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SUMMARY 

Pepper is a vegetable of extraordinary economic and social importance in our 

country. Unfortunately, the persistent exploitation of the land, the monoculture 

and the intensification of production processes, lead to the development of soil 

diseases. This coupled with the abiotic stress, mainly the salinity of waters and 

soil, suboptimal temperatures and water stress, can induce the appearance of 

physiological disorders in peppers as the Blossom-end rot (BER) and cracking 

or cracked, induce plant senescence and decrease not only production, but also 

the quality of the product. Salinity and water shortages are two among the 

biggest environmental problems that crops have to face in the Mediterranean 

area. A way to overcome the stresses under the prism of an ecological or 

integrated crop management, is the use of grafted plants as adaptation 

strategy. Although there has been remarkable progress in this technique 

(mainly in tomato, melon, watermelon), in the cultivation of pepper use remains 

rare. In this Doctoral thesis several pepper genotypes have been selected 

through different physiological parameters which indicate tolerance to salt and 

water stress. Commercial cultivars were grafted onto the selected genotypes 

and were grown under water stress, salinity and control conditions studying 

several physiological, agronomic responses and the interaction rootstock/scion.  

The results obtained concluded that genotypes selected and used as rootstocks 

improved commercial varieties to salt and water stress tolerance, both in terms 

of performance (commercial production) compared to other commercial 

characters and variety without grafting. Different physiological mechanisms 

explain the tolerance to stress, such as the ability to maintain the water potential 

through an osmotic adjustment, stimulation of the antioxidant system, exclusion 
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or retention of toxic ions (Na
+
 and Cl

-
) in saline in the roots and the maintenance 

of photosynthesis which allows to maintain the metabolic functions of grafted 

plants and production. 
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RESUMEN 

El pimiento es una hortaliza de extraordinaria importancia económica y social 

en nuestro país. Lamentablemente, la persistente explotación del suelo, el 

monocultivo y la intensificación de los procesos de producción, conducen al 

desarrollo de enfermedades del suelo. Esto unido a los estreses abióticos, 

principalmente la salinidad de las aguas y del suelo, temperaturas subóptimas y 

estrés hídrico, puede inducir la aparición de fisiopatias en el pimiento como el 

Blossom-end rot (BER) y cracking o rajado, inducir senescencia vegetal y 

disminuir no solo la producción, sino también la calidad del producto.  

La salinidad y la escasez de agua son unos los mayores problemas medio 

ambientales a los que tienen que hacer frente los cultivos en el área 

Mediterránea. Un modo de sortear los estreses bajo el prisma de un manejo 

integrado o ecológico del cultivo, es la utilización de plantas injertadas como 

estrategia de adaptación. Aunque se ha producido un notable avance en esta 

técnica (principalmente en tomate, melón, sandía), en el cultivo del pimiento su 

utilización es poco frecuente aun. En esta Tesis Doctoral se han seleccionado 

mediante parámetros fisiológicos diferentes genotipos de pimiento tolerantes al 

estrés salino e hídrico. Los genotipos seleccionados fueron validados como 

patrones tolerantes a condiciones de estrés hídrico y salino injertados sobre 

una variedad comercial mediante el estudio de las respuestas fisiológicas, 

agronómicas y de la interacción patrón/variedad en ambas condiciones de 

estrés.   

De los resultados obtenidos se concluye que los genotipos seleccionados y 

utilizados como patrones mejoraron la tolerancia de las variedades comerciales 

a la salinidad, en términos de rendimiento (producción comercial) de frutos 

comparando con otros patrones comerciales y la variedad sin injertar. 

Diferentes mecanismos fisiológicos explican la tolerancia al estrés, como la 
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capacidad de mantener el potencial hídrico mediante un ajuste osmótico, 

estimulación del sistema antioxidante, exclusión o retención de los iones 

tóxicos salinos (Na
+
 y Cl

-
) en las raíces y el mantenimiento de la fotosíntesis 

que permite mantener las funciones metabólicas de las plantas injertadas y la 

producción.   
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RESUM 

El pimentó és una hortalissa d'extraordinària importància econòmica i social al 

nostre país. Lamentablement, la persistent explotació del sòl, el monocultiu i la 

intensificació dels processos de producció, conduïxen al desenrotllament de 

malalties del sòl. Açò unit als estressos abiòtics, principalment la salinitat de les 

aigües i del sòl, temperatures subòptimes i estrés hídric, pot induir l'aparició de 

fisiopaties en el pimentó com el Blossom-end rot (BER) i cracking, induir 

senescència vegetal i disminuir no sols la producció, sinó també la qualitat del 

producte.  

La salinitat i l'escassetat d'aigua són uns els majors problemes mitjà ambientals 

als que han de fer front els cultius en l'àrea Mediterrània. Una manera de 

sortejar els estressos davall el prisma d'un maneig integrat o ecològic del cultiu, 

és la utilització de plantes empeltades com a estratègia d'adaptació. Encara 

que s'ha produït un notable avanç en esta técnica (principalment en tomaca, 

meló, meló d'alger), en el cultiu del pimentó la seua utilització és poc freqüent. 

En esta Tesi Doctoral s'han seleccionat per mitjà de paràmetres fisiològics 

diferents genotips de pimentó tolerants a l'estrés salí i hídric. Els genotips 

seleccionats van ser validats com a patrons tolerants a condicions d'estrés 

hídric i salí empeltats sobre una varietat comercial per mitjà de l'estudi de les 

respostes fisiològiques, agronòmiques i de la interacció patrón/variedad en 

ambdós condicions d'estrés.  

Dels resultats obtinguts es conclou que els genotips seleccionats i utilitzats com 

a patrons van millorar la tolerància de les varietats comercials a la salinitat, tant 

en termes de rendiment (producció comercial) de fruits comparant amb altres 

patrons comercials i la varietat sense empeltar. Diferents mecanismes 

fisiològics expliquen la tolerància a l'estrés, com la capacitat de mantindre el 

potencial hídric per mitjà d'un ajust osmòtic, estimulació del sistema antioxidant, 
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exclusió o retenció dels ions tòxics salins (Na
+
 i Cl

-
) en les arrels i el 

manteniment de la fotosíntesi que permet mantindre les funcions metabòliques 

de les plantes empeltades i la producció. 
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1.1. INTRODUCTION 

 

Peppers, chiles, chillies, capsicum, or whatever their name, are a versatile crop 

that form part of most people’s daily diet, particularly in some areas. Capsicum 

plants are essentially a crop of tropics, but it grows better in hotter regions (De, 

2003). The fruit is consumed as a fresh, processed or dehydrated vegetable, 

and sometimes as a spice. Because of its great versatility, pepper consumption 

is increasing, but also because it may be an important source of pro-vitamin A 

(carotene), E (α-tocopherol), and particularly vitamin C (ascorbic acid), one of 

its most important attributes. Mature pepper fruits are also rich in carotenoids, 

compounds with antioxidant and anti-carcinogenic capacity. Furthermore, both 

immature and mature fruits contain a high content of phenolics, in particular the 

flavonoids for which antioxidant and other bioactive properties have been 

reported (Hervert-Hernández et al., 2010; Mateos et al., 2013; Rodríguez-

Burruezo et al., 2009), and many essential nutrients for world populations. 

Based on some organoleptic features and culinary purposes, pepper fruits are 

usually classified into two types. The term bell pepper refers to a non-pungent, 

chunky sweet pepper type, whereas chilli pepper generally refers to pungent 

chilli fruits (De, 2003). As a general rule, non-pungent pepper types are the 

most popular in the northern hemisphere, while the more pungent chilli peppers 

are widely consumed in the tropics and subtropic areas (Cichewicz and Thorpe, 

1996).  
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1.2. ECONOMIC IMPORTANCE OF Capsicum Spp. 

 

Peppers are grown in most countries in the world, with 1.93 million of ha of 

cultivated area. The world pepper production as a spice and vegetables has 

increased in the last 20 years (FAO, 2013) from more than 12 million tonnes in 

1993 to more than 31 million of tonnes in 2013. China is the largest producer 

with almost 16 million tonnes, followed by Mexico (2.3 million tonnes), Turkey 

(2.2 million tonnes) and Indonesia (1.8 million tonnes). Spain is the fifth most 

important producer with almost 1 million tonnes and 18,100 ha cultivated in front 

of the USA (FAO, 2013) (Fig. 1). 

Spanish peppers involve about 55% of the south Europe production (about, 

200.000 ha, MAGRAMA, 2014), concentrated in the Mediterranean region. 

Andalusia and Murcia produce about 70% of the Spanish pepper production, 

with the Valencian Community ranking fifth among Spanish regional producers 

(MAGRAMA, 2012) (Fig. 2). 

 

 

 

 

 

 

 

Figure 1. World production of chillies and peppers by country (million tonnes) (FAO 2013) 
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Figure 2. Pepper production rates by Spanish regions (MAGRAMA, 2012) 

 

1.3. HISTORICAL AND BOTANICAL PERSPECTIVES 

 

The Solanaceae family is a complex comprised of at least 98 genera and as 

many as 2,716 species, including Capsicum species (Hunziker, 2001; Olmstead 

et al., 1999). Other important crops belongs to this family: tomato, eggplant, 

potato and tobacco.  The word “Capsicum” comes from a Greek-based derivate 

of the Latin term “Kapto”, meaning “to bite”, and is a certain reference to heat or 

pungency. Capsaicin, a volatile molecule, is a very stable molecule and is 

responsible for the pungency commonly associated with some peppers (Heiser 

and Pickersgill, 1969). However, other pepper species are non-pungent due to 

a single mutation, which causes loss of ability to produce capsaicinoids.  

The genus Capsicum has been known in the central hemisphere and South 

America since the beginning of civilisation, and has probably evolved from an 
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ancestral form in the Bolivia-Peru area. It has formed a part of the human diet 

since about 7500 BC (MacNeish, 1964). Peppers were unknown in Europe, 

Asia and Africa prior to Christopher Columbus landing in the Americas. On his 

voyage, he encountered a plant whose fruit mimicked the pungency of black 

pepper, Piper nigrum L. The genus Capsicum, which is commonly known as 

“capsicum”, “pepper”, “bell pepper”, “red chile”, “chilli pepper”, “tabasco”, 

“paprika”, “cayenne”, etc., comprises as many as 40 species, approximately. 

The phenotypic variation in fruit shapes, sizes, colours and plant habits is vast 

(Bosland and Votava, 2003). Capsicum species, with few very exceptions, are 

diploid (2n=24, infrequently 2n=26) and have similar karyotypes (Lippert et al., 

1966; Moscone et al., 1993). The morphological differences between wild and 

cultivated chillies are easily discerned. On the one hand, all wild forms of chillies 

have small, red, berry-like fruits whose colours and sizes attract birds. On the 

other hand, the five major cultivated or half-cultivated species of Capsicum are 

Capsicum annuum L., Capsicum chinense Jacq., Capsicum frutescens L., 

Capsicum baccatum L. (C. var. pendulum) and Capsicum pubescens R & P 

(De, 2003; Macrae, 1993; Russo, 2012). C.annuum, C. frutescens and C. 

chinense form a closely linked group, also called “annuum Complex” (Nuez et 

al., 1996) which, for several authors, are not differentiated species.  

