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Instituto de Ciencia de Materiales de Madrid,

Consejo Superior de Investigaciones Cient́ıficas†

J.V. Sánchez-Pérez
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Abstract

The use of Sonic Crystals as environmental noise barriers has certain advantages from the acous-

tical and the constructive point of view with regard to conventional ones. One aspect do not

studied yet is the acoustic interaction between the Sonic Crystals and the ground due to, up to

now, this latter is not included in the analytical models used to characterize these Sonic Crystals.

We present here an analytical model, based on multiple scattering theory, to study this interaction

considering the ground as a finite impedance surface. Using this model we have obtained interest-

ing conclusions that allow to design more effectively noise screens based on Sonic Crystals. The

obtained results have been compared with experimental and numerical, finding a good agreement

between them.

PACS numbers: 43.20.+g, 43.50.-Gf, 63.20.D-

Keywords: Phononic Crystals, Sonic crystal, Acoustic barriers, Image multiple scattering, Ground acoustic

impedance
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I. INTRODUCTION

Periodic arrangement of acoustic scatterers embedded in a medium with different physical

properties give rise to ranges of frequencies, known as bandgaps, where the transmission of

acoustic waves is forbidden. If one of them, scatterers or host, is a fluid then these systems

are called Sonic Crystals (SC). In last years, an increasing interest has appeared in the

potential exploitation of SC as environmental noise barriers1–3.

Some examples of the advantages of using SC instead of conventional screens are the

reduction in the size of the foundation or the possibility of designing specific screens for

predetermined conditions. However, the acoustical properties of SC depend on several factors

showing some particularities in their attenuation properties4. For example, the size and

position of the bandgaps depend on several factors as the direction of incidence of the wave

on the SC and the type of arrangement of the scatterers. As a consequence, the development

of the screens based on SC is not a trivial process.

In order to avoid these handicaps several works have been intensively developed in last

years. The use of both materials with acoustical properties added or more efficient distri-

bution of scatterers are two examples. The use of resonators5 or absorbent materials6 in

the first case, and the use of Quasi Ordered7 or Quasi Fractal8 structures in the second case

have been studied.

One of the factors to have into account in the use of SC as noise barriers is the existence

of the ground. Up to now, one of the analytical approaches to predict the transmission

properties of SC is based on the well known Multiple Scattering Theory (MST)9–12, which

is a self-consistent method for calculating acoustic pressure including all orders of scattering

based on the superpositions of the solution for a simple scatterer. MST predicts the acous-

tical performance of SC in the absence of a ground plane. However, one of the factors to

have into account in the use of SC as noise barriers is precisely the existence of the ground.

Thus MST is an unrealistic approximation for environmental noise barriers based on SC.

In this work, the effect of both acoustically-rigid and finite impedance ground planes

on the properties of a SC made of rigid scatterers is analytically and experimentally ana-

lyzed. The methodology developed in this work is based on the MST and on the method

of images13,14. The finite impedance is characterized in the model as a two parameter

impedance15. Although the most interesting situation is likely to involve periodic vertical

2



cylinder arrays, this would require solution of a 3D problem. Here are considered the more

tractable 2D problem involving a periodic array of cylinders with their axes parallel to the

ground.

A. Defining the problem

The problem studied in this work is related to the scattering of sound waves by an array

of scatterers suspended with their axes parallel to a rigid or finite impedance ground plane.

As it is shown in Figure 1A, the scattering is produced in the positive half-space.

Consider a line source placed at point O and an array of M circular scatterers placed in

the positive half-space which is air, characterized by the sound velocity, c = 344 m/s, and

density ρ = 1.23 kg/m3. The position of each scatterer Cm, m = 1, . . . ,M is given by the

vector ~Rm. Figure 1A shows an scheme of the problem. The scatterers are considered to be

arranged in a square lattice which is defined by the lattice constant a. The nearest base of

the array of scatterers is placed at a distance Hx from the ground, while the nearest vertical

base of the array from the source is placed at a distance Hy (see Figure 1A)

Here we have studied the effect of the ground over the scattering of the array of scatterers

by means of the multiple scattering theory modified using the method of images in order

to construct the reflected field. The geometry used to perform the method of images in

our approach is shown in Figure 1B. In this approach one should consider the image of the

source as well as of the scatterers. Note that all the waves reflected on the ground can be

described as waves coming from the image source or from the image scatterers, then the

images are also interacting with the real space. The image source is placed at point O′, and

the image of scatterers C ′
m are placed on the negative half-space. All the vectors measured

from the image source is characterized by a prime (′).

