b}) \Rightarrow(\mathrm{c})$ into several steps.
Step 1.- Condition (b) yields

$$
\|m(B)\|_{X} \leq C\left(\int_{B} h_{0} d \mu\right)^{\frac{1-\theta}{p}}\left\|\chi_{\Omega}\right\|_{L^{p}(m)}^{\theta} \leq C\left(\int_{A} h_{0} d \mu\right)^{\frac{1-\theta}{p}}\left\|\chi_{\Omega}\right\|_{L^{p}(m)}^{\theta}
$$

for every $B \subset A$ in Σ. Hence $h_{0} d \mu$ is a control measure of m.
Step 2.- Fix an arbitrary simple function v. We claim that

$$
\begin{equation*}
\|v\|_{L^{1}(m)} \leq C\|v\|_{\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}} . \tag{2.2}
\end{equation*}
$$

Let $f \in L^{p}\left(h_{0} d \mu\right)$ and $g \in L^{p}(m)$ such that $|v|=|f|^{1-\theta}|g|^{\theta}$. Choose sequences $\left(f_{n}\right)$ and $\left(g_{n}\right)$ of simple functions such that $\left|f_{n}\right| \nearrow|f|$ and $\left|g_{n}\right| \nearrow|g| \mu$-a.e. Define $v_{n}:=\left|f_{n}\right|^{1-\theta}\left|g_{n}\right|^{\theta}$ for every $n \in \mathbb{N}$, so that $v_{n} \nearrow|v| \mu$-a.e. We next show that

$$
\begin{equation*}
\left\|v_{n}\right\|_{L^{1}(m)} \leq C\left\|f_{n}\right\|_{L^{p}\left(h_{0} d \mu\right)}^{1-\theta}\left\|g_{n}\right\|_{L^{p}(m)}^{\theta} \quad \text { for all } n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

To this end, take any $\xi \in L^{\infty}(\mu)$. Since the functions $v_{n} \xi, f_{n} \xi, g_{n} \xi \in L^{p}(m)$ satisfy $\left|v_{n} \xi\right|=\left|f_{n} \xi\right|^{1-\theta}\left|g_{n} \xi\right|^{\theta}$, condition (b) yields

$$
\begin{aligned}
\left\|\int_{\Omega} v_{n} \xi d m\right\|_{X} & \leq C\left(\int_{\Omega}\left|f_{n} \xi\right|^{p} h_{0} d \mu\right)^{\frac{1-\theta}{p}}\left\|g_{n} \xi\right\|_{L^{p}(m)}^{\theta} \leq \\
& \leq C\left(\int_{\Omega}\left|f_{n}\right|^{p} h_{0} d \mu\right)^{\frac{1-\theta}{p}}\left\|g_{n}\right\|_{L^{p}(m)}^{\theta}=C\left\|f_{n}\right\|_{L^{p}\left(h_{0} d \mu\right)}^{1-\theta}\left\|g_{n}\right\|_{L^{p}(m)}^{\theta}
\end{aligned}
$$

Bearing in mind that

$$
\left\|v_{n}\right\|_{L^{1}(m)}=\sup _{\xi \in B_{L^{\infty}(\mu)}}\left\|\int_{\Omega} v_{n} \xi d m\right\|_{X}
$$

cf. $[\mathbf{1 0},(3.64)]$, inequality (2.3) follows at once. Now, since

$$
\left\|v_{n}\right\|_{L^{1}(m)} \rightarrow\|v\|_{L^{1}(m)}, \quad\left\|f_{n}\right\|_{L^{p}\left(h_{0} d \mu\right)} \rightarrow\|f\|_{L^{p}\left(h_{0} d \mu\right)}, \quad\left\|g_{n}\right\|_{L^{p}(m)} \rightarrow\|g\|_{L^{p}(m)}
$$

we can take limits in (2.3) to infer that $\|v\|_{L^{1}(m)} \leq C\|f\|_{L^{p}\left(h_{0} d \mu\right)}^{1-\theta}\|g\|_{L^{p}(m)}^{\theta}$. As $f \in L^{p}\left(h_{0} d \mu\right)$ and $g \in L^{p}(m)$ are arbitrary functions satisfying $|v|=|f|^{1-\theta}|g|^{\theta}$, inequality (2.2) holds true.

