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Abstract

Linear viscoelastic structures are characterized by dissipative forces that depend on the history of the
velocity response via hereditary damping functions. The free motion equation leads to a nonlinear eigen-
value problem characterized by a frequency–dependent damping matrix. In the present paper, a novel and
efficient numerical method for the computation of the eigenvalues of linear and proportional or lightly non–
proportional viscoelastic structures is developed. The central idea is the construction of two complex–valued
functions of a complex variable, whose fixed points are precisely the eigenvalues. This important property
allows the use of these functions in a fixed–point iterative scheme. With help of some results in Fixed Point
Theory, necessary conditions for global and local convergence are provided. It is demonstrated that the
speed of convergence is linear and directly depends on the level of induced damping. In addition, under
certain conditions the recursive method can also be used for the calculation of non–viscous real eigenval-
ues. In order to validate the mathematical results, two numerical examples are analyzed, one for single
degree–of–freedom systems and another for multiple ones.

Keywords: viscoelastic structures, numerical method, complex eigenvalues, real eigenvalues, fixed–point
iteration, proportional damping

1. Introduction

Materials of viscoelastic nature are widely used for engineering applications such as vibration isolation or
as devices to mitigate earthquake effects in buildings. In order to predict the behavior of such structures, the
models must reproduce the response as accurately as possible. In the most general case, the structures that
include viscoelastic materials are characterized by hereditary energy dissipation mechanisms: the damping
forces depend on the history of the velocity response. Mathematically, this fact is represented by convolution
integrals that involve the velocities of the degrees–of–freedom (dof) over certain kernel functions. In general,
the dof response u(t) ∈ R

q is governed by the following system of linear integro-differential equations

Mü +

∫ t

−∞

G(t − τ)u̇ dτ + Ku = F(t) (1)

where M ∈ R
q×q and K ∈ R

q×q are the mass and stiffness matrices assembled using the finite element
method. We assume M to be positive definite and K positive semidefinite; G(t) ∈ R

q×q is the viscoelastic
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damping matrix in the time domain.

Checking solutions with form u(t) = u0e
st in the free–motion equation (1) with F(t) ≡ 0, the following

nonlinear eigenvalue problem is obtained

[

s2M + sG(s) + K
]

u0 = 0 (2)

where G(s) = L{G(t)} is the damping matrix in the Laplace domain. Many real structures modeled by
Eq. (1) present a proportional —or lightly non–proportional— damping matrix, that is, G(s) becomes
diagonal —or diagonally-dominant— in the modal space of the undamped problem. The diagonalization
greatly simplifies the calculation of the eigenvalues, since the characteristic equation can be approximated
as a product of q decoupled modal equations. The knowledge of the eigensolutions of the previous problem
is a key issue in the analysis and study of viscoelastic structures, hence the importance of the development
of efficient tools oriented to their numerical computation.

The seminal work of Biot [1] was a starting point in the variational justification of hereditary constitutive
models based on exponential decay. Subsequently, experimental results led to extend these models with the
introduction of the fractional derivative as a highly effective tool. Papers of Bagley and Torvik [2, 3] estab-
lished the theoretical basis for the application of fractional derivatives in structural dynamics. Since then,
a great number of papers have studied the resulting differential equations in fractional derivatives; among
others [4] the works of Ray et al. [5, 6, 7] are of special interest. Both Biot’s and fractional derivative models
are associated with a different damping function G(t). The conditions under which this function defines a
strictly dissipative motion were studied by Golla and Hughes [8]. Thus, new models could be introduced
provided that they satisfy the requirements from [8]. For instance, Buhariwala [9, 10] generalized Biot’s
model with another in which the relaxation parameters are distributed in an interval. Of special interest are
models based on the state–space approach such as the GHM approach of Golla, Hughes and McTavish [8, 11]
or the Anelastic Displacement Field of Lesieutre and Mingori [12]. Both of them are characterized by the
introduction of new internal variables. Adhikari and Woodhouse [13, 14] proposed new viscoelastic functions
in the context of viscous and non–viscous damping identification for dynamic systems. These viscoelastic
functions are the most used in the field of structural dynamics and all of them are strictly decreasing in the
time domain. However, kernels not necessarily decreasing can also be compatible with viscoelastic problems
as it has been demonstrated in the works of Medjden and Tatar [15] and Tatar [16].

Since the linearity is preserved in viscoelastic structures, it is logical to consider the associated eigen-
value problem. The main difference between the models of these systems and those of viscous ones is that
for the former the damping matrix is frequency–dependent, see Eq (2), and that the eigenvalue problem
is nonlinear. Among the numerical methods oriented to solve this problem, we mention first the works of
Yang [17] and Singh [18], developed for any form of the transcendental matrix —named dynamic stiffness
matrix in our context—. Both of them are based on the widely used Newton–Raphson method; although
the iterative scheme is locally convergent with quadratic speed, the effectiveness depends on the chosen
starting point. Another method from Williams and Kennedy [19] suggested a parabolic interpolation of the
determinant of the dynamic stiffness matrix. Asymptotic techniques based on perturbation of the damping
matrix were proposed by Daya and Potier–Ferry [20] and by Duigou et al. [21]. Voss [22, 23] introduced
two methods based on the Arnoldi’s shift-and-invert technique and on the Jacobi–Davidson method, respec-
tively. Abdel–Aziz and El–Sayed [24] studied the sensitivity analysis of the eigenvalue functions of non–linear
eigensystems under the assumption that such functions are continuous nondifferentiable. Specific methods
aimed at solving the problem when the damping function is rational can be found. For instance, Muravyov
and Menon [25, 26, 27] developed approaches that essentially transform the nonlinear problem into a larger
linear one. Although their solution is exact, the numerical complexity increases with the polynomial degree
of the damping function denominator. For proportional or lightly non–proportional systems, Adhikari and
Pascual [28, 29] proposed several iterative methods based on Taylor series expansion of the damping function
to compute complex and real eigenvalues. Friswell and Adhikari [30] proposed a new non–local viscoelastic
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foundation model for beams and obtained the eigensolutions using the finite element method. The intro-
duction of eigenvalues’ derivatives in viscoelastic structures [31, 32] has allowed the development of new
numerical methods for the computation of the eigensolutions. Cortés and Elejebarrieta [33, 34] developed
an approach using the eigenvalue sensitivities, even applicable for highly damped systems. Martinez-Aguirre
and Elejebarrieta [35] used higher order eigensensitivities to propose a new numerical procedure for the modal
analysis of viscoelastic damped structures. Lázaro and Pérez–Aparicio [36, 37] have carried out recently
new proposals based on considering a parametric treatment of the eigensolutions; in them the eigenvalue
problem is transformed into an ordinary differential equation.

The present paper develops a new numerical method to compute the eigenvalues of linear viscoelastic
structures with proportional —or lightly non–proportional— damping. The key idea is to build two complex–
valued functions of a complex variable, whose fixed points are the eigenvalues. These functions uniquely
depend on the damping and do not require the calculation of derivatives for their construction. It is shown
that the use of the fixed–point iteration always allows to find the complex eigenvalues; moreover, it is
demonstrated that the level of damping is directly related to the speed of convergence. Under certain
conditions the method can also be applied to the computation of the non–viscous real eigenvalues. Finally,
theoretical results are illustrated with two numerical examples. First, a single dof system with an exponential
damping model is analyzed; since the overdamped region of this system can be analytically defined, this
example allows to relate the level of damping and the speed of convergence. Second, a four–dof system with
viscoelastic links is analyzed to validate the method for multiple dof systems with proportional damping.

2. Single Degree–of–Freedom Systems

2.1. Eigenvalue Problem and Recursive Functions

The theoretical fundamentals of the proposed method are developed for single degree–of–freedom systems
(sdof). As mentioned, for non–viscously damped systems the dissipative forces are history–dependent on
the velocity of the dof u̇(t) via a kernel function G(t), a characteristic of the damping model. The sdof free
motion equation is the counterpart of Eq. (1)

mü +

∫ t

−∞

G(t − τ)u̇ dτ + ku = 0 (3)

where m and k are the mass and the linear stiffness associated with the sdof, respectively. Checking solutions
with the form u(t) = u0e

st, the previous equation is transformed into the following in terms of the variable
s

ms2 + sG(s) + k = 0 (4)

where again G(s) = L{G(t)} is the viscoelastic damping function. Golla and Hughes [8] gave the necessary
conditions on G(s) to define a strictly dissipative viscoelastic behavior. Several authors [38, 39] have shown
that the characteristic Eq. (4) has 2 + p (p ≥ 0) eigenvalues with form {λ, λ∗, σ1, . . . , σp}. The roots λ, λ∗

are a pair of complex–conjugate numbers associated with exponential–decay oscillatory modes. The rest
σr, 1 ≤ r ≤ p, are negative real numbers named non–oscillatory or non–viscous eigenvalues since they are
associated with overcritically damped modes, [39].

