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Abstract

This thesis focuses on solute transport upscaling. Upscaling of solute transport
is usually required to obtain computationally efficient numerical models in
many field applications such as, remediation of aquifers, environmental risk
to groundwater resources or the design of underground repositories of nuclear
waste. The non-Fickian behavior observed in the field, and manifested by
peaked concentration profiles with pronounced tailing, has questioned the use
of the classical advection-dispersion equation to simulate solute transport at
field scale using numerical models with discretizations that cannot capture
the field heterogeneity. In this context, we have investigated the use of the
advection-dispersion equation with mass transfer as a tool for upscaling solute
transport in a general numerical modeling framework.

Solute transport by groundwater is very much affected by the presence of
high and low water velocity zones, where the contaminant can be channelized
or stagnant. These contrasting water velocity zones disappear in the upscaled
model as soon as the scale of discretization is larger that the size of these zones.
We propose, for the modeling solute transport at large scales, a phenomeno-
logical model based on the concept of memory functions, which are used to
represent the unresolved processes taking place within each homogenized block
in the numerical models.

We propose a new method to estimate equivalent blocks, for which trans-
port and mass transfer parameters have to be provided. The new upscaling
technique consists in replacing each heterogeneous block by a homogeneous
one in which the parameters associated to a memory functions are used to
represent the unresolved mass exchange between highly mobile and less mo-
bile zones occurring within the block. Flow upscaling is based on the Simple
Laplacian with skin, whereas transport upscaling is based in the estimation of
macrodispersion and mass transfer parameters as a result of the interpretation
of the residence time distribution of particles passing through a given block
using fine-scale heterogeneous simulations.

The methodology proposed is applied in a Monte Carlo framework to model
solute transport in several two-dimensional synthetic aquifers. The upscaled
results are compared to a reference Monte Carlo analysis carried out at a
smaller scale. The memory functions used to model transport at the com-
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putational scale are based on the multi-rate mass transfer equations. Several
formulations of the multi-rate mass transfer model, which differ in the type of
memory function, were used and compared.

For the performance of the upscaled models we analyzed the reproduction
of the ensemble mean behavior of the main features associated with the si-
mulated breakthrough curves (BTCs). We examined the effect of upscaling
on model uncertainty and the spatial distribution of the solute mass plume.
The results showed that an appropriate description of the residence time dis-
tribution for all blocks of the numerical model provides an upscaled transport
model that is capable to reproduce the ensemble mean behavior of the BTCs,
but has problems in reproducing both uncertainty and plume dilution.



Resumen

El objecto de la presente tesis es el estudio del escalado del transporte de
solutos no reactivos. El escalado es usualmente aplicado para obtener modelos
numéricos de acuifero, que son una herramienta alternativa altamente eficiente,
para establecer estrategias en problemas tales como, la remediaciéon de suelos
y aguas subterraneas contaminadas, el diseno de almacenamientos de residuos
reactivos, o la evaluacién del riesgo ambiental para las aguas subterraneas.

El comportamiento anémalo (en la literatura anglosajona non-Fickian)
observado en los resultados de ensayos de trazadores ejecutados en campo o
en laboratorio, tales como los perfiles de concentracién con un alto pico y una
larga cola, cuestionan el uso de la cldsica ecuacion de adveccién-dispersion,
para simular el transporte a escala computacional. En este contexto, se pre-
sentan las investigaciones en el uso de los modelos escalados de transferencia
de masa como una herramienta alternativa para el escalado del transporte,
bajo el enfoque de la modelacién aplicada.

El desplazamiento de un contaminante en las aguas subterraneas es afec-
tado por la presencia de zonas de altas y de bajas velocidades del flujo, donde
el contaminante puede viajar libremente o bien puede ser retenido. Ese con-
traste de velocidades tiende a desaparecer en los modelos escalados, a medida
que la escala de la malla de modelaciéon sea més grande que el tamano de esas
zonas. En dichas circunstancias, para reproducir el comportamiento del trans-
porte observado con un modelo escalado, es necesario considerar un proceso
adicional de transferencia de masa entre las zonas mds y menos conductivas
en la ecuacién de adveccién-dispersion.

Asi, se propone como alternativa, un modelo fenomenoldgico basado en
concepto de que el transporte puede ser simulado a gran escala usando a
una malla de modelacién con bloque homogéneos de gran tamano, donde los
parametros de transporte asociado consideran alguna memoria vinculada a la
heterogeneidad de las propiedades hidrogeoldgicas, a cuales son sometidas las
particulas de contaminante a lo largo de su viaje por el medio.

De este modo, se presenta una metodologia para estimar los valores equi-
valentes de bloque asociados a la ecuacion alternativa de transporte. La nueva
técnica de escalado consiste en que cada bloque con valores heterogéneos de
transmisividad es reemplazado por un bloque homogéneo. A cada uno de esto
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bloques se le asigna un valor equivalente de transmisividad y de los coeficientes
de transferencia de masa y de dispersién, para representar los mecanismos de
transporte que tienen lugar en cada uno a escala fina. Estos valores son asigna-
dos en funcion de los mismos en las celdas que contiene cada bloque. El valor
equivalente de la transmisividad se obtiene aplicando la técnica de escalado
conocida como Simple Laplaciano con piel. Por su parte, los coeficientes de
transferencia de masa y de dispersién asociados a una funciéon de memoria, son
derivados de la interpretacién de la distribucién de los tiempos de residencia
de las particulas que atraviesan el area delimitada por cada bloque a escala
fina.

La metodologia propuesta ha sido evaluada mediante simulaciones de Monte
Carlo de transporte, aplicada en diversos casos sintéticos de acuiferos bidi-
mensionales, y en cada caso usando diferentes formulaciones de transferencia
de masa. Los resultados de los modelos escalados son comparados con una
solucién de referencia derivada a una escala fina.

El comportamiento de los modelos escalados fue evaluado desde dos pers-
pectivas diferentes: De un lado, se analiza la reproduccién del comportamiento
medio de las principales caracteristicas del conjunto de curvas de llegada
(BTCs). Ademés, se determina el efecto que causa el escalado sobre la repro-
duccién de la incertidumbre, asi como en la reproducciéon de la distribucién es-
pacial del penacho de contaminante de referencia. Los resultados derivados del
analisis estocéstico indican, que una apropiada reproduccion de la distribucion
de los tiempos de residencia en cada uno de los bloques del modelo numérico
a escala gruesa, asegura que el modelo escalado es capaz de reproducir el com-
portamiento medio del conjunto de BTCs. Por otro lado, se muestra que los
modelos escalados poseen un bajo poder predictivo para reproducir el nivel de
incertidumbre y el grado de dilucién del penacho de la solucién de referencia.



Resum

Lfobjectiu de la presente tesi és 1‘estudi de l‘escalat del transport de soluts
no reactius. L‘escalat és usualment aplicat per a obtenir models numerics
d‘aqiiifer, que sén una eina alternativa altament eficient, per establir estrategies
en problemes com ara, la remediacié de sols i aigiies subterranies contami-
nades, el disseny d‘emmagatzematges de residus reactius, o 1‘evaluacio del risc
ambiental per a les aigiies subterranies.

El comportament anomal (referit en la literatura anglosaxona com non-
Fickian) observat en els resultats d‘assaigs de tragadors executats en camp o
en laboratori, tals com els perfils de concentracié amb un alt pic i una llarga
cua, qiestionen 1is de la classica equacié d‘adveccié-dispersié, per simular
el transport a escala computacional. En aquest context, es presenten les in-
vestigacions en 1‘Us dels models escalats de transferencia de massa com una
eina alternativa per l‘escalat del transport, baix lI‘enfocament de la modelacié
aplicada.

El desplacament d‘un contaminant a les aigiies subterranies és afectat per
la presencia de zones d‘altes i de baixes velocitats del flux, on el contaminant
pot viatjar lliurement o bé pot ser retingut. Aquest contrast de velocitats ten-
deix a desapareixer en els models escalats, a mesura que l‘escala de la malla
de modelacié sigua més gran que la mida d‘aquestes zones. En aquestes cir-
cumstancies, per reproduir el comportament del transport observat amb un
model escalat, cal considerar un procés addicional de transferéncia de massa
entre les zones més i menys conductives en l‘equacié d‘adveccié-dispersio. Es
proposa aci com a alternativa, un model fenomenologic basat en el concepte de
que el transport pot ser simulat a gran escala utilitzant una malla de modelacio
amb bloc homogenis de grans dimensions, on els parametres de transport asso-
ciats consideren alguna memoria vinculada a 1‘heterogeneitat de les propietats
hidrogeologiques, a quals sén sotmeses les particules de contaminant al llarg
del seu viatge pel mig.

Dfaquesta manera, es presenta una metodologia per estimar els valors
equivalents de bloc associats a l‘equacio alternativa de transport. La nova
técnica d‘escalat consisteix en que cada bloc amb valors heterogenis de trans-
missivitat és reemplacat per un bloc homogeni. A cadascun dels blocs se
li assigna un valor equivalent de transmisivitat i dels coeficients de trans-
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ferencia de massa i de dispersid, per representar els mecanismes de transport
que tenen lloc a cada un a escala fina. Aquests valors sén assignats en funcié
dels mateixos en les celdles que conté cada bloc. El valor equivalent de la
transmisivitat s‘obté aplicant la técnica d‘escalat coneguda com Laplaci” sim-
ple amb pell. Per la seva banda, els coeficients de transferéncia de massa i de
dispersio associats a una funcié de memoria, sén derivats de la interpretacié
de la distribuci6 dels temps de residencia de les particules que travessen l‘area
delimitada per cada bloc a escala fina.

La metodologia proposada ha sigut avaluada mitjancant simulacions de
Monte Carlo de transport, aplicada a diversos casos sintetics d‘aqiiifers bidi-
mensionals, i en cada cas usant diferents formulacions de transferéncia de
massa. Els resultats dels models escalats sén comparats amb una solucié de
referéncia derivada a una escala fina.

El comportament dels models escalats va ser valorat des de dues perspec-
tives diferents: D‘una banda, s‘analitza la reproduccié del comportament mitja
de les principals caracteristiques del conjunt de corbes d‘arribada (BTCs). A
més, es determina l‘efecte que causa l‘escalat sobre la reproduccié de la in-
certesa, aixi com en la reproduccié de la distribucié espacial del plomall de con-
taminant de referencia. Els resultats derivats de 1‘analisi estocastic indiquen
que una apropiada reproduccié de la distribucié dels temps de residéncia a
cadascun dels blocs del model numeric a escala gruixuda, assegura que el
model escalat és capac¢ de reproduir el comportament mitja del conjunt de
BTCs. Dtaltra banda, es mostra que els models escalats tenen un baix poder
predictiu per reproduir el nivell d‘incertesa i el grau de dilucié del plomell de
la solucié de referencia.
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Introduction

1.1 Motivation and Objectives

Solute transport models are used to predict aquifer responses to be used, for
instance, in remediation studies, or in environmental risk assessment. The so-
phistication of today numerical models is very high, being capable of simulat-
ing complex geometries, as well as to solve for the state of the aquifer for many
conceptualizations of the solute transport. However, the discrepancy between
observations and numerical predictions is important, if the numerical model
only incorporates the physical processes of advection and dispersion. The rea-
son of this discrepancy is the inability of the advection-dispersion equation
to reproduce the effect of heterogeneity within the, otherwise, homogeneous
numerical blocks.

It is very important to capture the spatial heterogeneity of aquifer proper-
ties to model groundwater flow, and especially solute transport. Geostatistics
provides a tool to characterize the spatial variability of hydrogeological pro-
perties at very small scales. Unfortunately, no matter how fast new com-
puters are, the scale at which the aquifer parameters can be characterized is
always much smaller than the scale the numerical models can handle, thus,
there is a need to upscale the fine resolution description to incorporate subgrid
heterogeneity at the same time that computational burden is overcome.

Solute transport is generally simulated using the advection-dispersion equa-
tion. Unfortunately, this equation has been shown not to be adequate to model
solute transport at scales lager than the scale of heterogeneity. For instance,



2 1.2. Thesis Structure

the classical formulation of solute transport significantly underestimates the
late-time behavior of breakthrough curves at observation locations. Alterna-
tive models have been proposed in the literature for modeling solute transport
at the computational scale, such as continuous time random walks, fractional
derivatives, and multirate mass transfer models.

We revise these alternative models and analyze how to derive the parame-
ters needed to define them so that an upscaled, coarse scale model, can capture
the unresolved heterogeneity in what respects to solute transport at the field
scale. Specifically, we will focus in the use of multirate mass transfer mod-
els to mimic, using a homogeneous block, the residence times observed in a
heterogeneous block.

1.2 Thesis Structure

This dissertation is organized as follows. The first chapter is this introduction.
Chapter 2 provides a review of alternative models that have been proposed in
the literature for modeling solute transport at the computational scale. We
focus our attention on continuous time random walks, fractional derivatives,
and multirate mass transfer models. We examine the underlying assumptions,
scope and differences among these approaches.

Chapter 3 illustrates the use of mass transfer models as a tool for upscaling
solute transport in a general numerical modeling framework. By comparing
Monte Carlo simulations at different support scales, the performance of up-
scaled models was evaluated analyzing the reproduction of the ensemble mean
behaviour of the main features of the breakthrough curves and the propa-
gation of uncertainty. Furthermore, we describe how the upscaling process
based on the concept of memory function, intrinsic to multirate mass transfer,
is performed: each block with heterogeneous transmissivities, is replaced by
a homogeneous block in which the unresolved transport processes are repre-
sented by the parameter values associated with the memory function. The
parameter values are computed blockwise in order to reproduce, within each
block, the residence time and spread observed at the small scale.

