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Abstract

This paper is concerned with the development of high-order well-balanced central schemes to solve
the shallow water equations in two spatial dimensions. A Runge-Kutta scheme with a natural con-
tinuous extension is applied for time discretization. A Gaussian quadrature rule is used to evaluate
time integrals and a three-degree polynomial which calculates point-values from cell averages or
flux values by avoiding the increase in the number of solution extrema at the interior of each cell
is used as reconstruction operator. That polynomial also guarantees that the number of extrema
does not exceed the initial number of extrema and thus it avoids spurious numerical oscillations
in the computed solution. A new procedure has been defined to evaluate the flux integrals and
to approach the 2D source term integrals in order to verify the exact C-property, using the water
surface elevation instead of the water depth as a variable. Numerical experiments have confirmed
the high-resolution properties of our numerical scheme in 2D test problems. The well-balanced
property of the resulting scheme has also been investigated.
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1. Introduction

The shallow water equations with a non-flat bottom topography are used to model flows in
rivers and coastal areas. They have wide applications in ocean and hydraulic engineering. For
example, tidal flows in estuary and coastal water region, bore wave propagation, river flows, . . .
(see [25]). These equations have still water steady state solutions in which the flux gradients are
balanced by the source term. It is desirable to develop numerical methods which preserve exactly
these steady state solutions. The shallow water equations have initially been approached in the
framework of upwind schemes. In this context, Bermúdez and Vázquez [3] proposed the idea of the
exact C-property which means that the scheme is exact when applied to the stationary case. After
the pioneer work of Greenberg and Leroux [11], schemes that preserve the lake at rest are called
well-balanced. During the last years, several schemes have been proposed according to the well-
balanced strategy (see [24], [4], [7], [8]). In [9], a high-order well-balanced finite volume upwind
scheme was developed within a general nonconservative framework. It is a challenge to obtain
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schemes that compute solutions with high-order accuracy (both in space and time) in the regions
where they are smooth, while at the same time shock discontinuities are properly captured (see
[10]).

The weighted essential non-oscillatory (WENO) schemes described in [12] uses the idea of adap-
tive stencils in the reconstruction procedure based on the local smoothness of the numerical solution
to automatically achieve high order accuracy and a non-oscillatory property near discontinuities.
The WENO method has been developed in recent years as a class of high order methods for the
shallow water equations (see [23] or [16]), which gives non-oscillatory discontinuity transitions and
high order accurate resolutions for the smooth part of the solution. In [16] the performance of the
upwind WENO schemes has been investigated, with the objective of obtaining better performance
for the shallow water equations by choosing suitable numerical fluxes. The main advantage of
that upwind schemes is its strong physical basis, which allows to obtain good resolution and the
maximum reduction of unphysical oscillations near shocks (see [21]). On the other hand, the re-
quired knowledge of the eigensystem is a strong limit to the versatility of the upwind finite volume
schemes [7].

The alternative approach is the central schemes whose origin is the second-order Nessyahu-
Tadmor staggered method [18]. Central schemes of Bianco et al. [5], Levy et al. [14], Pareschi
et al. [19] or Balaguer-Beser [2] are particularly useful when the eigensystem of the equations is
very complex or even unknown. Balaguer and Conde [1] compare the accuracy of upwind and
central schemes to solve scalar conservation laws. They prove that upwind and central schemes
have a similar order of accuracy when both numerical schemes use the same reconstruction oper-
ator. High-order well-balanced central WENO schemes have also been described for the shallow
water equations by Caleffi et al. [6], which do not require to use the projection of the equations
along characteristic directions. Capilla and Balaguer-Beser [8] have applied the methodology of
[6] to solve the one-dimensional sediment transport equations using the same temporal integration
scheme. However the WENO spatial reconstruction is replaced by a point value reconstruction
algorithm based on average or flux values, which satisfies the monotonicity preserving property.
The agreement between the results of [8] and what is reported in literature has been confirmed,
showing the versatility and the capability of the proposed scheme that consists of a high-order
finite volume scheme with simplified numerical flux evaluation.

In this paper, we present an extension of the central schemes described in [8] for the two-
dimensional shallow water equations. We will define a new central finite volume scheme which
maintains the exact C-property and it is high-order accurate. For space discretization we will
extend the one-dimensional reconstruction procedure defined by Balaguer and Conde in [1] to the
case of rectangular meshes, in the framework of the two-dimensional central schemes described
in Levy et al. [14]. Interpolation procedure will use centered three-degree polynomials with a
modification on the slope at the midpoint of the stencil, which has been designed so that the
resulting polynomial has the same type of monotony of the interpolated data.