B. Ground effect

In some cases the surface of the ground can be considered perfectly rigid or totally reflec-

tive, however there are some cases, as for example open water, ice, concrete or soil surfaces

with or without vegetation, in which there is absorption of energy from incident acoustic

waves. Accurate prediction of ground effects on the scattering of an array of scatterers re-
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FIG. 1. (A) Square lattice array above a perfectly reflecting plane. (B) Schematic of the real and

the image sources and the real and the image scatterers.

quires knowledge of the absorptive and reflective properties (the acoustic impedance) of the

surface. Motivated by previous works13 the effect of the ground on the scattering problem

will be characterized in this work by the reflection coefficient R(~rO, ~rR; ν) of the ground (ν is

the frequency of the incident wave). The case of an acoustically-hard (rigid) ground implies

R(~rO, ~rR; ν) = 1. In general, R(~rO, ~rR; ν) will be a function that mainly depends on the

impedance contrast between the two half-spaces separated by the ground surface and on the

positions of both the source (~rO) and the receiver (~rC) by means of the angle of incidence

on the ground.

The ground surface itself also provides a significant path for transmission of acoustic

energy, particularly at low grazing angles and low frequencies. Incident acoustic energy

is transformed into vibrational energy and is transmitted along the surface layer. This

vibration disturbance can propagate for long distances, before dissipating or re-radiating as

sound. At long distances, the transmission of low frequency sound can be dominated by this

surface wave mechanism. In this work we are interested in the interaction between the SC

and the ground effect, to do that we study regions near the source (the positions of both

the array of scatterers and the receiver are near the source) and in the regime of dispersion
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frequencies of the array (high frequencies), this transmission mechanism can be neglected in

this work.

When airborne sound impinge on the ground, a portion of the wave is transmitted and

refracted at right angles into the surface. For our purposes, we have focused our attention

on the reflected portion of the incident wave. The reflected wave leaves the surface at the

angle of incidence, with its amplitude and phase modified by the impedance of the surface.

The reflected wave propagates to the receiver, in addition to the direct wave from the

source. Depending on their relative phases and amplitudes, they may constructively add

or destructively interfere16–18. The effect of the ground on the propagating wave from the

source in the receiver site is an increasing of the attenuation usually called excess attenuation.

This can be explained in terms of the existence of two sources: the real one and the image

source that model the reflected wave. In this case, the governing equation for the pressure

amplitude p at the receiver, assuming a uniform medium (no refraction) and line source, in

the positive half-space is

p =H0(kr) +R(~rO, ~rR; ν)H0(kr
′) =

H0(kr) +Rp(~rO, ~rR, ν)H0(kr
′) + (1−Rp(~rO, ~rR, ν))FH0(kr

′) (1)

where Rp is the plane wave coefficient, H0 is the Hankel function of 0-th order and first kind.

The parameter F is the boundary-loss factor which is a complicated mathematical function

of a variable w called the numerical distance. These functions are15,16

Rp(~rO, ~rR, ν) =
cos θ − Zair

Zground

cos θ + Zair

Zground

(2)

F = 1 + ı
√
πwe−w2

erfc(−ıw), (3)

where

w =

√

1

2
ıkr2

(

cos θ +
Zair

Zground

)

, (4)

Zair and Zground are the air and ground impedance respectively, r2 is the distance between

the reflection point and the receiver and θ is the reflection angle measured from the normal

of the surface. erfc is the complex complementary error function. Usually, the fraction β =

Zair/Zground is called the admittance of the homogeneous impedance plane. The reflected

angle can be obtained as

θ = arctan

(

x− x0

y + y0

)

(5)
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where ~r0 = (x0, y0) is the position of the source and ~rR = (x, y) is the position of the receiver

point with respect to the origin of coordinates (see Figure 1).

Note that for acoustically-rigid ground, as Zground >> Zair, then R(~rO, ~rR; ν) = 1. For the

case of the finite impedance ground, it is necessary to know the expression of the impedance

in order to know the reflection properties of the surface. In this work the finite impedance

(open cell foam layer) surface is represented by a two parameter impedance model15 with flow

resistivity σe = 4 kPa s/m2 and porosity at the surface αe = 105m−1, being the impedance

of the ground

Zground = ρc0

(

0.434

√

σe

ν
(1 + ı) + 9.75ı

αe

ν

)

. (6)

II. IMAGE MULTIPLE SCATTERING THEORY (IMST)

The solution of the appropriate scattering problem satisfies the Helmholtz equation in

the half-space that is written in polar coordinates (r, θ) as

∆p(~r) + k2p(~r) = 0, (7)

where ∆ =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂θ2
, ~r = r(cos θ, sin θ) is the radius vector, p is acoustic dis-

placement potential, k = ω/c and ω is angular frequency. Equation 7 is solved in conjunction

with radiation conditions

∂p

∂r
− ikp = o

(

r−1/2
)