Chapter 4 presents some transport simulations designed to investigate the
ability of upscaled models to reproduce solute transport for different types
of heterogeneity. We quantify the predictive power of the upscaled models
analyzing the reproduction of the dilution index and the relative entropy asso-
ciated with each solute plume. It also evaluates longitudinal mass distribution
profiles under different support scales. Finally, in chapter 5 we close with ge-
neral conclusions and potential avenues for future research as well as questions
raised during this work that need further investigation.



Review of Upscaling
Methodologies

Abstract

Nonreactive solute transport in porous media has been conceptualized and
simulated using the advection dispersion equation (ADE). However, field ob-
servations show long tails and asymmetric breakthrough curves which are con-
trary to the predictions by the ADE equation. For this reason, alternative
conceptualizations have been proposed to model solute transport at the field
scale. This chapter presents a review of four alternative.

2.1 Introduction

Solute transport modeling through porous media has been the focus of re-
search in hydrogeology over several decades. Traditionally, solute transport
is represented within the ADE framework, both at the local scale and at the
computational scale. However, it is well documented and known from field
test that ADE can not reproduce the breakthrough curves observed on site.
Solute transport is affected by the presence of high and low water velocity
zones, where solute can be channelized or stagnant. As soon as the numer-
ical models uses a discretization that cannot reproduce this heterogeneity of
the velocity field, transport predictions by ADE fail. Alternative approaches
have been proposed to account for the effects of this velocity heterogeneity,
among them we focus on the following four: Multi-rate Mass Transfer, Time-

3



4 2.2. The Starting Point: The Advection Dispersion Equation

Dependent Macrodispersive, Continuous Time Random Walk and Fractional
Advection-Dispersion Transport.

2.2 The Starting Point: The Advection Dispersion
Equation

The mass conservation equation constitutes the basis for describing the flow
and solute transport in the subsurface. It is basically a mass balance equation
which expresses that the net mass entering a control volume must be equal to
the accumulated mass. For nonreactive solute it is written as,

Iplx,t) = -V -J(x,t) + r(x,t) (2.1)
ot

where p(x,t) is the solute mass per unit volume, J(x,t) is the total mass
flux vector the magnitude of which gives the mass per unit time crossing a
unit surface perpendicular to the flow direction, and 7(x,t) is a solute mass
source/sink term. This equation is written in differential form but it is also
valid for any fixed control volume in the system. Aquifer material properties
in the aquifer are always determined over a given support volume. We can
rewrite the above equation using a volume average operator for property 7 as,

(%) = l/ wdV
U Ju(x)

being x the centroid of the control volume. The mass conservation equation
can be written at the support scale v as,

o0"(x,t) v "
(bT = —V . J (X,t) +7r (X,t) (22)

where ¢ is the porosity of the medium, and C' is the solute concentration. The
control volume denotes a given support scale, ranging from scale of measure-
ment to the computational scale.

The mass flux is usually written in relative terms with respect to the
advective contribution of mass fluxes, J%(x,t), which is defined as J}(x,t) =
q’(x,t)C"(x,t). The residual contribution to mass flux with respect to J?
is denoted as J(x,t) and accounts for dispersive processes, i.e., the effect of
velocity fluctuations about some average value,

Jo(x,t) =J%(x,t) — I (x,t) (2.3)

At the laboratory scale (the scale of core samples), denoted herein as v = ¢,
the groundwater flux q is given by Darcy’s law
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qd'(x,t) = —K(x)Vhi(x,1) (2.4)

and the dispersive mass flux J fl (x,t) is typically expressed through the Fickian
constitutive theory, which maintains that the dispersive fluxes at a given loca-
tion are proportional to the gradient of solute concentration at that location,

J5(x,t) = —pD*(x)VC(x, 1) (2.5)

where D? is the local hydrodynamic dispersion tensor, which is typically de-
fined in two or three dimensions by

¢D! = ¢DyT + aq| (2.6)

where Dy, is the molecular diffusion coefficient (assumed isotropic), 7 is the
tortuosity, Df are the eigenvalues of Df, and «; are the local dispersivity
coefficients , they are associated to the principal directions of the tensor, which
is aligned with the directions parallel and perpendicular to flow, and referred
to as longitudinal and transverse dispersivities, ay, and arg.

Substituting the definitions of the advective and Fickian dispersive mass
fluxes (2.5) in the mass conservation equations (2.2), the classical advection-
dispersion equation is obtained, which is presumably valid at the laboratory
scale,

a0 (x, 1)

o = V- (q'(x,)C(x, 1)) + V- (oD (x)VC (x, 1)) + ' (x, 1) (2.7)

¢

Commonly, numerical models for solute transport predictions utilize the
ADE equation, which is sometimes referred to as Fickian models. Unfortu-
nately, the computational scale typically used in numerical models is signifi-
cantly larger than the laboratory scale and the Fickian constitutive theory in
no longer applicable.

Available alternative transport models generalize the Fickian constitutive
theory by taking into account that total mass fluxes would, in general, depend
on the past history of mass fluxes in space and time. This has been demons-
trated by stochastic theory [Deng et al. (1993)] as well as by the volume aver-
aging method [Wood et al. (2003)]. Under this assumption the dispersive flux
is described by a convolution integral, which can be considered a generalization
of Fick’s equation:

t
Jo(x,t) = — /0 ” oMV (s, 7;x)VC (x — s,t — T)dsdr (2.8)



6 2.2. The Starting Point: The Advection Dispersion Equation

where M"(s,t;x) is the spatial-temporal kernel memory function, which can
be seen as a weighting function of the concentration gradients. The macrodis-
persive flux depends on the concentration gradients throughout the space-time
domain and thereby it exhibits a nonlocal dependence on the concentration
gradients [Cushman and Ginn (2000)].

In general, the function M"(s,t;x) is block specific (conditioned to the
x location of the control volume centroid), and depends not only on the un-
derlying heterogeneity but also on the numerical discretization of the domain
and the size/shape of the solute plume. Hence, substituting the generalized
Fickian equation (2.8) in the mass conservation equation (2.1), the alternative
transport model reads.

oC" (x,t)
¢ ot

+V. {/t oM (s, 7;x)VCY(x — s,t — T)deT} +7r%(x,t) (2.9)
0 JR3

— V- (" (x, ) (x, )+

Considering that for large travel distances (t — 0o0) concentration gradients
inside the integral are approximately constant at some point, the advection-
dispersion equation is recovered with an equivalent dispersion coefficient given

by

¢D"(x) = /Ot " oM (s, T;x)dsdT (2.10)

This expression is sometimes written in relative terms with respect to local
Fickian dispersive contribution as,

$#D"(x) = ¢D*(x) —|—/0 /%3 oM, (s, T;x)dsdT (2.11)

where ¢M?, (s, 7;x) = ¢M(s, 7;x) — D (x)d(x — 5,t — 7). The subscrip m
refers to the macrodispersive kernel memory function. The first term ex-
plains the contribution of dispersive flux at local scale (assumed Fickian),
whereas the second term represents an additional dispersive contribution duo
to heterogeneity embedded into the fixed volume v. Using small perturbation
stochastic theories, Gelhar and Axness (1983) obtained the same expression
in probability space. They found that for an infinite domain, large plume, and
steady-state uniform flow conditions the memory function should be expressed
as

dM;7 (s,t) = Go(s,t)Cqq(s) (2.12)
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where Go(s,t) is the Gaussian-shape homogeneous solution to the advection-
dispersion equation and Cqq is the covariance function of the velocity field.
Following this reasoning, modelers that use commercial transport codes based
on advection-dispersion equation, normally need to enhance the values of the
dispersivity coefficients to account for the unresolved heterogeneity not des-
cribed by the model. In this context, a block equivalent dispersion tensor is
introduced, D?, which can be formally expressed as

¢D? = ¢7Dg + (o + Allql) (2.13)

D? are the eigenvalues of D’ and A? is the increase in block dispersivities.
Here, we used the notation that v = b when referring to grid-blocks or elements
of a numerical transport code. For most model discretizations, the increase in
longitudinal dispersivity, A’i, is the dominant parameter having values much
larger than ay; A% ranges from meters to kilometers [e.g. Gelhar et al. (1992)]
whereas «f, is in order of millimeters [e.g. Fernandez-Garcia et al. (2004)].

Standard macrodispersion models employ enhanced block dispersivity co-
efficients to compensate for the homogenization. However, further research has
shown that these conditions hardly occur in reality. General conditions are
not Fickian. In such case, the Fickian theory tends to largely underestimates
the tail of the concentration breakthrough curves even for moderate field he-
terogeneities and ”well-behaving” multiGaussian random transmissivity fields
[Fernandez-Garcia et al. (2007)].

2.3 Time-Dependent Macrodispersive Models

The first approach we revise that attempts to circumvent the problems with
the ADE equation is Time-Dependent Macrodispersive Models. This approach
is based on the localization of the non-local Fickian equation (2.8). The non-
local Fickian flux is localized about the plume center of mass. In the case
that the memory kernel M,, (s, 7;x) dies out as | s | and | 7 | increases, the
macrodispersive flux strongly depends on the concentration gradient at the
current time and position and one can approximate the macrodispersive flux
simply as,

J(x,t) = —¢D(x, 1) VC"(x, t) (2.14)

with,

t
¢Dv(x,t):¢Df(x)+/0 /ngM”(s,T;x)dsdT (2.15)
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Now, using the mass conservation equation with the localized version of the
macrodispersive flux (equation 2.14), the solute transport equation is written
as,

aCU (X’ t) v v v v v
qu = —V-(q"(x,t)C"(x,t))+ V(D" (x,t)VC’ (x,t))+r"(x,t) (2.16)
Note that this equation differs from the classical advection-dispersion equation
(2.7) in the dispersion tensor D(x,t), which not only depends on the spatial
location but also in time. Transport models that follow this approach are
referred to as time-dependent macrodispersive models.

Basically, two similar approaches have been suggested to use effective time-
dependent macrodispersion tensors derived from stochastic theories for small
plumes [Dagan (1991);Rajaram and Gelhar (1993); Dentz et al. (2000)]. In
this case, the time-dependent macrodispersion tensors in (2.16) correspond to
a solute plume with shape equal to the grid-block of the numerical model.
Likewise, Rubin et al. (1999, 2003) have determined effective time-dependent
macrodispersion tensors by removing the frequency spectra of velocity fluctu-
ations in a small-perturbation expansion of macrodispersion.

Although the theoretical framework given by (2.16) is general and not
restricted to small perturbations, on practice, there is still no algorithm to
estimate time-dependent dispersion tensor specific to the grid-blocks of a nu-
merical model. Moreover, closed-form analytical stochastic solutions provide
time-dependent dispersion coefficients that vary with time but do not change
from one grid-block to another.

2.4 Multi-rate Mass Transfer Models

Other equations for modeling the solute transport at computational scales
larger than the characteristic length is an advection-dispersion equation (ADE)
with an additional source/ sink term that accounts for the exchange between
high and low conductivity zones. In other words, the domain is decomposed
into a mobile zone with pore spaces filled with mobile water, transport process
in this zone include advection, dispersion, and chemical reactions; and an
immobile zone with pore spaces filled with stagnant water where advective
transport is negligible. Figure 2.1 shows a schematic conceptualization of
the mass transfer model. The rate at which solute moves between these two
domains is controlled by a mass transfer coefficient . One defines C,,, and
Cim, the concentrations in the mobile and immobile zones respectively. The
ADE, as it includes advection and dispersion, is used to describe C,,. The
source/sink term represents the mass transfer exchange between a mobile zone
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and a distribution of immobile zones leading to the non-Fickian solute mass
fluxes at the computational scale,

Hmacv X, t Zm/ fv (X’t’a)da
——V(q (%, 1)C% (x, 1)) + V - (D? (x)VC? (x,1)) + 1°(x, 1) (2.17)

The mass flux between mobile and immobile zones is driven by the con-
centration difference between zones as,

where « is the mass transfer coefficient, f¥(«) is the density function of mass
transfer rates, ,, and 0;,, are the volume fractions of the mobile and immobile
zones, (), is the concentration in mobile zones and Cj,, is the concentration
immobile zones.

Integrating the mass transfer equation (2.18) and then substituting C},, (x, t; «)
into (2.17), one obtains a transport equation simply depending on the mobile
concentration,

Gim

ot
= V(qU(x, 1)CY, (%, 1)) + V - (0D (x)VC (x, 1)) + 1°(x, 1) (2.19)

v t v _
on 2O g, [ (TR BEL =Ty
0

where 3, is the total maximum capacity to retain particles in the immobile
zones, ¢g(t) is known as the (temporal) memory function,

g’ (t) = /000 af(a)e*da (2.20)

The memory function can be interpreted as the particle resident time distribu-
tion function in the immobile zone. Or, in other words, the memory function
represents the mass flux to the immobile zones per unit volume of aquifer,
for a unit change in concentration in the mobile zones[(Haggerty et al., 2000);
(Carrera et al., 1998)]. The formulation of this term depends on the geometry
of the immobile zones and on the variability of the mass transfer or diffusion
rates (Haggerty et al., 2000). Table 2.1 shows the density functions f(«)
corresponding to the mass transfer models used in this dissertation.