The outline of the paper is as follows. Section 2 shows the two dimensional shallow water
systems, which have been manipulated in order to use the water surface elevation instead of the
water depth. Section 3 describes the central scheme using a Runge-Kutta scheme with a natural
continuous extension for time discretization. A special attention is paid to the reconstruction of
point-values and averages at time tn. The new procedure designed for the source term integration
is presented in subsection 3.2. The reconstruction of the Runge-Kutta fluxes defined in [6] has
been extended to two dimensions in space in subsection 3.3. Section 4 analyzes the well-balanced
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properties of our scheme showing the C-property verification. Finally, some numerical tests are
performed to verify the well-balanced property, high-order accuracy, and good resolution for smooth
and discontinuous solutions.

2. Two dimensional shallow water systems

The shallow water system in two spatial dimensions takes the form:































ht + (q1)x + (q2)y = 0 ,

(q1)t +

(

q21
h

+
1

2
gh2
)

x

+
(q1 q2

h

)

y
= −gh(Zb)x ,

(q2)t +
(q1 q2

h

)

x
+

(

q22
h

+
1

2
gh2
)

y

= −gh(Zb)y ,

(1)

which are the equations governing the flow of a shallow layer of homogeneous fluid in a two dimen-
sional domain D ⊂ R

2. In the equations, h(x, y, t) is the water depth; qj(x, y, t) is the component
of the discharge ~q in the direction j, related to the velocity of the fluid ~v = (v1(x, y, t), v2(x, y, t))
by the expression qj(x, y, t) = h(x, y, t) ·vj(x, y, t); Zb(x, y) is the function that specifies the bottom
topography and g is the gravity acceleration.

We manipulate the system in Equation (1) in order to use the water surface elevation η(x, y, t) =
h(x, y, t) + Zb(x, y) instead of the water depth; then the shallow water system can be written as:





η
q1
q2





t

+







q1
q21

η−Zb
+ 1

2g(η − Zb)
2

q1q2
η−Zb







x

+







q2
q1q2
η−Zb

q2
2

η−Zb
+ 1

2g(η − Zb)
2







y

=





0
−g(η − Zb)(Zb)x
−g(η − Zb)(Zb)y



 . (2)

System (2) can be expressed as:

ut + f(u)x + g(u)y = s(x, y, u) . (3)

Here, u = (h, q1, q2)
T is the vector of conservative variables, where the superscript T denotes the

transpose of a vector (or of a matrix); f(u) and g(u) are the flux vector valued functions and
s(x, y, u) is the source term which models the effects of the shape of the bottom on the flow.

We consider only flows over wet bed, h(x, y, t) > ǫ > 0, for all x, y, t. The extension to dry

flows (h(x, y, t) ≥ 0) will be reported elsewhere. In the simplified case of flat bottom, in which
we will assume Zb(x, y) = 0 for all (x, y), system (2) expresses the conservation of the total water
height η = h and of the discharge ~q in presence of the gravity force.

In [8] we presented a high-order well-balanced numerical scheme for solving the one dimen-
sional shallow water system. In this paper, the numerical scheme of [8] is extended to two spatial
dimensions using a uniform rectangular grid and following the methodology developed in [2] and
[14]. In the next sections we develop the numerical model adapting it to the resolution of the two
dimensional shallow water system (2). This involves designing a new source term treatment to
verify the exact C-property.
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3. Central scheme

We consider that the time interval is discretized into NT values, being ∆t the time step, where
tn = n · ∆t for n = 0, 1, 2, ..., NT. The spatial discretization of the domain is based on the mesh
sizes ∆x and ∆y in x and y directions respectively, so we use in the calculations the grid defined by
the points xi = xi−1 +∆x and yj = yj−1 +∆y, and the staggered grid defined by xi+ 1

2

= xi +
∆x
2

and yj+ 1

2

= yj +
∆y
2 , for i = 1, 2, ..., NX and j = 1, 2, ... NY.

The central finite volume method integrates the system (2) with respect to the spatial and
time variables over the control volume Ii+ 1

2
,j+ 1

2

× [tn, tn+1], being Ii+ 1

2
,j+ 1

2

= [xi, xi+1]× [yj, yj+1],

resulting with

u
n+1
i+ 1

2
,j+ 1

2

= u
n
i+ 1

2
,j+ 1

2
− 1

∆x∆y

∫ tn+1

tn

{

∫ yj+1

yj

[fi+1(y, τ) − fi(y, τ)] dy

}

dτ

− 1

∆x∆y

∫ tn+1

tn

{
∫ xi+1

xi

[gj+1(x, τ)− gj(x, τ)] dx

}

dτ +

∫ tn+1

tn
si+ 1

2
,j+ 1

2

(τ) dτ , (4)

where for simplicity of notation we have denoted fi(y, t) = f(u(xi, y, t)) and gj(x, t) = g(u(x, yj , t)).
The first integral on the right-hand side (rhs) of (4) is the cell average of the function u(x, y, tn)
on the staggered cell Ii+ 1

2
,j+ 1

2

, given by

u
n
i+ 1

2
,j+ 1

2
=

1

∆x∆y

∫ xi+1

xi

∫ yj+1

yj

u(x, y, tn) dy dx , (5)

and the cell average in the last time integral on the rhs of (4) is

si+ 1

2
,j+ 1

2

(τ) =
1

∆x∆y

∫ xi+1

xi

∫ yj+1

yj

s(u(x, y, τ)) dy dx . (6)