, as r → ∞. (8)

Given M disjoint cylindrical scatterers located at the positions ~Rm = ~R1, ..., ~R all placed

above a reflectance surface on the symmetry axis (see Figure 1) and a sound source located

at point O, one can consider the incident field over the n-th scatterer in the presence of both

the other M − 1 scatterers and the ground by taking into account the multiple scattering

technique9,10 as well as the method of images13,14

pn(~r) = p0(~r) +
M
∑

j=1,j 6=n

(

pjs(~r) +R(~ROj , ~rR; ν)p
j′

s (~r)
)

, (9)

where p0 is the pressure produced by both the real and the image sources and pjs and pj
′

s are

the scattered pressure by the j-th cylinder and its image j′-th cylinder respectively. Equation

9 defines the interaction between the scattering of the array and the ground, therefore the
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analytical method shown in this work is called Image multiple scattering theory (IMST).

The pressure of the sources can be expressed as

p0(~r) = H0(kr) +R(~rO, ~rR; ν)H0(kr
′), (10)

where ~r = r(cos θ, sin θ) is the vector connecting the real line source and the receiver point

and ~r′ = r′(cos θ′, sin θ′) connects the position of the receiver and the image point source.

On the other hand, the scattered pressures by the cylinders m and m′ can be represented as

pms (~r) =

∞
∑

l=−∞

Am
l H

(1)
l (krm)e

ılθm , (11)

pm
′

s (~r) =
∞
∑

l=−∞

Am′

l R(~ROm, ~rR; ν)H
(1)
l (krm′)eılθm′ , (12)

where ~rm = rm(cos θm, sin θm) is vector connecting the centre of scatterer Cm and the receiver

and ~rm′ = rm′(cos θm′ , sin θm′) connects the receiver with the scatterer image Cm′ . Note that

the reflected wave by the cylinder image, is produced by the presence of the ground, thus

the reflected pressure by the cylinder should be modulated by the reflection coefficient of

the ground as in the case of the incident wave on the ground.

In order to introduce Equations 10, 11 and 12 in Equation 9 all the terms must be

expressed in the same origin of coordinates. To do so, the Graf’s addition theorems for the

Bessel and Hankel functions are necessary11,20. Thus, the pressures p0 and ps in the reference

system centered at n−th scatterer are,

p0(~r) =
∞
∑

l=−∞

(H
(1)
−l (kRn)e

−ılθRn +R(~rO, ~rR; ν)H
(1)
−l (kR

′
n)e

−ılθR′
n )Jl(krn)e

ılθn (13)

pjs(~r) =
∞
∑

l=−∞

(Gjn
m +R(~ROj, ~rR; ν)G

j′n
m )Jl(krn)e

ılθn (14)

Gjn
m =

∞
∑

s=−∞

Aj
sH

(1)
m−s(kRjn)e

ı(m−s)θjn =

∞
∑

s=−∞

Aj
sG

jn
ms (15)

Gj′n
m =

∞
∑

s=−∞

Aj′

s H
(1)
m−s(kRj′n)e

ı(m−s)θj′n =

∞
∑

s=−∞

Aj′

s G
j′n
ms (16)

(17)

where vector ~Rn = Rn(cos θRn
, sin θRn

) (~R′
n = Rn(cos θR′

n
, sin θR′

n
)) defines the position of

scatterer Cn with respect to real (image) line source and vector ~Rjn = Rjn(cos θjn, sin θjn)

7



(~Rj′n = Rj′n(cos θj′n, sin θj′n)) defines the position of scatterer Cj (Cj′) with respect to

scatterer Cn.

Finally, because of the geometry of the problem, we can express the total incident wave

over the n-th scatterer as

pn(~r) =
∞
∑

s=−∞

Bn
s Js(krn)e

ısθn . (18)

Introducing Equation 13, 14 and 18 in Equation 9, one can obtain the following system of

equations,

Bn
s = Sn

s +
M
∑

j=1

(

(1− δjn)G
jn
s +R(~ROj, ~rR; ν)G

j′n
m

)

, (19)

where

Sn
s = H

(1)
−l (kRn)e

−ılθRn +R(~rO, ~rR; ν)H
(1)
−l (kR

′
n)e

−ılθR′
n . (20)

At this stage Bn
s , A

j
s and Aj′

s are unknown coefficients but they can be related using the

boundary conditions on the scatterers and the symmetry of the problem. The boundary

conditions at a rigid cylinder surface relates Bj
s with Aj

s and the symmetric condition relates

Aj
s with Aj′

s . In our approach we will consider the general boundary condition, i.e., the

continuity of both the pressure and the normal velocity across the interface between the

scatterers and the surrounding medium. After that, considering the big contrast between

both the densities and sound velocities, it will be possible to reproduce the results of rigid

scatterers (Neumann boundary conditions).