Various researches [e.g. Zinn and Harvey (2003)] have demonstrated that
nonreactive solute transport through heterogeneous media is often better si-
mulated when an advection-dispersive model is used in conjunction with a
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mass transfer model. Conceptually, this artificial mass term does not represent
local kinetic reactions but it rather accounts for solute mass exchange between
high and low velocity areas occurring at the Darcy-scale within each grid
block. Although straightforward relationships between memory functions and
physical properties of the aquifer are not established yet, the meaning of the
memory function has been seen to strongly depend on heterogeneity. The
formulation of the memory function depends on the geometry of immobile
zones and on the variability of mass transfer or diffusion rates (Haggerty et

al., 2000).
Model ) g°(t)
First-order Brotd(a — ary) agBore” "
Multirate Series () IS af (e do

Power Law Distribution® —Ztettk=2)_ k-3 Jomer o fY(a)e” M da

— g
AUmaz =% in min

“ A truncated power law density function with k& > 0,k # 2, and amin <
a < Qmaz. Omaz 18 the maximum rate coefficient, i, is the minimum rate
coefficient, and k is the exponent.

Table 2.1. Density Functions f(«) corresponding Memory Functions
g (t) (after Haggerty et al., 2000)

Constant

No-flux
- Rk IS
O'mﬁn a3,B3
Block 04, B
equivalent
properties
o S o o,B,

Mass transfer into low
permeability inclusions

Figure 2.1. Representation of mass transfer conceptual model.
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2.5 Continuous Time Random Walk Models

The continuous time random walk (CTRW) is a generalization of the standard
(discrete) random walk. It is based on the idea that not only the length of a
particle jump is random (not necessarily following a Gaussian distribution as
the standard random walk) but also the particle undergoes a random waiting
time between two successive jumps. The length of a given jump and the
waiting time are drawn from a joint pdf ¥ (x,t), which is known as the jump
pdf. From the joint pdf ¢)(x,t), the jump length pdf and the waiting time pdf
can be derived as marginal distributions,

- / T p(x, Ddt (2.21)
0

and

= /_OO P(x,t)dx (2.22)

Following Metzler and Klafter (2000), different types of CTRW processes
can be defined by the characteristic waiting time and jump length second
moment,

T= /O tw(t)dt (2.23)

[e.e]
E?j :/ T A (X)dx (2.24)
—0o0

Anomalous dispersion takes place when either the characteristic waiting
time or characteristic jump length are not finite. The continuous time ran-
dom walk method provides a general framework in the sense that both the
fractional-dispersion transport models and the mass transfer models haven
demonstrated to be particular cases of the CRTW formalism (Dentz and
Berkowitz, 2003; Cushman and Ginn, 2000). Most frequently, for simplicity,
the CTRW formalism is simplified by considering the waiting time and jump
length mutually independent. In this case, assuming a finite characteristic
jump length but undefined characteristic waiting time, the transport equa-
tion governing the movement of particles under steady state flow condition is
(Dentz and Berkowitz, 2003)

¢8CU6(tXt { / MY (1) g (x)C¥ (x, 1) — Mt(v)D”(x)VC”(x,t)dt}—i—

+rV(x)  (2.25)
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with M (t) being the memory function which is typically expressed in the
Laplace domain as

¥(p)
1—4(p)
where p is the Laplace variable. The memory function serves to capture the
non-Fickian transport induce by the heterogeneity not represented by the
model.

M(p) =Tp (2:26)

2.6 Fractional Advection-Dispersion Transport Mod-
els

Fractional advection-dispersion transport models have been used in recent
years [e.g. Metzler and Klafter (2000); Schumer et al. (2003); Benson et al.
(2000)] as a way to generalize the advection-dispersion equation with the ob-
jective to better describe the power-law scaling behavior in the spread of so-
lute plume observed in the field. Mathematically, fractional dispersion can
be viewed as a specific case of continuous time random walk in which the
transition displacement distribution of particles p(s) is described by a Lévy
distribution. A Lévy distribution is a generalization of the Gaussian distribu-
tion. It is defined in the Fourier space as

f k) = ell7H” (2.27)

where k is the Fourier variable, « is the magnitude of the Lévy flight and
« is the Lévy index. For o < 2 the variance of the distribution function is
undefined, for a < 1 the mean of the distribution function is also undefined.
For a = 1 we recover the standard Gaussian distribution and the inverse of
The Fourier Transform has an explicit expression.

The transport equation is defined as

Ponll) 9 (g ()" (1)) + V- (6D31 (V¥ 1) +

¢ a—1
+7rY(x,t) (2.28)

where the term DY _, (x)V* 1C?(x,t) is defined in the Fourier space as

a—1

FDL(x)VYCY(x,t)] = —Di(x) | k |* CY(k,t) (2.29)

Note that this expression is a generalization of the Fourier Transform of
a derivative for noninteger numbers. In order to emphasize the relationship
between this model and the previous discussion, we will use the convenient
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result that the fractional advection-dispersion equation can be obtained as a
special case of the nonlocal Fickian transport equation (2.8). That is, Cush-
man and Ginn (2000) demonstrated that the fractional advection-dispersion
equation is recovered from CTRW when the kernel memory term is given by
the following specific form, which in one-dimension reads as,

M(s.r) — DaaSHG)

W (2.30)

where DY_, is constant, 6(7) is the Dirac delta, and H(s) is Heaviside function
on (0,00). The important point here is to note that the Dirac delta function
serves to localize the flux in time, so that the fractional advection dispersion
equation only nonlocal in space (Cushman and Ginn, 2000). Also, the Heav-
iside function serves to restrict the nonlocality in space to positive s values,

which corresponds to an upstream weighting memory function.

2.7 Summary

A review of mass transport formulations to simulate solute transport at the
field scale has been presented. The emphasis of this review has been placed on
the theoretical framework of each approach. These models provide alternative
ways to predict contaminant transport. Transport problems always require a
greater detail of heterogeneity than flow problems, the issue we will address
is how to replace the loss of within-block heterogeneity by an alternative for-
mulation to the ADE. We will propose an upscaling technique to address this
problem.
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Upscaling Transport with
Mass Transfer Model

Abstract

The ambiguity associated with the choice of an adequate conceptual trans-
port model constitutes a major challenge associated with the upscaling of
solute transport. Among the different alternatives to the classical advection-
dispersion model, the (multirate) mass transfer model has been proposed as a
valuable and convenient alternative to model the large-scale behavior of solute
transport. Here, we evaluate the use of mass transfer models as a constitutive
equation for upscaling solute transport. To achieve this, we compare Monte
Carlo simulations of solute transport at two different support scales. Transport
simulations performed at the smallest scale represent a set of reference trans-
port solutions, which are contrasted against transport simulations obtained
using an upscaled model. Several formulations of the multi-rate mass transfer
model, which differ in the type of memory function, are used as a constitutive
transport equation. The large scale scenario represents an operational model
obtained by partially homogenizing the reference solution. Results show that,
albeit the double-rate and the truncated power-law mass transfer models were
capable to properly describe the ensemble average behavior of the main fea-
tures associated with the integrated breakthrough curves, the uncertainty as-
sociated with the upscaled mass transfer models was still substantially smaller
than that attributed to the reference solution. Importantly, the corresponding
cumulative distribution function of concentrations (CDF) associated with the
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upscaled model follows a distribution similar to the reference solution but with
smaller dispersion. The reason is that while appropriate memory functions can
be used to preserve the residence time distribution of mass particles during
upscaling, the lack of memory in space prevents the model from reproducing
mass fluxes in all directions. Specifically, the reproduction of mass fluxes tak-
ing place at the interface between two homogeneized blocks of the upscaled
model are not satisfied, thus providing a poor description of the spatial distri-
bution of mass particles.

3.1 Introduction

Albeit different approaches can be used to generate high-resolution maps of
aquifer attributes by means of geostatistics or related tools, still, in prac-
tice, due to computational efficiencies, some sort of upscaling (i.e., transfer
of small-scale information into a larger support volume) is usually necessary
to construct a numerical transport model. In subsurface hydrology, the large
spatial variability observed in aquifer attributes, being the hydraulic conduc-
tivity an attribute that varies several orders of magnitude within an aquifer,
largely influences solute transport predictions and drastically complicates the
upscaling of solute transport.

Among the effects of heterogeneity, the usual observation of anomalous
(non-Fickian) transport, manifested in the field by peaked concentration pro-
files having long back-tails, has questioned the use of the classical advection-
dispersion equation (ADE) to model transport phenomena at the usual com-
putational scale of a numerical model (Mackay et al., 1986; Adams and Gelhar,
1992; Riva et al., 2008; Gouze et al., 2008; Haggerty et al., 2000). These field
observations are supported by laboratory experiments (Levy and Berkowitz,
2003; Fernandez-Garcia et al., 2005c), numerical simulations of solute trans-
port in heterogeneous media (Zinn and Harvey, 2003; Feehley et al., 2000;
Fernandez-Garcia et al., 2005a, 2007; Salamon et al., 2007), and fundamental
statistical theory.

By modeling hydraulic conductivity (defined at a small support scale) as
a correlated random space function, stochastic theories have succeeded in
demonstrating that mean mass fluxes at the x location and time ¢ should
not in general be exclusively dependent on the mean concentration gradients
at that location and time, as it is expressed by Fick’s law. Instead, dispersive
mass fluxes should depend on the past values of the mean concentration gra-
dients over the entire space-time domain (Hu et al., 1995; Morales-Casique et
al., 2006), thus rendering memory to the transport equation.

In response to this lack of Fickianity, several alternative transport models
have been proposed in the literature to properly describe transport phenomena
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at a large support scale. Promising alternatives contemplate continuous time
random walks (CTRW) (Berkowitz and Scher, 1998), fractional derivatives
(Benson et al., 2000), and multirate mass transfer models (MRMT) (Haggerty
and Gorelick, 1995; Carrera et al., 1998) among others. Comprehensive reviews
of the theories of anomalous transport in heterogeneous media are provided by
Berkowitz et al. (2006) and Neuman and Tartakovsky (2008). Interestingly,
the CTRW formalism supposes a more general framework, but simplifies to
the MRMT model in its most common adopted form (Dentz and Berkowitz,
2003). Still, the MRMT model has the advantage that its formulation and
physical interpretation is well-known by practitioners, and many numerical
transport codes based on the MRMT model are already available for field
applications (Zheng and Wang, 1999; Carrera et al., 1998; Salamon et al., 2006;
Willmann et al., 2008). Alternatively, the stochastic ADE equation, defined
over a small support volume, can be used to directly provide the conditional
low-order moments (mean and covariance) of concentrations and solute fluxes
(Morales-Casique et al., 2006). Interestingly, upon considering no statistical
interdependence of the velocity field, the mean transport equation reduces to
the CTRW model (Neuman and Tartakovsky, 2008).

Here, we focus on the use of MRMT models as a constitutive equation
for upscaling solute transport. Various researches (e.g., Guswa and Freyberg,
2002; Carrera et al., 1998; Harvey and Gorelick, 2000; Zinn and Harvey, 2003;
Liu et al., 2004; Riva et al., 2008; Willmann et al., 2008) have shown that large-
scale non-reactive solute transport phenomena observed in a heterogeneous
medium is often better represented when a mass transfer equation is coupled
with the ADE.

Conceptually, this artificial mass transfer equation does not represent lo-
cal kinetic reactions or diffusive mass transfer processes but it rather accounts
for subgrid heterogeneity (Zinn and Harvey, 2003; Willmann et al., 2008).
In this context, we compare Monte Carlo simulations of solute transport ob-
tained at two different support scales with the aim to evaluate the adequacy
of MRMT models as a tool for upscaling. Transport simulations performed at
the smallest scale represent a set of reference solutions defined on the basis of
a local ADE. At the large scale, several formulations of the MRMT model are
evaluated as potential constitutive transport equations.

The upscaled model scenario represents an operational or a functional
model obtained by partially ”homogenizing” the reference geological system
(defined over a fine-scale) so that it ultimately consists of various homogeneous
regions. We emphasize the word ”partial homogenization” to be in contrast
with most previous analysis of upscaling of solute transport (e.g., Harvey and
Gorelick, 2000; Zinn and Harvey, 2003; Willmann et al., 2008) in which the
system is completely homogenized. The distinctive aim of this work is that:
(1) we look at the process of transferring subgrid information to finite blocks
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or homogeneous regions of a numerical model by means of MRMT models;
(2) we seek for a more comprehensive understanding of the interplay between
the (homogenized) regions of an upscaled transport model; and (3) we evalu-
ate how uncertainty is affected by the change of the support scale when the
MRMT model is selected for upscaling.

3.2 Transport Models

3.2.1 The Local Transport Model

At the local scale, denoted herein as w, we considered solute transport to be

governed by the advective-dispersion equation (ADE). Neglecting the changes

in porosity with time and disregarding the source/sink term, this is written as
L0

0 E = —V-(qwcw — HWDWVCW) 5 (3].)

where the first term in the divergence operator is the advective mass flux
and the second term accounts for dispersive fluxes. ¢ is the volume average
concentration of solute in w, and ¥ is the Darcy flux. This equation is based
on the mass conservation principle and assumes that the dispersive mass fluxes
can be described by Fick’s law at some small scale w, i.e., mass fluxes at point
x and time ¢ are proportional to concentration gradients at point x and time
t,

J4(x,t) = —0“DEV e (x,1). (3.2)

This assumption has been challanged by several authors. In general, in the
absence of dead-end-pores, Fick’s law can be argued to be valid for sufficiently
small support volumes (Neuman and Tartakovsky, 2008). In any case, from
a practical point of view, our analysis is based on the fact that the non-
Fickian transport behavior observed at the Lauswiesen site (Riva et al., 2008)
and at the MADE site (Salamon et al., 2007) has been adequately modeled
using an ADE (defined over a small support volume) in conjunction with a
high-resolution description of heterogeneity. This is precisely the situation we
consider here.