The eigenvalues of the undamped problem G(s) ≡ 0 are ±iωu, where ωu =
√

k/m is the undamped
natural frequency. Introducing the new non–dimensional function

J(s) =
G(s)

2mωu

(5)

and using k = mω2
u, Eq. (4) can be written as

s2 + 2ωusJ(s) + ω2
u = 0 (6)
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The key issue of the method is to transform this equation so that the resulting structure permits to apply
a recursive scheme. For that, let us assume that Eq. (6) may be expressed in the form

s2 + 2ωusJ(s) + ω2
u ≡ [s + A(s)]

2
+ B(s) (7)

There exist infinite solutions for the unknown functions A(s), B(s); in particular one pair can be obtained
identifying the coefficients of the terms s0 = 1, s1 = s. Thus,

A(s) = ωuJ(s)

B(s) = ω2
u

[

1 − J2(s)
]

(8)

Notice that the solutions given in Eq. (8) are not unique, and as will be shown, this proposed solution has
important properties. Using the new functions, further changes can be achieved in Eq. (7) to obtain a more
suitable expression. Eq. (7) together Eq. (8) produces a difference of two squares, resulting in

s2 + 2ωusJ(s) + ω2
u = [s + ωuJ(s)]

2
+ ω2

u

[

1 − J2(s)
]

= [s + ωuJ(s)]
2 −

(

iωu

√

1 − J2(s)
)2

= [s − X(s)] [s − Y (s)] (9)

where i =
√
−1 is the imaginary unity and the complex functions X(s), Y (s) are defined as

X(s) = ωu

(

−J(s) + i
√

1 − J2(s)
)

, Y (s) = ωu

(

−J(s) − i
√

1 − J2(s)
)

(10)

In the previous definition,
√• must be understood as the principal square root of a complex number. Eq. (9)

states that, if a ∈ C represents any eigenvalue of the viscoelastic system, then either a = X(a) or a = Y (a),
that is, a is a fixed point of some of the two functions X(s) or Y (s). The objective is now to provide
the conditions under which these functions may be used in a recursive scheme to calculate the eigenvalues.
Previously, some definitions are given to present the hypotheses assumed for the damping function J(s).
Let us define the sets

C+ = {x + iy ∈ C : y > 0} , C− = {x + iy ∈ C : y < 0} (11)

The complex plane excluding real numbers is named C = C+ ∪ C− = C \ R.

As mentioned, we assume that G(s) = 2mωuJ(s) verifies the required conditions given by [8] to induce
a dissipative motion. In addition, the following two hypotheses are required for the purposes of the current
work

H1. G(s) is analytical in a domain with form C \M, where M ⊂ R is a subset of real numbers

H2. G(s) ∈ C , ∀ s ∈ C. Expressed in set operations: G(C) ⊂ C

The set M introduced in H1 may adopt different forms depending on the type of damping function consid-
ered. Table 1 shows the most used damping functions from the bibliography and their associated sets M. It
can be observed that, although H1 assumes the most general case M ⊂ R, for real systems M ⊂ R

− ∪ {0}
in order to guarantee the energy decay during the free motion.

The functions X(s), Y (s) introduced in Eqs. (10) are directly related with the dimensionless damping
function J(s) = G(s)/2mωu. In order to define mathematically the region where X(s) and Y (s) are
analytical, let us introduce the set

B = {x ∈ R : |J(x)| ≥ 1} (12)

Assuming that G(s) satisfies H1, H2, the following properties for X(s), Y (s) can be established (see Appendix A
for the proof details)
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Damping functions, G(s) Set M Author, Year, Reference

n
∑

k=1

ak

s + bk
, bk > 0 {−bk}

n
k=1 Biot, 1955 [1]

c
b−a

log s+b
s+a

, 0 < a < b [−b,−a] Buhariwala, 1982 [9, 10]

1
s

E1sα−E0bsβ

1+bsβ , 0 < α, β < 1 R
− ∪ {0} Bagley and Torvik, 1983 [3]

G∞

s

[

1 +
n

∑

k=1

αk
s2+2ζkωks

s2+2ζkωks+ω2
k

]

{

−ωk

(

ζk ±
√

ζ2
k − 1

)}n

k=1
∪ {0} Golla and Hughes, 1983 [8] and

McTavish and Hughes, 1993 [11]

1

s

[

1 +
n

∑

k=1

∆ks

s + βk

]

, βk > 0 {−βk}
n
k=1 ∪ {0} Lesieutre and Mingori, 1990 [12]

c 1−e−st0

st0
∅ Adhikari, 1998 [13]

c es2/4µ
[

1 − erf
(

s
2
√

µ

)]

∅ Adhikari and Woodhouse, 2001 [14]

Table 1: Damping functions from the bibliography and their corresponding sets M ⊂ R

P1. The functions X(s), Y (s) are analytic in the set A = C \ (M∪B)

P2. X∗(s) = Y (s∗), ∀ s ∈ A

P3. Let a ∈ A be a complex number. Then, a = X(a) if and only if a∗ = Y (a∗)

P4. X(C) ⊂ C+ , Y (C) ⊂ C−
P5. If J(R) ⊂ R then X(B) ⊂ R , X(R \ B) ⊂ C+ and also Y (B) ⊂ R , Y (R \ B) ⊂ C−

The five properties constitute the starting point to analyze the numerical solution of Eq. (4) from a
recursive point of view.

2.2. Complex Eigenvalues

The properties P1–P5 allow to state that, if λ ∈ C+ and λ∗ ∈ C− are the complex conjugate pair solution
of Eq. (4), then λ = X(λ), λ∗ = Y (λ∗). In other words, λ, λ∗ are fixed points of functions X and Y ,
respectively. Let us consider two any complex numbers x0 ∈ C+, y0 ∈ C− and let {xn}, {yn} be the recursive
sequences of iterates defined for n ≥ 1 as

xn = X(xn−1) , yn = Y (yn−1) (13)

The question is whether these sequences converge or not to fixed points, and therefore, to solutions of the
nonlinear eigenvalue problem. An affirmative answer to this question would allow us to use Eqs. (13) as an
efficient numerical tool to compute the complex eigenvalues. This subsection is aimed to find answers to the
following questions:

• Under what conditions the existence of complex fixed points of X(s), Y (s) can be ensured?

• Can a recursive scheme be constructed so that it converges to these fixed points, regardless of the
starting point?

• What is the speed of convergence of the recursive scheme?
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The problem of the existence of fixed points will be solved using a known result in Fixed Point Theory
due to Goebel, Sekowski and Stachura [40]. For that, it is necessary to define the concept of strict inclusion
in sets.

Definition 1 (Strict inclusion). Let S, T ⊂ C two complex sets; S is said to lie strictly inside T if there
exists a real positive number ǫ > 0 such that B(w, ǫ) ⊂ T , ∀ w ∈ S. Here, B(w, ǫ) is the closed ball centered
at w with radius ǫ

Lemma 1 (Goebel, Sekowski and Stachura [40]). Let h : D → D be an analytic self–mapping defined
in the open unit ball D = {w ∈ C : |w| < 1}. Let wn = h(wn−1) be the sequence of iterates of function h(w).
Then h has a fixed point in D if and only if there exists a point w0 ∈ D such that strictly {wn}n≥1 ⊂ D

In addition, to answer the second question another result in Fixed Point Theory due to Reich [41] will be
applied. This result is focused on the approximation to fixed points of holomorphic functions in the complex
unit ball.

Lemma 2 (Reich [41]). Let h : D → D be an analytic self–mapping with a fixed point, and let u0 ∈ D.
Then the sequence {un} where 0 < θ < 1

un =
u0

nθ
+

(

1 − 1

nθ

)

h (un−1) , n ≥ 1

converges strongly to a fixed point of h(w).

Based on these results Theorem 1 states that, under relatively weak conditions, X(s), Y (s) have fixed
points in C+ and C−, respectively. Furthermore, an approximation sequence to the fixed points can be
generated, regardless of the chosen initial point.

Theorem 1. Let G(s) be a damping function that satisfies the hypothesis H1, H2. Let {xn} be the sequence
introduced in Eq. (13). Then:

i) The viscoelastic system given by Eq. (3) has a complex eigenvalue λ ∈ C+ if and only if there exists an
initial x0 ∈ C+ such that

lim
n→∞

xn /∈ R

ii) Moreover, for all z0 ∈ C, there exists a sequence {zn} ⊂ C+ , with z1 = X(z0) such that

lim
n→∞

zn = λ

Proof. i) As a stratightforward result of the hypothesis, {xn} can not have accumulation points in R. From
property P4, X(xn) ∈ C+ holds, ∀ n ≥ 0 and ∀ x0 ∈ C+. Consequently, there exists a real positive number
ǫ > 0 such that B(xn, ǫ) ⊂ C+, for n ≥ 1. Hence, it follows that the set {xn}∞n=1 lies strictly inside the set C+.