In order to obtain the fourth order accuracy in time, a Gaussian quadrature with two integration
nodes is selected to evaluate the time flux integrals in Equation (4), for example:

∫ tn+1

tn
f(u(xi, yj , z))dz =

∆t

2

(

f(ûn+β0

i,j ) + f(ûn+β1

i,j )
)

, (7)

where ûn+βk

i,j = u(xi, yj, t
n + βk∆t), k = 0, 1, being

β0 =

(

1− 1/
√
3

2

)

, β1 =

(

1 + 1/
√
3

2

)

. (8)

According to [14], the following centered quadrature rule in space is used for the integrals in space:
∫ yj+1

yj

fi(y, t)dy =
∆y

24
[−fi(yj+2, t) + 13fi(yj+1, t) + 13fi(yj , t)− fi(yj−1, t)] . (9)

In this way, the quadrature rule for approximating the integrals of the fluxes involves nodes on the
segments (xi, yj)× [tn, tn+1] where the solution remains smooth.

In the next subsections we present a summary of the procedure involved in a computational
time step to obtain the cell-averages u

n+1
i+ 1

2
,j+ 1

2

at the next time step tn+1, starting from Equation

(4).
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3.1. Reconstruction at time tn of point-values and averaged values

At time tn we start the reconstruction with a given fourth order approximation of the following
cell averages:

u
n
i,j =

1

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

u(x, y, tn) dy dx . (10)

We will denote by Ii,j the cell centered around the grid point (xi, yj): Ii,j = [xi− 1

2

, xi+ 1

2

] ×
[yj− 1

2

, yj+ 1

2

]. A two-dimensional piecewise-polynomial reconstruction is computed from the data

{un
i,j} resulting with

Ri,j(x, y;u
n
) ≡ Ri,j(x, y, t

n) = u(x, y, tn) +O(h4) , ∀x, y ∈ Ii,j , (11)

where h = ∆x = ∆y and Ri,j(x, y, t
n) is a bicubic polynomial obtained simply through the tensor

product of two one-dimensional interpolating polynomials, which were defined and analyzed in
[1]. Also, we used these 1D reconstruction polynomials in the numerical model and applications
presented in a previous work [8]. Those 1D polynomials take this form:

Qi,j(x;u
n
) = u

n
i,j + θni

(

−uni−1,j + 2u
n
i,j − u

n
i+1,j

24
+

(

u
n
i−1,j − u

n
i+1,j + 10dni
8

)

(

x− xi
∆x

)

+

(

u
n
i−1,j − 2u

n
i,j + u

n
i+1,j

2

)

(

x− xi
∆x

)2

+

(

−uni−1,j + u
n
i+1,j − 2dni
2

)

(

x− xi
∆x

)3
)

. (12)

Parameter dni is defined in order to verify some shape-preserving properties when the cell-averages
form a monotone sequence (see [1]) and parameter θni is defined so as to eliminate spurious interface
extrema (see [15]). The definition of dni may cause that the resulting numerical scheme not to be of
order O((△x)4) in a small number of cells, especially near a local maximum, a local minimum, or
a discontinuity. That will be commented below in numerical experiments. dni takes a value equal
to zero in the case where the solution is reconstructed from constant average values. This will be
useful in the C-property verification (Section 4). Full details of the definition of θni and dni are
given in [8], pages 22-23.

The 2D-reconstruction polynomial is defined using (12) so that:

Ri,j(x, y;u
n
) = Qi,j(y;Q(x;u

n
)) . (13)

The cell averages, u
n
i+ 1

2
,j+ 1

2

in Equation (5) can be approximated using the polynomials:

Ri+1,j+1(x, y, t
n), Ri,j+1(x, y, t

n), Ri+1,j(x, y, t
n) and Ri,j(x, y, t

n) on the corresponding quarter
cells, using a Gaussian quadrature rule. Let Imi,j, m = 1, ..., 4 denote the four quarters of the cell

Ii,j, with I
1
i,j being the upper-right quarter, while the other three quarters are numbered clockwise,

as can bee seen in Figure 1.
A fourth-order computation of the cell averages in (5) is obtained through the averages of

Ri,j(x, y, t
n) over the four quarter cells:

R
(m)

i,j ≃ 1

∆x∆y

∫

Imi,j

Ri,j(x, y, t
n)dx dy , m = 1, ..., 4 . (14)
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i−1/2, j+1/2 i+1/2, j+1/2

i−1/2, j−1/2 i+1/2, j−1/2

■

■■

■

■

4 1

3 2

i,j

Figure 1: The quarter cells of the cell Ii,j .