The local dispersion tensor, D%, is the sum of the effective molecular dif-
fusion tensor, DY, ¢+ and the mechanical dispersion tensor, Dﬁisp- The latter
accounts for residual fluxes at the local scale w, and is typically defined with
eigenvectors oriented parallel and perpendicular to the direction of flow, and
eigenvalues defined as

||
gisp,i = oo (33)
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where «a; are the local dispersivity coefficients. The «; components parallel
and transverse to the flow direction are usually denoted as longitudinal and
transverse dispersivities, ay, and arp.

3.2.2 The Upscaled Mass Transfer Model

At the computational scale, denoted here as v (v > w), transport phenomena
is represented by means of the MRMT model (Haggerty and Gorelick, 1995;
Carrera et al., 1998; Haggerty et al., 2000). The MRMT model allows to rep-
resent a large variety of mass transfer processes taking place simultaneously
over a wide range of scales, i.e., processes ranging from pore diffusion at the
grain scale to matrix diffusion into fractured rocks can be simultaneously rep-
resented. This model considers an overlapped continuum media formed by a
mobile domain, where advection-dispersion takes place, and many immobile
domains, where mass can be transferred to and temporarily be trapped.

Here, the MRMT model is not used in strict sense to represent a variety of
diffusive processes. Instead, the mobile and immobile zones are viewed as to
represent areas of relatively fast and relatively slow solute movement (inside
v). Similar representations of a heterogeneous media have been considered by
Zinn and Harvey (2003) and Willmann et al. (2008). Formally, the MRMT
equation is essentially an ADE with a source/sink term,

0”% =—-V-(q’c’ —6'D;Ve’) — 0°T"(x, 1), (3.4)
where
DY, = D%y + (i + An) L (3.5)
d,i dif f,i ? 7 Qv
t oc?
D(x,t) = 0(x) [ g0x,m) - (x,t = T (36)
0

The additional dispersive contribution term in (3.5), A;, accounts for pro-
cesses that can actually be represented with a Fickian model, whereas pro-
cesses associated with anomalous transport are represented through the mem-
ory function g(x, 7).

As time evolves, the memory function emphasizes the different past values
of the concentration derivatives with time, thus rendering memory to solute
transport. The coefficient 3(x) defines the magnitud of memory effects and is
known as the capacity coefficient.

Several forms of the MRMT model are found in the literature (e.g., Carrera
et al., 1998; Haggerty et al., 2000). Among them, the single-rate model, the
gamma model, the log-normal model, the power-law model, and the diffusion
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model (with spherical, layered and cylindrical geometries) are the most com-
monly used. Each one of these conceptual models have been successfully em-
ployed to model field and laboratory experiments. Remarkably, the single-rate
mass transfer model was successfully utilized to reproduce the tracer experi-
ment at the Macrodispersion Experiment (MADE) site using either (partially
homogenized) numerical models (Feehley et al., 2000) or (completely homog-
enized) analytical solutions (Harvey and Gorelick, 2000). Importantly, the
quantities associated with these mass transfer models at the MADE site were
shown to be mostly related to Darcy-scale heterogeneity (Salamon et al., 2007).

Here, we selected three potential upscaled constitutive equations based on
a different form of the memory function: the single-rate model, a discrete
multirate model with two immobile domains (double-rate), and the truncated
power-law memory function. The mathematical expression of the memory
function g(x,t) can be generally written as

g(x,t) = /000 af(x,a)e” “da (3.7)

where f(x, a) is a function that can be physically interpreted as the probability
distribution function of mass transfer rates associated with distinct domains
of the overlapped continuum. Detail description of the three selected upscaled
mass transfer models are provided in Table 3.1. We note that becuase our
upscaled model considers a domain formed by various homogeneous regions,
the mass transfer parameters in (3.6) depend also on the space location ac-
cordingly.

Table 3.1. Parameters to be estimated for each constitutive upscaled mass
transfer model.

Model Memory function Parameters
First-order et B, a1, Um, AL
Double rate * ay %e*alt + ag%e*‘”t Bj=1,2, ®j=1,2, Um, AL
Power Law ? ~ 1k B, Cmaz, Cmins k, vm, AL
¢ B =014 0

b The power law model is only defined over the interval aumin < a < @max

In a randomly heterogeneous aquifer, stochastic theories predict that the
mean dispersive flux should in general depend on the past mean concentration
gradients throughout the entire space-time domain (Neuman, 1993; Morales-
Casique et al., 2006; Neuman and Tartakovsky, 2008). In a similar manner,
the memory function in the MRMT model operates as a weighting function
that penalizes past concentration derivatives in time (but not in space). In
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this context, the MRMT model should be seen as a model with a space-
localized memory kernel. This is in contrast with the time-localized memory
kernel associated with the fractional advection-dispersion model (Cushman
and Ginn, 2000). In anyway, we note that the intend here is not to question
the validity of the theoretical premises underlying the upscaled MRMT model
but to directly assess the applicability of a well established model.

3.3 Monte Carlo Transport Simulations

3.3.1 Setup

We consider a confined two-dimensional aquifer whose domain consists in a
square area of 240 x 240 units. Flow is driven by a mean hydraulic gradient
oriented parallel to the z-direction (J, = 0.01, J, = 0) under steady-state flow
conditions. Boundary conditions were no-flux for boundaries parallel to the
mean flow and constant-head otherwise. Thus, groundwater flow is moving
from left to right.

Aquifer heterogeneity is represented by considering the natural log of trans-
missivity, Y(x), as a spatially varying attribute. All other properties are as-
sumed spatially constant. A total of 50 different transport solutions were
obtained by generating multiple equally likely realizations of Y(x). Y(x) is
assumed isotropic at the small support scale and is represented by uniformly
discretizing the entire domain into 240 x 240 square pixels of 1 unit size.

Each upscaled mas transfer model was obtained by transferring the fine-
scale pixel information into a numerical model formed by 10 x 10 regular
homogeneous blocks. Thus, the size of each block was of 24 x 24 units. Figure
3.1 shows an individual reference transmissivity field, Y (x), contrasted against
the corresponding depiction of the transmissivity field in the upscaled model.

To simplified the problem, at the local scale, transport is assumed purely
advective so that DY = 0. The transport problem setup considers a solute
plume initially distributed over a long transverse line located upgradient and
having a constant concentration. This line was centered in the transverse
dimension of the domain and takes up 140 units. To avoid boundary effects,
the plume source was separated 21 units from the upgradient head boundary
and 50 units from the impermeable boundaries.

Transport simulations were designed to efficiently calculate the global mass
flux breakthrough curves observed at 14 z-control planes equally distributed
within the entire domain. The simulated breakthrough curves constituted the
reference transport solution used to subsequently analyze the performance of
upscaling by the different upscaled models.
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Figure 3.1. Tllustration of the upscaling process: (a) Map of transmissivities for
a given realization superposed with the discretization of the upscaled model (black
lines); (b) Map of equivalent transmissivities (T7)7,).

3.3.2 Reference Transmissivity Fields

The reference transmissivity fields were conceptualized as an stochastic bi-
modal composite medium. The objective here was to test the upscaled models
in a complex geological system formed by highly conductive conduits embed-
ded in an otherwise well behaving Gaussian heterogeneous medium. Thus,
we assumed that the aquifer is composed of two coexisting materials or facies
(M, and My), each represented by a different random function model of the
spatial distribution of the natural log of transmissivity, Y1 (x) and Ya(x),

Y(x) = (1-1Ix)Yi(x) + I(x)Y2(x) (3-8)

where I(x) is an indicator spatial random variable,

1
1) =4 XEM (3.9)
0 otherwise

The natural log of transmissivity Y;(x) of the first material, M;, follows
a multiGaussian random function with a geometric mean of Ty=1 and an
anisotropic exponential covariance function,

2 2
T T
Cy, (|r]) = 0¥, exp | — (—Y) + | (3.10)
AN A

where r = (ry, ) is the separation vector between two points of the aquifer,
oy, is the variance of Y1(x) = InTj(x) assumed as 9, and A1 and )\Zl are
the longitudinal and transverse correlation scales set to 40 and 4 units, re-

spectively. The second material, Ms, represents a family of highly conductive
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Figure 3.2. Illustration of the steps involved in the stochastic generation of the
composite transmissivity field, Y (x) = (1 — I(x))Y1(x) + I(x)Y>. Blue and red pixels
in the I(x)-map indicates materials M; and Ma, respectively.

conduits. We considered that the variation of Y3(x) is of minor importance
compared with Y] (x), and we therefore assigned a deterministic constant trans-
missivity value to Ya(x), i.e., Ya(x) = Yo = 2.0. Figure 3.2 illustrates the steps
involved in the stochastic generation of the composite random field for a given
realization of Y (x).

In a bimodal media, the volumetric proportion of material My, denoted as
po, defines the mean and variance of the indicator random variable, respec-
tively written as < I(x) >= py and o7 = pop;, where p; is the volumetric
proportion of M; (p1 = 1 — py). We consider that the family of highly con-
ducive conduits (material M) occupies 20% of the domain, i.e., po = 0.2 and
p1 = 0.8. This choice allowed us to obtain transmissivity fields leading to
breakthrough curves with long back-tailing during transport simulations. Fig-
ure 3.3 compares the cumulative mass flux breakthrough curves obtained at
a given z-control plane using one realization of Y;(x) and its associated com-
posite medium, Y (x). Note that the slope of the late-time behavior observed
for Y1(x) is substantially more elongated than that observed for Y (x). The
indicator variable was further characterized with an anisotropic covariance

function,
) - 2 r 2
Cr(lef) = o2 exp [ - (v) +(ﬁ) (3.11)

where AL and )\é are the longitudinal and transverse correlation scales of
the indicator variable set to 16 units and 1 unit, respectively. Following (Rubin
and Journel, 1991; Rubin, 1995), we assumed that the spatial distribution of
Yi(x) and I(x) are mutually uncorrelated. Based on this and according to
Rubin (1995) and Lu and Zhang (2002), the resulting composite random field,
Y (x), displays a theoretical mean, variance and covariance function given by,
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Figure 3.3. Comparison of the cumulative mass flux breakthrough curves obtained
at a given z-control plane (z = 143.3 units) using one realization of the transmissivity
field Y7 (x) and its associated composite medium Y (x).

<Y(x) >=p1 <Y} > +p2Ys (3.12)
Cy (Ir) = [Cr(Ir]) + p7] Oy, (Ir]) + (< Vi > =Y2)* Cy(|r) (3.13)
oy = [p1p2 +Pﬂ 052/1 + (<Y1 > -Y2) pipo (3.14)

Thus, the statistical properties of the final composite media are < Y (x) >=
0.4 and 032, = 7.84, having integral scales in the  and y directions of A} = 32.8
units and )\Z = 3.2 units. Because Y;(x) and I(x) are not correlated, the
stochastic generation of Y;(x) and I(x) was performed independently. Thus,
for each realization of Y (x), we separately generated I(x) using an indicator
sequential simulation program, ISIM3D (Gdémez-Herndndez and Srivastava,
1990), and Y7 (x) using a sequential gaussian simulation program, GCOSIM3D
(Gémez-Herndndez and Journel, 1993). The composite media is finally ob-
tained from Y (x) = (1 — I(x))Y1(x) + I(x)Ya2.

3.3.3 Flow and Transport Solution

A finite difference ground-water flow model, MODFLOW2000 (Harbaugh et
al., 2000), was used to solve the flow problem at both scales. The discretization
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of the numerical grid was given by the discretization of the spatial distribu-
tion of transmissivities. The model calculates the flow rates at grid interfaces.
These velocity fields were then used in a transport code based on the Random
Walk Particle Method, RW3D (Fernandez-Garcia et al., 2005a,b), to simulate
either conservative solute transport needed to obtain fine-scale transport so-
lutions or solute transport coupled with multirate mass transfer to obtain the
corresponding upscaled model solutions (coarse-scale).

The particle tracking methodology presented by Salamon et al. (2006) was
employed to simulate multirate mass transfer processes. Essentially, transport
is simulated by injecting a large number of mass particles into the system;
each particle representing a small portion of the solute plume. Advection is
simulated by moving particles along flowlines, whereas dispersion is emulated
by a Brownian motion. Mass-transfer processes are efficiently incorporated by
switching the state of the particle between mobile/immobile states according
to appropriate transition probabilities.

Transport simulations start by injecting a large number of particles (10,000)
equidistantly distributed in a line transverse to the mean flow direction with
size 140 units. For each movement, the time step was adapted based on a grid
Courant number of 0.01 (Wen and Gémez-Herndndez, 1996). A unit mass was
assigned to each particle. The first arrival time and the position of particles
passing through 14 control planes transverse to the mean flow direction and
located at several distances away from the source were tracked until particles
exited the last control plane. Figure 3.4 shows the map of hydraulic heads su-
perposed with the pathlines of particles obtained in an individual realization
of Y(x). Only the movement of 100 particles are depicted so that the figure
can be easily understood.