Step 3.- The space $\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}$ is order continuous, cf. [8, Lemma 20], and so the subspace S made up of all simple functions is dense in $\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}$. Fix $v \in\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}$ and let $\left(v_{n}\right)$ be a sequence in S such that

$$
\left\|v_{n}-v\right\|_{\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}} \rightarrow 0
$$

Then $\left\|v_{n}-v\right\|_{L^{p}\left(h_{0} d \mu\right)} \rightarrow 0$ and so, by passing to a further subsequence, we can assume without loss of generality that $v_{n} \rightarrow v \mu$-a.e. (by Step $1, h_{0} d \mu$ has the same null sets as m). On the other hand, by Step 2, the 'identity' mapping $S \rightarrow L^{1}(m)$ is continuous (with norm less than or equal to C). Thus, $\left(v_{n}\right)$ is a Cauchy sequence in $L^{1}(m)$ and so there is $w \in L^{1}(m)$ such that $\left\|v_{n}-w\right\|_{L^{1}(m)} \rightarrow 0$ and, in particular, $\left\|v_{n}-w\right\|_{L^{1}\left(h_{0} d \mu\right)} \rightarrow 0$. Hence $v=w \in L^{1}(m)$ and $\left\|v_{n}-v\right\|_{L^{1}(m)} \rightarrow 0$. Moreover, we have $\|v\|_{L^{1}(m)} \leq C\|v\|_{\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}}$. This shows that

$$
\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta} \hookrightarrow L^{1}(m)
$$

and the proof of $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is finished.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$ is obvious.
$(\mathrm{d}) \Rightarrow(\mathrm{c})$. Observe that if ν is a control measure of m such that $L^{1}(m) \hookrightarrow L^{1}(\nu)$, then the positive linear mapping $f \mapsto \int_{\Omega} f d \nu$ is continuous on $L^{1}(m)$ and so there is $0<h \in L^{1}(m)^{\prime}$ such that $\int_{\Omega} f d \nu=\int_{\Omega} f h d \mu$ for all $f \in L^{1}(m)$, hence $\nu=h d \mu$. Finally just consider $h_{0}=h /\|h\|_{L^{1}(m)^{\prime}} \in B_{L^{1}(m)^{\prime}}^{+}$in order to obtain the result since $h_{0} d \mu$ is a control measure of m and $L^{p}\left(h_{0} d \mu\right)=L^{p}(h d \mu)=L^{p}(\nu)$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Let $K>0$ be a constant such that $\|v\|_{L^{1}(m)} \leq K\|v\|_{\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}}$ for every $v \in\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}$. Take finitely many functions $v_{i}, f_{i}, g_{i} \in L^{p}(m)$, $i=1, \ldots, n$, satisfying $\left|v_{i}\right|=\left|f_{i}\right|^{1-\theta}\left|g_{i}\right|^{\theta}$. Then each $v_{i} \in\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}$ and

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|\int_{\Omega} v_{i} d m\right\|^{\frac{p}{1-\theta}} \leq \sum_{i=1}^{n}\left\|v_{i}\right\|_{L^{1}(m)}^{\frac{p}{1-\theta}} \leq K^{\frac{p}{1-\theta}} \sum_{i=1}^{n}\left\|v_{i}\right\|_{\left(L^{p}\left(h_{0} d \mu\right), L^{p}(m)\right)_{\theta}}^{\frac{p}{1-\theta}} \leq \\
& \leq K^{\frac{p}{1-\theta}} \sum_{i=1}^{n}\left(\left\|f_{i}\right\|_{L^{p}\left(h_{0} d \mu\right)}^{1-\theta}\left\|g_{i}\right\|_{L^{p}(m)}^{\theta}\right)^{\frac{p}{1-\theta}}=K^{\frac{p}{1-\theta}} \sum_{i=1}^{n}\left\|f_{i}\right\|_{L^{p}\left(h_{0} d \mu\right)}^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}= \\
& =K^{\frac{p}{1-\theta}} \sum_{i=1}^{n}\left(\int_{\Omega}\left|f_{i}\right|^{p} h_{0} d \mu\right)\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}=K^{\frac{p}{1-\theta}} \int_{\Omega} \sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}} h_{0} d \mu \leq \\
& \leq K^{\frac{p}{1-\theta}}\left\|\sum_{i=1}^{n}\left|f_{i}\right|^{p}\right\| g_{i}\left\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right\|_{L^{1}(m)}=K^{\frac{p}{1-\theta}}\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{p}\left\|g_{i}\right\|_{L^{p}(m)}^{\frac{\theta p}{1-\theta}}\right)^{\frac{1}{p}}\right\|_{L^{p}(m)}^{p}
\end{aligned}
$$

