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Abstract—The design of H-plane TE dual mode cavity filters 

using models containing nonresonating nodes is presented. From 
the models a coupling matrix is derived and decomposed into 
submatrices, each one representing a subcircuit. The optimization 
and cascading of subcircuits represents a good starting point for 
the global optimization.  
 

Index Terms— Coupling matrix, dual-mode filter, elliptic 
filter, H-plane filter, nonresonating nodes (NRNs), synthesis. 
 

ODERN microwave filters are expected to meet the 
increasingly stringent requirements for a variety of 
applications: they are required to exhibit good 

selectivity, low in-band insertion loss, linear phase, small size 
and light weight. In order to increase the selectivity, filters 
must present a sharp transition between pass bands and stop 
bands. This is achieved by generating transmission zeros. 
Traditionally, transmission zeros have been generated by 
cross-coupling non adjacent resonators [1]-[2]. The realization 
of coupling coefficients, in such filters, is sometimes difficult 
or even impossible to achieve. So, alternative solutions have 
been proposed by using extracted pole filters with non-
resonant nodes [3]. With such filters, high selectivity can be 
achieved but their size remains important. 

   In satellite communications, dual-mode and multi-mode 
microwave cavity band-pass filters remain the unchallenged 
technology as they come very close to satisfying all these, 
often contradictory, requirements. Multi-mode filters exploit 
the coupling between different modes of a waveguide cavity in 
order to reduce the size and weight of the structure while 
offering the possibility of implementing sophisticated pseudo-
elliptic filtering functions.  

 Early developments used degenerated modes in circular or 
rectangular cavities realized by coupling screws, which are 
adjusted experimentally until the desired response is achieved 
[4]. Simpler elements were later introduced to replace the 
coupling screws [5].  
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  More recent developments simply avoid mode 
degeneration, so that neither coupling elements nor screws in 
the center of cavities are needed. The modes inside the cavities 
of such filters are orthogonal. Their coupling is realized in the 
irises, which can be considered as non-resonating nodes. In 
this category of filters, we have TE/TM multi-mode cavity 
filters [6]–[7], which can be very compact and can exhibit very 
high selectivity but the insertion losses are high and their 
power handling is poor, because in order to excite TM modes 
the slots (irises) must be small. 

In 2001 Guglielmi and others proposed a dual-mode 
microwave filter, comprising a rectangular resonator operating 
in two distinct TEm,o,n and TEp,o,q modes [8]-[9], which is a 
great challenge to the circular waveguide dual-mode, in terms 
of power handling and selectivity. The advantage is that the 
required filter structure is very simple and very suitable for 
high precision manufacture at low cost, thereby reducing the 
total cost of development and manufacture in highly significant 
manner. For their design, a TEm,o,n / TEp,o,q cavity was modeled 
with a circuit comprising one resonator and a second self-
coupled resonator [10]. With such an equivalent circuit, it is 
not possible to derive a coupling matrix. 

  In this paper, we focus on the design of TE2,0,1 / TE1,0,2 
dual-mode cavity filter which is the most compact among the 
TEm,o,n and TEp,o,q family of dual-mode cavity filters. In order 
to get a coupling matrix, we model a dual-mode cavity with an 
equivalent circuit which comprises two resonators coupled 
through a non-resonating node. The obtained overall coupling 
matrix will be decomposed into sub-matrices, each one 
representing the ideal response of a cavity or a group of 
cavities. The optimization will be performed first on the sub-
circuits and their connection represents a good initial point for 
the global optimization. In this manner, we are able for the 
first time, in our knowledge, to design a high selective H-plane 
waveguide filter with 8 poles and 4 transmission zeros, using 4 
TE2,0,1 / TE1,0,2 dual-mode cavities. 

 

I. THE BASIC ELEMENT 
The basic element is the TE201/TE102 dual-mode cavity. In 

order to excite TEm0 modes with m even, there must be an 
offset between the centers of irises and the cavity [8]. The 
greater the offset, the more important is the attenuation in the 
stop-band. In the extreme case, the upper walls of the cavities 
and irises are continuous. This case will be treated in this 
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paper. Figure 1 shows the structure of the cavity. The irises are 
centered with regard to the input and output waveguide 
sections. 

 
 
 
 
 
 
 
 
 

 
Figure 1. The structure of TE201/TE102 cavity  

 
The resonance of a TE cavity mode is given by: 
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From the study in [8], it is shown that this cavity exhibits 

two poles and one transmission zero. The low-pass prototype 
can be modeled according to the techniques developed in [10] 
and [11]. It contains the following four distinct types of 
components. 