 

1.3.1. C. annuum L. 

 

Of all the domesticated species of Capsicum, C. annuum is the most widely 

cultivated and is economically the most important one today. We can find these 

species as fresh, processed or dried (Andrews, 1995), and as bell varieties: 

NuMex, Jalapeño, red pepper, Serrano, and many others (Fig. 3). 
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It is a suffrutescent or herbaceous, short-lived perennial (cultivated as annual) 

of up to 1 m in height, cultivated from the sea level up to an altitude of 2,100 m. 

Leaves oblong, glabrous; flowers solitary, rarely in pairs, pure white to bluish 

white, very rarely violet; berries green, maturing into yellow, orange to red 

shading into brown or purple, pendent, rarely erect, extremely variable in size 

(up to 20 cm long and 10 cm in diameter), shape and pungency, sometimes 

lobed, seeds white or cream to yellow (Bosland and Votava, 2003).  

 

 

 

 

 

 

 

 

 

Figure 3. Scheme showing the typical morphology of C. annuum plants (Köhler’s, 1887). On the 

right, an example of the diversity of fruits in C. annuum (top) and flower detail (bottom) 

(Courtesy of A. Rodríguez-Burruezo). 
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1.3.2. C. Chinense Jacq. 

 

Capsicum chinense includes cultivars Habanero, Scotch bonnet, rocotillo, and 

chili blanco types, and is the dominant domesticated pepper of the Amazonas 

area. These cultivars are characterised as a small stout shrub of up to 1.5 m 

tall, glabrous and puberulent with two flowers, or more, at a node. Flowers are 

pendant (rarely erect) and have a prominent constriction between the base of 

the calyx and pedicel. The corolla is dull white (greenish white), spreading to 

recurved. Anthers are blue to violet, rarely yellow. The style and stigma are 

rarely exerted more than 1 mm. Fruits, of many different colours, contain seeds 

that are cream to yellow (D’Arcy and Eshbaugh, 1974; Russo, 2012) (Fig. 4). 

The name C. chinense is an anomaly in that no Capsicum peppers were ever 

native to China.  

 

 

 

 

 

 

 

Figure 4. Flower detail and constriction between the base of the calyx and pedice,l and several 

fruits of C. chinense (Courtesy of A. Rodríguez-Burruezo). 
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1.3.3. C. frutescens L. 

 

Capsicum frutescens contains cultivars of the tabasco, malegueta, African 

birdseye, piri-piri and Thai pepper types. These species are the source of 

Tabasco sauce, once the most famous hot sauce worldwide.  

It is a small shrub, or tree-like shrub, that grows up to 2 m tall. It can be 

herbaceous to woody. Plants range from glabrous to pubescent, and are mostly 

puberulent. Typically, two flowers or more are present per node. Flowers lack a 

prominent constriction between the base of the calyx and pedicel. Calyx teeth 

are absent. The corolla is greenish white and spreading to recurved. Anthers 

are blue to violet, rarely yellow. The style and stigma are exerted 1.5 mm, or 

more, beyond the anthers. Immature fruit is green without dark pigmentation, 

while mature fruit is red, or very rarely orange, erect, and deciduous. Seeds are 

cream to yellow (Bosland and Votava, 2003)(Fig. 5). 

 

 

 

 

 

 

Figure 5. Flower detail and and several fruits of C. frutescens (Courtesy of A. Rodríguez-

Burruezo) 
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1.3.4. C. baccatum L. (C. var pendulum) 

 

Capsicum baccatum var. pendulum, meaning berry-like, is known as aji, aji 

Amarillo, cuerno de oro, or cumbia, (Eshbaugh). It is one of the commonest 

domesticated peppers in Peru. It is also popular in Bolivia, Paraguay, North 

Argentina and Brazil. This lowland South American species has cream-colored 

flowers with paired gold or green markings. Typically, fruit are elongated with 

cream-colored seeds. This species is very hot and its various cultivars offer 

distinct flavours (Fig. 6). 

 

 

 

 

 

Figure 6. Flower detail and several fruits of C. baccatum (Courtesy of A. Rodríguez-Burruezo) 

 

 

1.3.5. C. pubescens R & P 

 

Capsicum pubescens, the rocoto, locoto, Chile manzana, and others, is 

morphologically, and genetically, distinct from all the other domesticated 

peppers. It has large rotate purple or white flowers, typically with five to eight 

lobes. Fruits contain dark brown or black seeds, which are unique among 

domesticated peppers. It is found throughout the mid-elevation Andes at 
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between 1,500 m and 3,000 m. C. pubescens has large rugose pubescent 

leaves. It can be very large, and grows horizontally over the ground or on 

supporting vegetation, and its length can be in excess of 18 m. Stems often 

have mixed green and purplish pigments, which confer them a striped 

appearance (Fig. 7). Its consumption is very limited (De, 2003).  

 

 

 

 

 

 

Figure 7. Flower detail, fruits and seeds of C. baccatum (middle and left) (Courtesy of 

A. Rodríguez-Burruezo). General appearance of flowers and fruits (right) 

 

1.4. AGROCLIMATIC REQUIREMENTS 
 

Peppers are well adapted to hot climates. The optimum temperature for seed 

germination is 25-30 ºC. For growth and fruit quality, areas with temperatures 

ranging from 21 ºC to 29 ºC are needed (Nonnecke, 1989). When temperature 

falls below 15 ºC or exceeds 32 ºC, growth is usually retarded, blossom end rot 

(BER), fruit-set ceases can appear, and yields lower (Knott and Deanon, 1967).  
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Mainly commercial pepper varieties need well-drained, friable sandy loam soil 

with pH between 6.5 and 7.5 being optimum for production. Salt content in soil 

and the irrigation water should be low. A salinity resistance threshold of 1.5 dS 

m-1 has been reported, below which no effect on growth occurs, and a 14% 

decrease in biomass production for every additional 1dS m-1 has been observed 

(Maas). Thresholds that range from 0 to 2 dS m-1 and slopes of salinity 

response curves that range from 8% to 15% have been reported for 

greenhouse peppers (Chartzoulakis and Klapaki, 2000; Navarro et al., 2003). 

Added organic matter will increase water holding capacity and supply nutrients 

and minerals. Peppers require high frequent soil fertility early in the growing 

cycle to supplement nitrogen. Lack or excess water induces flower abortion or 

further BER of fruits (Maroto and Borrego, 2008).  

 

1.5. MAIN ENVIRONMENTAL PROBLEMS TO CULTIVATE 

PEPPER PLANTS 

 

In the face of a changing climate, global food security demands increasing 

agricultural production on finite arable land without increasing water use (Davis 

et al., 2015). With a population increase predicted at around 9 billion by 2050, 

the World Food Summit on Food Security (2009) sets a target of a 70% 

increase in global food production. Environmental stresses represent the most 

limiting conditions for horticultural productivity and plant exploitation worldwide 

(Nilwik, 1981; Schwarz et al., 2010a). The most limiting factors among them are 

water availability, temperature, salinity, light, metal ion concentration and 

pathogens.  
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Many diseases and disorders can interfere with pepper production and quality, 

which may have a biotic (living) and abiotic (non-living) origin.  

 

1.5.1. Biotic stresses 

 

Capsicum plants can suffer attacks by different pathogens. The most 

troublesome and most important diseases and pests are: fungal diseases such 

as Phytophthora capsici (Fig. 8A-B), Verticillium dahliae, Rhizoctonia solani, 

Fusarium spp., bacteria such as Xanthomonas campestris, and powdery mildew 

(Leveillula taurica and Oidiopsis taurica), viruses (Fig. 8C) such as Beet Curly 

Top Virus (BCTV), Tomato Spotted Wilt Virus (TSWV), Pepper Mottle Virus 

(PMV), several Mosaic Virus (AMV), (CMV), (TMV), nematodes mainly 

Meloidogyne incognita, and several insects (Fig. 8 D-I) such as mites, thrips, 

aphids and termites. 
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Figure 8. (A) general view of a pepper field infected by Phytophthora capsici, (courtesy 

of Juan José Tuset, (B) Detail of roots infested with P. capsici, (C) Virus, (Courtesy of J.I. 

Marsal) (D) general view of a pepper field with mites; leaf discoloration and 

defoliation, (E) Bud parasitised by aphids (courtesy of A. Miguel), (F) Flower detail with 

thrips (courtesy of J.I. Marsal), (G) Pepper bitten by some insect, (H) Stem affected by 

termites, (I) Detail of leaf with aphids (courtesy of J. I. Marsal) 

 

Biotic stresses can cause physiological changes in pepper plants, like 

electrolyte leakage, ion-flux change, hypersensitive cell death, and activation of 

defensive responses (Lee and Choi, 2013), which can result in diminished yield 

A B C 

D E F 
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and quality. Some of the most dangerous biotic factors are soil diseases, mainly 

in intensive farming, where limited crop rotations can lead to a build-up of soil-

borne pathogens. The main injures to roots caused by these soil pathogens are 

smaller foliar size, and thin weak stems, wilt, depressed flowering, poorer fruit 

quality and shorter plant life spans (Rivero et al., 2003). The first symptoms are 

usually visible in leaves when the roots of the plant are completely infected. The 

only feasible option for the farmer is to take preventive measures, which 

involves soil treatments for the following crop season. Since soil fumigation with 

methyl bromide (MB) is forbidden, other alternatives must be adopted 

(Batchelor and Miller, 2008). Fumigants are used, but large amounts can be 

applied which may lead to phytotoxicity (Giannakou et al., 2002; Noe, 1998). 

Furthermore, the long-term use of fumigants may create changes in the 

microfauna of soil, which not always favours cultivated plants (Hague and 

Gowen, 1987). Steam treatment effectively kills pathogens and is not toxic, but 

it is not economically feasible everywhere because it requires the appropriate 

machinery for steaming, as well as water and fuel (FAO 2015). Soil solarisation 

is frequently used in countries with warm climates (Gordh and McKirdy, 2013). 

However, soil must be covered for 4-6 weeks during a hot period to stop 

vegetable production. Another alternative is biological control, in which 

organisms are selected on the basis of their ability to control diseases, but they 

can be used for aerial plagues. 

Plant biotic resistance is another possibility. To improve the tolerance of crops, 

numerous attempts by traditional breeding programmes have been made. 

Although commercial success has been very limited due to the complexity of 

the trait, commercial cultivars can be found with some tolerance. At present, 

major efforts have being made for the genetic transformation of plants to 

improve their tolerance (Borsani et al., 2003). Although some increased 
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tolerance to pathogens has been reported in transgenic peppers (Arthikala et 

al., 2014; Watson and Preedy, 2015), given poor public acceptance of genetic 

engineering means in plants, other approaches to achieve resistance must be 

currently considered (Estañ et al., 2005). 

One way of avoiding or reducing loss in production is to graft sensitive plants 

onto robust rootstocks. Several Capsicum rootstocks, including commercial 

cultivars, breed lines and wild accessions, can confer appropriate tolerance or 

resistance to Phytophtora, Verticillium, Fusarium, CMV, nematodes, etc. 