Therefore, the integration operator $I: L^{p}(m) \rightarrow X$ is (p, θ)-concave.
REmARK 2.4. Our previous theorem generalizes [2, Theorem 2.3], where we proved that $I: L^{p}(m) \rightarrow X$ is p-concave if and only if there is a control measure ν of m such that $L^{p}(m) \hookrightarrow L^{p}(\nu) \hookrightarrow L^{1}(m)$. In this case, for each $0 \leq \theta<1$ we have

$$
L^{p}(m) \hookrightarrow\left(L^{p}(\nu), L^{p}(m)\right)_{\theta} \hookrightarrow L^{p}(\nu) \hookrightarrow L^{1}(m)
$$

However, there are cases where $L^{p}(\nu) \nrightarrow L^{1}(m)$ and $\left(L^{p}(\nu), L^{p}(m)\right)_{\theta} \hookrightarrow L^{1}(m)$ for some Rybakov control measure ν of m, as in the following example.

Example 2.5. Let $\Omega:=[0,1]$ with the Lebesgue σ-algebra Σ and consider the vector measure $m: \Sigma \rightarrow L^{2}[0,1]$ given by $m(A):=\chi_{A}$. Then the Lebesgue
measure λ is a Rybakov control measure of m and the 'identity' mapping is an isometric isomorphism between $L^{1}(m)$ and $L^{2}[0,1]$. Then:
(i) $\left(L^{3 / 2}[0,1], L^{3 / 2}(m)\right)_{1 / 2} \hookrightarrow L^{1}(m)$.
(ii) $L^{3 / 2}(\nu) \nleftarrow L^{1}(m)$ for any Rybakov control measure ν of m.

Proof. (i) Fix $v \in\left(L^{3 / 2}[0,1], L^{3 / 2}(m)\right)_{1 / 2}$ arbitrary. Take functions $f \in$ $L^{3 / 2}[0,1]$ and $g \in L^{3 / 2}(m)=L^{3}[0,1]$ satisfying $|v|=|f|^{1 / 2}|g|^{1 / 2}$. Hölder's inequality yields

$$
\begin{aligned}
& \int_{\Omega}|v|^{2} d \lambda=\int_{\Omega}|f||g| d \lambda \leq \\
& \\
& \leq\left(\int_{\Omega}|f|^{3 / 2} d \lambda\right)^{\frac{2}{3}}\left(\int_{\Omega}|g|^{3} d \lambda\right)^{\frac{1}{3}}=\|f\|_{L^{3 / 2}[0,1]}\|g\|_{L^{3 / 2}(m)}
\end{aligned}
$$

hence $v \in L^{1}(m)=L^{2}[0,1]$ and $\|v\|_{L^{1}(m)} \leq\|v\|_{\left(L^{3 / 2}[0,1], L^{3 / 2}(m)\right)_{1 / 2}}$.
(ii) Let ν be any Rybakov control measure ν of m. Then there is $h \in B_{L^{2}[0,1]}$ such that $\nu=|\langle m, h\rangle|$. Notice that $\langle m, h\rangle(A)=\langle m(A), h\rangle=\int_{A} h d \lambda$ for all $A \in$ Σ, so $\nu=|h| d \lambda$. Take $A \in \Sigma$ with $\lambda(A)>0$ such that h is bounded on A, that is, for some $b>0$ we have $|h(t)| \leq b$ for all $t \in A$. The restrictions of λ and ν to the trace σ-algebra $\Sigma_{A}:=\{A \cap E: E \in \Sigma\}$ on A are denoted by λ_{A} and ν_{A}, respectively. An easy computation shows that each $f \in L^{3 / 2}\left(\lambda_{A}\right)$ belongs to $L^{3 / 2}\left(\nu_{A}\right)$ and $\|f\|_{L^{3 / 2}\left(\nu_{A}\right)} \leq b^{2 / 3}\|f\|_{L^{3 / 2}\left(\lambda_{A}\right)}$. Now we argue by contradiction. Suppose that $L^{3 / 2}(\nu) \hookrightarrow L^{1}(m)$. Then there is $C>0$ such that each $f \in L^{3 / 2}\left(\lambda_{A}\right)$ belongs to $L^{2}\left(\lambda_{A}\right)$ and $\|f\|_{L^{2}\left(\lambda_{A}\right)} \leq C b^{2 / 3}\|f\|_{L^{3 / 2}\left(\lambda_{A}\right)}$. Hence the 'identity' mapping is an isomorphism between $L^{3 / 2}\left(\lambda_{A}\right)$ and $L^{2}\left(\lambda_{A}\right)$, a contradiction.