Then the cell average of the solution in (5) is the sum of the four quarter-cell averages defined in
(14):

u
n
i+ 1

2
,j+ 1

2

= R
(1)

i,j +R
(2)

i,j+1 +R
(3)

i+1,j+1 +R
(4)

i+1,j .

Using the reconstruction polynomials Ri,j(x, y, t
n), we also approximate the point-values ûni,j at

time tn on the non-staggered grid.

3.2. Source term integration

The second component of the cell average of the source term in (6) is given by

s
[2]

i+ 1

2
,j+ 1

2

=
1

∆y

∫ yj+1

yj

(−1

∆x

∫ xi+1

xi

g(η − Zb)
∂Zb

∂x
dx

)

dy . (15)

Following the procedure described in [8], an integration by parts with respect to the x variable is
performed, in order to involve the spatial derivative of the free surface elevation instead of the bed
elevation. This was suggested by Caleffi et al. in [6] for the one dimensional case. Thus, initially
we compute:

s
[2]

i+ 1

2

(y) =
−1

∆x

∫ xi+1

xi

g(η(x, y) − Zb(x, y))
∂Zb(x, y)

∂x
dx

=
g

2∆x

[

Ẑ2
b,i+1(y)− Ẑ2

b,i(y)− 2η̂i+1(y)Ẑb,i+1(y) + 2η̂i(y)Ẑb,i(y)
]

(16)

+
1

∆x

∫ xi+1

xi

ψ(x, y) dx ,

where ψ(x, y) = g ·Zb(x, y) · ∂η(x,y)∂x
. We obtain a formulation which is preferable for the numerical

integration of the bed slope source terms because it involves the spatial derivative of the free
surface elevation instead of the spatial derivative of the bed elevation and, in general, the free
surface profile is more regular than the bed profile, even if the solution is discontinuous. Moreover,
the integration by parts used in equation (16) is essential to get the C-property verification, as it
will be demonstrated below in Section 4.

The spatial integral in Equation (15) in the y variable is evaluated using a centered quadrature
rule:

s
[2]

i+ 1

2
,j+ 1

2

=
1

24

[

−s[2]
i+ 1

2

(yj+2) + 13 s
[2]

i+ 1

2

(yj+1) + 13 s
[2]

i+ 1

2

(yj)− s
[2]

i+ 1

2

(yj−1)

]

. (17)
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In a similar way we evaluate the third component of the averaged source term in (6), obtaining:

s
[3]

j+ 1

2

(x) =
g

2∆y

[

Ẑ2
b,j+1(x)− Ẑ2

b,j(x)− 2η̂j+1(x)Ẑb,j+1(x) + 2η̂j(x)Ẑb,j(x)
]

(18)

+
1

∆y

∫ yj+1

yj

φ(x, y) dy ,

where φ(x, y) = g · Zb(x, y) · ∂η(x,y)
∂y

and

∫ yj+1

yj

φ(x, y) dy =

∫ yj+
△y

2

yj

Pj,x(y; φ̂) dy +

∫ yj+1

yj+
△y

2

Pj+1,x(y; φ̂) dy,

where the interpolating three-degree polynomial Pj,x(y; φ̂) approximates point values starting from
point-values (see [8]). Again, we apply a centered quadrature rule for the integral with respect to
the x variable.

The source term time integral in (4) is also evaluated using a Gaussian quadrature rule with
two nodes:

∫ tn+1

tn
si+ 1

2
,j+ 1

2

(τ) dτ =
∆t

2

(

s
n+β0

i+ 1

2
,j+ 1

2

+ s
n+β1

i+ 1

2
,j+ 1

2

)

, (19)

where

s
n+βk

i+ 1

2
,j+ 1

2

=
1

∆x∆y

∫ xi+1

xi

∫ yj+1

yj

s(u(x, y, tn + βk∆t)) dy dx , k = 0, 1 , (20)

and the constants β0 and β1 where defined in (8).

3.3. Reconstruction of Runge-Kutta fluxes

In order to evaluate the time integrals of the source term (19) and the time flux integrals

in (7) we have to predict the point-values of the solution at two intermediate states: ûn+βk

i,j ≡
u(xi, yj , t

n+βk ∆t), k = 0, 1. The prediction of these intermediate values at times tn+β0 and tn+β1

is obtained by means of a Runge-Kutta scheme coupled with the natural continuous extension
(NCE) [5]:

ûn+βk

i,j ≡ u(xi, yj, t
n + βk ∆t) = ûni,j +∆t

4
∑

l=1

bl(βk) k
(l)
i,j , (21)

where the constants bl(βk) are given in [8] and k
(l)
i,j , 1 ≤ l ≤ 4, are the Runge-Kutta fluxes, which

coincide with a numerical evaluation of (−fx − gy + s) in the shallow water system (3). We use

the point-values of the solution {û(l)k1,j} with k1 ∈ {i − 2, i − 1, i, i + 1, i + 2}, and {û(l)i,k2} with

k2 ∈ {j − 2, j − 1, j, j + 1, j + 2}, to calculate the functions F j
i and Gi

j respectively, defined by

F j
i (xk1 ; û) = − [f(ûk1,j)− f(ûi,j)] +







0
1
2g
[

(η̂i,j − Ẑb,k1(yj))
2 − (η̂i,j − Ẑb,i(yj))