3.4 Estimation of Block Equivalent Properties

3.4.1 Methodology

In the upscaled model, flow is still driven by Darcy’s law but we use an equiv-
alent anisotropic transmissivity tensor, TV, to represent the heterogeneous
medium inside v. For each block, TV, was calculated based on the sim-
ple Laplacian method with skin (Gémez-Hernandez, 1991; Wen and Gémez-
Hernandez, 1996) as

v — [ 0 /0xi(u)du’

(3.15)

This methodology yields flow fluxes in the upscaled model, q"(x), that
represent block spatial average quantities,
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Figure 3.4. Map of hydraulic heads superposed with particle paths obtained from a
transport simulation (only 100 particles) in an individual realization of the composite
random field.

q’' = - /q“’(u)du. (3.16)

Then, we estimated the appropriate mass transfer parameters of the up-
scaled transport model by using a methodology conducive to preserve the res-
idence time distribution of solute mass particles in each block. This seems a
natural approach when using the upscaled MRMT model because the memory
function, which plays a central role, can be physically interpreted as the resi-
dence time distribution of solute mass in the immobile domains (slow velocity
areas) (Haggerty et al., 2000). Essentially, the upscaled parameters were esti-
mated by curve-fitting the residence time distribution (numerically obtained
from fine-scale transport simulations) with a theoretical MRMT model. When
transport takes place according to the MRMT model in an equivalent homoge-
neous medium (i.e., a block of the upscaled model), the cumulative residence
time distribution, F.(7), can be approximately written in Laplace space as

5o 1 1 1 ¥(p)

b(p) =p+ B /0 Oof(a)ppa do (3.18)
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where Ay is the effective longitudinal dispersivity coefficient, L; is the mean
travel displacement of solute mass particles in v, and v,, is the mobile velocity.
Here, we have assumed that F- is not significantly influenced by transverse
dispersion since we are measuring integrated mass fluxes over a surface.

The effective velocity of the solute inside v moving through the mobile
domain (preferential channels) is the mobile velocity, vy,,. This is an important
concept here because the solute plume is not necessarily sampling the entire
region of a given block. Moreover, 8Y does not represent the void ratio of the
entire aquifer (6*), but only defines the pore volume fraction associated with
the mobile domain. The parameters obtained from curve-fitting are: v,,, 0
and those characterizing f(«) (see Table 3.1). From them, we estimated 6" so
that the mean residence time, 7, is preserved during upscaling,

HUJ
' = ——C,, 3.19
1+0 ( )
where C is
T 0“L
=", =t (3.20)
TV ’qv’
and 7 is the mean residence time
dF-
T = /TfT(T)dT, fr= o (3.21)
T

being f. the frequency distribution function of residence times. The parameter
C; takes into consideration that the mean residence time, 7, is not necessary
given by the averaged spatial velocity inside v. This term can be also related to
the noncontributing capacity coefficient (/3,,.) introduced by Zinn and Harvey
(2003) as

C;
1+ 0

(3.22)

A block equivalent transverse macrodispersivity value associated with the
MRMT model was estimated using the method of moments as

4= (3.23)
P or, '
where O'Z is the variance of transverse displacements of the particles moving

through v.
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Figure 3.5. Calculation of residence times in a given block of the numerical model.

3.4.2 Implementation Details

Numerically, the residence time distributions, f-(7) and F,(7), were obtained
by recording the first passage time (t;,) and the exiting time (¢,,) of a particle
passing through a given block during fine-scale simulations (see Figure 3.5).
The distribution of residence times was estimated by reconstructing the (cu-
mulative) frequency distribution of residence times {7;,i = 1,..., N, }, where
N, is the number of particles traveling through the block, and 7 = tou — tin
is the residence time of the i-th mass particle. The mean residence time 7 was
estimated as

T = /TfT(T)dT A Fp Zn (3.24)

The time-domain solution of (3.17) was calculated using the STAMMT-L
code (Haggerty and Reeves, 2002). An optimization program, PEST (Doherty,
2004), was utilized to calibrate the mass transfer parameters associated with
F.(7). The minimized objective function by PEST included the estimates of
the cumulative distribution function obtained at different times as well as the
low-order temporal moments of f,(7) (see appendix).

The fact that the residence time distribution at each block is preserved
during upscaling renders the upscaled mass transfer model a promising tool to
couple solute transport with chemical reactions controlled by residence times.
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Yet, from a practical point of view, we recognize that the proposed upscaling
methodology can be computationally expensive because it requires to solve
flow and transport at a small-scale. This is only justifiable when the upscaled
model is used afterwards to solve a more computationally demanding problem
(e.g., reactive transport involving many species and reactions). Nevertheless,
several approaches to reduce the computational burden can be considered.
Similar to what is known for upscaling hydraulic conductivity (Sénchez-Vila
et al., 1995; Wen and Gémez-Herndndez, 1996; Sanchez-Vila et al., 2006),
instead of solving the flow and transport problem over the entire domain,
the equations can be iteratively solved over smaller support volumes, which
contain v plus a "skin” region.

The skin ensures a more realistic flow and transport boundary condition
associated with each block. Importantly, in this case, we note that the in-
jection of solute should be placed in the skin region so that enough memory
effects are retained. Anyhow, noticing that the objective of this chapter is not
to present an upscaling methodology but to evaluate the adequacy of an al-
ternative constitutive transport model, we employed the most exact version of
the upscaling methodology, which is to resolve f; and F); directly from global
fine-scale simulations.

3.5 Numerical Results and Discussion

The evaluation of each constitutive upscaled transport model was performed
by contrasting the Monte Carlo simulated BTCs obtained using the upscaled
models against the reference BT Cs solution. In addition to the upscaled mass
transfer models, we further compare the results with the well-known macrodis-
persive model and the purely advective upscaled model. The purely advective
model does not account for macrodispersive fluxes and memory effects, and
serves to illustrate the effects of smoothing the heterogenous Y (x)-field by
upscaling.

The macrodispersive model is defined as a particular case of the MRMT
model in which ¥ (p) = 0 in (3.17) and serves to compare the upscaled mass
transfer model with a Fickian model. The structure of the discussion is as
follows. First, we analyzed the reproduction of the ensemble average behavior
of BTCs and its associated uncertainty with A7 = 0. This avoids mass transfer
effects between blocks Fernandez-Garcia et al. (2007) and allows to focus on
the longitudinal component of dispersive fluxes. Then, we discuss the effect
of including A7 # 0 into the upscaled models.
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3.5.1 Ensemble Average Behavior

We start by looking at the ensemble average behavior of the main features
associated with the simulated BTCs, which we characterized by: (a) the early
arrival time (the time at which 5% of the mass arrives at the x-location,
denoted as Tps); (b) the maximum value of concentrations (peak); (c) the
late-time slope of BTCs; and (d) the spreading of BTCs. The spreading of
BTCs is measured by means of an effective longitudinal dispersivity coefficient
estimated as

eff () = & M>

w10 =5 Gy (829)
where the brackets denote the expected operator, x is the coordinate of the
control plane in the mean flow direction, and p} and s the first two temporal
moments of BTCs, written as

,ECdt
o W (3.26)
St Z Oty POt (g o

TS Cwa [Tt

where C(t) denotes flux-concentrations. Figure 3.6 displays A%/ as a func-
tion of travel distance for the different upscaled models. Remarkably, we see
that the inclusion of memory in the transport equation allows an accurate
reproduction of effective spreading when either a discrete MRMT model with
more than two immobile domains are considered or a continuous distribution
of mass transfer rates is described with a truncated power-law.

This is in contrast with the macrodispersive model and the single-rate
mass transfer model results which largely underestimate A%f/. The reason
for this is that the memory function associated with these models are too
simple to properly describe the heterogeneous processes taking place within
a block. This is shown in Figure 3.7 which depicts the mean sum of square
errors (SSE) associated with the calibrated model obtained after curve-fitting
the block residence time distribution with the theoretical model. Note that
the ultimate SSE values for the single-rate model are substantially larger than
those associated with the truncated power-law and the double-rate model.

Spreading by itself does not provide enough information about the com-
plete distribution of concentrations. The interest on the different characteristic
behaviors of the BTC depends on the type of application. The early-time of
BTCs usually displays a sharp rising limb and can be characterized by its early
arrival time, Tp5. In practice, this parameter is important for designing under-
ground radioactive repositories. Figure 3.8 compares the simulated mean Tp;
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Figure 3.6. Evolution of the effective longitudinal dispersivity with travel distance .
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Figure 3.7. Evolution with travel distance of the mean sum of square error associated
with the calibrated model obtained curve-fitting f; with a theoretical model.
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Figure 3.8. Evolution of the ensemble average first arrival of the BTC Ty5 with
travel distance.

value obtained at the small support scale to its corresponding upscaled model
solution. As expected, the upscaled advective model yields not conservative
estimates of travel times, i.e., the upscaled model overestimates Tp;. Most re-
markably, in this case, even though the double-rate and the power-law model
are described with the same number of parameters (degrees of freedom), the
truncated power-law model can largely underestimate Tps.

A proper representation of the late-time behavior of BTCs has recently re-
ceived much attention for being indicative of anomolous transport (e.g., Hag-
gerty et al., 2000; Harvey and Gorelick, 2000; Salamon et al., 2007; Riva et
al., 2008; Willmann et al., 2008). It also constitutes an important parame-
ter for the calculation of clean-up times needed to remediate contaminated
aquifers. Typically, BTCs are observed to behave as a power law at late times
(i.e, C(t) ~ t~™), where m is the slope of the BTC on double log-scale. The
mechanisms by which the presence of slow and fast channels (heterogeneity)
affects the slope m have been recently studied by Willmann et al. (2008), who
found that, for conservative solutes moving in a heterogeneous medium, the
slope mainly depends on ”connectivity” rather than the classical statistical
properties of the aquifer (variance of InT).

Here, we do not concentrate on the fundamental nature of the slope but we
look at the capability of upscaled mass transfer models to reproduce tailing.
In other words, we evaluate whether a proper description of residence times,
fr, at each block of a numerical model assures the reproduction of the late-
time behavior of BTCs. To do this, we concentrate on the simulated slope
attained over two time intervals of the BTCs: (Tgo, T50) and (T30, Tos), where
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Figure 3.9. Evolution of the ensemble average slope Ty — Tgg with travel distance.

Tso denotes the time at which 60% of the mass passes through the observation
location and so on. The slope was estimated by using least square regression
of the corresponding BTC values plotted in a double log-scale. The ensemble
average behavior of the slope as a function of travel distance is shown in
Figures 3.9 and 3.10.

For all models and time scales, the slope slowly increases with travel dis-
tances and thus tends to a more Fickian-like behavior. As expected, the
upscaled mass transfer models provide a better description of the late-time
behavior of BTCs, being the macrodispersive model a less adequate model for
this matter. In this context, we see that while the truncated power-law model
can accurately simulate the late-time behavior of BTCs at all time scales (the
two intervals of time), the double-rate model is only capable to describe the
late-time behavior over the time interval (Tgg, T3o). This is consistent with the-
ory, Carrera et al. (1998) demonstrated that the late-time behavior of BTCs
associated with MRMT models is the result of an infinite superposition of
single-rate mass transfer modes (Carrera et al., 1998). Thus, a proper descrip-
tion beyond t > Tgp in this case requires a discrete mass transfer model with
more than two modes.

Interestingly, the slope reproduced by the macrodispersive model is small
compared to the reference solution. This points out an important conceptual
limitations of the macrodispersive model, which is back-dispersion. Close to
the source, where concentration gradients are usually higher, the macrodisper-
sive model creates dispersive mass fluxes oriented in the opposite direction to
flow, which are not physically possible. Due to this mechanism, particles close
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Figure 3.10. Evolution of the ensemble average slope Tgg — Tos with travel distance.

to the source were susceptible to be trapped in low velocity regions during
simulations, causing the presence of very slow particles.

Another important characteristic parameter of a BT C is the concentration
peak. When groundwater is the source for drinking water, this water is re-
quired to meet certain drinking water standards. This standard is typically
contrasted against a maximum concentration threshold. Figure 3.11 shows
the performance of the upscaled models in terms of the peak of concentrations
associated with the simulated BTCs. Now, we see that, albeit both models
are described with the same number of degrees of freedom, a discrete MRMT
model with only two modes provides a better description of the maximum
value of concentrations than the the truncated power-law model.

3.5.2 Propagation of Uncertainty

The lack of complete knowledge of an aquifer on the one hand and the large
spatial variability of the aquifer attributes on the other makes deterministic
models to be highly inadequate for representing solute transport in heteroge-
neous media. Alternatively, multiple possible scenarios should be considered
(see (Riva et al., 2008) for an illustrative field example). In this context, the
transfer of information from one scale to another by upscaling should also
require the proper propagation of model uncertainty.

Here, we evaluate the reproduction of uncertainty by qualitatively examin-
ing the 95%-confidence interval associated with the ensemble of BTCs. Figures
3.12 and 3.13 compares the ensemble of Monte Carlo-based BTCs obtained
using the reference transmissivity fields to those associated with each upscaled
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Figure 3.11. Evolution of the mean concentration peak with travel distance.

mass transfer model at two control planes (r = 34 units and z = 110 units).
By comparing the ensemble of BTCs to the 95%-confidence interval associated
with the fine-scale model, it is clear that all the upscaled mass transfer models
exhibit a reduction of uncertainty to a certain degree. This reduction is more
apparent for late times (slow particles) and small travel distances. The latter
is shown in Figure 3.14, which displays the 95%-confidence intervals of the
BTCs obtained at two different control planes.