The boundary conditions in the n-th scatterer can be expressed as

pext|∂Ωn
= pint|∂Ωn

, (21)

1

ρ

∂pext
∂n

|∂Ωn
=

1

ρn

∂pint
∂n

|∂Ωn
, (22)

where ∂Ωn is the boundary of the n-th scatterer, ρ is the density of the surrounding medium

and ρn is the density of the n-th scatterer.

In order to apply the previous boundary conditions, we consider that the pressure field

inside the n-th cylinder can be represented by

P n
int =

∞
∑

j=−∞

Dn
j Jj(k1nrn)e

ıjθn , (23)

where k1n is the wave number inside the n-th cylinder.

8



Using the boundary conditions and the expressions of both the exterior and interior fields

in the n−th scatterer, we can obtain the following relation,

Bn
j = Γn

jA
n
j , (24)

where

Γn
j =

Hj(kan)J
′
n(kan/hn)− gnhnH

′
j(kan)Jj(kan/h)

gnhnJ ′
j(kan)Jj(kan/hn)− Jj(kan)J ′

j(kan/hn)
. (25)

Here an is the radius of the n-th cylinder (in this work the radius of the scatterers take the

same value for all the cylinders, an = a), gn = ρn1/ρ is the density ratio, and hn = k/kn
1 = cn1/c

is the sound speed ratio for the i-th cylinder. Note that if the scatterers are acoustically

hard, i.e., ρ1 >> ρ and c1 >> c, then the coefficients Γn
j coincides with those obtained with

the Neumann boundary conditions,

Γn
j = −∂rHj(kan)

∂rJj(kan)
, (26)

where ∂r is the derivative with respect to polar coordinate r.

The image symmetry can be used to relate Aj
s with Aj′

s . One have to take into account

that rj′ = rj and that θj′ = −θj , then

pj
′

s (~r) =R(~rO, ~rR; ν)
∞
∑

l=−∞

Aj′

l H
(1)
l (krj′)e

ılθj′

= R(~ROj, ~rR; ν)
∞
∑

l=−∞

Aj
lH

(1)
l (krj)e

−ılθj′

= R(~ROj, ~rR; ν)

∞
∑

l=−∞

Aj
−lH

(1)
−l (krj)e

ılθj′

= R(~ROj, ~rR; ν)
∞
∑

l=−∞

Aj
−l(−1)lH

(1)
l (krj′)e

ılθj′ , (27)

and

Aj′

l = (−1)lAj
−l. (28)

Introducing the Equation 25 or 26 in 24 and in 19, the following infinite system of

equations is obtained,

Γn
sA

n
s = Sn

s +
M
∑

j=1

∞
∑

l=−∞

(

(1− δjn)G
jn
sl + (−1)lR(~ROj, ~rR; ν)G

j′n
s−l

)

An
l . (29)

9



The coefficient An
s can be obtained by truncating properly the previous system, and the

total acoustic field obtained using the IMST is

P (~r) = H0(kr) +R(~rO, ~rR; ν)H0(kr
′)

+

M
∑

m=1

∞
∑

l=−∞

Am
l

(

H
(1)
l (krm)e

ılθm +R(~ROj , ~rR; ν)H
(1)
l (krm′)e−ılθm′

)

. (30)

Note that the methodology is self-consistent and the effect of the finite impedance of the

ground only depends on the model to calculate this impedance, i.e., on the calculation

of the reflection coefficient. The two parameter impedance model used in this work15 is

constrained for low grazing angles, however, due to both the simplicity of the model and

the good agreement with the experimental data (see Section IIIB) we have decide use it. In

this sense IMST is completely general because any impedance model can be used.

When the real source is placed on the origin of coordinates (O = (0, 0)), then the image

source coincides with the real one and depending on the properties of the ground several

interesting possibilities can be analyzed. With the source on an aocustically-hard ground,

the predicted IL spectrum of an array, for instance, 5× 3 array in the presence of the rigid

ground (R(~rO, ~rR; ν) = 1) should be the same as that predicted for an array of double

the size (10 × 3) in the free field, whereas in presence of an completely absorbent ground

(R(~rO, ~rR; ν) = 0) the IL should be the same as a the initial array, 5× 3, in free field.