2
]

0






,

Gi
j(yk2 ; û) = − [g(ûi,k2)− g(ûi,j)] +







0
0

1
2g
[

(η̂i,j − Ẑb,k2(xi))
2 − (η̂i,j − Ẑb,j(xi))

2
]






, (22)
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where for simplicity we have omitted the index (l) from û
(l)
i,j . Equation (22) is a two-dimensional

extension of the definition presented in [6, 8]. This definition, (22), guarantees that the numerical
scheme maintains the exact C-property. We use the computed point-values of the functions F j

i

and Gi
j to calculate the interpolating polynomials Pi(x;F

j
i ) and Pj(y;G

i
j). The evaluation of the

Runge-Kutta fluxes is approximated using these interpolating polynomials, by means of:

k
(l)
i,j ≡ ki,j =

dPi(x;F
j)

dx
+
dPj(y;G

i)

dy
, (23)

where:

Pi(x;F
j) = F j

i + θji

[

dP j
i ·
(

x− xi
∆x

)

+

(

F j
i−1 − 2F j

i + F j
i+1

2

)

·
(

x− xi
∆x

)2

+

(

−F j
i−1 + F j

i+1 − 2dP j
i

2

)

·
(

x− xi
∆x

)3
]

. (24)

Again, θji and dP j
i are defined in order to avoid the appearance of false extrema on the numerical

solution. For more details about these parameters we refer the reader to [1] and [8].

4. C -property verification

In this Section we will prove that our numerical scheme satisfies the exact C-property. It can
be verified that in case of quiescent flow, starting from η

n
i,j = η∗ constant and qk

n
;i,j = 0, where

qk = vkh, for k = 1, 2, gives η
n+2
i,j = η̂ n+2

i,j = η∗ and qk
n+2
;i,j = q̂k

n+2
;i,j = 0, ∀n. This means

that, starting from the mentioned initial conditions, the scheme maintains the steadiness of the
point-values and the cell averages of the solution.

4.1. C-property for point-values

In the case of quiescent flow, the scheme must preserve the steadiness of the point-value solution,
i.e., ûn+βk

i,j = ûni,j, for k = 0, 1. The time evolution of point-values is described by Equation (21),
thus, to achieve this result, we have to demonstrate that the Runge-Kutta fluxes ki,j = 0, ∀ i, j,
when q1 = v1h = 0, q2 = v2h = 0 and η = η∗ = constant. We will see that in case of quiescent flow,
each component of the functions F j

i and Gi
j defined in (22), is identically zero. From Equations

(2), (3) and (22) it can be seen through direct calculations that the first and third components of
F j
i are identically zero. Analogously, the first and second components of Gi

j are zero.

For the second component of F j
i we have:

F
j;[2]
i (xk; û) = −

[

f [2](ûk,j)− f [2](ûi,j)
]

+
1

2
g
[

(η̂i,j − Ẑb,k(yj))
2 − (η̂i,j − Ẑb,i(yj))

2
]

,

where f [2](ûi,j) is the second component of the flux function f(u) at x = xi and y = yj. If
q1 = q2 = 0 and η = η∗, then

−
[

f [2](ûk,j)− f [2](ûi,j)
]

= −1

2
g
[

(η∗ − Ẑb,k(yj))
2 − (η∗ − Ẑb,i(yj))

2
]

,

and therefore the second component of F j
i is also identically zero. Similarly, we obtain that the

third component of Gi
j is zero, and then the point-values F̂ j

i (xk; û) = Ĝi
j(yk; û) = 0, ∀ i, j, k.

Consequently, the polynomials Pi(x;F
j
i ) and Pj(y;G

i
j) in (23) are zero for any x and y, and then

ki,j = 0, ∀ i, j.
8



4.2. C-property for cell averages

The steadiness of the cell averages of the solution, i.e., u
n+2
i,j = u

n
i,j, in the case of quiescent

flow, must be verified. To achieve this result, it is sufficient to show that in the following equations
the vector valued term in square brackets is zero, for water at rest:

u
n+1
i+ 1

2
,j+ 1

2

= u
n
i+ 1

2
,j+ 1

2

− 1

∆x∆y

∫ tn+1

tn

[

∫ yj+1

yj

(fi+1(y, τ) − fi(y, τ)) dy

+

∫ xi+1

xi

(gj+1(x, τ) − gj(x, τ)) dx−∆x∆y si+ 1

2
,j+ 1

2

(τ)

]

dτ , (25)

u
n+2
i,j = u

n+1
i,j − 1

∆x∆y

∫ tn+2

tn+1





∫ y
j+1

2

y
j− 1

2

(

fi+ 1

2

(y, τ)− fi− 1

2

(y, τ)
)

dy

+

∫ x
i+1

2

x
i− 1

2

(

gj+ 1

2

(x, τ)− gj− 1

2

(x, τ)
)

dx−∆x∆y si,j(τ)



 dτ , (26)

so that
η
n+2
i,j = η

n+1
i,j = η

n+1
i+ 1

2
,j+ 1

2

= η
n
i+ 1

2
,j+ 1

2

= η∗

and
qk

n+2
;i,j = qk

n+1
;i,j = qk

n+1
;i+ 1

2
,j+ 1

2

= qk
n
;i+ 1

2
,j+ 1

2

= 0 .