A complete evaluation of uncertainty is provided by examining the cumu-
lative frequency distribution function (CDF) of the main features associated
with the BTCs obtained at a given control plane.

Figures 3.15 and 3.16 respectively show the CDF of the slope (Tgo — Ts0)
and the first arrival (Tp5) associated with the simulated BTCs obtained at
x = 34.9 units and x = 110.8 units. Interestingly, at early times, when parti-
cles have still not pass through few blocks, the integrated BTC is simply the
superposition of residence time distributions of all sample blocks, and there-
fore, for small travel distances, the CDF of the late-time slope associated with
the double-rate and the truncated power-law model is adequately reproduced.
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As soon as particles pass through few blocks, the CDF of the late-time
slope associated with the upscaled mass transfer model largely underestimates
the dispersion of the corresponding probability density function. This effect
increasing with distance.

In regards to the CDF associated with Tys5, results show that only the
double-rate model is able to properly describe uncertainty for all travel dis-
tances. In this case, the truncated power-law model provides a biased estima-
tor of Ty5, but still seems to properly capture the general trend depicted by
the CDF.

Now, we examine the effect of including a macroscopic transverse disper-
sion into the upscaled model. This parameter describes the dispersive fluxes
taking place in the transverse direction to the block-averaged flow based on
a Fickian model. From Figure 3.17 we see that while accounting for trans-
verse dispersive fluxes improves the reproduction of the late-time behavior of
the BTCs, it causes an excess of dilution into the system (reduction of peak
concentrations). Again, this is attributed to the Fickian assumption.
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Figure 3.17. Comparison of the simulated ensemble of BTCs obtained with and
without transverse macrodispersivity.

3.6 Summary and Conclusions

We have investigated the use of upscaled mass transfer models as a tool for
upscaling solute transport in a general numerical modeling framework. This
was achieved by comparing Monte Carlo simulations of solute transport at two
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different support scales. Transport phenomena at the computational scale was
described by means of a multirate mass transfer model.

The performance of the upscaled models was evaluated from two differ-
ent perspectives. First, we analyzed the reproduction of the ensemble mean
behavior of the main features associated with the simulated BTCs. Impor-
tantly, results showed that an appropriate description of the residence time
distribution for all blocks of the numerical model provides an upscaled trans-
port model that is capable to reproduce the ensemble mean behavior of the
BTCs. In particular, the truncated power-law model provided an excellent
reproduction of the effective spreading as well as the ensemble mean slope of
the BTCs for all time scales. Yet, it slightly underestimated the first arrival of
mass particles at control planes as well as the maximum concentration of the
BTCs. In this context, the double-rate mass transfer model, which involved
the same number of degrees of freedom as the truncated power-law, gave more
consistent estimates of the first arrival and the concentration peak. However,
as a drawback and consistent with theory, this model was found not able to
properly describe the slope of the BTCs at all time scales (¢t > Tgp). Remark-
ably, the single-rate model did not capture any of the main features of the
BTCs, giving then a sign of caution to the use of this widely employed model
in field applications.

Then, we examined the effect of upscaling on model uncertainty. We found
that a complete reproduction of uncertainty was not provided by any of the up-
scaled transport models, which substantially underestimated the uncertainty
associated with the late-time behavior of BTCs and the peak of concentra-
tions. KEssentially, this was the result that a truthful reproduction of a BTC
associated with an individual realization cannot in general be satisfied. The
reason mostly lies on the poor description (lack of memory) of the dispersive
mass fluxes transverse to the block-averaged flow direction. While using mass
transfer models as a tool for upscaling can preserve the residence time distri-
bution of mass particles in the system, the lack of memory in space prevents
the model from reproducing mass fluxes in all directions. In particular, the
reproduction of mass fluxes taking place at the interface between two blocks of
the upscaled model are not satisfied by upscaling. Thus, results indicate that
the lack of directionality involved in the memory term associated with mass
transfer models prevents upscaling from reproducing uncertainty and mass
fluxes at block interfaces. In this case, a proper description of the non-Fickian
nature of dispersive mass fluxes should also be included into the constitutive
transport equation.
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Modeling Solute Transport at
Large Scale in Heterogeneous

Media

Abstract

We evaluate the use of (multi-rate) mass transfer as the solute transport
conceptualization for models in heterogeneous media at the field scale. The
non-Fickian transport behavior usually observed in the field, manifested by
peaked concentration profiles with pronounced tailing, has questioned the use
of the classical advection-dispersion equation to simulate solute transport at
large scale with a numerical model. We analyze mass transport simulations
at two different support scales and evaluate the performance of the upscal-
ing technique proposed, which consists of introducing a mass transfer process
for the simulation at the larger scales, with parameters derived from trans-
port simulations at the smallest scale. The mass transfer process pursues the
reproduction of the residence times within each model block. The results indi-
cates that introducing this additional process for the simulation of transport at
coarser scales yields good predictions for the main features of the breakthrough
curves in comparison to upscaled models in which only flow is upscaled or just
an enhanced macrodispersion considered.
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4.1 Introduction

Hydrogeologic properties in an aquifer vary in space, in many cases over sev-
eral orders of magnitude. Proper reproduction of this spatial heterogeneity is
paramount for proper solute transport predictions. Geostatistics provides the
ability to characterize the spatial variation of hydrogeologic properties with
a high resolution. However, in practice, modeling transport with such reso-
lution is most frequently unfeasible. Standard techniques for flow upscaling
yield models at a coarse scale with homogeneous conductivities within each
block, which are capable of a good reproduction of the mean flow behavior
of the aquifer. However, for mass transport predictions, removing intra-block
heterogeneity in order to obtain a model with a smaller number of blocks
calls for some action if proper reproduction of the evolution of the plume of
solute is to be achieved. The upscaled model must capture those features of
the aquifer architecture that control mass transport (Fernandez-Garcia et al.,
2007; Guswa and Freyberg, 2002).

In the literature there are a lot of work about hydraulic conductivity up-
scaling (Wen and Gémez-Hernandez, 1996; Renard and de Marsiliy, 1993;
Sénchez et al., 2006). Scheibe and Yabusaki (1998) showed that upscaling
of conductivity is effective for reproduction of flow behaviour, but do not nec-
essary lead the best reproduction of transport behaviour. Since the values of
conductivity obtained through upscaling does not contain information about
the attribute heterogeneity that controls solute transport.

Much attention has been devoted in recent years to the development of
methodologies for the characterization of heterogeneity of the hydrogeologic
properties (Carrera, 1993; de Marsily et al., 2005; Gémez-Herndndez, 2006),
and important theories have been developed in the area of stochastic and/or
deterministic hydrogeology to describe the flow and solute transport through
an aquifer.

The effect of heterogeneity is to induce an anomalous (non-Fickian) trans-
port behaviour, characterized by asymmetrical plumes and breakthrough curves
with large tails. Experimental through (Boggs et al., 1992; Adams and Gelhar,
1992; Feehley et al., 2000; Salamon et al., 2007; Riva et al., 2008) and labora-
tory (Bajracharya and Barry, 1997; Fernandez-Garcia et al., 2005¢; Levy and
Berkowitz, 2003) data have revealed these characteristics.

The large contrast between high and low conductivities zones makes the
solute to travel quickly in the direction of preferential flow paths, whereas
in low conductivities areas the solute moves slowly creating tailing; neither
of these two effects can be reproduced by the classical advection dispersion
equation (ADE) (Adams and Gelhar, 1992; Feehley et al., 2000; Guswa and
Freyberg, 2000; Zinn and Harvey, 2003; Berkowitz et al., 2006; Fernandez-
Garcia et al., 2007; Riva et al., 2008).
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Various numerical experiment using synthetic models Guswa and Frey-
berg (2000); Zinn and Harvey (2003); Liu et al. (2004); Carrera et al. (1998);
Willmann et al. (2008), have demonstrated that the quality of solute trans-
port predictions, in particular the late-time behavior of breakthrough curves,
is significantly improved when the mass transfer equations are added to the
ADE.

Alternative transport formulations based on the ADE have been proposed
in the literature for modeling solute transport (Haggerty and Gorelick, 1995;
Carrera et al., 1998). Carrera et al. (1998) proposed to add a sink/source
term to ADE to account for the exchange of solute mass between high and
low conductivity zones. This is formally represented by decomposing the do-
main into a mobile zone, where the transport phenomena include advection
and dispersion, and an immobile zone where advection is negligible (Haggerty
and Gorelick, 1995; Carrera et al., 1998; Haggerty et al., 2000). The mass
flux between mobile and immobile zones is modeled by a linear mass exchange
process controlled by a source/sink term. This term can be expressed as a
convolution product of a memory function. The memory function represents
the mass flux to the immobile zones per unit volume of aquifer, for a unit
change in concentration in the mobile zones (Haggerty et al., 2000; Carrera
et al., 1998). The formulation of this term depends on the geometry of the
immobile zones and on the variability of mass transfer or diffusion rates (Hag-
gerty et al., 2000). This type of model is commonly referred to as multirate
mass transfer models (MRMT), where the term multirate refers to the fact
that the immobile zone can be made up of many types of materials, each of
which with a different transfer coefficient.

Other models have been developed with the same objective of reproducing
the non-Fickian transport behaviour observed in heterogeneous aquifers in re-
cent years. In this context, Berkowitz and Scher (1998); Berkowitz et al. (2000)
presented a model based on the continuos time random walk (CTRW). In this
model, particle transport in heterogeneous aquifer is represented as a random
walk in space and time (Berkowitz and Scher, 1998; Dentz and Berkowitz,
2003; Dentz et al., 2004). Dentz and Berkowitz (2003) demonstrated that the
mathematical formulation of MRMT is a special case of CTRW.

Neuman and Tartakovsky (2008); Berkowitz et al. (2006) present exten-
sive reviews of the latest approaches to describe the evolution of the solute
transport in porous media.

An interesting real case in which to evaluate these concepts is the MADE
experimental site (Adams and Gelhar, 1992). Some transport models have
been developed using a very fine discretization over the entire domain in or-
der to capture the aquifer heterogeneity. For example, Salamon et al. (2007)
improved a geostatistical interpretation of the flowmeter data, and concluded
that the ADE model is capable of describe the extensive tracer spreading, when
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small-scale variability of hydraulic conductivity is modeled at the flowme-
ter measurement support scale. Barlebo et al. (2004) using inverse flow and
transport modeling obtained the same results, however the effective hydraulic
conductivities product of the calibration phase were 5 times higher than the
values measured in the field using the flowmeter. Harvey and Gorelick (2000);
Feehley et al. (2000) used the dual-domain mass transfer model to explain the
solute transport at the MADE site. Both work compare the mass transfer
model with ADE.

Feehley et al. (2000) used ordinary kriging and conditional simulation
based on fractional Brownian motion to represent the hydraulic conductivity,
then, after calibrating the mass transfer coefficient and the immobile porosity
they could reproduce the shape of mass plume. Harvey and Gorelick (2000)
developed a transport model to recreate one-dimensional concentration profiles
observed using ADE and an analytical homogeneous solution of mass transfer.
Results of both works indicate that including mass transfer effects can largely
improve the performance of solute transport in comparison with the enhanced
macrodispersion model.

Another approach used to simulate the non-Fickian transport behavior at
MADE site is the continuous time random walk model (Berkowitz and Scher,
1998). This model was able to reproduce the anomalous breakthrough curves
and the non-Gaussian shape of tracer plume observed in the complex geological
environment of MADE site.

Riva et al. (2008) analyzed the solute transport at the Lauswiesen forced-
gradient trace test experiment. This study consists of a stochastic Monte
Carlo analysis to evaluate the structure of the heterogeneity of the aquifer and
the application of different numerical transport models including advection,
dispersion and/or mass transfer processes to recreate the tailed multilevel
breakthrough curves. They concluded the same as Salamon et al. (2007) on the
fact that the ADE can describe the behaviour transport anomalous at a small
support scale combined with a high-resolution description of heterogeneity.

Several researchers [e.g (Guswa and Freyberg, 2002; Carrera et al., 1998;
Zinn and Harvey, 2003; Liu et al., 2004; Willmann et al., 2008; Riva et al.,
2008)] have shown that to model the behaviour of non-reactive solute transport
observed in heterogeneous medium is better to use coarse models incorporat-
ing a mass transfer process. In this framework, the scope of this work is to
evaluate the use of MRMT as the constitutive transport model to simulate
the large scale behavior of solute transport within a given aquifer. We will
analyze a formulation of MRMT and compare the results at two different sup-
port scales. At the finest scale, we run the transport model considering only
advection, then we obtain two upscaled models at two different support scales
and compare the solute transport predictions using an enhanced macrodis-
persion model, and an MRMT in which mass transfer can occur into two
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immobile domains (double-rate model). In the upscaled models, both the en-
hanced macrodispersion and the parameters associated with the double-rate
mass transfer model are computed by matching, blockwise, the residence times
of the solute within the block to those observed in the fine scale simulations.
The enhanced macrodispersion and the parameters defining the mass transfer
process are heterogeneous within the aquifer, with each block having their
own values; this is contrary to other models reported in the literature that
use homogeneous block values for the transport parameters (e.g., Harvey and
Gorelick, 2000; Zinn and Harvey, 2003; Willmann et al., 2008)

4.2 Solute Transport Experiments

4.2.1 Experimental Design

We consider a synthetic case to simulate a typical field tracer test, where the
mass of solute is introduced instantaneously into a steady-state flow field from
an injection point. The flow domain is a 2D square of 240 units in each side.
The aquifer is confined and under steady-state flow. No-flow boundary con-
ditions were set at the top and bottom limits while constant head boundaries
were set at the other sides, imposing a mean hydraulic gradient of 0.01 along
x.