We analytically and numerically compare the predicted insertion loss (IL) spectrum due

to a 5× 3 array of rigid scatterers considering two particular grounds: an acoustically-rigid

ground characterized by R(~rO, ~rR; ν) = 1 and a completely absorbent ground R(~rO, ~rR; ν) =

0. Although, the last case is physically impossible it could be used to test the model with

the equivalent situation without ground. For these simulations we have chosen a the lattice

constant a = 0.3 m and a diameter of scatterers of 0.1 m. Note that throughout this paper

the IL is calculated as

IL = 20 log10

∣

∣

∣

p0
P

∣

∣

∣
. (31)

where P is calculated using Equation 30. The distance to the ground of the centers of the

lowest cylinders in the array is half of the lattice constant, Hx = 0.15 m, so that they are

separated from the centers of the cylinders of the image array nearest the ground plane by

the lattice constant. For this simulations the distance between the source and the array of

scatterers is Hy = 1 m, and the site of the receiver is (2.5, 0) m. The position of the source

10
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FIG. 2. (Color online) Predicted IL spectra of a square array of rigid cylinders with diameter 0.1

m, lattice constant 0.3 m above ground plane at y = 0 and ’lowest’ cylinder centers at Hx = 0.15

m. The source and receiver coordinates are (0,0) m and (2.5,0) m respectively. The nearest part

of the array is at Hy = 1 m from the source. (A) Acoustically-hard ground R(~rO, ~rR, ν) = 1:

Blue continuous line (Green dots) shows the IL produced by a 5× 3 square array of rigid cylinders

calculated using IMST (finite element method). Red open circles (Black pentagrams) show the IL

produced by a doubled (i.e. a 10× 3) lattice in the free field calculated using MST (finite element

method). (B) Competelly absorbent ground R(~rO, ~rR, ν) = 0: Blue continuous line (Open red

circles) shows the IL produced by a 5 × 3 square array of rigid cylinders calculated using IMST

(MST). (C) Band structure calculated using plane wave expansion (PWE) for this case.

is (0, 0).

Figure 2 shows the analytical and numerical predicted IL spectra for these two particular

cases, acoustically-hard and completely absorbent ground. From the analytical point of view

the effect of the ground has been calculated using IMST or the equivalent doubled structure

in free field using MST. From the numerical point of view the effect of the rigid ground

has been calculated using the finite element method (FEM). The application of FEM to

unbounded domains, as for example the case of the scattering problems, involves a domain

decomposition by introducing an artificial boundary around the obstacle. At the artificial

boundary, the discretization can be coupled in various ways to some discrete representation

of the analytical solution. In this work, we use the Perfectly Matched Layers (PML)19 to

11



numerically approximate the Sommerfeld conditions (see Eq. 8). The commercial software

COMSOL Multiphysics 3.5 is used in for the simulations.
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Orange continuous dotted line show the IL predictions for the case of rigid ground. Green crossed

dash line shows the IL predictions for the case of completely absorbent ground. Black dashed line

shows the IL predictions for the case of a covered ground characterized by σe = 630 kPa s/m2

and αe = 188 m−1. Red dots show the IL predictions for the case of a ground characterized by

σe = 272500 Pa s/m2 and αe = 158 m−1. Blue continuous line shows the IL predictions for the

case of a sheet of porous material characterized by σe = 4000 Pa s/m2 and αe = 105 m−1. The

real, imaginary and absolute values of the reflection coefficients of these three grounds are shown

in (B), (C) and (D) respectively.

In Figure 2A the case of the rigid ground is analyzed. Blue continuous line shows the IL

produced by a 5×3 square array of rigid cylinders with diameter 0.1 m above an acoustically-

hard plane at y = 0 calculated using IMST. Red open circles show the IL produced by a

doubled (i.e. a 10 × 3) lattice in the free field calculated using MST. Moreover, these two

cases have been also numerically solved by FEM. Green dots show the IL produced by a

5×3 square array of rigid cylinders with diameter 0.1 m above an acoustically-hard plane at

y = 0, in which Neumann conditions have been considered. Black pentagrams show the IL

produced by a doubled (i.e. a 10× 3) lattice in the free field. Note the complete agreement
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between both cases, the red open circles completely coincides with the blue line, and the

green dots completely coincide with the black pentagram as it was predicted few lines above.

The analytical and numerical predictions are in good agreement taking into account that

the possible small differences at high frequencies are produced by the precision of the mesh

in the numerical discretization. The differences in the predictions at higher frequencies can

be reduced by taking more elements on the solution domain. This however increases the

computational time. Because of the low filling fraction of the array (8%), the pseudogap

at ΓX direction (0◦ of incidence) presents low values of insertion loss, however the range

of frequencies (490, 609) Hz is in complete agreement with that obtained using plane wave

expansion in the band structure shown in Figure 2C. The peaks of IL at high frequencies

are not in agreement with the band structure. It can be done to the low filling fraction and

the low number of rows in the array.