(Kokalis-Burelle et al., 2009; Morra and Bilotto, 2006; Oka et al., 2004; 

Yamakawa, 1982).  

 

1.5.2. Abiotic stresses 

 

During the growth cycle of peppers, like other plants, many unfavourable 

environmental conditions may occur, such as salinity, drought, extreme 

temperatures, moisture, light, mineral deficiencies or toxicities, pH and 

pollutants, which can all diminish plant yield (Ashraf, 2004; Foolad, 1996; 

Munns et al., 2006; Russo, 2012). Nearly 82% of the potential yield of crops is 

lost every year due to abiotic stress, and the amount of available productive 

arable lands continues to decrease worldwide, forcing farming to move to areas 

where the abiotic stress potential is higher (Hirt and Shinozaki, 2004).  

In the Mediterranean region, one of the most important abiotic stresses are 

salinity, which is usually present in both soil and water, and water scarcity 

(1.4.2.1. and 1.4.2.2.), but it is very difficult improve these environmental 

conditions through crop management.  
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Other abiotic stresses are: low temperature, which affects pepper vegetative 

development and reproduction by disturbing the function of the flower female 

organs and the number of viable pollen grains per flower (Polowick and 

Sawhney, 1985; Pressman et al., 2006; Shaked et al., 2004); high temperature 

and radiation promote stunted growth, a smaller photosynthetic rate, increased 

respiration, and lower water and ion uptake (Nilwik, 1981; Schwarz et al., 

2010b). Therefore, the use of different shading screens is thought to be an 

alternative to overcome these problems (Ilahy et al., 2013; López-Marín et al., 

2013). In the same way, heating is used to avoid chilling and frost injury, and 

cooling is employed to avoid high air temperatures (Russo, 2012). 

 

1.5.2.1. Drought stress 

 

Water scarcity is considered a key threat for the 21st century (UNESCO, 2012). 

Plants are often subjected to periods of soil and atmospheric water deficit 

during their life cycle. Only about 15% of the world’s agricultural land is 

irrigated, but these irrigated lands account for almost half the global food 

production (Tilman et al., 2002). Drought, along with salinity, is one of the most 

important causes of low yields worldwide (Bodner et al., 2015). Adapted 

cultivars can improve the synchronisation between crop water demand and soil 

supply. For these reasons we need to know plant responses to water scarcity, 

which are complex and involve deleterious and/or adaptive changes (Chaves et 

al., 2002). 

As soil dries, its matric potential becomes more negative (Taíz and Zeiger, 

2010). Plants can continue to absorb water only as long as their water potential 

(Ψw) is lower (more negative) than that of soil. The water potential is the total of 
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both the solute potential (Ψs) and the turgor potential (Ψp); thus: Ψw = Ψs + Ψp 

(Kramer and Boyer, 1995). In this way, one of the important pathways to 

enhance water stress tolerance is through osmotic adjustment, which maintains 

the leaf turgor required for stomatal opening, and to thus sustain photosynthesis 

and growth (Huang et al., 2010; Nio et al., 2011). Plants accumulate various 

types of compatible solutes, such as sugars, proline, glycinebetaine or 

potassium (Morgan, 1992; Munns et al., 1979; Nio et al., 2011), to reduce the 

osmotic potential and to be able to absorb water. In short, the accumulation of 

solutes by cells is a process by which the water potential can lower without an 

accompanying reduction in turgor or decrease in cell volume.  

One of the prompt responses under drought stress is stomatal closure and 

reduced transpiration rates, which lower the water potential of plant tissues. 

Consequently, photosynthesis diminishes, mediated by decreased CO2 

availability caused by either: a) diffusion limitations through the stomata and/or 

mesophyll (Flexas et al., 2007), called stomatal effects; or b) an alteration in the 

CO2 fixation reactions mediated by a diminished Rubisco activity, called non-

stomatal (Lawlor and Cornic, 2002). Under water stress, as energy accumulates 

in plants, which consume less light energy through photosynthetic carbon 

fixation, the generation of reactive oxygen species (ROS) increases (Asada, 

2006; Smirnoff, 1993). Accumulation of sorbitol, mannitol and proline, and the 

formation of radical scavenging compounds, e.g. ascorbate, glutathione and α-

tocopherol, can help plants to cope with water stress (Rout and Das, 2013; 

Yordanov et al., 2003). These compounds can play a dual role as the non-

enzymatic antioxidants that plants need to counteract the inhibitory metabolic 

effects of ROS generated under water stress (Gill and Tuteja, 2010), and also in 

the stabilisation of enzymes and proteins, and the protection of membrane 

integrity (Patade et al., 2012). Besides these physiological responses, plants 
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also undergo morphological changes (Vassileva et al., 2012), like stunted 

growth and, consequently, smaller yields.  

Generally, pepper plants are sensitive to hydric deficit due to a big leaf area and 

higher stomata conductance (Campos et al., 2014; Delfine et al., 2000; 

Gonzalez-Dugo et al., 2010). In the pepper production industry, drought 

imposes huge reductions in crop yield and quality, with significant economic 

loss of up to 70% (Delfine et al., 2000; Fernández et al., 2005; Pascale et al., 

2003). The two most critical moisture stress stages in peppers are the initial 

establishment of transplanted plants and the stage prior to blossoming (Bosland 

and Votava, 2003). Thus reduced yields and smaller fruits are frequently 

recorded under moisture stress conditions and, moreover, this scenario limits 

the water applied to peppers during the rapid growth period to reduce the final 

yield (Beese et al., 1982).  

 

1.5.2.2. Salinity 

 

Salinity can be disastrous because it causes many direct and indirect harmful 

effects. It inhibits seed germination, induces physiological dysfunctions and 

often kills non-halophyte plants, even at low concentrations, and limits 

agricultural development (Bartels and Sunkar, 2005; Shannon, 1997). 

Salinisation transforms fertile and productive land into barren land, and often 

leads to loss of habitat and loss of biodiversity (Ghassemi et al., 1995).  

Accumulation of salt in excessive amounts in cultivated soils is a common 

problem, especially under irrigated conditions, which threatens food production 

globally (Aktas et al., 2006a; Bohnert and Jensen, 1996; Zeng et al., 2003). The 

indiscriminate use of large quantities of chemical fertilisers and the 
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overexploitation of aquifers have dramatically multiplied the surface area 

affected by salinity (Rivero et al., 2003). Currently, one third of all irrigated lands 

in the world is affected by salinity to a greater or lesser degree (Pasternak, 

1987), which reduces yields.  

Salt stress has two components that negatively affect plant growth: the osmotic 

component and the ionic component. A heavy salt concentration lowers the 

water potential in soil and induces water stress in plants. This is known as the 

osmotic component of salinity. Accumulation of certain toxic ions represents the 

ionic component (Greenway and Munns, 1980). 

The relative degree of each salt effect caused by different salinity levels and its 

consequences on crop production are not clearly understood (Pascale et al., 

2003). Saline soils induced by protected culture are complex and can include 

high concentrations of K+, Na+, Ca2+, Mg2+, SO4
2-, NO3

- and Cl- , which differ 

from the saline soils induced by seawater, in which NaCl is the most soluble 

and widespread salt (Huang et al., 2010; Luo et al., 2005). High concentrations 

of Na+ reduce the uptake of Ca2+ and K+, and this provokes reduced stomatal 

conductance, which results in a lower CO2 concentration and, consequently, 

photosynthesis lowers. A high Cl- concentration causes chlorophyll degradation 

and reduces the actual quantum yield of PSII electron transport (Mitra, 2015).  

Salinity can also cause membrane destabilisation (Hasegawa et al., 2000), 

nutrient imbalance (Munns, 1993), and irreversible damage to plant cells and 

tissues (Meyer and Boyer, 1981). It is commonly accepted that growth inhibition 

by salt stress is associated with alterations in the hydric relationships within the 

plant, caused by osmotic effects with specific ionic consequences.   
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Salt tolerance mechanisms are: 

 Salt exclusion. Plants can limit salt accumulation in their tissues by 

inhibiting root uptake. Some strategies to restrict salt transport into 

sensitive organs or tissues have also evolved (Munns, 2002a). Plants’ 

ability to regulate the uptake and transport of salts is dependent on the 

following mechanisms: selectivity of uptake by root cells; preferential 

loading of K+ rather than Na+ into the xylem by stele cells; removal of 

salts from the xylem in upper root parts, the stem and leaf sheaths, 

based on the exchange of K+ and Na+ 

 Salt excretion: halophytes frequently take anatomical structures, like 

salt glands and salt bladders, designed to eliminate excess salt ions 

from the plant into its environment. 

 Intracellular ion compartmentation. Sequestration of salts or ions into 

leaf and/or shoot vacuoles is a typical attribute of dicotyledonous 

halophytes. This accumulation is dependent on vacuolar H+-

translocating transporters and tonoplast Na+/H+ antiporters, which are 

induced by saline environments (Barkla and Pantoja, 1996). An 

immediate effect of salt stress is cell alkalinisation, linked with Na+/H+ 

antiporters activity of tonoplast vesicles (Hasegawa et al., 2000). In this 

case, potassium ions and different types of compatible organic solutes, 

such as soluble sugar and proline, accumulate in the cytoplasm to 

prevent dehydration and to maintain the osmotic and ionic balance 

between these two compartments (Munns and Tester, 2008), and to 

stabilise sub-cellular structures, such as membranes and proteins 

(Ashraf and Foolad, 2007; Huang et al., 2010). 
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In tolerant salt plants, it has been observed after initial loss of cellular turgor that 

plants can induce an osmotic adjustment to the decrease the external water 

potential by compartmentalising toxic ions in the vacuole and by synthesising 

compatible solutes in the cytoplasm (Hasegawa et al., 2000).  

 

Among vegetables, pepper (mainly C. annuum) is very susceptible to salt 

stress. Negative effects on yield result from disturbances in membrane 

permeability, ion imbalance, water channel activity, stomatal conductance, and 

reduced total photosynthesis which modifies the carbon balance required to 

maintain growth and productivity (Kurunc et al. 2011, Piñero et al., 2014, Aktas 

et al., 2006b; Carvajal et al., 1999). 

 

 

1.6. MAIN DISORDERS RELATED TO ABIOTIC STRESS IN PEPPER 

PLANTS   

1.6.1. Blossom end rot 

 

Blossom end rot (BER) is a serious disorder that commonly affects peppers 

grown under various environmental stresses. Symptoms are associated with the 

membrane leakage of cell solutes, cell plasmolysis, and membrane breakdown 

(de Freitas et al., 2012; Ho and White, 2005; Saure, 2001). Subsequently, the 

fruit surface exhibits water-soaked symptoms, and the tissue at the distal 

portion of the fruit becomes discoloured and necrotic. BER enhances fruit 

softening and causes premature ripening, which results in small-sized fruits 

(Aktas et al., 2005) (Fig. 9). In the internal fruit tissue, BER develops in the 

necrotic region of the parenchymal tissue, which surrounds young seeds, and in 

the distal placenta (Adams and Ho, 1992; Ho and White, 2005). The 
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predominant view of the cause of BER is that calcium translocation to the fruit 

tip is inadequate for the rapid fruit expansion that occurs under conditions which 

favour rapid fruit growth, such as high temperature and bright light, so that cell 

integrity is impaired with the consequent tissue disintegration (Turhan et al., 

2006). Since Ca2+ is thought to play a central role, BER is termed a “calcium-

related disorder” (Ho et al., 1993). BER incidence is related to environmental 

factors, such as high salinity, water scarcity, high temperature and ammonia 

nutrition, which contribute to Ca2+ deficiency (Aktas et al., 2005; Saure, 2014; 

Taylor et al., 2004). 