To apply the Lemma 1, the domain C+ can be transformed into the open unit ball by the Cayley
transformation ψ : C+ → D, defined through the conformal mapping

ψ(s) =
iωu − s

iωu + s
(14)

that transforms the upper half complex plane, C+ into the open unit ball D. For instance, the point iωu is
transformed into the origin, and the boundary ∂C+ = R into the circumference ∂D = {w ∈ C : |w| = 1}.
Now, let us define by composition the following complex function

U = ψ ◦ X ◦ ψ−1 : D → D (15)
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where

ψ−1(w) = iωu

1 − w

1 + w
∈ C+ ∀ w ∈ D (16)

Immediately, ψ, ψ−1 are holomorphic in C+ and D, respectively. Since X is also holomorphic in C+ ⊂ A,
it follows that U is holomorphic in D. Moreover, from property P3, it is verified that X(C+) ⊂ C+, and
therefore U(D) ⊂ D. A sequence {wn} associated to {xn} can be generated, with elements that are images
under ψ in D, i.e. wn = ψ(xn) ∈ D for n ≥ 0. Let us verify that wn = U(wn−1) holds, using the definition
of U(w)

wn = ψ(xn) = ψ
(

X(xn−1)
)

= (ψ ◦ X) (xn−1) = (U ◦ ψ) (xn−1) = U
(

ψ(xn−1)
)

= U(wn−1) (17)

Since the complete sequence {xn}∞n=1 lies strictly inside C+, it is verified {wn}∞n=1 ⊂ D strictly. Therefore,
from Lemma 1 there exists a fixed point γ ∈ D of the function U , i.e., U(γ) = γ, so that the anti–image
λ = ψ−1(γ) ∈ C+ is a fixed point of X. Indeed, using again the definition of U

λ = ψ−1(γ) = ψ−1
(

U(γ)
)

=
(

ψ−1 ◦ U
)

(γ) =
(

ψ−1 ◦ ψ ◦ X ◦ ψ−1
)

(γ) = X
(

ψ−1(γ)
)

= X(λ) (18)

Finally, since the viscoelastic problem characterized by G(s) has at most one eigenvalue in C+ (see subsection
2.1), λ is the unique fixed point of X in C+. From the property P3, λ∗ = ψ−1(γ∗) is a fixed point of the
function Y (s) and consequently the other complex eigenvalue of the viscoelastic system.

To finish the first part of the proof, let us consider reciprocally that λ ∈ C+ is a complex eigenvalue of
the viscoelastic system. Therefore, γ = ψ(λ) ∈ D is a fixed point of U . Applying Lemma 1, {wn}∞n=1 ⊂ D

strictly and, hence
lim

n→∞
xn = lim

n→∞
ψ−1(wn) /∈ R (19)

ii) Assuming now that the system is not overdamped, there exists a unique eigenvalue λ ∈ C+ that is
fixed point of X. As shown in the previous proof, γ = ψ(λ) is fixed point of the holomorphic self–mapping
U : D → D defined in Eq. (15). Let z0 ∈ C be any complex number (excluding reals), from property P4,
z1 = X(z0) ∈ C+ and let u1 = ψ(z1) ∈ D. The following sequence

un =
u1

nθ
+

(

1 − 1

nθ

)

U(un−1) (20)

for n ≥ 2 can be constructed in D, where θ can be any real number in the open interval 0 < θ < 1. From
Lemma 2, we can ensure that the sequence {un} converges to γ. Consequently the sequence {zn} generated
as

zn = ψ−1(un) (21)

will converge to λ.

Theorem 1 allows us to ensure the existence of complex eigenvalues as fixed points of X(s), Y (s). A
recursive scheme towards the fixed point can be generated from Eqs. (20), (21), but it is not established
whether the sequences of iterates {xn}, {yn} from Eq. (13) converge always to eigenvalues. It seems logical
to assume that when {zn} converges also does {xn}, but it is an unproven conjecture. In fact, if the con-
ditions of Theorem 1 are satisfied, theoretically a fixed point of X(s) could coexist with a non–convergent
sequence {xn}. In such case, the recursive scheme would lie in an infinite non–convergent loop contained
strictly inside D. However, the authors have not found any case with this behavior. Furthermore, for all
analyzed cases the sequence {xn} has converged successfully to the complex eigenvalue for any considered
initial point x0 ∈ C+. An explicit proof for this convergence is not currently available when the requirements
of the function J(s) are just the hypothesis H1, H2.
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Despite this formal lack of proof and motivated by a justification for the efficiency of the numerical
scheme {xn}, new additional conditions on the function J(s) are going to be introduced. First, the fol-
lowing Theorem 2 proves local convergence to fixed points of X(s), Y (s). Second, Theorem 3 establishes
the necessary conditions to ensure global convergence of sequences {xn}, {yn} to fixed points in a closed
ball centered at the undamped eigenvalues ±iωu, respectively. Moreover, these theorems will allow us to
predict the speed of convergence, aspect not possible just with Theorem 1. The statement and proofs of
these theorems are presented for the function X(s). The application for Y (s) can be obtained as a direct
consequence of properties P1 to P5.

Theorem 2. Let λ ∈ C+ be the complex eigenvalue of the viscoelastic system (3). If

∣

∣

∣

∣

∂J(λ)

∂s

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωu

+
J(λ)

λ

∣

∣

∣

∣

(22)

then there exist two positive real numbers δ > 0, 0 < ρ < 1, such that the sequence {xn} converges to λ for
any initial point x0 ∈ B(λ, δ) = {s ∈ C : |s − λ| ≤ δ}. Furthermore,

|xn − λ| ≤ ρn

1 − ρ
|X(x0) − x0| (23)

Proof. The proof is based on verification of the function X(s) satisfying Banach’s contraction mapping prin-
ciple [42, 43]. As well known, this principle constitutes one of the most important results in mathematical
analysis. Applied to the complex domain, it states that every contraction self–mapping on a closed set has
a unique fixed point. Moreover, the principle allows the bounding of the computed error after n iterations.
The proof of this theorem can be organized into two steps:

i) X(s) is contractive in the closed ball B(λ, δ). The derivative of X(s) from Eqs. (10) is

∂X

∂s
= −∂J

∂s

(

1 +
iJ(s)

√

1 − J2(s)

)

ωu (24)

Using the inequality given by Eq. (22) and X(λ) = λ

∣

∣

∣

∣

∂X(λ)

∂s

∣

∣

∣

∣
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∣

∣
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∂s
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∣

∣

∣

∣

∣

1 +
iJ(λ)

√

1 − J2(λ)

∣

∣

∣

∣

∣
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∣

∣
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∣

∂J(λ)

∂s

∣
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∣
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∣
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∣

∣

∣

−J(λ) + i
√
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∂s
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∣

∣

∣

∣

∣

∣

X(λ)
X(λ)
ωu

+ J(λ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂J(λ)

∂s

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ
λ

ωu
+ J(λ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∂J(λ)
∂s

∣

∣

∣

∣

∣

∣

1
ωu

+ J(λ)
λ

∣

∣

∣

< 1

(25)

Since X(s) is analytical at s = λ ∈ C+, the absolute value of its derivative, |∂X/∂s| ≡ |X ′(s)| is
continuous in a neighborhood of λ. Then, there exist a positive real number δ > 0 so that the maximum
value in B(λ, δ) is

ρ = max
|s−λ|≤δ

∣

∣

∣

∣

∂X(s)

∂s

∣

∣

∣

∣

< 1 (26)

In real analysis, the previous conclusion is sufficient to prove that X(s) is contractive by straight application
of the mean value theorem. In complex analysis this theorem can not be applied in the same terms, but
an analog for analytical complex functions was demonstrated by McLeod [44]: let u, v ∈ B(λ, δ) be two
any complex numbers. Since the ball is obviously a convex set, the complex segment between them is
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[u, v] = {ξu + (1 − ξ)v : 0 ≤ ξ ≤ 1} ⊂ B(λ, δ). According to the reference [44], there exists a real number
0 ≤ ξ0 ≤ 1 and two complex numbers s1, s2 ∈ [u, v] such that

X(u) − X(v) = (u − v)

[

ξ0
∂X(s1)

∂s
+ (1 − ξ0)

∂X(s2)

∂s

]

(27)