In Figure 2B the case of the completely absorbent ground (R=0) with the source on it

is analyzed. Blue continuous line shows the IL produced by a 5 × 3 square array above the

absorbing ground using IMST. Red open circles show the IL produced by an 5× 3 array in

the free field calculated using MST. Note the complete agreement between both cases.

When the source is not located on the ground, the problem only can be analytically solved

using the IMST. We have analyzed the same array as before but varying the impedance of

the ground. The finite impedances are characterized by a two parameter impedance model15

with different values of σe and αe. We have specifically analyzed the cases of a rigid ground,

a completely absorbent ground, a covered ground characterized in reference17, the finite

impedance ground analyzed in reference15 and the sheet of porous material used in this

work with σe = 4000 Pa s/m2 and αe = 105 m−1.

Figure 3 shows the IL predictions obtained using the IMST for the five values of ground

impedance. Figure 3A shows the IL obtained but with the source and the receiver placed at

points (0,0.25) m and (2.5, 0.75) m respectively. Figures 3B, 3C and 3D show the absolute,

real and imaginary values of the reflection coefficients calculated at the receiver site for the

three considered grounds impedance based on a two parameter model: σe = 630 kPa s/m2

and αe = 188 m−1, σe = 272500 Pa s/m2 and αe = 158 m−1, σe = 4000 Pa s/m2 and

αe = 105 m−1 respectively.

Orange line in Figure 3A shows the IL of the array over a rigid ground. Around 1200

Hz the values of the IL are negative because of the excess attenuation. This effect can be
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changed as the impedance is considered in the model as it will be seen in Section III. Black

dashed, red dots, green dot dashed and blue continuous lines show the reduction or shift of

the excess attenuation peaks due to the reduction on the reflection coefficient because of the

finite impedance on the ground.

FIG. 4. (Color online) Pressure maps for an array of 7 × 3 scatterers in square array with lattice

constant a = 0.069 m considering an acoustically-rigid ground with a line source placed at point

O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275 m. For this simulations

we consider Hy = 0.755 m and Hx = 0.0275 m. (A) Band structure calculated using PWE. (B)

and (C) pressure maps (Re(P )) (Pa) at 2000 Hz for an acoustically-hard ground and an finite

impedance ground (σe = 4000 Pa s/m2 and αe = 105 m−1) respectively.

In Figure 4 we have analyzed the symmetry of the acoustic pressure field respect to the

ground plane depending on the value of the impedance. If the impedance is infinite, i.e.,

acoustically-hard ground, the acoustic field should be symmetric, which means that the

acoustic field in the image space should be symmetrically equivalent to the acoustic field in

the real space. However, in the case of a ground with finite impedance, the symmetry is

broken and the field in the real space is not symmetrically equivalent to the acoustic field

in the image space. Let us study these differences in the acoustic field considering an array

of 7 × 3 scatterers in square periodicity with lattice constant a = 0.069 m over a ground

with a line source placed at point O = (0, 0.235) m. The circular scatterers present a radius

r = 0.0275 m. For these simulations we consider Hy = 0.755 m andHx = 0.0275 m. We have

used here the configuration defined in the experimental setup presented in Section IIIB 1.

Figure 4A shows the band structure for this array. Note that for this case, the fill-

ing fraction is bigger and the lattice constant is lower than in the previous array. These

properties produce both a full band gap and an increasing of the frequencies of the band

gap respectively. The range of frequencies between 2478 Hz and 3171 Hz defines the full

band gap for this array. Using the analytical method shown in Section II, IMST, we have

predicted the acoustic field 2000 Hz considering both an acoustically-hard ground and a

finite impedance ground characterized by a two parameter model (σe = 4000 Pa s/m2 and

αe = 105 m−1). Figures 4B and 4C show the pressure maps (Re(P )) at 2000 Hz considering

an acoustically-hard ground and the finite impedance ground respectively. One can observe
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clearly the symmetry of the acoustic pressure field for the hard ground case, and the non

symmetry in case of finite impedance.

III. RESULTS

A. Bandgap-ground plane interaction

In this Section we analyze the effect of the ground on the attenuation properties of a

periodic array of scatterers. For a predetermined source position and impedance of the

ground we analyze the Insertion loss defined in this case as the difference between the

pressure level measured with ground and the pressure level measured with ground and array.