 

 

 

 

 

 

Figure 9. General view of pepper fruits affected by BER (right) and detail of necrotic tissue 

 

However, a close relationship between calcium levels and BER cannot be 

always demonstrated (Saure, 2001). Lantos (2007) showed that applying 

calcium did not necessarily reduce the yield losses caused by calcium 

deficiency. 
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The influence of stress on BER occurring in pepper is based in part on an 

increased NAD(P)H oxidase (an oxygen radicals-generating enzyme) activity, 

and on increased ROS production, such as superoxide radicals, hydroxyl 

radicals and singlet oxygen (O2) in the fruit apoplast (Aktas et al., 2003, 2005; 

Mestre et al., 2012; Turhan et al., 2006). ROS are known to trigger cell death, 

which is characterised by a progressive loss of membrane integrity to result in 

cytoplasm swelling and in the release of cellular constituents (Van Breusegem 

and Dat, 2006), including loss of Ca2+ ions, which may explain the lower Ca2+ 

concentrations mainly in the apoplast (de Freitas et al., 2012).  

A certain amount of stress, caused by either a single or an interaction of several 

environmental factors, like high relative humidity, pathogenic stem diseases, 

and dry or saline soils, may have a negative effect on calcium uptake (Marcelis 

and Ho, 1999). However, it does not always result in a corresponding degree of 

BER (Saure, 2001).  

Mainly two kinds of phytohormones appear to interfere, especially with BER 

affection, and in opposite directions: bioactive gibberellins (GAs) and abscisic 

acid (ABA). An antagonism action between Ca2+ and vegetative growth has 

already been observed by Lyon et al., (1942). Low Ca2+ in the nutrient medium 

has been reported to result in the most extensive root systems, and indicates 

high GA activity. In this case, a low supply of Ca2+ may have caused the high 

BER incidence more indirectly via increased GA activity (de Freitas et al., 

2012).  

As an antagonist to GAs, ABA is known to reduce plant susceptibility to stress; 

e.g. by promoting the transport of Ca2+ to fruits. It has been recently 

demonstrated that applying ABA to highly stressed tomato plants alleviates 

BER symptoms (Tonetto de Freitas et al., 2014).  
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From a practical point of view, GA-signalling can be reduced; e.g. by root 

restriction (Bar-Tal and Pressman, 1996; Karni et al., 2000), by applying growth-

retarding chemicals and by ABA (Lurie et al., 1996; Saito et al., 2004; Wui and 

Takano, 1995). 

In short, BER development requires several steps: stress increases ROS 

production; ROS causes lipid peroxidation with increased leakiness of 

membranes, which leads to rapid vacuolation of parenchyma cells and loss of 

ions, including water-soluble apoplastic Ca2+. Moreover, this situation is 

aggravated when plants are grown vigorously, when GAs levels are high and 

when ABA is low. These are typical BER symptoms (Saure, 2014). Accordingly, 

final Ca2+ deficiency can be considered only as a result, but not the cause, of 

BER.    

In order to control BER solutions, it is necessary to reduce susceptibility to 

stress and alleviate stress severity through the: 

 proper selection of suited production sites. Yet it is not always possible, 

and moreover, environmental conditions are unpredictable, 

 improved management practices, like shading or applying calcium fruit 

sprays. However, there is not enough evidence to recommend their use 

in managing BER; or spraying ABA, which it is not available as a 

commercial solution (side effects and no commercial formulation), and 

by: 

 breeding and selecting stress-resistant cultivars. Unfortunately 

programme are slow and it is difficult obtain a variety which collects 

commercial fruit attributes and a robust radicular system, 

 robust rootstocks have induced increased production in horticultural 

crops, which has increased the leaf area in grafted tomato plants 
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(Albacete et al., 2009), and has maintained greater net CO2 assimilation 

in grafted cucumber plants (Colla et al., 2010a; Davis et al., 2008), and 

has also shown a vigorous root system that increased the absorption of 

water and minerals in pepper grafted plants (Leal-Fernández et al., 

2013). In this way, grafting susceptible plants onto robust rootstocks in 

order to reduce their susceptibility to stress can reduce the fruits 

affected by BER, maintain water uptake, contribute to better plant 

nutrition and, consequently, calcium deficiency may diminish (Giuffrida 

et al., 2013; King et al., 2010; Mándoki and Pénzes, 2012). 

 

1.6.2. Fruit cracking 

 

This is another common physiological disorder that reduces the marketable fruit 

yield, but this not such a commercial serious problem as BER. In cracked fruits, 

cracks usually extend through the wall into the locule area due to repeated 

shrinkage and expansion weakens the fruit cuticule (Yaoi et al., 2000). 

Incidence is affected by environmental factors (Moresehet et al., 1999), and 

mainly by varietal characteristics (San Bautista et al., 2011). Several studies 

have demonstrated the importance of the environment in cuticle cracking 

development, like low night vapour pressure deficit (Ehret et al., 1993), relative 

humidity (Johnson and Knavel, 1990) and temperature (Aloni et al., 1998). 

Fruits with wider expansion-shrinkage amplitude are usually associated with 

severe cracking symptoms. The water status of fruit is a key factor to determine 

fruit cracking severity (Russo, 2012). In this way, some solutions can be those 

that minimise changes in the water status of fruits. In this sense, the same 

strategies adopted to combat BER can be adopted. However, maintaining a 
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consistent optimised growing environment is the best way to prevent fruit cracks 

from developing. 

 

1.6.3. Other disorders 

 

Although peppers are grown mainly under protected cultivation, and the 

Mediterranean climate offers plentiful irradiation and mild temperature ranges, 

temperatures and irradiation in winter are suboptimal for pepper crops causing 

improper ovary development, malformation of flowers and unviable pollen 

production. At low temperature, parthenorcarpic, misshapen and malformed 

fruits are produced (Fig. 10) (Rylski et al., 1994). Another common disorder is 

flower drop. Flower buds, open flowers and immature pod drop are caused by a 

variety of conditions, like heat stress, insufficient water, and excessive or 

deficient nutrient levels, which have been reported as casual agents. Leaf 

rolling and chlorosis caused by CO2 enrichment in greenhouses is unique to 

greenhouse peppers (Aloni and Karni, 2002).  

Sunscald occurs on the side of fruits exposed to direct sunlight. It first appears 

as a wrinkled area, which can be soft and lighter in colour than the surrounding 

tissue. In peppers, this area collapses and turns white. Sunscald primarily 

affects fruits, but leaves and stems can also be injured. Fruits close to maturity 

are more sensitive to sunscald injury than immature fruits. Symptoms are 

similar in appearance to those of BER, but are consistently associated with 

exposure to direct sunlight (Macrae, 1993).  

The use of adequate rootstocks through grafting has provided an alternative 

strategy to avoid or reduce loss of production caused by excess radiation and 
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suboptimal temperatures (López-Marín et al., 2013; Rivero et al., 2003; 

Schwarz et al., 2010b). 

 

 

 Figure 10. Deformed fruits in pepper fields and detail of stunted peppers (left and middle), and a 

crack in a pepper fruit due to abiotic stresses 

 

Improving managing techniques, such as shading, cooling and heating, may 

help preventing these disorders from appearing. Looking for less sensitive 

varieties to the disorders or grafting onto tolerant rootstocks could be an 

alternative to obtain healthy large foliage, a useful feature to minimise changes 

in the water balance and to improve mineral absorption by plants. 
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1.7. COPING WITH ABIOTIC CONSTRAINTS  

 

The impact of climate variability and unpredicted climate change on agricultural 

productivity is likely to be a major constraint to achieve increased food 

production. This makes the development of crop genotypes that are resilient to 

ambient stresses a major strategy for food security. Innovations in crop 

improvement are needed (Henry, 2014). They are carried out by making 

tremendous efforts, particularly by breeding companies with traditional breeding 

programmes. However, commercial success has been very limited due to the 

complexity of the trait and because practical selection tools are lacking, such as 

genetic markers that have made these tasks slow inefficient processes to date 

(Ashraf and Foolad, 2007; Flowers, 2004; Schwarz et al., 2010b). It is very 

difficult to combine suitable commercial fruit characteristics (high production and 

quality) with resistance to environmental factors, particularly when traditional 

varieties are grown for their quality and adaptation traits, as they are usually 

very sensitive to stress (Finckh, 2008; Lammerts van Bueren et al., 2011).  

More recently, major efforts are being made to achieve genetic transformation 

(Borsani et al., 2003; Cuartero et al., 2006; Martinez-Rodriguez et al., 2008). 

The transfer of a single gene or a few genes has led to claims of improvement 

in abiotic stress tolerance (Chinnusamy et al., 2005; Kim et al., 2014; Mickelbart 

et al., 2015).  However, the nature of genetically complex mechanisms of abiotic 

stress tolerance, and potential detrimental side effects, make this task 

extremely difficult (Flowers, 2004; Wang et al., 2003). Lack of public acceptance 

of genetic engineering means that searching for other strategies to generate 

improved tolerances to abiotic stresses in plants is a priority (Estañ et al., 2005; 

Munns, 2002b). 
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One environtal-friendly technique for avoiding or reducing loss in commercial 

yields caused by abiotic stress conditions is to graft susceptible commercial 

cultivars onto rootstocks capable of reducing the negative effect of external 

stress on shoots (Colla et al., 2010b; Rivero et al., 2003; Sánchez-Rodríguez et 

al., 2014; Savvas et al., 2010; Schwarz et al., 2010b). The use of grafted plants 

is an eco-friendly strategy that allows plants to overcome both soil-borne 

diseases and environmental stress(King et al., 2010; Penella et al., 2013; 

Schwarz et al., 2010b). 

 

1.8. GRAFTING 

 

Grafting is defined as the natural or deliberate fusion of plant parts to establish 

vascular continuity among them (Pina and Errea, 2005), and the resulting 

genetically composite organism functions as a single plant (Mudge and Janick, 

2009). The term scion refers to the shoot piece that comes from a donor plant 

and which will be the canopy of the grafted plant. The term rootstock refers to 

the plant that receives and fuses with the scion and functions as the root system 

of the grafted plant.  