1) Resonators: These are represented by unit capacitors in 
parallel with frequency-independent reactances, which account 
for the frequency shifts in their resonant frequencies. 

2) Admittance inverters: These are identical to the coupling 
coefficients between the nodes. 

3) NRN: These are internal nodes that are connected to 
ground by frequency-independent reactances.  

4) The input (source) and the output (load): These are 
normalized conductances. 
A resonator that is responsible for an attenuation pole at a 
normalized frequency si=jωi is represented by a unit capacitor 
in parallel with a constant reactance jbi=-jωi. Such a dangling 
resonator is only connected to a nonresonating node (NRN). 

Figure 2 shows the low-pass prototype of the cavity with a 
nonresonating node. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Low-pass prototype for a TE201/TE102 dual-mode cavity 

 

II. DESIGN PROCEDURE OF BAND-PASS FILTERS  

A. Band-pass Filter with Two Cavities 
 

The structure of a band-pass filter with two TE201/TE102 

dual-mode cavities is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
Figure 3. Topology for two-TE201/TE102 dual-mode cavity filter 
 
 
Its corresponding low-pass prototype is shown in Figure 4 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Low-pass prototype for two-dual-mode cavity filter in Figure 3 
 
After the extraction of circuit elements, the coupling matrix 

looks like the following one: 
 

w1 w2a1 l1

d1 d2

a aw1 w2a1 l1

d1 d2

a a

w1 w2 w3a1 l1 a2 l2

d1 d2
d3

a aw1 w2 w3a1 l1 a2 l2

d1 d2
d3

a a
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Each cavity can first be designed individually, according to 

the corresponding submatrix and then cascaded to the other 
through a quarter-wave waveguide section [7]. This represents 
a convenient starting point for the global optimization of the 
whole filter. In [7], the matrix resulting from the cascading of 
individual cavities is determined by optimization. In this 
paper, given that the extraction of elements of the whole filter 
presented in Figure 4 is easily done analytically, we derive the 
cascaded matrix from it. By cascading two cavities through 
nonresonating nodes and a quarter-wave waveguide section, 
we obtain the low-pass prototype shown in Fig. 5. All the 
elements remain the same, except the admittance inverters JA 
and JB and the two nonresonating nodes L1 and S2 with no 
susceptances. 

If the admittance at the input of resonator 4 looking towards 
the load, in both circuits is denoted by Y4, then the admittance 
at the output of resonator 3 looking towards the load for the 
circuits in Figure 4 and 5 are, respectively, 

4
2

43 /YJY =  

4
22

3 /YJJY BA=′  
For both circuits to have the same response, we must have: 

33 YY ′=  
From this equation we obtain: 

222
4 BA JJJ =  

This equation has an infinity number of solutions. If we set  

AB JJ ±= , then we have 4JJ A ±=  and we obtain 4 
solutions: 
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Figure 5. Low-pass prototype for two cascaded-dual-mode cavities 

 
If we choose the first solution to obtain inductive couplings 

only, the matrix of the cascaded circuit becomes: 
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The submatrices for the first and second cavities are, 

respectively, 
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B. Band-pass Filter with Four Cavities 
The structure for the band-pass filter with four TE201/TE102 

dual-mode cavities is shown in Figure 6 and its corresponding 
low-pass prototype in Figure 7. 

 
 
 
 

 
 
 
Figure 6. Topology for a dual-mode filter with four-TE201/TE102 dual-

mode cavities  
 
 
 

 
 
 
 
 
Figure 7. Low-pass prototype for four-dual-mode cavity filter in Figure 6 

w1 w2 w3a1 l1 a2 l2

d1 d2

a w4 w5
a3 l3 a4 l4

d4
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w1 w2 w3a1 l1 a2 l2
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 Following the procedure for matrix decomposition 

described below, the submatrices for the four cavities are, 
respectively, 
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First, the cavities are designed individually according to the 

above submatrices, then cascaded two by two and optimized 
according to the following matrices: 
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The whole filter is then constructed and a global 

optimization is performed to meet the requirements.  
 

C. Coupling Matrix Element Extraction 
 
The quasi-elliptical filter functions can be calculated 

through the recursive relations given in [12]. Once the filter 
functions are determined, the reflections coefficient S11 and S22 

are calculated: 
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From the input and output admittances, the coupling matrix 

elements are extracted following the procedure given in [11]. 

III. DESIGN EXAMPLES 
 
For the analysis and optimization of the filters, a very fast 

full-wave electromagnetic CAD tool Fest3D has been used. 
The standard waveguide WR75 was used for the input and 
output waveguide sections (a=19.05 mm, b=9.525mm). 