The excess attenuation depends on the position of the receiver and on the frequency. On

the other hand, the bandgap of the array of scatterers depends on the position of the source

and the receiver and on the filling fraction. Here we consider two different grounds: an

acoustically-rigid ground and a finite impedance ground characterized by a two parameter

model (σe = 4000 Pa s/m2 and αe = 105 m−1). The array considered in this Section is a

7 × 3 lattice with square periodicity with a = 0.069 m with a line source placed at point

O = (0, 0.235) m. The circular scatterers present a radius r = 0.0275. For these simulations

we consider Hy = 0.755 m and Hx = 0.0275 m. We calculate the IL spectra using IMST for

the heights in the interval y = [0, 0.469] m for a distance from the source x = 1.203 m.

1. Hard ground

The excess attenuation for several heights of the receiver due to a rigid ground can be

observed in Figure 5A. Each horizontal cut, y = yr, of the map in Figure 5represents the

spectrum at point (1.203, yr) m. The pressure level in the receiver sites is characterized with

the following expression,

PL = 20 log10 (H0(kr) +H0(kr
′)) . (32)

The excess attenuation appears in Figure 5A as regions of frequencies with negative values

of the PL produced by the destructive interference between the incident wave (from the

source) and the reflected wave (reflected in the ground). Then positive values of pressure

level means a positive interference and consequently a reinforcement. Negative values means
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excess attenuation. Figure 5A shows the dependence of the excess attenuation on the height

of the receiver and on the frequency. The higher the height, the lower the frequency of the

excess attenuation peak. Excess attenuation peaks of second order can be also observed for

high values of both heigh and frequencies.

FIG. 5. (Color online) (A) Pressure level spectra surface produced by the line source in presence of

a rigid ground. The line source is placed at point O = (0, 0.235) m. We calculate the pressure level

using Equation 32 for the heights in the interval y = [0, 0.469] m for a distance from the source

x = 1.203 m. (B) IL map produced by a 7 × 3 array with square periodicity with a = 0.069 m.

The circular scatterers present a radius r = 0.0275. For these simulations we consider Hy = 0.755

m and Hx = 0.0275 m. We calculate the IL spectra using IMST for the heights in the interval

y = [0, 0.469] m for a distance from the source x = 1.203 m. Vertical dashed line marks the

beginning of the pseudogap at ΓX direction (0◦) and the vertical continuous line marks the ranges

of frequencies of the full bandgap. Horizontal dotted lines show the analytical and experimental

cuts shown in Figure 7.

In Figure 5B the IL map produced by the interaction of the rigid ground and the array

of scatterers is shown. The vertical dotted line shows the beginning of the pseudogap at

ΓX direction whereas the vertical continuous lines show the range of frequencies of the full

band gap of the array. This IL is calculated using Equation 31. In order to understand

the meaning of the IL calculated with this formula, one should compare the results of the

pressure level in the receiver site without array (Figure 5A) with the results of the IL.

2. Soft ground

The excess attenuation for several heights of the receiver due to a soft ground without

array of scatterers can be observed in Figure 6A. The pressure level in the receiver sites is

characterized with the following expression,

PL = 20 log10 (H0(kr) +R(~rO, ~rR; ν)H0(kr
′)) , (33)

where R(~rO, ~rR; ν) is calculated using the approach shown in Section IB. The impedance

of the ground considered in this work is characterized by a two parameter model (σe =
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FIG. 6. (Color online) (A) Pressure level spectra surface produced by the line source in presence

of a finite impedance ground (σe = 4000 Pa s/m2 and αe = 105 m−1). The line source is placed

at point O = (0, 0.235) m. We calculate the pressure level using Equation 33 for the heights in

the interval y = [0, 0.469] m for a distance from the source x = 1.203 m. (B) IL map produced

by a 7× 3 array with square periodicity with a = 0.069 m above a finite impedance ground. The

circular scatterers present a radius r = 0.0275. For these simulations we consider Hy = 0.755

m and Hx = 0.0275 m. We calculate the IL spectra using IMST for the heights in the interval

y = [0, 0.469] m for a distance from the source x = 1.203 m. Vertical dashed line marks the

beginning of the pseudogap at ΓX direction (0◦) and the vertical continuous line marks the ranges

of frequencies of the full bandgap. Horizontal dotted lines show the analytical and experimental

cuts shown in Figure 8.

4000 Pa s/m2 and αe = 105 m−1) and the reflection coefficient can be obtained combining

Equation 2 in Equation 6.

In Figure 6A one can observe the pressure level for the case of a sound source with this

impedance ground. Again the excess attenuation also depends on the frequency and on the

heigh of the receiver. However, the dependence on this parameters is changed because of

the properties of the ground. The first excess attenuation peak appears at lower frequencies

and lower heights than in the case of acoustically-rigid ground. Excess attenuation peaks of

second order can be also observed for high values of both heigh and frequencies with lower

values than in the case of rigid ground.