Although grafting of vegetables is an ancient practice, grafting did not become 

common practice in herbaceous vegetables and ornamentals until the 20th 

century (Lee, 1994; Lee et al., 2010). The cultivation of grafted horticultural 

plants began in Korea and Japan at the end of 1920, with the grafting of 

watermelon plants to squash rootstocks (Yamakawa, 1982). Since then, the use 

of this technique in watermelon, cucumber, melon, tomato, eggplant, pepper 

and ornamental cactus has been exponentially increased. Moreover, grafting is 

being used for not typical fruit vegetables, as artichoke (Temperini et al., 2013; 
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Trinchera et al., 2013). The advantages of vegetable grafting are attributed 

principally to resistance of rootstocks to soil-borne diseases (fungus, bacterial 

wilt and nematodes), but also to increased vigour and stress tolerance. The 

problems associated with banning methylbromide for soil fumigation have 

increased vegetable grafting in Europe and the United States in the last few 

years. 

Cleft, approach, micro- and tube grafting are techniques that can reliably join 

pepper scions with compatible rootstocks, and the same applies to eggplant 

and tomato (Miguel et al., 2007). Lately, the most popular type is the tube-

grafting method, which consists in cutting the growing rootstock tip at a 45º 

angle below the cotyledons, attaching it to the scion, which has been preciously 

cut at a 45º angle above the cotyledons, and fixing the rootstock and scion with 

a clip (Fig. 11). 

 

 

 

 

 

Figure 11. Pepper seedling grafted by the tube-grating method 

 

Commercial varieties are not usually selected to cope with abiotic stress. So 

grafting onto robust rootstocks can be an interesting method to cope with these 

problems. 
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1.8.1. Grafting to cope with salt stress 

 

Grafting plants onto tolerant rootstocks is one of several approaches that 

cushion the impact of salinity (Chartzoulakis and Klapaki 2000) and is a 

common agronomic practice in tomato and melon. Several studies have been 

conducted in these species to elucidate the mechanisms involved in increased 

salinity tolerance of grafted plants. This increased tolerance of grafted plants is 

generally associated with their capacity to exclude or retain and/or accumulate 

toxic ions, Na+ and Cl- in rootstock roots, which thus limits their transport to 

leaves rather than through either the synthesis of osmotically active metabolites 

or the induction of antioxidant systems (Estañ et al. 2005; Zhu et al. 2008; 

Edelstein et al. 2011). Other authors have indicated that the influence of 

rootstock on a scion’s salt tolerance is due to the more efficient control of 

stomatal functions (changes in stomatal regulation and water relations), which 

suggests that the grafting incision may alter the hormonal signalling between 

roots and shoots (Aloni et al., 2010). In other cases, such raised tolerance has 

been explained by the re-establishment of ionic homeostasis (Martinez-

Rodriguez et al. 2008). Nevertheless, the mechanism of resistance against 

salinity in grafted plants displays great complexity in association with specific 

rootstock/scion interactions (Ferreira-Silva et al., 2010; Zhu et al., 2008), and 

can vary among species. As far as we know, very few studies of this type have 

been conducted in pepper to elucidate whether or not the salt tolerance 

conferred by rootstocks is also due to exclusion and/or retention mechanisms, 

as in tomato or melon, given their better capacity to alleviate the toxic effects of 

salts or other processes; e.g., maintenance of water relations or enhanced 

antioxidant capacity. 
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1.8.2. Grafting to overcome water stress 

 

A new perspective to improve resistance to water stress is the use of tolerant 

accessions as rootstocks for a desirable commercial cultivar. The interactions 

among the graft, vegetable plants and water stress have been mostly studied in 

melon, cucumber (Rouphael et al., 2012) and tomato (Nilsen et al., 2014; 

Sánchez-Rodríguez et al., 2013) by focusing on the growth effects of grafting, 

and on its physiological effects, mainly on hydric relations and photosynthesis 

traits. Grafted plants usually show an increased uptake of water and minerals 

compared with self-rooted plants as a result of the vigorous root system used as 

the rootstock (Martínez-Ballesta et al., 2010; Ruiz et al., 2006; Sánchez-

Rodríguez et al., 2013). Greater SOD and CAT activities, higher levels of 

proline accumulation and lower levels of lipid peroxidation have been found in 

tobacco scions grafted onto drought-tolerant rootstocks (Liu et al., 2014). 

Tomato grafted onto a drought-tolerant line has shown not only reduced growth, 

but also water conservation and increased photosynthetic rates under mild 

drought conditions (Nilsen et al., 2014). However, there have been no reports 

on the physiological alterations of pepper after grafting and exposure to water 

stress. It would be interesting to find scion/rootstock combinations capable of 

higher water absorption capacity and Water Use Efficiency (WUE), which would 

result in the major capacity of photosynthesis maintenance, with acceptable 

stomatal conductance and an adequate hydric plant balance to maintain growth 

under suboptimal water conditions in order to finally obtain increased yields. 
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1.8.3. Grafting compatibility and incompatibility 

 

During graft union formation, many researchers have observed callus 

proliferation from both the rootstock and scion, callus bridge formation, 

differentiation of new vascular tissue from callus cells and secondary xylem and 

phloem production (Hartmann et al., 2002). Poor or incorrect callus formation 

between the rootstock and scion could lead to defoliation, stunted scion growth 

and low survival of grafted plants (Johkan et al., 2009; Kawaguchi et al., 2008), 

which would thus reduce the water flow to shoots as decreased hydraulic 

conductance (Martínez-Ballesta et al., 2010).  

There is no precise definition of “graft compatibility”, which generally means 

accomplishing a successful graft union, as well as extended survival and proper 

functioning of the rootstock-scion composite (Goldschmidt, 2014). Graft 

incompatibility may be defined as failure to form a successful graft union. Lack 

of/drop in the number of, differentiated vascular bundles, or the dysfunction of 

differentiated vascular bundles at the graft union, has been reported to inhibit 

the transport of nutrients to scion (Breen and Muraoka, 1975; Breen, 1975; 

Parkinson et al., 1987).  

The major causes implicated in graft incompatibility in solanaceous crops are 

anatomical and/or biochemical (Deloire and Hébant, 1982; Ives et al., 2012; 

Kawaguchi et al., 2008).  

Peppers have been described as being compatible only with other Capsicum, 

unlike other Solanaceae species like tomato or eggplant, which can be grafted 

onto different species within their family (Deloire and Hébant, 1982; Ives et al., 

2012; Kawaguchi et al., 2008; Miguel et al., 2007).  
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Characterisation of incompatibility is not a simple process because graft 

combinations can initially unite with apparent success, but then gradually 

develop incompatibility symptoms with time, due to either a failure at the union 

or the development of abnormal growth patterns (Kawaguchi et al., 2008). The 

earliest methods used to predict graft incompatibility relied on external 

symptoms, such as a swollen union, death or decline in vegetative growth and 

scion vigour, and with marked differences in the growth of both the scion and 

rootstock (Mudge and Janick, 2009). Nonetheless, the fact that these methods 

are unreliable has resulted in the development and use of several standardised 

laboratory methods, such as: 

 Electrophoresis test to look for cambial peroxidase banding 

(chestnut, oak and maple) (Zarrouk et al., 2010). Peroxidases produce 

specific lignins. These compounds have to be similar for both the scion 

and stock for the graft to be a long-term success. 

 Measurements of breaking weight (Lindsay et al., 1974) by applying 

mechanical strength under greenhouse conditions and noticing that 

compatible grafts can rapidly support the scion, which incompatible 

grafts cannot achieve. 

 Measurements of electrical resistance (Yang et al., 1992). Based on 

the characterisation of differentiating and non-differentiating callus 

tissues by the external electrical potential. 

 In vitro grafting techniques (Errea et al., 2001; Pina et al., 2009, 

2012). A rapid reliable system for studying physiological and molecular 

processes, but under artificial conditions. 

o Micrografts 

o In vitro callus fusion, undifferentiated tissue from graft 

partners  
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 Histological studies. Stain tissues at the graft union, examined 

microscopically. 

o Optical and fluorescence microscopy (Ives et al., 2012) 

o Electron microscopy 

o Confocal microscopy 

 X-ray tomography as a method to study the 3D structure of the graft 

interface of grapevines (Milien et al., 2012) 

 

However, all these methods are invasive (destructive), slow and/or most of 

them have been devised for woody plants. As interesting and closest method 

can be found in the literature is: 

 

 Chlorophyll fluorescence imaging (CFI) (Calatayud et al., 2013). CFI 

methods are based on the hypothesis that grafting causes stress in 

plants: mechanical wounding in scions and rootstocks result in localised 

cell death, loss of water and solute, and disruption of the vascular 

system. Activating repairing mechanisms places high metabolic 

demand on the grafting area: supplying carbon skeletons, synthesis of 

new molecules or increased antioxidant enzyme activity. Many of these 

processes can be supported by photosynthetic activity. Changes in 

photosynthesis are associated with variations in fluorescence 

parameters. The use of images for monitoring florescence parameters 

allows us to detect alterations, or not, in grafted plants, and has proven 

an intuitive, quick and non-invasive method for providing details and 

spatial and temporal heterogeneity information. CFI has been used 

successfully to predict compatibility in melon graft plants, where the 

Fv/Fm ratio, which has been associated with the maximal quantum 

yield of PSII, resulted a sensitive chlorophyll fluorescence parameter 
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capable of distinguishing compatible and incompatible melon-grafted 

plants. These advantages of CFI have not yet been tested with other 

species. 

 

1.9. THESIS OBJECTIVES 

 

Grafting is an eco-friendly technique widely used in tomato, melon or eggplant. 

Yet it is less exploited in peppers, basically because because rootstock 

genotypes that are simultaneously tolerant to biotic or abiotic stresses and that, 

in addition, can improve commercial yields to amortise extra cost incurred by 

grafting are lacking. 

The primary reason for grafting pepper is to increase plant vigour, uniformity 

and disease tolerance, but very few commercial pepper rootstocks are available 

because attention has been mainly paid to biotic stresses, and only high value 

pepper transplants used for protected cultivations are produced as grafted 

plants (Lee and Oda, 2010; Lee et al., 2010; Oka et al., 2004; Santos and Goto, 

2004). 

However, the incidence of abiotic stress is very high, an increase in the global 

climate change is forecast, and salinity and water stress are commonly found in 

areas where peppers are grown. Doing several screenings to find Capsicum 

plants tolerant to abiotic stress are necessary for them to be used as rootstocks.  

To select appropriate rootstocks, searching for resistances in wild pepper types 

is crucial to amplify genetic diversity (Naegele et al., 2014). Currently, wild 

species of pepper and plant lines have not been phenotypically characterised 
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as rootstocks, especially under salt and water stress, and to be finally validated 

in terms of productivity and quality parameters. 

Very little is known about physiological responses in pepper-grafted plants and 

about their behaviour when they are subject to water deficit and salinity, which 

hinders the identification of tolerant plants. Knowing how grafting alleviates 

abiotic stress (physiological markers) is essential for performing more 

phenotypical screenings of different rootstock/scion combinations. 

To achieve this general objective, this thesis was divided into the following 

specific objectives: 

 Screening among Capsicum spp. accessions from germplasm banks 

to find pepper plants that tolerate salinity and water deficit to be used 

as rootstocks.  