Consequently, taking the absolute value of Eq. (27) and using the bound given by Eq. (26), the Lipschitz
continuity of X(s) can be proved by

|X(u) − X(v)| =

∣

∣

∣

∣

(u − v)

[

h
∂X(s1)

∂s
+ (1 − h)

∂X(s2)

∂s

]
∣

∣

∣

∣

≤ |u − v|
[

h

∣

∣

∣

∣

∂X(s1)

∂s

∣

∣

∣

∣

+ (1 − h)

∣

∣

∣

∣

∂X(s2)

∂s

∣

∣

∣

∣

]

≤ [h ρ + (1 − h) ρ] |u − v| = ρ |u − v| (28)

Since the Lipschitz coefficient verifies ρ < 1, the function X(s) is contractive.

ii) X(s) is a self–mapping if given any s ∈ B(λ, δ) i.e. |s − λ| ≤ δ, its image X(s) also lies inside the
ball, i.e. X(s) ∈ B(λ, δ) or equivalently |X(s) − λ| ≤ δ. The previous inequality can be proved just using
the contraction property in B(λ, δ)

|X(s) − λ| = |X(s) − X(λ)| ≤ ρ |s − λ| ≤ ρ δ < δ (29)

Therefore, the hypotheses from Banach’s fixed point theorem, see [43], are satisfied and the convergence
of the sequence {xn} from Eq. (13) to the (unique) fixed point of X(s) in the ball B(λ, δ) is ensured.
Furthermore, the error decay rate in each iteration can be bounded by

|xn − λ| ≤ ρn

1 − ρ
|X(x0) − x0| , ∀ x0 ∈ B(λ, δ) (30)

In view of the previous results, it can be demonstrated, see [45], that the speed of convergence of a fixed
point iteration scheme is asymptotically linear. In fact, it is verified that

lim
n→∞

|xn+1 − λ|
|xn − λ| = ρ < 1 (31)

Notice that the hypotheses of Theorem 2 are expressed in terms of the unknown eigenvalue λ. Therefore,
there is no information a priori on the error rate |xn − λ| since ρ depends on the unknown |X ′(λ)|. In order to
improve this theorem, the subsequent Theorem 3 demonstrates the convergence of {xn} using again Banach’s
contraction principle, but now in a closed ball centered in the undamped eigenvalue iωu. In addition, this
theorem will allow us to relate the speed of convergence with the damping model characteristics, giving a
physical insight into the mathematical results. For that, let us introduce two preliminary definitions: given
a positive real number r > 0, and let Hr = {s ∈ C : |s − iωu| ≤ r} be the closed ball centered in iωu with
radius r. The following numbers are bounds defined as

αr = max
s∈Hr

|J(s)| , βr = ωu max
s∈Hr

∣

∣

∣

∣

∂J

∂s

∣

∣

∣

∣

(32)

The existence of αr, βr is guaranteed provided that Hr lies inside the analyticity domain C \ M of J(s).
The presence of Hr allows us to express the necessary conditions of Theorem 3 in terms of αr, βr.
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Theorem 3. Let αr, βr be the bounds defined by Eq. (32). If

αr < 1 , βr

(

1 +
αr

√

1 − α2
r

)

≡ κr < 1 ,
|X(iωu) − iωu|

r (1 − κr)
≤ 1 (33)

then there exists an unique fixed point λ of X(s) in the set Hr and the rate of convergence of the sequence
xn = X(xn−1) is

|xn − λ| ≤ κn
r

1 − κr

|X(x0) − x0| , ∀ x0 ∈ Hr (34)

Proof. Since the domain Hr ⊂ C is a closed set in the complex domain, it is a complete set. To apply again
Banach’s contraction principle to the function X : Hr → C, the proof is again organized in two steps.

i) The function X(s) is contractive in the set Hr. From Eq. (32), (34) left, |J(s)| ≤ αr < 1 for any s ∈ Hr.
Consequently, the ball Hr lies inside the region where X(s) is analytic, that is, Hr ⊂ A = C \ (M∪B). The
contractivity of X(s) can be proved as in Theorem 2, thus, it is only required that the bound of |X ′(s)| is
strictly less than one in Hr. Using the definitions from Eq. (32) and Eq. (24) we have ∀ s ∈ Hr
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)

(−1)kα2k
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= βr
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1 +
αr

√

1 − α2
r

)

= κr < 1

(35)

where the last inequality holds from Eq. (33) middle. In the previous development, αr < 1 has been used
to express the bound of 1/

√

1 − J2(s) in terms of αr through its series expansion. It can be concluded the
complex function X(s) is contractive in the set Hr.

ii) The function X(s) is a self–mapping of the set Hr, i.e., X(Hr) ⊂ Hr. We focus now on the verification
of X(s) ∈ Hr, ∀ s ∈ Hr. Thus, let us consider a s ∈ C such that |s − iωu| ≤ r, hence, X(s) ∈ Hr holds if
|X(s) − iωu| ≤ r. Using the hypothesis from Eq. (33) right, it follows

|X(s) − iωu| = |X(s) − X(iωu) + X(iωu) − iωu| ≤ |X(s) − X(iωu)| + |X(iωu) − iωu|
≤ κr |s − iωu| + |X(iωu) − iωu| ≤ κr r + |X(iωu) − iωu|
≤ κr r +

(

1 − κr

)

r = r (36)

In summary, the function X(s) and the ball Hr verifiy the following three properties

• Hr is closed and therefore a complete subset in the complex domain

• X(Hr) ⊂ Hr

• X(s) is contractive in Hr with Lipschitz coefficient κr < 1

Therefore, the Banach’s contraction principle can to be applied again for X(s), now in Hr assuring the
uniqueness of the fixed point λ ∈ Hr. Furthermore, the speed of convergence of the sequence xn → λ is
linear and the error can be bounded by

|xn − λ| ≤ κn
r

1 − κr

|X(x0) − x0| , ∀ x0 ∈ Hr (37)
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Notice that no reference to the eigenvalue λ in the three hypotheses has been made, then, given a radius
r > 0, they can easily be tested a priori provided that αr, βr are available. These bounds depend on
the mathematical form of the damping function J(s) and they must be searched in the boundary of Hr,
according to the maximum modulus theorem for analytical complex functions. Assuming now that the
necessary conditions of Theorem 3 are satisfied, the mathematical expression of the Lipschitz coefficient

κr = βr

(

1 +
αr

√

1 − α2
r

)

(38)

contains relevant qualitative information. On one hand, as shown in Theorem 3, κr controls the convergence
speed. On the other, its expression, given by Eq. (38), depends directly on the bounds of the (dimensionless)
viscoelastic function J(s) and its derivative J ′(s). The physical meaning of these values is directly related
with the characteristics of the damping model: a) αr is the damping function (in absolute value) maximum
in Hr. Low values of J(s) are associated with lightly damped systems and αr is a measure of the level
of damping; b) βr/ωu directly represents the bound of J ′(s), derivative directly related with the level of
viscoelasticity. Mathematically, a system has small viscoelasticity if the damping function J(s) does not
present large variations with respect to s so that βr measures the viscoelasticity in Hr. A more complete
study of the viscoelasticity quantification may be found in the work of Adhikari and Woodhouse [46]. Since
the real valued function κ(α, β) = β

(

1 + α/
√

1 − α2
)

is always increasing in the range β > 0, 0 < α < 1, it
is expected that lightly damped systems with low viscoelasticity will present faster convergence to the fixed
points. Hence, the higher the damping level in the system the slower the convergence to the eigenvalue using
the proposed recursive method. This affirmation will be validated throughout the numerical examples.

2.3. Real Eigenvalues

Assuming that the damping function G(s) induces a dissipative motion, energy loss may result in either a
decreasing amplitude oscillatory motion (complex eigenvalues) or a non–oscillatory motion with exponential
decay (real negative eigenvalues). For the first, the system is said to be underdamped and for the second
overdamped. In the latter no complex number in the set C = C \ R exits as fixed point of the functions
X(s), Y (s). Therefore, as a corollary of Theorem 1 both recursive sequences will converge to the same real
eigenvalue. Starting from a point x0 ∈ C+ the elements of {xn} will be contained in the upper half–plane of
the complex domain and will converge to a negative number. At the same time, {yn} will also converge to
the same eigenvalue but through the lower half–plane starting now in x∗

0 ∈ C−. However, in underdamped
systems non–viscous real eigenvalues coexist with the complex conjugate eigenvalues pair and the question
arises whether the recursive functions, X(s), Y (s) are able to converge to some real eigenvalue.