 
The first example is a two-cavity fourth-order filter with two 

attenuation poles at normalized frequencies s1= - 2.4j and s2 = 
2.4j. The central frequency is 10.5 GHz and the bandwidth is 
200 MHz with minimum return loss set to 22 dB. The 
extracted circuit elements are: J1 =1.075, J2=2.103, J3=0.956, 
J4=0.758, J5=1.0, J6=2.2, J7=1.124, b1 =2.006, b2=2.4, 
b3=0.051, b4= - 0.051, b5= - 2.195, b6= - 2.4 

The cavities were designed individually, according to their 
submatrices and then cascaded. The global optimization was 
then performed. The optimized filter dimensions, according to 
Figure 3 are as follows: 

a1 = 31.9726 mm, a2 = 30.9494 mm, l1 = 28.9567 mm, l2 = 
29.9116 mm, w1 = 13.399 mm, w2 = 12.9565 mm, w3 = 12.916 
mm, d1 = 6.022 mm, d2 = 16.3549 mm, d3 = 4.5556 mm. 

 
Figure 8 shows the simulated S-parameters. 
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Figure 8 S-parameters for the two-cavity filter with prescribed transmission 
zeros at the normalized frequencies s=±2.4j 
 

The second example is a two-cavity fourth-order filter with 
two attenuation poles at normalized frequencies s1 = - 3.2j and 
s2 = -2.4j. The central frequency is 10.5 GHz and the 
bandwidth is 200 MHz with return losses of 22 dB. The 
extracted circuit elements are: J1 =1.075, J2=3.021, J3=0.956, 
J4=0.758, J5=1.0, J6=2.243, J7=1.122, b1 =2.917, b2=3.2, b3=   
- 0.0095, b4= - 0.0875, b5= 2.204, b6= 2.4. 

The filter was designed according to the procedure 
developed in section II. The optimized filter dimensions, 
according to Figure 3 are as follows: 

a1 = 32.087 mm, a2 = 31.9729 mm, l1 = 29.7587 mm, l2 = 
29.9237 mm, w1 = 12.4639 mm, w2 = 11.9365 mm, w3 = 
12.2093 mm, d1 = 1.5335 mm, d2 = 9.556 mm, d3 = 2.9072 
mm. 

 

Figure 9 shows the simulated S-parameters. 
 

Figure 9 S-parameters for the two-cavity filter with prescribed transmission 
zeros at the normalized frequencies s = - 3.2j and s = - 2.4j. 

 
The third example is a four-cavity eight-order filter with 

four attenuation poles at normalized frequencies s1 = - 2.8j, s2 
= -2.0j, s3 = 2.0j, and s4 = 2.8 j. The central frequency is 10.5 
GHz and the bandwidth is 200 MHz with return losses of 22 

dB. The extracted circuit elements, according to the low-pass 
filter-prototype presented in Figure 7, are: J1 =1.028, J2=1.0, 
J3=3.047, J4=0.696, J5=1.0, J6=3.160, J7=0.992, , J8=1.0, 
J9=3.160, J10=1.080, J11=1.0, J12=3.047, , J13=1.204, b1 
=0.273, b2=3.666, b3= 2.80, b4=  0.264, b5=5.943, b6= 2.0, b7 
=0.014, b8= - 5.880, b9= - 2.0, b10= -0.192, b11= -3.465, b12= -
2.8. 

 
The filter was designed according to the procedure 

developed in section II. The optimized filter dimensions, 
according to Figure 6 are as follows: 

a1 = 32.037 mm, a2 = 31.898 mm, a3 = 31.202 mm, a4 = 
31.109 mm, l1 = 30.111 mm, l2 = 30.373 mm, , l3 = 30.831 mm, 
l4 = 31.031 mm, w1 = 11.897 mm, w2 = 11.647 mm, w3 = 
11.686 mm, w4 = 11.718 mm, w5 = 11.345 mm, d1 = 1.0 mm, 
d2 = 9.237 mm, d3 = 10.068 mm, d4= 9.636 mm, d5 = 1.0 mm. 

 
Figure 10 shows the simulated S-parameters. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 S-parameters for the four-cavity filter with prescribed transmission 
zeros at the normalized frequencies s = - 2.8j, s = - 2.0j, s =  2.0j and s = 2.8j 
 

IV. CONCLUSION 
In this paper, a modular design procedure for the H-plane 

dual-mode cavity filters using coupling matrix decomposition 
derived from extracted pole models with nonresonating nodes, 
is presented. With this procedure a high selective eight-pole 
filter with four-TE201/T102 dual-mode cavities was designed for 
the first time to the authors’ knowledge.  
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