 

 Studying the compatibility between Capsicum spp. accessions and 

pepper commercial varieties using chlorophyll fluorescence imaging 

(CFI) as a new non-invasive method for their identification and early 

compatibility prediction compared with conventional microscopy 

methods. 

 

 Testing the agronomic value in grafted plants using a selected tolerant 

rootstock under field conditions (salt and water stress).  

 

 Studying the physiological and biochemical responses to salt and 

water stress of grafted pepper plants in order to know how tolerance to 

abiotic stresses improves through the robust rootstocks that correlate 

with agronomical responses. 
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2.1. ABSTRACT 

 

Water stress is a major environmental factor that limits crop production and so it 

is worthwhile developing crop varieties that can produce higher yields despite 

water scarcity. Increasing pepper tolerance to water stress by grafting onto 

robust rootstocks could be an optimal and environmentally friendly approach. 

Our work evaluated the behavior of 18 pepper genotypes during vegetative and 

reproductive stages under water stress in order to select tolerant genotypes as 

rootstocks for pepper cultivation. The pepper tolerance screening was based on 

photosynthetic parameters. The genotypes ‘Atlante’, ‘C-40’, ‘Serrano’, ‘PI-

152225’, ‘ECU-973’, ‘BOL-58’ and ‘NuMex Conquistador’ were found to be the 

most tolerant as they maintained net photosynthetic rates under water stress. 

The selected genotypes were validated in terms of productivity as rootstocks on 

a pepper cultivar under severe water stress. Plants grafted onto ‘Atlante’, ‘PI-

152225’ and ‘ECU-973’ showed significantly less yield reduction caused by 

water stress than ungrafted cultivars.  

Keywords: Capsicum annuum; chlorophyll fluorescence; graft; photosynthesis; 

yield 
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2.2. INTRODUCTION 

 

Bell pepper (Capsicum annuum L.) is one of the most important crops in the 

world (Villa-Castonera et al. 2003) and it is one of the most susceptible to water 

stress, mainly because it has a large transpiring leaf surface and a high 

stomatal conductance of water vapor (Alvino et al. 1994; Delfine et al. 2002). In 

the pepper production industry, drought imposes huge reductions in crop yield 

and quality, with significant economic losses of up to 70% (Delfine et al. 2002; 

De Pascale et al. 2003; Fernandez et al. 2005). Irrigation is essential for pepper 

production as these plants are particularly sensitive to moisture stress during 

flowering and fruit setting (Bosland, Votava 2000). Reduced yields and smaller 

fruits are frequently recorded under conditions of water stress; and according to 

Beese et al. (1982) limiting the water applied to peppers during a period of rapid 

growth reduces the final yield.  

Conventional methods for detecting water stress tolerance in plants are 

laborious and destructive – these methods include water and osmotic potential 

(Bajji et al. 2000), relative water content (González et al. 2008), leaf mass per 

area ratio (Yadollahi et al. 2011), proline and antioxidant system measurements 

(Anjum et al. 2012). The development of non-destructive and rapid technologies 

– such as leaf gas exchange or chlorophyll (Chl) a fluorescence – provide 

information about photosynthesis during the plant life cycle. Photosynthesis was 

found to be an informative indicator for the study of water stress effects 

because of its extreme sensitivity to environmental stress (Massacci et al. 

2008). For this reason, these technologies have been used to analyze 

variations in the response to water stress in different species (Barnaby et al. 

2013; Flexas et al. 2004a; Munns et al. 2010; Xu et al. 2013). The main effect of 

water stress is the reduction in carbon fixation associated with stomatal closure 

and the subsequent increase in resistance to CO2 diffusion in the leaves 
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(Kaiser 1987). This effect results in a decrease in the rate of leaf photosynthesis 

and photochemical Chl a fluorescence parameters (Calatayud et al. 2006; Lu, 

Zhang 1998). Moreover, the decrease in carbohydrate synthesis reduces plant 

growth and, therefore, has a great impact on crop yield (Stuart et al. 2011). The 

need to find pepper plants resistant to water stress has led to several studies 

and approaches to increase yields and improve quality (Karam et al 2009; 

Schwarz et al. 2010). Grafting can be an adaptation strategy in integrated or 

organic agricultural production systems that enables plants to overcome soil 

borne diseases and environmental stresses (Colla et al. 2010; King et al. 2010; 

San Bautista et al. 2011). Grafting could enable plant breeders to combine 

desired shoot characteristics with root features that provide tolerance to water 

stress (Colla et al. 2010). The cultivation of grafted plants has expanded widely 

(mainly in tomato, melon and watermelon) (Lee et al. 2010); but this practice is 

still limited in peppers (King et al. 2010; Miguel et al. 2007) and little information 

exists regarding water stress tolerant pepper rootstocks.  

In this work, we hypothesize that drought-tolerant plants will improve the 

response of the scion to water stress when used as rootstocks, and thus confer 

greater tolerance and increased yields when compared to ungrafted plants. We 

evaluated the performance of 18 pepper genotypes during vegetative and 

reproductive stages under water stress in order to select tolerant genotypes as 

rootstocks for pepper cultivation. The pepper tolerance screening was based on 

photosynthetic parameters that enable measurements for comparing the 

behavior of the same plant in two phenological states (given that the plants 

could show varying sensitivity to water stress during the cycle). For practical 

reasons, a good rootstock must be tolerant to water stress during all states of 

development. The selected genotypes were validated as rootstocks on a pepper 

cultivar in terms of a productivity parameter under severe water stress. 
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2.3. MATERIALS AND METHODS 

 

2.3.1. Experiment 1: Screening pepper genotypes to be used as 

rootstocks under water stress conditions during vegetative and 

reproductive stages 

 

Many different genotypes were used in this study and a numerical code for each 

cultivar is indicated in brackets. The commercial rootstock cultivars used in this 

study were: ‘Atlante’ (Ramiro Arnedo (1)); ‘C40’ (Ramiro Arnedo (2)); ‘Tresor’ 

(Nunhems (3)); the accessions of Capsicum annuum ‘Serrano Criollo de 

Morelos-334’ (4); ‘Serrano’ (5); ‘Pasilla Bajío’ (6); ‘Pimiento de Bola’ (7); ‘Piquillo 

de Lodosa’ (8); ‘Guindilla’ (9); ‘Habanero’ (10); and ‘NuMex Conquistador’ (17); 

the accessions of Capsicum chinense Jacq. ‘PI-152225’ (11); ECU-973 (12) 

and the accessions of Capsicum baccatum L. var. pendulum ‘BOL-134’ (13) 

and ‘BOL-58’ (14); the accessions of Capsicum pubescens R.&P. ‘BOL 60 

amarillo’ (15) and ‘BOL 60 rojo’ (16); and the accession of Capsicum frutescens 

L. ‘BOL-144’ (18). All of these accessions belong to the collection of the 

COMAV Institute (Universitat Politècnica de València, Valencia, Spain). Seeds 

were germinated in moistened perlite under greenhouse conditions at 28±2ºC 

and 80% relative humidity. The seedlings with eight mature leaves were 

transferred on 15 January 2011 to 15 L pots (containing a dust substrate as 

coir) in a heated polyethylene greenhouse at the Instituto Valenciano de 

Investigaciones Agrarias (Valencia, Spain). Plants were drip–irrigated with 

Hoagland’s No.2 nutrient solution contained (all in mM): 14 NO3
-, 1.0 H2PO4

-, 

2.0 SO4
2-, 1.0 NH4

+, 16.0 K+, 4.0 Ca2+ and 2.0 Mg2+. Micronutrients were also 

provided (all in M): 15 Fe2+, 10 Mn2+, 5 Zn2+, 30 B3+, 0.75 Cu2+ and 0.6 Mo6+  

(Maynard, Hochmuth 2007). The EC of the nutrient solution was 1.9 dS m-1 and 
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pH 6.1. The greenhouse conditions in this period were 16-22 ºC and 50-70 % of 

relative humidity. 

After 15 days in the pots, 16 plants were divided in two groups (eight plants 

each) for control and water deficit treatments. Water deficit treatment was 

initiated by reducing the volume of irrigation water to 60% of the control, the 

latter being based on estimations of the weekly crop evapotranspiration (ETc). 

The volume of each irrigation and the number of irrigations were scheduled to 

maintain drainage at between 10% and 20% (depending on solar radiation).  

Eight plants per cultivar were used in each treatment with a density of 4.1 plant 

m2. Plants were grown in pots for five months. The environmental parameter 

ranges in the greenhouse were: temperature (21-24ºC); relative humidity (52-

72%); and solar radiation (750-1150 μmol m-2 s-1).  

Net CO2 fixation rate (AN, mol CO2 m-2 s-1), stomatal conductance of water 

vapor (gs, mol H2O m-2 s-1) and substomatal CO2 concentration (Ci, mol CO2 

mol-1 (air)) were measured at steady-state under conditions of saturating light 

(1200 mol m-2 s-1) and 400 ppm CO2 with a LI-6400 (LI-COR, Nebraska, USA). 

To evaluate the presence of chronic photoinhibitory processes, the maximum 

quantum yield of PSII (Fv/Fm: (Fm-Fo)/Fm) was measured on leaves after 30 

minutes of dark adaptation using a portable pulse amplitude modulation 

fluorometer (MINI PAM, Walz, Effeltrich, Germany). The background 

fluorescence signal for dark adapted leaves (Fo) was determined with a 0.5 

mol photon m-2 s-1 measuring light at a frequency of 600 Hz. The application of 

a saturating flash of 10,000 mol photon m-2 s-1 enabled estimations of the 

maximum fluorescence (Fm). 
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Gas exchange and fluorescence measurements (n= 8 per treatment) were 

performed on the third or fourth leaf from the shoot apex. Measurements were 

performed at two months (T1, vegetative stage) and five months (T2, 

reproductive stage) after starting the water deficit treatment.   

At the end of experiment (T2), Chl a fluorescence imaging under water stress 

was measured in one genotype (‘ECU-97’, code 12) tolerant to water stress and 

another genotype sensitive to water stress (‘Piquillo de Lodosa’, code 8) based 

on the photosynthesis rate measurements. Chlorophyll a fluorescence imaging 

was used to provide more detailed information on the spatial heterogeneity of 

photosynthetic activity under water stress in two genotypes that differ in their 

photosynthetic rate behavior. Six different plants were used for each genotype 

and measurements were performed at the third or fourth leaf from the apex with 

an Imaging-PAM fluorometer (Walz, Effeltrich, Germany). Pepper leaves were 

darkened for 10 minutes prior to the Fv/Fm measure. Actinic illumination (204 

mol photons m-2 s-1) was then turned on and saturating pulses were applied at 

20 s intervals for 5 min in order to determine the maximum fluorescence (F’m), 

and the Chl fluorescence yield during the actinic illumination (Fs). The quantum 

efficiency of PSII photochemistry, PSII, was calculated according to Genty et al. 