Property P5 of the recursive functions states that X(B) ⊂ R and Y (B) ⊂ R, provided that J(R) ⊂ R.
Therefore, the functions X,Y : B → R are well defined and real valued. Obviously, any real eigenvalue must
be a fixed point of some of the recursive functions, X or Y . Once more, the fixed point theory provides
a result due to Schröeder [47, 45] giving the necessary conditions for the convergence (local in this case),
to a fixed point. This theorem states that the sequence of iterates tn = X(tn−1) is locally convergent to a
fixed point σ ∈ R if the derivative fulfills |∂X(σ)/∂t| < 1. The same conclusion can be established for the
function Y (t). The notation t is used for the real independent variable and should not be confused with
time, which only appears in Eq. (3). Since X(t) is continuously differentiable in a neighborhood of σ, there
exists an interval centered in this point, I = [σ − δ, σ + δ] such that

ρ = max
t∈I

∣

∣

∣

∣

∂X(t)

∂t

∣

∣

∣

∣

< 1 (39)

It can be easily proved that any sequence {tn}∞n=0 that starts in the interval I remains in I. Thus, the
difference between the nth term and the fixed point can be bounded by

|σ − tn| = |X(σ) − X(tn−1)| ≤ ρ |σ − tn−1| ≤ · · · ≤ ρn |σ − t0| (40)
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which proves the convergence, limn→∞ xn = σ. This theorem can be considered as a weak version of the
Banach’s contraction principle in the real domain and, like Theorem 2, does not provide practical hypotheses
due to its dependence on the (unknown) fixed point. However, the numerical examples will show that, under
certain conditions, X(t), Y (t) can present low derivative values. Consequently, testing the convergence of
the iterative process starting from some point t0 ∈ R, would permit to find non–viscous eigenvalues.

3. Multiple Degree–of–Freedom Systems

The main objective of this section is to apply the previously obtained results for single dof systems to
multiple ones. Let us name M ∈ R

q×q, K ∈ R
q×q, u(t) ∈ R

q to the mass and to the elastic stiffness matrices,
and to the vector grouping the dof’s. Damping in non–viscous (or viscoelastic) dynamic systems is modeled
by dissipative forces that depend on the history of the dof velocities via kernel functions. The equilibrium
of the free motion results in a system of integro–differential equations that can be expressed in matrix form
as follows

Mü +

∫ t

−∞

G(t − τ)u̇ dτ + Ku = 0 (41)

where the matrix G(t) ∈ R
q×q contains the viscoelastic kernel functions in time domain. Testing solutions

of the form u(t) = u0e
st, the previous system becomes the nonlinear eigenvalue problem

[

s2M + sG(s) + K
]

u0 = 0 (42)

where G(s) = L{G(t)} ∈ C
q×q. Let Φ = [φ1, . . . ,φq] ∈ R

q×q be the matrix grouping the eigenvectors
associated with the undamped system defined by matrices M, K. The classical orthogonal relations can be
written as

ΦT MΦ = M̃ = diag [mj ] , ΦT KΦ = K̃ = diag [kj ] (43)

Changing the variable u0 = Φz0 and using the orthogonal relations, Eq. (42) may be expressed as

[

s2M̃ + sΓ(s) + K̃
]

z0 = 0 (44)

where Γ(s) = ΦT G(s)Φ is the damping matrix in the modal space. In general, this matrix is not diagonal,
only non–viscous proportional damping presents this property. The necessary and sufficient conditions for
proportional damping in non–viscous systems have been studied by Adhikari [48]. For the current paper
purposes, the hypothesis of light non–proportional damping is considered, i.e., the matrix Γ(λj) is diagonally
dominant, that is equivalent to assume as true that

q
∑

l=1
l 6=k

|Γkl(λj)| < |Γkk(λj)| , ∀ 1 ≤ k ≤ q (45)

where λj is the jth eigenvalue. This assumption is commonly assumed in many problems related with
non–viscous damping [49, 39, 28, 29] and it allows the approximation of the determinant as the product of
the terms of its main diagonal, that is

det
[

s2M̃ + sΓ(s) + K̃
]

≈
q

∏

j=1

(

mjs
2 + sΓjj(s) + kj

)

(46)

Hence, the set of eigenvalues can be obtained from the following q equations

Dj(s) = mjs
2 + sΓjj(s) + kj = 0 , 1 ≤ j ≤ q (47)

In general, the number of eigenvalues of an oscillatory viscoelastic (underdamped) system is 2q + p,
with p ≥ 0; there are 2q complex eigenvalues formed by q complex conjugate pairs. In addition, the set of
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eigenvalues must be completed with p real and non–viscous roots. This set is formed by negative numbers
associated with overcritical modes, of non–oscillatory nature. The total number of non–viscous roots can
be written as p = p1 + · · · + pq, where pj ≥ 0, 1 ≤ j ≤ q is the number of non–viscous roots of the jth
characteristic equation.

In order to apply the recursive scheme, let us define the dimensionless damping functions

Jj(s) =
Γjj(s)

2mjωj

, 1 ≤ j ≤ q (48)

Following the same procedure as before, the jth equation can be expressed as

Dj(s)

mj

= s2 + 2sJj(s)ωj + ω2
j = [s − Xj(s)] [s − Yj(s)] (49)

where

Xj(s) = ωj

(

−Jj(s) + i
√

1 − J2
j (s)

)

, Yj(s) = ωj

(

−Jj(s) − i
√

1 − J2
j (s)

)

(50)

are the functions used in recursive form to compute the complex eigenvalues. The fixed point theory provides
a sequence defined by Eq. (20) contained in the complex unit ball that strongly converges to the fixed point.
However, the sequences

xn = Xj (xn−1) , yn = Yj (yn−1) , n ≥ 1 (51)

behave very well and in practice can efficiently be used to obtain the fixed point. As described in the
previous section, the speed of convergence depends on damping level and on viscoelasticity. As the starting
point of the algorithm, the undamped eigenvalue iωj is in general a good choice; however any suitable initial
point can be used as long as it belongs to C = C \ R.

Finally, for the eigenvectors’ computation, two procedures can be used [39]. From the approximated
eigenvalue obtained with the recursive process described above λj , the components of the jth associated
eigenvector, say uj , can be computed. First, from the ill–conditioned linear system of equations

[

λ2
jM + λjG(λj) + K

]

uj = 0 (52)

This method can be computationally inefficient for large size systems because it involves the calculation of
an inverse submatrix of dimension q−1; in any case it is specially recommended for non–viscous eigenvectors
associated to non–viscous eigenvalues, for which no alternative method is currently available. Second, for the
complex eigenvectors, the hypothesis of non–proportional damping allows the use of approximate expressions.
The complex eigenvectors are expanded in terms of the off–diagonal terms of matrix Γ(λj) = ΦT G(λj)Φ.
Let us name Dj(s) = Dj(s)/mj to the expression given by Eq. (49) and ψj = φj/mj to the mass–normalized
jth undamped eigenvector, for 1 ≤ j ≤ q. The second order approximation of the jth eigenvector is expressed
as linear combination of the undamped eigenvectors {ψ1, . . . ,ψq}, which forms a base of the space R

q.

uj ≈ ψj − λj

q
∑

k=1
k 6=j

Γkj(λj)

Dk(λj)
ψk + λ2

j

q
∑

k=1
k 6=j

q
∑

l=1
l 6=j 6=k

Γkl(λj)Γlj(λj)

Dk(λj)Dl(λj)
ψk (53)

4. Numerical Examples

4.1. Example 1: Single Degree–of–Freedom Systems

In order to validate the theoretical developments a single dof system is analyzed. For that, the Biot’s
viscoelastic model [1] with one exponential kernel as the hereditary damping function is used.

G(t) = cvµe−µt (54)
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where µ > 0 is the relaxation parameter and cv the damping coefficient of the limit viscous model when
µ → ∞. Let us denote by ζ = cv/2mωu the damping ratio of the limit viscous model, then the Laplace
transform of the damping function is

G(s) = 2mωuζ
µ

s + µ
(55)

The characteristic equation is of the form

s2 + 2sωuζ
µ

s + µ
+ ω2

u = 0 (56)

Multiplying the previous equation by s + µ, it is transformed into a third order polynomial. Introducing
now the new variables z = s/ωu, ν = ωu/µ the following non–dimensional equation is obtained

(νz + 1)(z2 + 1) + 2zζ = 0 (57)

Several authors [26, 50, 38, 51] have studied the dynamics of the described viscoelastic oscillator through
the solutions of the previous polynomial. The three roots will be either a complex conjugate pair together
with a single real number or three negative real numbers. The so–called overdamped region is defined by the
set of damping parameters ν, ζ that induce an overdamped motion, i.e. Eq. (57) gives three negative real
roots. Adhikari [51] carried out a rigorous analysis of the ν, ζ domain. Among other properties, the reference
obtained closed expressions of the region boundary in terms of ν, ζ. In Fig. 1 left the representation of the
overdamped (OD) region is drawn as a grey area. The rest (white area) will be the underdamped region (UD).