We can notice that starting from η
n
i,j = η∗,∀i, j, it can be verified that Ri,j(x, y, t

n) = η∗,∀(x, y) ∈
Imi,j, ,∀i, j, 1 ≤ m ≤ 4 (see Figure 1). Then, according to equation (14), R

(m)

i,j = η∗

4 ,∀i, j, 1 ≤ m ≤ 4
and:

η
n
i+ 1

2
,j+ 1

2
= R

(1)

i,j +R
(2)

i,j+1 +R
(3)

i+1,j+1 +R
(4)

i+1,j = η∗ .

In a similar way, we can prove that qk
n
;i+ 1

2
,j+ 1

2

= 0.

After applying equation (25) we get η
n+1
i+ 1

2
,j+ 1

2

= η
n
i+ 1

2
,j+ 1

2

= η∗,∀i, j. In this case, we can

check that Ri+ 1

2
,j+ 1

2

(x, y, tn) = η∗,∀(x, y) ∈ Im
i+ 1

2
,j+ 1

2

,∀i, j, 1 ≤ m ≤ 4. Then, we obtain that

R
(m)

i+ 1

2
,j+ 1

2
= η∗

4 ,∀i, j, 1 ≤ m ≤ 4 so:

η
n+1
i,j = R

(1)

i− 1

2
,j− 1

2
+R

(2)

i− 1

2
,j+ 1

2
+R

(3)

i+ 1

2
,j+ 1

2
+R

(4)

i+ 1

2
,j− 1

2
= η∗ .

Similarly it holds that qk
n
;i,j = 0. From equation (26) we obtain that η

n+2
i,j = η

n+1
i,j = η∗ and

qk
n+2
;i,j = qk

n+1
;i,j = 0.

It can be seen from Equation (2), that the first component of the term in square brackets in
(25) (similarly in (26)) is identically zero. We have to prove that the second and third components
of this term are zero. Remembering Equation (16) and assuming η̂i(y) = η̂i+1(y) = η∗ = constant,
the second component of the term in square brackets in (25) may be written as:

∫ yj+1

yj

[

f
[2]
i+1(y, τ)− f

[2]
i (y, τ)

]

dy −∆x

∫ yj+1

yj

s
[2]

i+ 1

2

(y, τ) dy (27)
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=

∫ yj+1

yj

1

2
g
[

(η∗ − Ẑb,i+1(y))
2 − (η∗ − Ẑb,i(y))

2
]

dy

−
∫ yj+1

yj

[

1

2
g(Ẑ2

b,i+1(y)− Ẑ2
b,i(y))− gη∗(Ẑb,i+1(y)− Ẑb,i(y)) + ∆xψi+ 1

2

(y)

]

dy

= −∆x

∫ yj+1

yj

ψi+ 1

2

(y) dy,

where ψi+ 1

2

(y) is the cell average of the function ψ(x, y) = g Zb(x, y)
∂η
∂x

on the cell [xi, xi+1].

In a similar way, it can be proved that the third component of the term in square brackets in
(25) is equal to −∆y

∫ xi+1

xi
φj+ 1

2

(x) dx, where φ(x, y) = g Zb(x, y)
∂η
∂y
, so if ψi+ 1

2

(y) and φj+ 1

2

(x)

are zero then the terms in square brackets are also zero. In the case of quiescent flow, if η̂i,j are

constants ∀ i, j, then the free surface derivatives η̂′i,j = 0. Consequently, the point-values ψ̂i,j and

φ̂i,j are zero. Finally, the cell averages of the functions ψ and φ are approximated using the point-

values ψ̂i,j and φ̂i,j , and therefore if ψ̂i,j = φ̂i,j = 0 also the averaged values ψi+ 1

2

(y) and φj+ 1

2

(x)

are zero, and the C-property verification for cell averages is proved.

5. Applications

In this Section we examine the behaviour and accuracy of the numerical scheme, in several
numerical tests. We show a numerical verification of the exact C-property and we present results
for several standard tests proposed in the literature. In all cases, we consider ∆x = ∆y for the
spatial steps. In order to assure numerical stability, an adaptive time step satisfying the following
CFL-like condition [14], which is related to the numerical stability of the Runge-Kutta scheme
used, must be selected:

∆t <
h

2

1

max(|σx|, |σy|)
,

where σx and σy are the largest (in modulus) eigenvalues of the Jacobian of f and g (3), and
h = ∆x = ∆y. However, we focus the attention on the behaviour of the central scheme described
in the paper. Thus, all calculations have been performed using a fixed mesh ratio, ∆t/h = 0.0025,
obtaining a good convergence and numerical stability. This makes the scheme particularly adapt-
able to other type of problems.