(1989) using the formula: (F’m-Fs)/F’m. The coefficient of photochemical 

quenching, qp, is a measurement of the fraction of open centers calculated as 

(F’m-Fs)/(F’m-F’o) (Schreiber 1986). Calculation of quenching due to the non-

photochemical dissipation of absorbed light energy (NPQ) was determined at 

each saturating pulse, according to the equation NPQ= (Fm-F’m)/F’m (Bilger, 

Björkman 1991). The measured value of NPQ was divided by four (NPQ/4) for 

the display of values < 1.000. Images of the fluorescence parameters were 

displayed by means of a false color code ranging from 0.00 (black) to 1.00 

(purple). A single representative leaf is presented in Figure 2. The three small 

circles in each image are the AOI (areas of interest) and are accompanied by a 
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small red box displaying the averaged values of the selected fluorescence 

parameters within this AOI. Three AOI were selected in the central part of the 

leaf (see Fig. 2). For more details about Chl a fluorescence measurements see 

Calatayud et al. (2006). 

Data was analyzed using ANOVA type III and means were compared using 

Fisher’s least significance difference (LSD) test at P≤0.05 (Statgraphics 

Centurion for Windows, Statistical Graphics Corp.).  

 

2.3.2. Experiment 2: Yield responses to water stress conditions of the 

commercial cv. ‘Verset’ grafted onto the selected genotypes of 

Experiment 1  

 

The experiment was performed during 2012 in a sweet pepper producing area 

in Alicante (Spain) and the cultivar ‘Verset’ F1 was used as scion (California 

type; Rijk Zwaan, The Netherlands). The genotypes 1, 2, 5, 11, 12, 14 and 17 

(all selected as tolerant in Experiment 1), and genotype 3 (a commercial 

rootstock used by growers and selected as sensitive) were used as rootstocks. 

Ungrafted ‘Verset’ plants were used as controls. Pepper seeds were sown in a 

series of steps to obtain the appropriate diameter for grafting. The graft was 

performed in the middle of February using the tube grafting method (cutting the 

growing tip of the rootstock at a 45º angle below the cotyledons, attaching the 

scion, previously cut at a 45º angle above the cotyledons, and fixing the 

rootstock and scion with a clip). The plants were transplanted to 104-cell trays. 

They were maintained in a chamber with relative humidity above 95% and air 

temperature around 28-29º C for a 4-6 day period. The grafted plants were then 
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removed from the humidity chamber and placed in a greenhouse until 

transplanted. 

The water stress treatment plants were irrigated to satisfy 50% of the 

evapotranspiration (ETc) by modifying the number of irrigations and maintaining 

the volume constant during each irrigation, while the irrigation control plants 

received 100% of ETc.   

The seedlings were transplanted on 23 April at a density of 2.1 plants m2 in a 

loam soil to a polyethylene greenhouse that featured a randomized block design 

with three replicates, each consisting of 25 seedlings with 8-10 mature leaves. 

The electrical conductivity of the irrigation water was 1.03 dS m-1. Fertilizers 

were applied at a rate of 200 kg ha-1 N, 50 kg ha-1 P2O5, 250 kg ha-1 K2O, 110 

kg ha-1 CaO, and 35 kg ha-1 MgO, as recommended by Maroto (2005).  

Harvest was staggered from the beginning of July to the end of September. The 

marketable fruits were counted and weighed for each genotype and treatment.  

Data were subjected to ANOVA type III and means were compared using 

Fisher’s least significance difference (LSD) test at P ≤ 0.05 (Statgraphics 

Centurion for Windows, Statistical Graphics Corp.). 
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2.4. RESULTS AND DISCUSSION 

 

2.4.1.Experiment 1 

 

In this work, we evaluated 18 pepper genotypes under water stress conditions 

in a greenhouse. Photosynthesis measurements were used as a quick and 

sensitive method that could help identify plants tolerant to water stress (Barnaby 

et al. 2013; Chaves et al. 2003; Jones 2007; Munns et al. 2010; Xu et al. 2013). 

Screening for specific tolerance traits in a controlled greenhouse environment is 

often necessary to reduce the complexity of interactions between genetic and 

environmental effects on plants. Since tolerance to abiotic stress has been 

described as a phenomenon specific to the developmental stage (Ashraf 2004), 

it has been evaluated at different stages in the present study. 

One of the earliest responses to water stress is a decrease in stomatal aperture 

(Chaves et al. 2009; Munns, Tester 2008). This abiotic stress may restrict net 

photosynthesis either due to diffusional limitation in CO2 supply arising from a 

partial closure and/or mesophyll conductance restriction; or by impairing the 

CO2 fixation reactions (Niu et al. 2010). In our results, photosynthesis, and 

stomatal conductance were negatively affected by water stress in vegetative 

(Fig. 1A, B) and reproductive stages (Fig 1C, D) in some genotypes. A 

logarithmic correlation between net CO2 photosynthetic rate and stomatal 

conductance was observed (AN = 6.14ln gs + 25.6; R2 = 0.68). Moreover, 

stomatal conductance was related to substomatal CO2 concentration (Ci = 

75.5ln gs + 365; R² = 0.84). These relations indicate that lowered gs values are 

responsible for the diminishing intercellular CO2 concentration, so suggesting 

stomatal constraints. Only genotypes 1, 5, 12, 14 and 17 maintained AN and gs 
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parameters with values that did not significantly differ during growth in 

comparison to the controls (Fig. 1). Genotype 11 at T1 (Fig. 1B) and genotype 2 

at T2 (Fig. 1C) showed significant differences for gs parameters with respect to 

their controls without an effect on AN. This can be explained by the fact that only 

very critically low levels of gs, described as lower than 0.1 mol H2O m-2s-1 

(Flexas et al. 2004b), in these genotypes affect photosynthesis. Since limitation 

by CO2 was the main factor responsible for the decrease in net photosynthetic 

carbon uptake rates (Chaves and Oliveira, 2004), we have selected AN as the 

indicator parameter for plant tolerance to stress. In this context, the net 

photosynthesis rates of the genotypes ‘Atlante’ (1), ‘C-40’ (2), ‘Serrano’ (5), ‘PI-

152225’ (11), ‘ECU-973’ (12), ‘BOL-58’ (14) and ‘NuMex Conquistador’ (17) 

were unaffected by water stress. No differences were observed when compared 

with their controls in the measured periods (Fig. 1). 

The Chl a fluorescence parameter Fv/Fm is the maximum quantum yield of PSII 

photochemistry and is frequently used as an indicator of damaged 

photoinhibition. In our study, Fv/Fm measured at T1 and T2 did not show 

significant differences between control and stress treatments (data not shown). 

Other studies have shown little or no effect on Fv/Fm (Lee et al. 2004; Naumann 

et al. 2007; Niu et al. 2010;) even when leaf growth and gas exchange were 

reduced.  
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Figure 1. Gas exchange parameters in pepper genotypes measured after (a, b) 2 (T1, vegetative 

stage) and (c, d) 5 months (T2, reproductive stage) in the control (100% of ETc) and water stress 

(60% of ETc). AN – assimilation rate of CO2 fixation; gs – stomatal conductance to water vapour; 

values are means of 8 samples; for comparison of means, analysis of variance (ANOVA) followed 

by the least significant difference (LSD) test were performed and calculated at P≤ 0.05 

confidence level; values followed by different letters (on the top of the bars) indicate significant 

differences between control and water stress treatment 
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Figure 2 shows Chl a fluorescence imaging of Fv/Fm after dark adaptation and 

Chl a fluorescence parameters at steady-state kinetics for a single 

representative leaf in both stress tolerant (12) and stress sensitive genotypes 

(8) at T2 under water stress. When both genotypes were compared, the ratio 

Fv/Fm (0.746 and 0.725 mean values for three AOI for genotype 12 and 8, 

respectively) and the parameter qP (0.791 and 0.746 mean values, respectively) 

were unaffected. This indicates that the photochemistry of PSII and its ability to 

reduce the primary acceptor electron QA was also unaltered by water stress. 

The PSII related to the quantum yield of non-cyclic electron transport at any 

given light intensity (Genty et al. 1989) decreased in genotype 8 (0.412 in Fig. 

2) with respect to genotype 12 (0.536 in Fig. 2). Since the qP parameter was 

unaffected, the decrease in the rate of non-cyclic electron transport may be 

caused by factors beyond the QA acceptor. Considering the adverse effects of 

water stress on the electron transport rate, the decrease of photosynthesis 

could be partially responsible for a decreased availability of ATP and reduced 

power in genotype 8. However, the possibility of damaged Calvin cycle 

enzymes after six months of water stress must also be considered (Calatayud 

et al. 2004; Guidi et al. 2001). The Chl a fluorescence image in PSII showed the 

heterogeneous distribution of light utilization and photosynthetic activity over the 

leaf surface in the genotype 8. The PSII values in genotype 8 were lower in the 

upper-left leaf part (0.392) compared to values in the middle of the leaf (0.422).  
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Figure 2. Chlorophyll fluorescence images of Fv/Fm, PSII, qP and NPQ/4 at steady-state with 

actinic illumination of 204 mol photons m-2 s-1 at the end of water stress period (6 months) in 

tolerant (12) and sensitive (8) genotypes in term of photosynthesis rate. The false colour code 

depicted at the bottom of each image ranges from 0.000 (black) to 1.000 (pink). Images are of a 

single leaf representative. The three small circles in each image are the AOI – and are 

accompanied by a little red box displaying the averaged values of the selected fluorescence 

parameters within this AOI. AOI are defined by the user using PAM software 
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The heterogeneity of images suggests that pigment composition and 

concentration, water potential, and stomatal function differ in cells between 

different regions of the leaf, contributing to spatial differences in photochemical 

activity under water stress. A decrease in photosynthetic quantum conversion 

(PSII) favored the development of non-photochemical quenching (NPQ) in 

genotype 8 (0.203) compared with genotype 12 (0.103). The NPQ constitutes 

an important protective response that could dissipate excitation energy in a 

light-harvesting antenna complex (Müller et al. 2001) and avoid photoinhibition 

damage (Calatayud et al. 2006) as indicated by the unchanged Fv/Fm ratios. An 

increase of NPQ on the left of the leaf (0.224) (heterogeneity) in genotype 8 

was associated with a decrease of PSII in this area.  

 

2.4.2. Experiment 2 

 

A significant interaction between genotype x and the irrigation schedule was 

found in marketable yields (P 0.01) (Fig. 3). In general terms, under severe 

water stress, the grafted cultivar ‘Verset’ achieved higher marketable yields 

when compared with ungrafted plants (Fig. 3). 

Grafted plants usually show an increased uptake of water and minerals when 

compared with ungrafted plants as a consequence of a vigorous root system in 

the rootstock (Martínez-Ballesta et al. 2010). These favorable effects could be 

due to a correct callus connection between rootstock and scion. A low or 

incorrect callus formation could lead to defoliation, reduction of scion growth, 

and a low survival of grafted plants (Martínez-Ballesta et al. 2010). In our 

results, although genotype 5 appeared to be tolerant in terms of photosynthesis 

rate (Experiment 1), it provided lower fruit yields when used as rootstock by the 
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grafted cultivar in control conditions. Furthermore, we observed that plants 

grafted onto genotype 5 showed a lower growth (1m mean height) than other 

grafted plants (2m mean height) and its stem diameter at the graft union was 

approximately three-fold greater than those observed in other plant 

combinations. These responses are characteristic of graft incompatibility and 

are due to a poor connection of vascular bundles between rootstock and scion 

(Oda et al. 1996). Moreover, similar results were obtained for this genotype 

under saline conditions (Penella et al. 2013).  