The availability of an explicitly defined overdamped region has motivated us to adopt Biot’s damping
model with one kernel. Convergence properties of the proposed recursive method and damping characteris-
tics will be related. By means of straightforward operations, it can be verified that the particular function
J(s) = ζµ/(s + µ) satisfies H1, H2. If the sequence xn = X(xn−1) does not converge to the set R for some
initial point x0 ∈ C+, then Theorem 1 ensures the existence of a complex fixed point of the function X(s).
Furthermore, if the damping model induces an overdamped motion, the sequence converges to a real eigen-
value but the theorem does not give information about the convergence speed. At this regard, Theorems 2
and 3 state that the Banach’s contraction principle can be applied under certain conditions. The theoretical
results have shown that lightly damped systems with low viscoelasticity present faster convergence to the
eigenvalue.

Given a pair (ζ, ν) the recursive scheme xn = X(xn−1) can be carried out to approximate the eigenvalue,
starting always from the initial point x0 = iωu. Since yn = x∗

n, the sequence {yn} is not of interest provided
that y0 = x∗

0. It is considered that the method has reached a solution when the error defined by

ǫn =

∣

∣

∣

∣

xn − xn−1

x1 − x0

∣

∣

∣

∣

(58)

is lower than the prefixed value ǫmax = 10−12. If λ(ζ, ν) is the eigenvalue obtained as the limit of {xn},
the density plot of

∣

∣X ′
(

λ(ζ, ν)
)
∣

∣ is drawn in Fig. 1 right for ωu = 10 rad/s. It should be noted that for all
pairs (points in the plot) the sequence is convergent since the absolute value of the derivative is always less
than the unity. The lowest values of

∣

∣X ′
(

λ(ζ, ν)
)∣

∣ are located in the UD area with factor 0 < ζ < 1 and
in the OD region. Therefore, it is expected that the recursive method is faster in these zones whereas the
derivative values close to one (on the OD contour) are related with very slow convergence. To illustrate the
convergence of the different zones, nine different cases associated with points C1 to C9 represented in Fig. 1
left.

In Table 2 the approximated eigenvalue xN (N is the number of iterations for ǫN < ǫmax) obtained from
the recursive sequence are listed for the nine cases in the fourth column. Due to the special relevance of
the recursive function derivative X ′(s) = ∂X/∂s, its absolute value evaluated in xN and in the undamped
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Figure 1: Left: underdamped UD, overdamped OD regions in parametric domain (ζ, ν) of Example 1 and points C1 to C9
defined for numerical cases. Right: density plot of |X′ (λ(ζ, ν))| for complex eigenvalue λ(ζ, ν).

eigenvalue are listed in the last two columns. As expected, C5, C8 require a great number of iterations since
the related values of |X ′(λ)| are close to one. On the contrary, low values of |X ′(λ)| as for C1, C2, C3, C6,
C9 produce very fast convergence. Points C6, C9 converge to real eigenvalues since they are inside the OD.
The number of iterations for C4, C7 is one order of magnitude higher due to the closeness of |X ′(λ)| to unity.

In Fig. 2, (first nine plots) the complex–domain paths of the computed sequences have been represented
together (last three plots) with the error–iterations plots for each numerical case. The initial guess x0 is
signaled by a circle and the converged eigenvalue by a square. It can be observed that Cases C1to C3 need
few iterations to approach a neighborhood of the final eigenvalue. In these cases, the Theorem 3 can be ap-
plied and a suitable value of radius r could be found. In the rest of cases, the sequences always converge but
the speed of convergence could be predicted only in a neighborhood of the eigenvalue by means of Theorem 2.

Case ζ ν xN N |X ′(xN )| |X ′(iωu)|
C1 0.50 0.35 −6.49 + 11.88i 27 0.3309 0.2025
C2 0.50 0.20 −6.21 + 9.72i 18 0.1677 0.1212
C3 0.50 0.05 −5.26 + 8.82i 10 0.0315 0.0296
C4 2.00 0.35 −13.07 + 31.76i 193 0.8619 1.3188
C5 2.00 0.08 −61.19 + 32.18i 2983 0.9907 0.3422
C6 2.00 0.03 −43.76 + 0.00i 18 0.1678 0.1291
C7 3.00 0.35 −13.48 + 39.86i 278 0.9025 1.9178
C8 3.00 0.05 −99.15 + 43.96i 9800 0.9972 0.3083
C9 3.00 0.02 −67.97 + 0.00i 18 0.1643 0.1236

Table 2: Example 1: Approximated complex eigenvalues xN from sequence xn = X(xn−1) with initial point x0 = iωu = 10i.
N number of iterations for error ǫN < 10−12.

To complete this example, a few remarks on the application of the method to non–viscous eigenvalues
computation will be made. As known, in a context of oscillatory motion a single dof viscoelastic model can
have real eigenvalues (non–viscous eigenvalues), as well as a single complex conjugate pair. In subsection 2.3
it has been demonstrated that under certain conditions the sequences {xn}, {yn} may converge to some
non–viscous eigenvalue. For the current example, to reach this convergence the derivatives need to verify
either |X ′(σ)| < 1 or |Y ′(σ)| < 1, where σ ∈ R is any non–viscous real eigenvalue. The analytical expression
of these derivatives can be calculated, if X(σ) = σ or Y (σ) = σ then
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Figure 2: Example 1: Complex path of recursive sequence xn from initial guess x0 = iωu = 10i, point ⊙, up to the limit
eigenvalue ⊡, top nine plots. Associated error–iteration ǫn curves, bottom three plots, all for cases in Fig. 1 left.
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X ′(σ) = Y ′(σ) =
ζ σµ ωu

(σ + µ) [σ(σ + µ) + ζµωu]
(59)

For lightly damped systems, non–viscous eigenvalues σ are located close to the pole −µ of the kernel
function, [28]. Then, since the expression σ + µ ≈ 0 appears in the Eq. (59) denominator, it follows that
the lighter the damping the higher the absolute value of the derivatives. For light damping, it is expected
that the sequences {xn}, {yn} will not converge to real numbers. A high level of damping can facilitate
the convergence, resulting in low derivative absolute values that may evenbe less than one. For the current
example, the application of the method to obtain non–viscous eigenvalues gives results that are shown in
Table 3; the same initial point has been taken for both sequences, i.e., x0 = y0. The recursive results are
considered successful if they converge to a real number with iterations that stay within the real domain,
but it can be observed that for all cases the sequence xn = X(xn−1) does not satisfactorily converge to
non–viscous eigenvalues. For example, for cases C1, C2, C3, C7, the sequence {xn} does not stay in the real
domain and finally converges to complex eigenvalues. Cases C6, C9 are over–damped and their sequences
also escapes from the real numbers line before returning to converge to a real number. The sequences of
cases C4, C5, C8 remain inside the real numbers but enter a non convergent infinite loop.

The sequence yn = Y (yn−1) produces quite different results. Convergence occurs for all high damping
cases (C4–C9, in bold) towards non–viscous eigenvalues σ, verifying yn ∈ R, ∀ n ≥ 0. Therefore, the se-
quence reaches the real numbers remaining in the real axis and obviously |Y ′(σ)| < 1. The rest of cases C1,
C2, C3 converge to complex eigenvalues as with xn = X(xn−1).

Iteration sequence of X(s) Iteration sequence of Y (s)
Case x0, y0 xN N |X ′(xN )| yN N |Y ′(yN )|
C1 -21.43 −6.49 + 11.88i 29 0.3309 −6.49 − 11.88i 28 0.3309
C2 -37.50 −6.21 + 9.72i 26 0.1677 −6.21 − 9.72i 18 0.1677
C3 -150.00 −5.26 + 8.82i 11 0.0315 −5.26 − 8.82i 11 0.0315
C4 -14.29 – n.c. 1.4452 −2.422 15 0.1042
C5 -62.50 – n.c. 1.0456 −2.615 10 0.0245
C6 -166.67 −43.76 + 0.00i 18 0.1678 −2.655 8 0.0092
C7 -14.29 −13.48 + 39.86i 276 0.9025 −1.613 12 0.0631
C8 -100.00 – n.c. 0.3078 −1.700 8 0.0091
C9 -250.00 −67.97 + 0.00i 18 0.1643 −1.710 7 0.0036

Table 3: Example 1: Results for non–viscous eigenvalues; cases converging to non–viscous eigenvalues emphasized in bold. N

number of iterations, |X′(xN )|, |Y ′(yN )| recursive function derivative evaluated in sequence limit. Non convergent sequences
named “n.c.”