The numerical scheme developed in previous sections has been implemented into a FORTRAN
code. All calculations have been performed on a personal computer Intel Core(TM) i5-3550 - 3.30
GHz with 8 Gb RAM.

5.1. Test for the exact C-property

This test, presented in [22], is used to verify numerically that our scheme maintains the exact
C-property over a non flat bottom. The bottom topography is given by a two-dimensional hump:

Zb(x, y) = 0.8 e−50((x−0.5)2+(y−0.5)2) , x, y ∈ [0, 1] .

As initial condition for the water depth we set h(x, y, 0) = 1−Zb(x, y) and the initial velocity is set
to be zero: q1(x, y, 0) = q2(x, y, 0) = 0. This surface should remain flat. We consider a rectangular
mesh with ∆x = ∆y = 0.01 which corresponds to a NX=NY=100 uniform mesh. Table 1 contains
the L1 and L∞ errors at time t = 0.05 s, for the water height h and the two components of the
discharge q1 and q2.

From these results, we can conclude that the exact C-property is verified.
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Unknowns h q1 q2
L1 0 0 0
L∞ 0 0 0

Table 1: L1 and L∞ errors for the C-property analysis

5.2. A two-dimensional accuracy test

In order to check the accuracy of the numerical scheme, we consider a test proposed in [22],
that involves a smooth solution of the 2D shallow water system. The computational domain is the
unit square and the bottom topography is defined as

Zb(x, y) = sin(2πx) + cos(2πy) .

The initial conditions for the water depth and the discharge are given by

h(x, y, 0) = 10 + esin(2πx) cos(2πy) ,

q1(x, y, 0) = sin(cos(2πx)) sin(2πy) , q2(x, y, 0) = cos(2πx) cos(sin(2πy)) .

Periodic boundary conditions have been imposed. The numerical solution is computed at the
ending time t = 0.05 s. We use our numerical scheme on a mesh with (1024 × 1024) grid points
and we take this solution as the reference solution. Table 2 shows the L∞ errors and orders of
accuracy.

Cells h q1 q2
L∞ Order L∞ Order L∞ Order

64× 64 2.96E−02 4.84E−02 2.16E−01
128 × 128 3.48E−03 3.09 4.53E−03 3.42 2.80E−02 2.95
256 × 256 3.40E−04 3.36 8.15E−04 2.48 2.85E−03 3.29

Table 2: L∞ errors and numerical orders for the 2D accuracy test

The order of accuracy obtained with the L∞ norm is about 3 because in this problem our
reconstruction algorithm makes use of second-degree polynomials in some of the cells containing
solution minima. This is due to the limiting used in the reconstruction (dni value), which may
pollute the accuracy especially in the L∞ norm. We have obtained the same conclusion in the
one-dimensional scheme as can be seen in [8] (test 4.2).

5.3. Transcritical break of a circular dam

This problem is taken from [20], and it involves flow over flat bed. We consider the break of
a circular dam separating two basins with water levels h = 10 and h = 0.5. The radius of the
initial discontinuity is r = 60 and the spatial domain of the problem is [0, 100] × [0, 100]. Due to
the difference in water height, the flow becomes rapidly transcritical. Then the initial condition
for the water height is given by

h(x, y, 0) =

{

10 , if (x2 + y2) ≤ 602 ,

0.5 , otherwise ,
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and q1(x, y, 0) = q2(x, y, 0) = 0.
The simulations have been run with our numerical scheme until time t = 3 s on a uniform mesh

with (200 × 200) nodes. It is useful to introduce the Froude number [20]:

Fr =

√
~v · ~v
a

, (28)

with a being the speed of propagation, a =
√
g h, and ~v = (v1, v2) the velocity of the fluid. Contour

plots of computed water depth and Froude number are given in Figure 2.
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Figure 2: Transcritical dam-break problem: solution at t = 3. Left: water height contours with 20 uniformly spaced
levels between 0.5 and 10. Right: Froude number contours with 20 uniformly spaced levels between 0 and 1.978.

Figure 3 displays the solution for the water height and Froude number at t = 3 along the
line x = y, on two different uniform meshes with (200 × 200) points and (600 × 600) points for
comparison.
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Figure 3: Transcritical dam-break problem: numerical solutions on two different meshes for the water height (left)
and Froude number (right) at t = 3 s, along the line y = x.
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5.4. Circular dam-break problem

We consider a test problem described in [10] and [17]. The domain is the square [0, 2] × [0, 2]
and the bottom topography is given by the function:

Zb(x, y) =

{

1
8(cos(2π(x − 0.5)) + 1)(cos(2πy) + 1) , if (x− 1.5)2 + (y − 1)2 ≤ (0.5)2 ,

0 , otherwise .