In Figure 6B the IL maps produced by the interaction of the soft ground and the array

of scatterers is shown. The vertical dotted line shows the beginning of the pseudogap at ΓX

direction whereas the continuous lines show the range of frequencies of the full band gap

of the array. In the case of the IL of the array over the soft ground the attenuation peaks

due to the interaction between the ground are also present. One can also observe that the

array of scatterers can change the attenuation properties at the receiver site for frequencies

above and below the first peak of excess attenuation adding the effect to that related with

the bandgap.
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B. Comparisons between data and predictions

1. Laboratory experiment

2 m long PVC cylinders with outer diameters of 55 mm have been used to construct the

periodic array with lattice constanta = 0.069 m. The sound source was a Bruel & Kjaer point

source loudspeaker controlled by a Maximum-Length Sequence System Analyzer (MLSSA)

system enabling determination of impulse responses. Measurements of the insertion loss

(IL) spectra for arrays of cylinders placed near to a ground surface in an anechoic chamber

have been obtained.

A 0.03 m thick wooden board large enough to avoid the diffraction at the edges was used

as a hard surface. The loudspeaker point source was positioned 0.755 m from the array at

the height of the horizontal mid-plane of the array (0.23 m above the ground). The height

of the receiver microphone was 0.117 m, 0.235 m or 0.352 m and it was placed in a vertical

plane 0.257 m from the back of the array. The receiver heights were chosen to be below, at,

and above, the horizontal mid-plane of the array. In all cases, a constant distance between

the microphone and the periodic array has been considered, in such a way that the distance

between the source and the receiver is x = 1.203 m. The difference between the sound levels

recorded in the X direction (0◦) at the same point with and without the ground plus the

array was measured.

FIG. 7. Measured (open circle with dotted line) and predicted (continuous line) insertion loss

spectra for source at coordinates (0,0.235) m and 0.755 m from a 7× 3 array of rigid cylinders of

diameter 0.055 m over acoustically-hard ground with receiver coordinates (A) (1.203,0.117) m, (B)

(1.203,0.235) m and (C) (1.203,0.352) m. Arrays of cylinders placed near to a ground surface.

2. Hard ground

Figure 7 compares measured and predicted IL spectra for 7 × 3 rigid cylinder arrays

above a hard ground plane for three receiver heights using the source location described in

Section IIIB 1. The agreement between predictions and measurements is fairly good. The

analytical spectra corresponding to these three heights are also marked in Figure 5B with

18



dotted horizontal lines. One can also observe the ground effect on the IL due to the excess

attenuation peaks for the three heights analyzed in this work near 4000 Hz, 2000 Hz and

1400 Hz respectively. The horizontal dotted lines in Figure 5B shows the corresponding cuts

of the IL maps for the three heights analyzed in this Section.

3. Soft ground

Figure 8 compares corresponding measured and predicted insertion loss spectra for 7 ×
3 rigid cylinder arrays over finite impedance ground for three receiver heights using the

source location described in section IIIB 1. Again the agreement between predictions and

measurements is fairly good. The adverse and the additional attenuation influences of ground

effect on the IL spectra are shifted towards lower frequencies because of the finite impedance

of the ground. The horizontal dotted lines in Figure 5B shows the corresponding cuts of the

IL maps for the three heights analyzed in this Section.

FIG. 8. Measured (solid line) and predicted (broken line) insertion loss spectra for source at

coordinates (0,0.235) m and 0.755 m from a 7× 3 array of rigid cylinders of diameter 0.055 m over

finite impedance ground with receiver coordinates (a) (1.203,0.117) m, (b) (1.203,0.235) m and (c)

(1.203,0.352) m. Arrays of cylinders placed near to a ground surface.

IV. CONCLUDING REMARKS

The effect of both rigid and finite impedance grounds on the attenuation properties of an

array of rigid cylindrical scatterers has been analytically and experimentally analyzed. The

Image Multiple Scattering Theory (IMST) have been developed as an analytical methodol-

ogy to study the effect of several finite impedance grounds on the propagating properties of

an array of rigid scatterers in air. The dependence of the attenuation properties for several

heights on the attenuation has been analyzed in this paper by means of IMST and experi-

mentation. The excess attenuation produced by the interaction of the sound source and the

ground can be used to reduce or increase the attenuation properties of the array of scat-

terers. On one hand the deeps on the excess attenuation always increases the attenuation

properties of the array of rigid scatterers. On the other hand, the regions of frequencies out
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of the excess attenuation, produces adverse influences in the attenuation of the array at the

receiver positions. Then the excesses attenuation should be taken into account in the design

of array of scatterers acting as sonic crystal noise barrier.
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† Centro de Tecnoloǵıas F́ısicas: Acústica, Materiales y Astrof́ısica, Universidad Politécnica de
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