In this example, it has been shown that the proposed method not only can be used to compute efficiently
complex eigenvalues but also non–viscous ones. Furthermore, the convergence to the latter is achieved when
the damping induced in the system is high. This duality is an important advantage, because the published
methods that are oriented to the calculation non–viscous eigenvalues [28, 29] often assume light damping.

4.2. Example 2: Multiple Degree–of–Freedom Systems

To complete the validation of the numerical method, a four–dof discrete system with four masses and
two types of viscoelastic links is studied, as shown in Fig. 3. Links A relate internal forces with relative
displacements and velocities of consecutive masses (each one an active dof) through a five–kernels Biot’s
model; links B directly constraint each mass through a four–parameter viscoelastic model based on the
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Figure 3: Example 2: Lumped–mass dynamical system with viscoelastic links. Links A follows the Biot’s model with five
kernels, links B based on the fractional derivatives.

Mass (kg) Rigidities (N/m) Natural frequencies (rad/s)
m ka kb ω1 ω2 ω3 ω4

103 105 5×104 9.391 13.718 17.658 20.293

Table 4: Example 2: Mass, static rigidities and modal natural frequencies for the 4–dof undamped system.

fractional derivatives [52]. Indexes j = 0, 5 of fixed boundaries are related with zero dof’s so that u0 = u̇0 =
u5 = u̇5 = 0. Thus, the constitutive equations relating reactions and displacements are

Links A, 1 ≤ j ≤ 5 : Rj−1,j = ka(uj − uj−1) +

∫ t

−∞

Ga(t − τ)(u̇j − u̇j−1) dτ

Links B, 1 ≤ j ≤ 4 : Qj + T γ
r

dγQj

dtγ
= kb

(

uj + c T γ
r

dγuj

dtγ

)

(60)

where c, γ and Tr are the parameters of the damping model based on the fractional derivatives and for real
materials c > 1, 0 < γ < 1, Tr > 0. The coefficients ka, kb are the linear, static rigidities of links A and B,
respectively and the function

Ga(t) =
cv

5

5
∑

l=1

µle
−µlt (61)

is the kernel that controls the damping behavior of links A. The damping coefficient cv = 2mωaζ is expressed
as function of a certain damping ratio ζ and of the reference frequency, ωa =

√

ka/m. Its Laplace transform
is directly

Ga(s) =
cv

5

5
∑

l=1

µl

s + µl

(62)

resulting for links A the following frequency–dependent stiffness relation between internal forces and dof’s

R̂j−1,j(s) =
[

ka + s Ga(s)
] [

ûj(s) − ûj−1(s)
]

(63)

where R̂j−1,j(s) = L{Rj−1,j(t)} and ûj(s) = L{uj(t)} are the Laplace transform of the internal forces and
of the dof’s, respectively.

For viscoelastic links B based on fractional derivatives, an explicit expression of the kernel function
Gb(t) is not analytically available. However, the damping function in the Laplace domain Gb(s) can easily
be calculated simply applying to the fractional derivatives of Eq. (60) the Laplace transform and using its
properties. If Q̂j(s) = L{Qj(t)} is the Laplace transform of the reactions at links B, then

Q̂j(s) = kb

1 + c (Trs)
γ

1 + (Trs)
γ ûj(s) ≡

[

kb + s Gb(s)
]

ûj(s) (64)
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where

Gb(s) =
kb

s

(c − 1)(Trs)
γ

1 + (Trs)
γ (65)

The free–motion equations in the Laplace domain can be obtained assembling the mass and the stiffness
matrices associated with the structural configuration shown in Fig. 3, resulting in an equilibrium similar to
that of Eq. (2)

[

s2M + sG(s) + K
]

û(s) = 0 (66)

where M = mI4, K = kaΠa + kbΠb and G = Ga(s)Πa + Gb(s)Πb, with auxiliary matrices

Πa =









2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2









, Πb = I4 (67)

Table 4 showns the values of mass m, static rigidities ka, kb of the springs and natural frequencies of
the undamped system. Notice that the damping matrix G(s) can be expressed as linear combination of the
stiffness and mass matrices in the following form

G(s) =
Ga(s)

ka

K +
kaGb(s) − kbGa(s)

ka m
M (68)

Under these conditions, the viscoelastic damping matrix G(s) is said to be proportional, [48], and it can be
assured that Γ(s) = ΦT G(s)Φ is diagonal. Thus, according to the theoretical results presented in Sec. 3
and after some operations, the non–dimensional function Jj(s) is

Jj(s) =
φT

j G(s)φj

2mjωj

=
Ga(s)

2ka

ωj +
kaGb(s) − kbGa(s)

2ka m ωj

(69)

where ωj is the undamped frequency of the jth mode. Consequently, the functions Xj(s), Yj(s) defined in
Eqs. (47) can be constructed to compute the complex eigenvalues using the iterative process defined by the
sequence of iterates

x
(n)
j = Xj

(

x
(n−1)
j

)

, y
(n)
j = Yj

(

y
(n−1)
j

)

, 1 ≤ j ≤ 4 (70)

As shown in Theorem 3, the convergence speed depends on the damping level induced in the system by
the viscoelastic model. For this reason, in the current example three separated cases corresponding to
three different damping levels will be studied: lightly damped (LD), moderately damped (MD) and strongly
damped (SD) systems. In order to numerically differentiate these levels, the loss factor peak will be used as
damping index. As known [53, 54, 55, 56, 57], the loss factor of a frequency–domain constitutive equation
is a real–valued and frequency-dependent function defined as the quotient between the imaginary and the
real part of the complex stiffness. Here, the complex stiffness associated with the viscoelastic links of the
structure shown in Fig. 3 are

k̂a(iω) = ka + iω Ga(iω) = Ma(ω) + iLa(ω) = Ma(ω) [1 + iηa(ω)]

k̂b(iω) = kb + iω Gb(iω) = Mb(ω) + iLb(ω) = Mb(ω) [1 + iηb(ω)]

where Ma(ω), Mb(ω) are the real part of the complex stiffness or dynamic modulus; La(ω), Lb(ω) the
imaginary part or loss modulus and finally ηa(ω) = La(ω)/Ma(ω) , ηb(ω) = Lb(ω)/Mb(ω) the loss factors.
In general, for real solid materials, the loss factor presents one maximum peak [52]. The function takes at
the peak a representative value of the induced level of damping ηm named loss factor peak. For the current
viscoelastic links, the loss factor peaks are defined as

ηmA = max
ω≥0

ηa(ω) , ηmB = max
ω≥0

ηb(ω) (71)

Pritz [55] studied the frequency dependence of the loss factor for real solid materials. According to the
experimental evidence, the reference gave the following classification by order of ηm level:
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Links type A Links type B
Cases ζ ηmA c γ ηmB

Lightly Damped 0.007 0.0100 1.135 0.20 0.0100
Moderately Damped 0.078 0.1001 1.860 0.40 0.1003
Strongly Damped 2.000 1.0012 94.00 0.60 1.0091

Table 5: Example 2: Numerical cases and computed loss factor peaks of the viscoelastic links for {µl}
5
l=1 = {5, 10, 13, 18, 40}

rad/s, Tr = 10−3 s.

• Stiff structural materials present light damping with low 0.001 ≤ ηm ≤ 0.01

• Moderately damped materials, such as plastics, with medium 0.01 ≤ ηm ≤ 0.10

• Rubbers and rubber–like materials used for vibrations control, induce high damping level and conse-
quently 0.10 ≤ ηm ≤ 1.0

This classification is used in the current example to differentiate the three numerical cases. The relax-
ation parameters of the Biot’s multiexponential model (links A) are µl = {5, 10, 13, 18, 40} rad/s. For links
B, the relaxation time is Tr = 10−3 s and the rest of parameters, say ζ, c, γ are chosen so that the computed
loss factor peaks given by Eq. (71) take the values: LD is associated with ηm ≈ 0.01, MD with ηm ≈ 0.10
and SD with ηm ≈ 1.00. Table 5 shows the parameters and the calculated loss factor peak values for each
link type, which will be used in the following.

The results of the recursive scheme are presented in Table 6. For each mode, the initial value is the

undamped eigenvalue x
(0)
j = iωj . As before, the iteration sequence continues until the non–dimensional

iterative error ǫ
(n)
j defined as in Eq. (58) is lower than the prefixed value ǫmax = 10−12. The number of com-

puted iterations N shown in the last column increases with the level of damping and as predicted, lightly
damped systems present faster convergence. In Fig. 4 the path traced by the elements of the sequence

{x(n)
j }N

n=0 in the complex plane has been drawn for each of the four modes, top figures. In addition, the
error versus iteration curves have been plotted, bottom figures. For LD, MD the recursive sequences in the
complex plane do not present excessive numerical oscillations around the fixed point (square). However, the
path for SD behaves similarly as those of the highly damped cases from Example 1. In this case, the first
iterations fluctuate, and the error does not decay linearly, a characteristic of contractive functions. Only
when the elements of the sequence are close enough to the fixed point, the rate of decay remains constant.