The aquifer is heterogeneous with respect to transmissivity 7'. For display-
ing purposes we will use In 7" = G(x). Each of the three scenarios analyzed
are generated as described below over a grid of 240 by 240 cells of 1 unit by 1
unit size. The solution of advective transport at this scale will represent the
reference case. Then, two upscaling exercises will be performed, corresponding
to a mild and a strong homogeneization. In the first case each block of 5 by 5
cells will be replaced by a homogenous block and in the second case upscaling
occur within each block of 15 by 15 cells. The upscaled models are of 48 by
48 blocks and 16 by 16 blocks respectively.

The focus of the work is no the performance of the upscaling techniques
being compared. However, it also necessary —and very important— to up-
scale the flow field. For this purpose, each block is assigned a homogeneous
diagonal transmissivity tensor T, which is computed from the heterogeneous
scalar values within the block using the approach known as simple Laplacian
with skin (Gémez-Herndndez, 1991; Wen and Gémez-Hernandez, 1996). Es-
sentially, for a given realization of G(x), the grid-block being upscaled plus a
skin area surrounding it is isolated from the rest of the blocks in the aquifer,
then a small flow problem is solved on this small area to derive the components
of a diagonal tensor that matches the average specific discharge to the average
gradient. Wen and Gémez-Hernandez (1996); Renard and de Marsiliy (1993);
Sénchez et al. (2006) present an extensive review of the different methods for
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hydraulic conductivity upscaling. In this study the skin was arbitrarily set to
12 units in each direction of the block, which was checked to be enough for a
good reproduction of average fluxes at the block scale.

4.2.2 Reference Transmissivity Field

We will analyze the performance of the two transport upscaling techniques for
three different scenarios. The upscaling techniques imply to compute trans-
port parameters associated to transport processes at the block scale in order
to reproduce the solute residence times observed at the fine scale within each
of the upscaled blocks. The two techniques analyzed are enhanced macrodis-
persion, in which the ADE is used to model transport at the block scale but an
enhanced macrodispersion coefficient has to be determined, and double rate
mass transfer, in which a multirate mass transfer process is added to ADE
to model transport, in this case, besides an enhanced macrodispersion, the
fraction rates of the two immobile phases and of the mobile phase, and the
transfer coefficients have to be determined, too.

In all three scenarios, transmissivities are modeled as a composite me-
dia made up of a background material following a multiGaussian distribution
within which lenses with a different conductivity distribution are embedded.
The contrast between background and lenses is the most important difference
among the three scenarios. The lenses are oriented in the main flow direction.

Let M; represent the background material and My the lens material. To
identify the aquifer volume occupied by each material we use a binary random
function defined as

I(x) = {1 x € My (4.1)
0 xe M

The volumetric proportion of material My, denoted as po, defines the
mean and variance of the indicator random variable, respectively written as
< I(x) >= py and J% = pop1, where pp is the volumetric proportion of M;
(p1 = 1 — pa). We consider that the lens family (material Ms) occupies 20%
of the domain, i.e., po = 0.2 and p; = 0.8. The indicator variable was further
characterized with an anisotropic covariance function,

Cr(jr)) = o exp (—\/ (ﬁ) n (ﬁ)) (42)

where AL and )\é are the longitudinal and transverse correlation scales of the
indicator variable set to 16 units and 1 unit, respectively.

The background fields G1(x) associated to M; were generated using the
sequential Gaussian simulation program, GCOSIM3D (Gémez-Hernéndez and
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Journel, 1993), whereas the lens family /(x) was generated using the indica-
tor sequential simulation program ISIM3D (Gémez-Herndndez and Srivastava,
1990). In all scenarios the lenses were assigned a constant value. The fields
G1 and I were generated independently.

The composite media is finally obtained as Y (x) = (1 — I(x))G1(x) +
I(x)Gy (where Go is a homogeneous field of constant logtransmissivity). Fig-
ure 4.1 illustrates the steps involved in the stochastic generation of a composite
random field.

G;(x) I(x) Composite field (x)
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Figure 4.1. Representation of the steps involved in the stochastic generation of a
composite transmissivity field.

For the first scenario, the background material My is heterogeneous and
described by a log-transmissivity characterized with a multi-Gaussian distri-
bution of mean zero and variance 9 following an anisotropy exponential co-
variance function given by

2
T T
Ca([rl) = o2, exp | — (—Gl) Iy (43)

where r = (r;,7y) is the separation vector between two points of the aquifer,
0, is the variance of G1(x) = InTi(x) equal to 9, and A& and )\g" ! are the
longitudinal and transverse correlation scales set to 40 and 4 units, respectively
and aligned with the main flow direction. Figure 4.2 display the realization of
G1(x) for first scenario of M.
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Figure 4.2. Illustration of the realization of the reference natural log of transmis-
sivity G1(x) for the first scenario

For the second scenario, the field G} (x) is characterized by a multi-Gaussian
distribution with zero mean and unit variance, following an isotropic exponen-
tial covariance function.

Con (It]) = o, exp (—'—A') (4.4)

where the correlation scale is set to 4 units. G1(x) of Mj. The field is shown
in the figure 4.3.
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Figure 4.3. Illustration of the realization of the reference natural log of transmis-
sivity G1(x) for the second scenario

In all scenarios we considered that the variation within Gy is of lesser
importance compared with the contrast between G; and G, and we therefore
assigned a constant log transmissivity value to My of 2.0 and -4,0 and 4.0
for scenarios 1, 2 and 3 respectively. Figure 4.4 shows the composite random
field for the first scenario, which also also shows the histogram and univariate
statics. The semivariogram of In T for the x and y directions in the composite
field are shown in figure 4.5, to which an anisotropic exponential covariance



Chapter 4. Modeling Solute Transport at Large Scale in. .. 59

has been fit with integral scales in the x and y directions of )\g = 32.8 units
and )\yG = 3.2 units.
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Figure 4.4. Transmissivity structure and histogram for the first composite field.
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Figure 4.5. Experimental and model variograms for the In7" in the first scenario for
the x and y directions.

Figure 4.6 shows the cumulative breakthrough curves at an x— control
plane located at x = 159.9 units obtained in the realization of G; and in the
composite realization G for scenario 1. We observe the influence of the lenses
in the transport behavior of the solute, in particular the different slopes after
a certain time.

The second composite transmissivity field is shown in figure 4.7. The
composite field has a mean of —0.77 and a variance of 3.2. The semivariogram
of In T for the x and y direction are shown in figure 4.8. The integral scale
of the fitted exponential models in the x and y directions are )\g = 7.0 units
and )\yG =2.0.

Figure 4.9 shows the cumulative breakthrough curves at an x— control
plane located at x = 159.9 units obtained in the realization of G; and in the
composite realization G for scenario 2. We observe the influence of the low
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Figure 4.6. Cumulative mass flux breakthrough curves obtained at a given x-control
plane (z = 159.9 units) computed on the transmissivity field G;(x) and on the asso-
ciated composite medium G(x for scenario 1
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Figure 4.7. Transmissivity field and histogram for the composite field in the second
scenario.

conductivity lenses in the transport behavior of the solute, in particular the
very different tails.

The third field test was generated by multiplying by -1.0 the second field.
In this way the lenses change from poorly conductive to highly conductive
while the distribution of the background transmissivities remains the same.
The field is shown in figure 4.10. The integral scale in the x and y directions
for field 3 are the same as in field 2. Figure 4.11 shows the cumulative break-
through curves at an x— control plane located at z = 159.9 units obtained
for the composite realizations in scenarios 2 and 3. For the same background
distribution we observe the large influence that the conductivity of the lenses
has in the shape of the breakthrough curves.
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Figure 4.8. Experimental and model variograms for the InT in the second scenario
for the x and y directions.
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Figure 4.9. Cumulative mass flux breakthrough curves obtained at a given x-control
plane (z = 159.9 units) computed on the transmissivity field G;(x) and its associated
second composite medium G(x) for scenario 2.

The three scenarios display very different transport behavior. We will
try to match this behavior with the proposed upscaling technique and will
conclude when it is really necessary to include a double rate mass transfer
process in the transport simulation and when just an enhance macrodispersion
model would suffice.
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Figure 4.11. Cumulative mass flux breakthrough curves obtained at a given x-
control plane (x = 159.9 units) computed on the transmissivity fields for scenarios 2

and 3.
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4.2.3 Flow and Transport Solution

Three type of numerical grids are used to simulate the flow and solute trans-
port: a fine grid with 1 unit side square cells that provides the reference
solution and two coarse grid with 5, and 15 units side square grid-blocks re-
spectively that are used to test the upscaling algorithm (see figure 4.12). The
fine-grid is designed on the same support in which the transmissivity fields
were generated.

Fine-grid _| |
cells

15 x 15 cells

5x5
cells

Figure 4.12. Different size of blocks used in the upscaling process

The flow problem was solved with MODFLOW2000 (Harbaugh et al., 2000)
at all scales. The solute transport was solved with the random walk particle
tracking code RW3D (Fernandez-Garcia et al., 2005a,b; Salamon et al., 2006).
RW3D was used to simulate advective transport at the fine scale to obtain the
reference solutions and it was used to simulate advective-dispersive and mass
transfer transport in the upscaled models.

Simulation of solute transport with mass transfer is based on the particle
tracking methodology presented by Salamon et al. (2007). Basically, transport
is simulated by injecting a large number of mass particles into the system, each
particle representing a small portion of the plume solute. Advection is simu-
lated by moving particles along flowlines, whereas dispersion is emulated by
a Brownian motion. Mass-transfer process are incorporated by switching the
state of the particles between mobile/immobile states according to appropriate
transition probabilities.

In each case we simulated the behaviour of the released solute for a period
of time, ¢t = 3000. For this purpose 40,000 particles, where each particle was
assigned the same mass, and were uniformly distributed over the 15 x 150 units
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rectangular source area is indicated in the figure 4.13. For each movement,
the time step was adapted based on a grid Courant number of 0.01 (Wen and
Goémez-Hernandez, 1996).
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Figure 4.13. Plan view of the location of the injection area and location of the
control plane, at 75 units along the x direction from the injection.

4.2.4 Flow and Transport Parameters

Transport parameter values to each grid-block are obtained with the upscal-
ing technique presented in chapter 3. We recall that the proposed technique
consists of replacing each block of heterogeneous transmissivities by a homo-
geneous block, with a homogeneous transmissivity tensor with homogeneous
values of the parameters associated to the memory function that is used to
represent the mass exchange between the mobile and immobile phases. Block
transport parameters are estimated by analyzing the residence time distribu-
tion of the particles traversing the block, these travel times are determined
using fine-scale simulations.
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4.3 Results and discussion

4.3.1 Overview of Plume Behavior

For each of the three scenarios, Figures 4.14 shows the spatial distribution
of the solute plume computed on the reference field at ¢ = 300 and for the
upscaled models using a block of 5 by 5 units. In the latter case we consider
the double rate mass transfer model and an enhanced macrodispersion trans-
port model. Likewise Figure 4.15 shows the same results but when using an
upscaling block of 15 by 15 units. To represent the plume in each figure, the
number of particles falling in each cell of a square grid of 1 unit cells were
counted and accumulated to get the total mass within the cell.

At the fine scale, transport is purely advective, therefore solute spreading
is due entirely to heterogeneity. At the large scale we can observe that this
spreading is far from Fickian, the plume displays high asymmetry, fingering,
particles accelerate following fast paths. It is only in the second scenario with
the very low conductive lenses that the plume displays a more regular shape,
although at time ¢ = 300 it has not traveled as far as in the other scenarios.

We can use relative entropy to quantify the performance of the upscaled
models. The relative entropy measures the difference between two distribu-
tions p and ¢ over the same space(Kullback, 1959). For two particle distribu-
tions defined over the same set of n blocks, the relative entropy (RE) between
the two distribution is defined by

n
bi
RE(t) ; piln . (4.5)
where the frequencies ¢; and p; represent the fraction of particles in each cell,
i.e., g = n;/Np, where n; is the number of particles in the block and N,, is the
total number of particles found within the system. RE is zero only when two
distribution of particles are identical.

RE computed for each of the three scenarios and at various times are
presented in figure 4.16. Within each graph the entropy of each of the upscaling
models for two block sizes and two transport models relative to the reference
simulations are shown. For the calculation of the RE the domain is discretized
over a square fine-grid formed by 240 x 240 cells of 1 unit side.

For scenarios 1 and 3, we could say that both transport models (enhanced
macrodispersion and double-rate mass transfer) perform similarly in the re-
production of the evolution of the reference plume, with the macrodispersion
model working slightly better for scenario 1 and an upscaling block size of 5
by 5 units. However, in scenario 2, where the lenses are of low conductivity,
the double rate mass transfer model works clearly better than the enhanced
macrodispersion for the two upscaling block sizes.
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Figure 4.14. Log concentration distribution of solute mass for the three scenarios.
Comparison between the simulations in the reference field and in the upscaled fields
with blocks of 5 by 5 cells using two different transport models at the coarse scale.
(a) First scenario, (b) second scenario and (c¢) third scenario.



Chapter 4. Modeling Solute Transport at Large Scale in. ..