The water depth is initially given by:

h(x, y, 0) =

{

1.1− Zb(x, y) , if (x− 1.25)2 + (y − 1)2 ≤ (0.1)2 ,

0.6− Zb(x, y) , otherwise ,

and q1(x, y, 0) = q2(x, y, 0) = 0. We compute the numerical results using (200 × 200) grid points
(∆x = ∆y = 0.01). Figure 4 shows the numerical solution for the free surface level at time t = 0.15
s. The analytical solution is not known for this problem, and therefore we have used our numerical
scheme to obtain a reference solution in a mesh composed by (800 × 800) cells. In Figure 5 we
compare the numerical and the reference solutions for the free surface level and the first component
of the discharge q1 at times t = 0.05, t = 0.1 and t = 0.15 s, in the longitudinal section y = 1.
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Figure 4: The circular dam-break problem: solution at t = 0.15 s. Left: free surface and topography. Right: a
longitudinal section at y = 1.

These results agree with those in [10] and [17].

5.5. Perturbation of a lake at rest in 2D

In this section we consider a test initially proposed in [13], and recently used in [22, 24, 20, 17].
We show numerical results for a classical example of a small perturbation of a two-dimensional
steady-state flow. The perturbation occupies a small portion of the computational domain. The
domain is the rectangle [0, 2] × [0, 1] and the topography is an isolated elliptical shaped hump
centered at [0.9, 0.5]:

Zb(x, y) = 0.8 e−5(x−0.9)2−50(y−0.5)2 .
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Figure 5: Circular dam-break problem. Comparison between a reference and numerical solution at times t =0.05,
0.1, 0.15 s (from top to bottom), along the line y = 1. Left: free surface level. Right: variable q1.

At t = 0 s, the discharge is set to zero everywhere, q1(x, y, 0) = q2(x, y, 0) = 0 and the water depth
is set to

h(x, y, 0) =

{

1.01 − Zb(x, y) , if 0.05 ≤ x ≤ 0.15 ,
1− Zb(x, y) , otherwise .

So the surface is almost flat except for 0.05 ≤ x ≤ 0.15, where h is perturbed upward by 0.01.
We calculate the numerical solution at four different times: t = 0.12, t = 0.24, t = 0.36 and
t = 0.48, on a uniform mesh with (200× 100) nodes, which corresponds to a reference mesh size of
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∆x = ∆y = 0.01. In Figures 6 and 7 we show the results obtained with our scheme. On the top
rows we have plotted the contours of the free surface level η = h + Zb, and on the bottom rows,
we have plotted a longitudinal section of the distribution of η at y = 0.5. The scaling of the bed
Zb(x, y) used in the plots is reported in the figures.
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Figure 6: Perturbation of a lake at rest: solution at t = 0.12 (left) and t = 0.24 (right). Top: contours of the surface
level h+ Zb with 30 uniformly spaced contour lines. Bottom: solution along the line y = 0.5 (Zb = Zb/80 + 0.98).

In the region ahead the small perturbation, the exact solution is perfectly preserved by the
scheme, as can be seen in Figures 6 and 7. In the region behind the perturbation, the solution
quickly gets back to the lake-at-rest, and for completeness we have reported in Figure 8 the total
water elevation and the Froude number (28) along the line y = 0.5, in the unperturbed region
x ∈ [0.5, 2], at time t = 0.12.

These results can be directly compared with those in [22, 24, 20, 17]. We observe that our
results reproduce well the interaction and no oscillations are observed. The scheme can resolve
consistently this problem.

6. Conclusions

In this paper we have extended the well-balanced central scheme described in [8] to solve
the shallow water system in two spatial dimensions. The resulting scheme satisfies the exact C-
property and it has been designed to have high-resolution and a non-oscillatory behaviour. Several
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Surface level at time t=0.36 s
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Figure 7: Perturbation of a lake at rest: solution at t = 0.36 (left) and t = 0.48 (right). Top: contours of the surface
level h+ Zb with 30 uniformly spaced contour lines. Bottom: solution along the line y = 0.5 (Zb = Zb/80 + 0.98).
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Figure 8: Perturbation of a lake at rest: total surface level (left) and Froude number (right) in the unperturbed
region along the line y = 0.5, at time t = 0.12 s.

2D test problems are used to check the accuracy and non-oscillatory resolution of our numerical
method. The exact conservation C-property have been demonstrated and we have tested the order
of accuracy of our scheme. We have solved a problem which consists of a transcritical flow over
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a flat bottom. Also, a circular dam-break problem and a test with small perturbation of a lake
at rest are solved to demonstrate the theoretical properties of the scheme. The capability of the
numerical scheme in reproducing the space-time evolution of the variables has been proved, and
the agreement between our results and those reported in literature has been confirmed.
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