5. Conclusions

In this paper, a new numerical method to compute the eigenvalues of linear viscoelastic structures is
developed. The method can be implemented for single or multiple degree of freedom systems with a propor-
tional, or lightly non–proportional, damping matrix. Several transformations in the characteristic equation
lead us to find two relevant complex functions to be used in a recursive scheme.

The main theoretical conclusions are presented in three theorems. With the help of fixed point theory,
Theorem 1 demonstrates the existence of complex eigenvalues considered as fixed points of the recursive
functions. Theorems 2 and 3 analyze the convergence of the recursive sequence by means of the Banach fixed
point theorem. It is shown that the convergence speed of the proposed recursive method depends on the
level of damping and on the viscoelasticity. It is proved that systems with low–damping together with low
viscoelasticity present in general faster convergence. For strongly damped structures the iterative process is
slower although the convergence is ensured.
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Mode Initial value Nth-Approx. # Iterations

Cases j x
(0)
j x

(N)
j N

Lightly Damped 1 9.391i −0.0395 + 9.5017i 7
2 13.718i −0.0637 + 13.8311i 7
3 17.658i −0.0865 + 17.7910i 7
4 20.292i −0.1012 + 20.4453i 7

Moderately Damped 1 9.391i −0.3504 + 9.7831i 9
2 13.718i −0.6568 + 14.3957i 10
3 17.658i −0.9195 + 18.7015i 11
4 20.292i −1.0804 + 21.6179i 11

Strongly Damped 1 9.391i −12.4924 + 25.1788i 41
2 13.718i −13.6958 + 37.8174i 56
3 17.658i −14.0601 + 49.3423i 68
4 20.292i −14.1392 + 56.9869i 74

Table 6: Example 2: Approximated eigenvalues xN after N iterations. Sequence is considered to converge if relative error

satisfies ǫ
(N)
j < 10−12.

To illustrate and validate the theoretical results, two numerical examples are analyzed. First, a single
degree of freedom viscoelastic system with a Biot damping model is studied. Since the overdamped region
is available, the level of damping and the speed of the numerical method can be related. In all the numer-
ical cases considered, the recursive sequence has always converged, even when the system is overdamped.
Moreover, this example shows that under certain conditions the method may also be used to obtain non–
viscous eigenvalues. As predicted by the theory, the cases associated with low damping systems converged
faster, and conversely, high damping systems converged slowly. Second, in order to study multiple degree of
freedom systems, a four–mass discrete structure with proportional damping is examined. The damping is
introduced through viscoelastic links using again Biot’s model with five kernels and a damping model based
on the fractional derivatives. With the objective to relate the level of damping with the convergence three
cases with different levels are studied. Further research is currently being developed by the authors for the
generalization of the method for multiple degrees of freedom systems including a damping matrix whose
non–proportionality cannot be neglected.

Appendix A. Proof of properties P1 to P5

Proof of P1. The complex functions X(s), Y (s) defined in Eqs. (10) can be considered a composition of
analytical functions. Hence, X = ωu(f ◦ J), Y = ωu(g ◦ J), where

f(z) = −z + i
√

1 − z2 , g(z) = −z − i
√

1 − z2 (A.1)

are analytical functions for any z ∈ C except in the set {z ∈ R : |z| ≥ 1}. Therefore, from the functions’
composition properties, X(s), Y (s) are analytical in the set where J(s) is, except in points of the region
B = {z ∈ R : |J(z)| ≥ 1} where the square root is not analytical.

Proof of P2. Since X(s), Y (s) are analytical and consequently holomorphic in the set A, then

X∗(s) = ωu

[

−J(s) + i
√

1 − J2(s)
]∗

= ωu

[

−J(s∗) + (−i)
√

1 − J2(s∗)
]

= Y (s∗) (A.2)
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Figure 4: Example 2: Four mode paths in complex plane of iterates’ sequence from initial point ⊙ to limit eigenvalue ⊡ for

Lightly, Moderately and Strongly Damped, top figures. Associated error ǫ
(n)
j , bottom figures.

Proof of P3. Let z ∈ A be a fixed point of X(s), then z = X(z). Taking the complex conjugate of both
terms and using P2, it follows that z∗ = X∗(z) = Y (z∗), from where z∗ is a fixed point of Y (s). It is clear
that using the same principle the reciprocal also holds.

Proof of P4. From the hypothesis H3, J(s) ∈ C, ∀ s ∈ C. Due to X = ωu(f ◦ J), it follows that X(C) ⊂ C+

holds only if f(C) ⊂ C+. Taking a complex number z = x+ iy ∈ C, it is necessary to prove that ℑ{f(z)} > 0.
By the definition of the imaginary part of a complex number

ℑ{f(z)} =
f(z) − f∗(z)

2i
=

1

2i

(

−z + i
√

1 − z2 + z∗ − (−i)
√

1 − z∗2
)

= −z − z∗

2i
+

√
1 − z2 +

√
1 − z∗2

2i
= −ℑ{z} + ℜ{

√

1 − z2} (A.3)

Let now u + iv ∈ C be the main square root of 1 − z2, then (u + iv)2 = 1 − z2 = 1 − (x + iy)2 where
u = ℜ{

√
1 − z2} ≥ 0. Let us calculate u by identification of real and imaginary parts in the previous

equality

u2 − v2 = 1 − x2 + y2 , uv = −xy (A.4)

From the expression, an equation in only the variable u may be deduced. Thus, the real part u may be
computed as a root of the four–order polynomial u4 − ρu2 − (xy)2 = 0, where ρ = 1 − x2 + y2. Therefore,
cases x = 0, x 6= 0 must be considered separately.

If x = 0 then ρ = 1+ y2 and the polynomial equation leads to u2(u2 −1− y2) = 0, hence, either u = 0 or
u2 = 1 + y2. For the first, it is verified from Eq. (A.4) that −v2 = 1 + y2 > 0, a contradiction; consequently
u2 = 1 + y2. The negative solution is not of interest since u is defined by a main square root. Therefore

u = ℜ{
√

1 − z2} =
√

1 + y2 > y = ℑ{z} ⇒ ℑ{f(z)} > 0. (A.5)
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If x 6= 0, the solutions of the four–order polynomial can be expressed in the form u2 =
(

ρ ±
√

ρ2 + 4(xy)2
)

/2.

Since u2 > 0, the solution ρ −
√

ρ2 + 4(xy)2 < 0 must be rejected. Now, let us suppose that u =

ℜ{
√

1 − z2} ≤ y = ℑ{z} in order to arrive to a contradiction

0 ≤ u ≤ y ⇒ 2u2 ≤ 2y2 ⇒ ρ +
√

ρ2 + 4(xy)2 ≤ 2y2 ⇒
√

ρ2 + 4(xy)2 ≤ 2y2 − ρ ⇒ ρ2 + 4(xy)2 ≤ 4y2 − 4y2ρ + ρ2 ⇒
x2 ≤ y2 − ρ = y2 − 1 + x2 − y2 ⇒ 0 ≤ −1 (A.6)

The last inequality is the contradiction, for this reason necessarily ℑ{f(z)} = u − y > 0 also for x 6= 0.
Therefore, ℑ{X(s)} > 0, ∀ s ∈ C that is equivalent to X(C) ⊂ C+.

Now, if s ∈ C, then X(s∗) ∈ C+ and ℑ{X(s∗)} > 0. Therefore ℑ{X∗(s∗)} = ℑ{Y (s)} < 0 that proves
the property for the function Y (s).

Proof of P5. Let us consider an element x ∈ B ⊂ R. From the definition of the set B, |J(x)| ≥ 1 is verified
and from the main hypothesis of the propery J(R) ⊂ R, therefore, z = J(x) ∈ R. Thus, the number 1−z2 ≤ 0
and

√
1 − z2 = i

√

|1 − z2| is pure imaginary. Hence, the value of the function is f(z) = −z−
√

|1 − z2| ∈ R

so that X(B) ⊂ R.

Now, let us consider a number x ∈ R \ B and by definition |J(x)| < 1 and 1 − z2 > 0. Consequently,
ℑ{f(z)} =

√
1 − z2 > 0 whence ℑ{X(x)} > 0 or, in set inclusion notation, X(R \ B) ⊂ C+. For statements

Y (B) ⊂ R and Y (R \ B) ⊂ C−, the same procedure as that of X(s) can be used.
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