67

Reference

a)

Double rate

Macrodispersive

TS 30 45 60 75 9 o5 130 (s (0 165 180 195 210 25 2.
X - Direction

b)

0 0 15 30 45 0 75 90 105 20 55 150 165 150 195 20 225 2
X - Direction

15 30 45 60 75 90 105 130 135 10 165 150 195 210 235 2.

X- Dircction

X - Direction

)

TS5 J0 45 60 75 90 105 10 (s (50 165 180 195 210 25 20 0 15 30 45 60 75 S0 105 120 135 150 16s 150 135 210 235 2

X - Direction

0 15 30 45 60 75 S0 105 120 135 150 165 Is0 195 2l0 225 2

X- Dircction

TS 30 45 60 75 0 105 130 135 10 165 180 195 210 225 2.
X - Direction

00 05 30 45 60 75 S0 105 130 135 150 165 180 195 210 235 2
X - Direction

0 0I5 30 45

T %0 105 10 135 150 165 180 195 210 225
X- Direction

Figure 4.15. Log concentration distribution of solute mass for the three scenarios.
Comparison between the simulations in the reference field and in the upscaled fields
with blocks of 15 by 15 cells using two different transport models at the coarse scale.
(a) First scenario, (b) second scenario and (c¢) third scenario.
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A preliminary conclusion from this figure is that including mass transfer in
the upscaling process is justified when there are low conductivity inclusions,
which, conceptually, are equivalent to having an immobile phase in which
particles are retarded. But, when the inclusions are of high conductivity,
using a simpler enhanced macrodispersion model could suffice.

4.3.2 Longitudinal Mass Distribution

Next we will compare the longitudinal mass distribution at two different times
for the reference simulations and the upscaled ones. Each profile is obtained
by integrating 1 unit wide vertical slices and normalizing the value by the total
mass.

Figures 4.17 and 4.18 show the longitudinal mass distribution profiles at
times ¢ = 300 and ¢ = 600 for the two transport models and the two sup-
port scales. Analyzing these figures we reach similar conclusions as we did
after seen the relative entropy values. Double rate transport models work
clearly better for scenario 2, and very similarly to enhanced macrodispersion
for scenarios 1 and 3. However, in the case of upscaling with blocks of 15 by
15 units, we observe a non-physical back-dispersion induced by the enhanced
macrodispersion model in all three scenarios.

Figure 4.19 shows the breakthrough curves at a control plane located at
a horizontal distance of 75 units from the injection point. To compute the
curve we determine the total number of particles crossing the control section
after each time step. The same conclusion as before can be drawn, double rate
models always work better than macrodispersion models, with this superiority
begin more apparent for scenario 2. Although neither the peak concentration
nor the late-time slope are perfectly matched in scenarios 1 and 3. (For sce-
nario 2, the peak had not arrived yet to the control plane at ¢ =2000.

4.3.3 Dilution Index

Finally we have analyzed the dilution index, i.e, the relative volume of aquifer
occupied by the solute plume. As seen in Figures 4.14 and 4.15 the plumes
simulated in the upscaled models are much more spread than the reference,
therefore, their dilution will be larger than the dilution in the reference.

The dilution index is a quantitative measure of the plume structure, which
gives us another insight about the performance of the upscaling models. The
dilution index was proposed by (Kitanidis, 1994) and it is given by

(4.6)



70

4.3. Results and discussion

a) time = 300

time = 600

01 : : : : : : 01 : : : : : : : :
—o— Macrodispersive —o— Macrodispersive
—o— Double rate —o— Double rate
—— Reference Reference
001 4 1 001 4 q
s b
= =
3 3
X N
= =
E E
s 5
Z0.001 1 Zooor 4 ]
0.0001 " - - - - - ULint - - : : : : : S|
40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180 200 220
Downstream Distance Downstream Distance
1 T T T T 1 T T T T T
—o— Macrodispersive
—o— Double rate
—o— Macrodispersive
—— Reference
—o— Double rate
Reference
0.1 9 01 4 9
= =
= =
2 3
= N
g E
5 5
Z 001 A 4 Z oo A 1
0.001 T 0.001 T
40 60 80 100 120 140 40 60 80 100 120 140 160
Downstream Distance Downstream Distance
©)
1 T T T T T T T T 01 T T T T T T T T
—o— Macrodispersive
—o— Macrodispersive Double rate
—o— Double rate Reference
—— Reference
01 1
g Z
= =
3 3
= 8 0014 ]
= =
] g
S s
Z 001 A {1 #
0.001 0.001 , T T T T T T T
40 60 80 100 120 140 160 180 200 220 40 60 80 100 120 140 160 180 200 220

Downstream Distance

Downstream Distance

Size of block: 5 cells

Figure 4.17. Longitudinal mass distribution profiles for the reference solution and
the upscaled models using 5 by 5 blocks and modeling transport by double rate and
enhanced macrodispersion for times ¢t = 300 (left column) and ¢ = 600 (right column).
a) Scenario 1, b) scenario 2 and c¢) scenario 3. Injection point at # = 60 units
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where E(t) for a plume discretized over a set of m cells, each of which with a
volume of AV, is given as

m

~ 3" Put)n(B (1))

k=1

E(t) = AV exp (4.7)

where Py (t) is the fraction of solute mass within the discretization cell with
respect to the total mass of solute in the aquifer at time ¢. From a practical
point view [ expresses the ratio of the volume occupied by the solute mass
in a region to the total aquifer volume at time ¢, indeed, if all mass would
be uniformly distributed over just mj cells, the value of E would be m;AV.
FE e is its maximum value that would correspond to maximum dilution when
all mass is uniformly distributed over the entire aquifer, that is, mAV. Thus,
values of I near 1 indicate complete dilution, whereas values near 0 indicate
incomplete dilution.

Figure 4.20 displays the evolution of I with time for the double rate and
macrodispersive models and for the two upscaling sizes, it also shows the
dilution in the reference case. To compute the dilution index the aquifer is
discretized into 240 x 240 square cells of 1 unit size.

We can see that, for the reference case the dilution index goes from close
to zero at the injection time (incomplete dilution) then reaches a maximum,
and starts to decrease as soon as the mass starts exiting the aquifer. The
dilution in the upscaled models is, in general considerably higher, except for
scenarios 1 and 3 for which the enhanced macrodispersion upscaling approach
gives very similar dilution index as in the reference. It is also observed that
the larger the size of the upscaling block, the larger the dilution.

4.4 Summary and Conclusions

In this section we have analyzed how the upscaling techniques based on the
introduction of additional process for modeling transport at the coarse scale
perform. We have compared reference simulations of advective transport at a
fine scale with those obtained from coarsened models at different degrees of
upscaling under different scenarios. All scenarios have the same structure: a
background heterogeneous multiGaussian field with embedded lenses of homo-
geneous transmissivities. The difference among the scenarios is the contrast
between the lens transmissivity and the mean background conductivity. In
scenario 1 the lenses have a conductivity value within the range of variabiity
of the background values, in scenario 2, the lenses are much less conductive
than the background, and in scenario 3, the lenses are much more conductive
than the background.
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Upscaling was performed at two different coarsening degrees. In one case
each group of 5 by 5 cells was replaced by a homogeneous block, and in the
other case, the upscaling was performed over groups of 15 by 15 cells. Both
flow and transport upscaling had to be carried out. In flow upscaling the
group of heterogeneous scalar transmissivities was replaced by a homogeneous
transmissivity tensor. In transport upscaling, the model to simulate transport
included additional processes; we considered two different transport models,
the first one simply included an enhanced macrodispersion, and in the second
one, in addition, the possibility of mass transfer into two immobile domains
with different mass transfer rates is included.

As a general conclusion we can say that mass transport upscaling with
blocks of 5 by 5 cells using the double rate mass transfer model provides
quite good reproduction of most of the general characteristics of the solute
plume both in space and time. This model only fails in the reproduction of
the dilution, which is substantially larger in the upscaled model than in the
reference one. When upscaling is performed with 15 by 15 blocks the results
are not as satisfactory. Recall that the correlation lengths in the scenarios 2
and 3 where 7 along = and 2 along y, thus this upscaling block is larger than
the correlation length. In any case, at the 15 by 15 block size, the double rate
mass transfer model gives an acceptable approximation of the spatiotemporal
distribution of the reference plume except for the dilution index.

It has also been observed that for the two scenarios in which the lenses
accelerate, rather than retard, the particles, the enhanced macrodispersion
transport model gives results very close those obtained by the double rate
mass transfer model.

We conclude that solute upscaling can be satisfactorily performed using
appropriate flow upscaling and including multiple rate mass transfer for the
simulation of the solute transport on the upscaled model as long as the blocks
are not larger than the correlation scale of the underlying reference field. We
also conclude that the enhanced macrodispersion is a good alternative to the
multiple rate mass transfer when the heterogeneity is not characterized by the
presence of very low transmissivities embedded within the aquifer that will act
as retardation sites for the solute.
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Conclusions and Future
Research

5.1 General Conclusions

The hydrogeologic properties of an aquifer often exhibit a high degree of spa-
tial variability over a range of scales because of the heterogeneous nature of
geologic formations. This implies that to predict the behavior of flow and
transport a good characterization of the spatial variability is needed. Geo-
statistics provides the ability to characterize the spatial variation of hydroge-
ologic properties with high resolution. However, in hydrogeological modeling
practice, due to the high computational demands to run flow and transport at
such resolutions it is often necessary to reduce the dimensions of the problem.
We have proposed a new technique for the upscaling of solute transport based
on the modification of the constitutive transport equation at the coarse scale.

The proposed upscaling technique is based on the experimental evidence
that plumes observed in field tests generally exhibit asymmetry and large tails,
impossible to reproduce with an advection-dispersion model based on Fick’s
law. This is so, because mass transport is very much affected by the presence
of high and low velocity zones, where the contaminant can travel quickly or
get stagnant.

This non-Fickian behavior observed on field tests has moved researchers
to investigate alternative formulations to the advection-dispersion equation
(ADE). As reviewed in chapter 2, the approaches that can be proposed are:
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Multirate mass transfer (MRMT), Time-Depend Macrodispersive (TDM), Con-
tinuous time random walk (CTRW) and Fractional Advection-Dispersion Trans-
port (FADT). We have analyzed the use of the MRMT to model transport at
the coarse scale after upscaling. We believe that the distribution of residence
times within a given heterogeneous block can be easily captured by a homo-
geneous block with constant MRMT parameters. We replace a heterogeneous
description of the transmissivity spatial variation with the fitting of a few
parameters in the MRMT model. Contrary to similar proposals by other re-
searchers we assume that the MRMT parameters are heterogeneous in space,
and thus, they are fitted for each of the upscaling blocks.

Chapters 3 and 4 evaluate the proposed upscaling technique and compare
with alternative techniques to conclude that solute upscaling can be performed
using a double rate mass transfer approach for modeling transport at the
coarse scale as long as the blocks are not larger than the correlation scale
of the underlying heterogeneous transmissivity. We also conclude that this
approach will work particularly well when there is an important fraction of
very low transmissivity zones, as is the case of scenario 2 analyzed in chapter
4.

The major drawback of the proposed method, from a practical point of
view, is that it can be computational expensive because since it requires to
solve flow and transport at the fine scale. This is only of interest when run-
ning complex models that are to be used to simulate a more computational
demanding problem, e.g., reactive transport with many species and reactions.

5.2 Future Research

The following future studies are suggested:

The extension of the methodology to three dimensions is important; flow
and transport are always three dimensional and the issue of low and high
velocity zones has less impact in 3D. It is also important to find an alternative
to solve the flow and transport problem at the fine scale to determine the
residence time of particles within the upscaling blocks. This could be solved
in a way similar to how upscaling of flow is solved: by using a skin around
the block being upscaled within which to solve a fine scale flow and transport
problem. This skin should be large enough to impose a boundary conditions
at the block sides as similar as possible to the ones the block really has.

The problem of reproducing dilution call for extending the memory func-
tion used in the modeling of transport in the upscaled models from just using
the information about past concentrations within the block, to concentrations
in the nearby blocks. That is, the memory function currently is only temporal,
it should be made spatiotemporal.
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Furthermore, it is important to test the methodology in a real-case study,
such the one performed at the MADE site.






Calibration of Mass Transfer
Parameters

This appendix describes the numerical details involved in the calibration pro-
cess of mass transfer parameters. The objective function minimized by PEST
included the estimates of the distribution function obtained at different times
as well as the low-order temporal moments of f,(7), formally written as

Nops
J(P) = Y wilFr (ti) = Fron(ts; PP+ M [F =T (P2 + o [o7 02, (P)]? (A1)
i=1

where P is a vector of parameters (see Table 3.1), N, is the number
of time observations, F;(t;) is the sample cumulative distribution function of
residence times at time ¢;. Fy,, is the analytical solution (3.17), 7 and o2 are
the sample mean and variance of the residence time distribution, 7,, and J%m
are the analytical solutions of the mean and variance of the residence time
distribution, and {w;, A1, A2} are the weights of the observations, mean and
variance of the residence time. The number of estimated parameters depends
on the selected upscaled mass transfer model. The analytical solution of the
mean and variance of the residence time distribution can be easily obtained
from (3.17) as

= _ : df_'r(p) _ Ly
Tm(P) =~ lim dp  m

(1+75) (A.2)
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. d®’Inf.(p) 24, 2Ly , [ f(a)
JT,m(P) - 1171_{% dp2 UTQn (1 + ﬁ) Lb + . ﬁ/o o do (A3)

These results are consistent with the temporal moment analysis conducted by
Lawrence et al. (2006).
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