Remark 2.6. Actually the same proof of part (ii) gives
(ii) $L^{3 / 2}(\nu) \nrightarrow L^{1}(m)$ for every control measure ν of m with $L^{1}(m) \hookrightarrow L^{1}(\nu)$. Hence, the integration map $I: L^{3 / 2}(m) \rightarrow X$ is not $3 / 2$-concave. However I must be $(3 / 2,1 / 2)$-concave (and in fact $(3 / 2, \theta)$-concave for all $\theta \geq 1 / 2)$.

The same kind of arguments can provide more examples in the setting of Lorentz spaces $L^{p, q}[0,1]$.

Definition 2.7. Let $T: Z \rightarrow Y$ be an operator between Banach spaces.
(i) T is called (p, θ)-absolutely continuous (where $1 \leq p<\infty$ and $0 \leq \theta<1$) if there is a constant $K>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|T\left(z_{i}\right)\right\|_{Y}^{\frac{p}{1-\theta}} \leq K \sup _{z^{\prime} \in B_{Z^{\prime}}} \sum_{i=1}^{n}\left|\left\langle z_{i}, z^{\prime}\right\rangle\right|^{p}\left\|z_{i}\right\|_{Z}^{\frac{\theta p}{1-\theta}} \tag{2.4}
\end{equation*}
$$

for every $z_{1}, \ldots, z_{n} \in Z, n \in \mathbb{N}$.
(ii) If Z is a Banach lattice, then T is called positive (p, θ)-absolutely continuous if there is $K>0$ such that (2.4) holds for every $z_{1}, \ldots, z_{n} \in Z^{+}$, $n \in \mathbb{N}$.

Notice that for $\theta=0$ the notion of (positive) (p, θ)-absolutely continuous operator coincides with that of (positive) p-summing operator.

The following result is an extension of [2, Theorem 2.7].
Theorem 2.8. Let $1 \leq p<\infty$ and $0 \leq \theta<1$. The following statements are equivalent:
(a) $I: L^{1}(m) \rightarrow X$ is positive (p, θ)-absolutely continuous.
(b) $I: L^{1}(m) \rightarrow X$ is positive $\frac{p}{1-\theta}$-summing.
(c) $L^{1}(m)$ is order isomorphic to the L^{1} space of a non-negative scalar measure.

Proof. (b) \Leftrightarrow (c) follows from [2, Theorem 2.7].
$(\mathrm{a}) \Rightarrow(\mathrm{b})$. Let $K>0$ be as in Definition 2.7. Fix $f_{1}, \ldots, f_{n} \in L^{1}(m)^{+}$. For each $r_{1}, \ldots, r_{n} \in B_{L^{\infty}(\mu)}$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|\int_{\Omega} f_{i} r_{i} d m\right\|_{X}^{\frac{p}{1-\theta}} \leq K \sup _{h \in B_{L^{1}(m)^{\prime}}} \sum_{i=1}^{n}\left|\int_{\Omega} f_{i} r_{i} h d \mu\right|^{p}\left\|f_{i} r_{i}\right\|_{L^{1}(m)}^{\frac{\theta p}{1-\theta}} \leq \\
& \leq K \sup _{h \in B_{L^{1}(m)^{\prime}}} \sum_{i=1}^{n}\left(\int_{\Omega} f_{i}|h| d \mu\right)^{p}\left\|f_{i}\right\|_{L^{1}(m)}^{\frac{\theta p}{1-\theta}} \leq \\
& \quad(*) \\
& \quad \leq K \sup _{h \in B_{L^{1}(m)^{\prime}}}\left(\sum_{i=1}^{n}\left(\int_{\Omega} f_{i}|h| d \mu\right)^{\frac{p}{1-\theta}}\right)^{1-\theta}\left(\sum_{i=1}^{n}\left\|f_{i}\right\|_{L^{1}(m)}^{\frac{p}{1-\theta}}\right)^{\theta}
\end{aligned}
$$

where $(*)$ follows from Hölder's inequality. Taking into account that

$$
\left\|f_{i}\right\|_{L^{1}(m)}=\sup _{r \in B_{L^{\infty}(\mu)}}\left\|\int_{\Omega} f_{i} r d m\right\|_{X}
$$

cf. $[\mathbf{1 0},(3.64)]$, we obtain

$$
\sum_{i=1}^{n}\left\|f_{i}\right\|_{L^{1}(m)}^{\frac{p}{1-\theta}} \leq K \sup _{h \in B_{L^{1}(m)^{\prime}}}\left(\sum_{i=1}^{n}\left(\int_{\Omega} f_{i}|h| d \mu\right)^{\frac{p}{1-\theta}}\right)^{1-\theta}\left(\sum_{i=1}^{n}\left\|f_{i}\right\|_{L^{1}(m)}^{\frac{p}{1-\theta}}\right)^{\theta}
$$

and therefore

$$
\sum_{i=1}^{n}\left\|f_{i}\right\|_{L^{1}(m)}^{\frac{p}{1-\theta}} \leq C \sup _{h \in B_{L^{1}(m)^{\prime}}} \sum_{i=1}^{n}\left(\int_{\Omega} f_{i}|h| d \mu\right)^{\frac{p}{1-\theta}}
$$

where $C=K^{1 /(1-\theta)}$. It follows that

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\|\int_{\Omega} f_{i} d m\right\|^{\frac{p}{1-\theta}} \leq \sum_{i=1}^{n}\left\|f_{i}\right\|_{L^{1}(m)}^{\frac{p}{1-\theta}} \leq \\
& \quad \leq C \sup _{h \in B_{L^{1}(m)^{\prime}}} \sum_{i=1}^{n}\left(\int_{\Omega} f_{i}|h| d \mu\right)^{\frac{p}{1-\theta}} \leq C \sup _{h \in B_{L^{1}(m)^{\prime}}} \sum_{i=1}^{n}\left|\int_{\Omega} f_{i} h d \mu\right|^{\frac{p}{1-\theta}} .
\end{aligned}
$$

Consequently, the integration operator is positive $\frac{p}{1-\theta}$-summing.
(b) $\Rightarrow(\mathrm{a})$. Just bear in mind that for each $f \in L^{1}(m)$ and $h \in B_{L^{1}(m)^{\prime}}^{+}$we have

$$
|\langle f, h\rangle|^{\frac{p}{1-\theta}}=|\langle f, h\rangle|^{p}|\langle f, h\rangle|^{\frac{\theta p}{1-\theta}} \leq|\langle f, h\rangle|^{p}\|f\|_{L^{1}(m)}^{\frac{\theta p}{1-\theta}} .
$$

The proof is over.

References

[1] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1965), 133-190.
[2] J.M. Calabuig, J. Rodríguez, and E.A. Sánchez Pérez, On the structure of L^{1} of a vector measure via its integration operator, Integr. Equ. Oper. Theory 64 (2009), no. 1, 21-33.
[3] J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
[4] J. Diestel and J.J. Uhl, Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977, With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.
[5] A. Fernández, F. Mayoral, F. Naranjo, C. Sáez, and E. A. Sánchez-Pérez, Spaces of p-integrable functions with respect to a vector measure, Positivity 10 (2006), no. 1, 1-16.
[6] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin, 1979.
[7] J.A. López Molina and E.A. Sánchez Pérez, On operator ideals related to (p, σ)-absolutely continuous operators, Studia Math. 138 (2000), no. 1, 25-40.
[8] G. Ya Lozanovskii, On some Banach lattices, Siberian Math. J. 10 (1969), no. 3, 584-599.
[9] U. Matter, Absolutely continuous operators and super-reflexivity, Math. Nachr. 130 (1987), 193-216.
[10] S. Okada, W.J. Ricker, and E.A. Sánchez Pérez, Optimal domain and integral extension of operators. Acting in function spaces, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, Basel, 2008.
[11] E.A. Sánchez-Pérez, Asymptotic domination of operators on Köthe function spaces and convergence of sequences, Math. Nachr. 279 (2006), no. 15, 1709-1722.

Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

E-mail address: jmcalabu@mat.upv.es
Departamento de Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain

E-mail address: joserr@um.es
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

E-mail address: easancpe@mat.upv.es

[^0]: 2010 Mathematics Subject Classification. 46E30, 46G10.
 J.M. Calabuig was supported by Ministerio de Ciencia e Innovavión (project MTM200804594) and Generalitat Valenciana (project GV/2009/102). J. Rodríguez was supported by Ministerio de Ciencia e Innovavión (project MTM2008-05396) and Fundación Séneca (project 08848/PI/08). E.A. Sánchez-Pérez was supported by Ministerio de Ciencia e Innovavión (project MTM2009-14483-C02-02). The authors were also supported by Universidad Politécnica de Valencia (project PAID-06-08-3093).