 

 

 

 

 

 

 

 

 

Figure 3. Interaction between genotype x irrigation for marketable fruits (kg/m2) of cultivar 

‘Verset’ ungrafted or grafted onto genotypes 1, 2, 3, 5, 11, 12, 14 and 17 under control (100% of 

ETc) or water stress (50% of ETc). Values are mean of n=75 plants. Vertical bar indicates 

treatment differences by LSD at P 0.05  
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The tolerance to water stress of the rootstocks could result in yield increases in 

the scion (Sanchez-Rodriguez et al. 2013). Under severe water stress, the 

grafted plants of our selected tolerant genotypes showed higher marketable 

yields (mainly in genotypes 1, 11 and 12) than ungrafted plants. In contrast, 

grafting did not increase yield in control conditions. The main reason to graft is 

to enhance tolerances to abiotic and biotic stresses – as conferred by robust 

rootstocks (Lee et al. 2010). Genotype 3 was identified as sensitive to water 

stress in terms of photosynthesis rate and showed lower yields under water 

stress conditions in the field. The behavior of this sensitive genotype in terms of 

AN during the vegetative and reproductive stages in Experiment 1 was in 

accordance with the yield decrease in the field under severe water stress when 

genotype 3 was used as rootstock.   

 

2.5. CONCLUSIONS 

 

Our results confirm that several of the accesions (11, 12, 14 and 17) selected 

for water stress in this work have shown comparable yields to the commercial 

rootstocks (1, 2 and 3) under irrigation, and in water stress conditions the yields 

of the rootstocks 11 and 12 were comparable only to those of the commercial 

rootstock ‘Atlante’ (1).  

Nevertheless, improvements in management should be made to obtain higher 

yields of these accessions under stressed and non-stressed conditions, and/or 

to achieve greater water use efficiency to compensate for the extra cost of 

grafting. In addition, these results suggest that photosynthesis rate 

measurements could be considered a useful parameter to screen large 



                       88 | 

collections of genotypes to drought tolerance before using them as rootstocks 

with satisfactory yields despite water stress. 
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3.1. ABSTRACT 

 

Salinity is a major environmental constraint on crop productivity and grafting can 

be a sustainable strategy to enhance plant tolerance under adverse growth 

conditions. Screening different graft combinations under field conditions can be 

a slow and expensive processes. In this study, plants of 18 genotypes of 

Capsicum spp. were evaluated during 5 months to select salt tolerant plants to 

be used as rootstocks in greenhouse under controlled conditions. Their net 

photosynthetic rate was used as a rapid and sensitive methodology for 

screening their tolerance to salt stress conditions. The germination potential of 

some genotypes was also tested under different salinity conditions to see if it 

would be useful to accelerate the screening process. According to 

photosynthesis rate, the commercial rootstock ‘Tresor’ and the genotypes 

‘Serrano’ (C. annuum), ‘ECU-973’ (C. chinense) and ‘BOL-58’ (C. baccatum) 

were the most tolerant during this period. Nevertheless the evaluation of pepper 

genotypes for salinity tolerance based on the germination performance and 

chlorophyll fluorescence parameter Fv/Fm ratio were not a good indicators of 

the sensitivity along plant ontogeny. Finally, the selected genotypes as salt-

tolerant were validated under field conditions as rootstocks of two interesting 

pepper cultivars, concluding that using the rootstocks selected by the net 

photosynthetic rate improved the salt tolerance of the scion in terms of 

marketable yields and fruit quality 

Key words: germination, graft, pepper, photosynthesis, vegetable production 
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3.2. INTRODUCTION 

 

Peppers (Capsicum spp.) are economically and socially important crops in the 

world. Countries in Mediterranean basin produce around 5.242.450 Tn in a 

234022 Ha. Unfortunately, the continuous soil exploitation, the monoculture, 

and/or intensive agricultural practices have led to the increase of soil salinity1 

and soil-borne diseases, which results in loss of yield and fruit quality2. 

The use of grafted plants is a strategy that allows plants to overcome soil-borne 

diseases and environmental stresses3-5. Their use is becoming more 

appreciated due to the current trend towards a green and sustainable 

agriculture. The cultivation of grafted plants has greatly expanded mainly in 

tomato and watermelon, but this practice is still limited in peppers4,6.  

Several Capsicum rootstocks, including commercial cultivars, breed lines and 

wild accessions, can give appropriate tolerance or resistance to Phytophtora, 

Verticilium, Fusarium, CMV, etc7,8., but there is little information about their 

tolerance to abiotic stresses.  

Abiotic stresses can result in plant senescence, decreasing both yield and 

product quality9. Soil and water salinity are a serious problem in Mediterranean 

areas where summer crops as pepper are often inevitable irrigated with saline 

water. Salt tend to accumulate in soil because of the high evaporative demand 

is associated to an insufficient leaching ions10. In addition, this situation 

increases the risk of physiological disorders in pepper fruits, particularly in bell 

peppers, such as blossom-end rot (BER) and cracking. Damages caused by 

salinity are responsible for high economic losses worldwide11. The grafting 

technique could enable plant breeders to combine desired shoot characteristics 

with root features that give tolerance to salinity stress3. 
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Photosynthesis, together with cell growth, are the primary processes affected by 

salinity12,13. The effects on photosynthesis performance may be due to stomatal 

and non-stomatal limitations14. The response of photosynthesis to salinity 

conditions varies depending on plant ontogeny, among different species and 

also within the same species15. Indeed, several studies have demonstrated that 

the evolution of stress tolerance at various stages of development differs among 

cultivars of a given species16. Therefore, specific stages throughout the plant 

ontogeny, such as germination, vegetative and reproductive stages should be 

evaluated during the screening period to obtain tolerant plants. 

Our aim was to evaluate the behavior of 18 pepper genotypes under salinity 

conditions in order to select tolerant plants to be used as rootstocks for pepper 

cultivation. The screening was based on photosynthetic parameters. 

Furthermore, tolerant genotypes selected from the screening process were 

evaluated for their potential of germination under salt conditions. Finally, the 

selected genotypes were validated as rootstocks of two pepper cultivars in 

terms of productivity and quality parameters.  

3.3. MATERIALS AND METHODS 

 

3.3.1. Experiment 1: Screening pepper genotypes under salinity 

conditions to be used as rootstocks. 

3.3.1.1.Plant material and growing conditions 

 The commercial rootstocks cultivars ‘Atlante’ (Ramiro Arnedo (1)), ‘C40’ 

(Ramiro Arnedo (2)), ‘Tresor’ (Nunhems (3)); the genotypes of Capsicum 

annuum L. ‘Serrano Criollo de Morelos’ (4), ‘Serrano’ (5), ‘Pasilla Bajío’ (6), 

‘Pimiento de Bola’ (7), ‘Piquillo de Lodosa’ (8), ‘Guindilla’ (9), and ‘Numex 
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Conquistador’ (17); the genotypes of Capsicum chinense Jacq. ‘PI-152225’ 

(11), ECU-973 (12) and ‘Morro de vaca’ (10); the genotypes of  Capsicum 

baccatum L. var. pendulum ‘BOL-134’ (13) and ‘BOL-58’ (14); the genotypes of 

Capsicum pubescens R.&P. ‘BOL 60 amarillo’ (15) and ‘BOL 60 rojo’ (16) and 

the accession of Capsicum frutescens L. ‘BOL-144’ (18) were used in this 

study. A numerical code for every cultivar is indicated in brackets. All the 

genotypes used for the present study belong to the collection of the COMAV 

institute (Universitat Politécnica de Valencia, Valencia, Spain). Seeds were 

germinated in moistened perlite at 28 ºC under greenhouse conditions. The 

seedlings were transferred to 15 L pots containing coconut coir fiber in a heated 

polyethylene greenhouse on 15th January 2011 in the Instituto Valenciano de 

Investigaciones Agrarias (Valencia, Spain). Plants were irrigated with 

Hoagland’s No.2 nutrient solution17. 

After 15 days in the pots, plants were divided in two groups for control and 

saline treatments. Salinity treatment was initiated by adding NaCl (40mM) to the 

irrigation solution to reach an EC of 5 dS m-1. The EC of the nutrient solution in 

the control treatment was 1 dS m-1. Drip irrigation was supplied based on 

estimations of the weekly crop evapotranspiration (ETc), even though the saline 

solution was allowed to drain freely from the pots and the control drainage was 

controlled from 10% to 20% depending on solar radiation.  

Eight plants per cultivar were used in each treatment. Plants were grown for 5 

months and were kept free from insects and diseases using greenhouse 

standard management procedures.  
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3.3.1.2. Leaf gas exchange and chlorophyll a fluorescence 

 

Net CO2 fixation rate (AN, mol CO2 m-2 s-1), stomatal conductance to water 

vapour (gs, mol H2O m-2 s-1) and substomatal CO2 concentration (Ci, mol CO2 

mol-1 (air)) were measured at steady-state conditions of saturating light (1200 

mol m-2 s-1). Light curves were previously performed (data not shown) and AN 

was saturated at 900 µmol m-2 s-1 determine after light response curve. The 

CO2 concentration was 400 ppm and flow air rate was 500 µmol s-1 with a LI-

6400 (LI-COR, Nebraska, USA).  

To evaluate the presence of chronic photoinhibitory processes, the maximum 

quantum yield of PSII (Fv/Fm=(Fm-Fo)/Fm) was measured on leaves after 30 

minutes of dark adaptation using a portable pulse amplitude modulation 

fluorometer (MINI PAM, Walz, Effeltrich, Germany). The background 

fluorescence signal for dark adapted leaves (Fo) was determined with a 0.5 

mol photon m-2 s-1 measuring light at a frequency of 600 Hz. The application of 

a saturating flash of 10000 mol photon m-2 s-1 enabled estimations of the 

maximum fluorescence (Fm).  

Measurements were performed twice 2 months (T1) and 5 months (T2,) after 

starting the salinity treatment. During the gas exchange and Fv/Fm 

measurements the environmental greenhouse ranges were: temperature 21-

23ºC; relative humidity 65-70%; and solar radiation 800-1200 mol m-2 s-1 from 

9:00 am to 11:00 am (GMT) in sunny days. Eight plants per treatment were 

measured on the third or fourth fully expanded leaf from the shoot apex.  
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Data were analyzed by ANOVA and means were compared using Fisher`s least 

significance difference (LSD) test at p<0.05 (Statgraphics Plus 5.1 for Windows, 

Statistical Graphics Corp.).  

3.3.2. Experiment 2: Potential of germination under salt conditions of the 

tolerant genotypes selected from experiment 1 

 

 From the results of Experiment 1, four genotypes with the highest tolerance to 

salinity stress (3, 5, 12 and 14) and a sensitive genotype (8) were selected. 

Seeds of these genotypes were sterilized with 1.5% sodium hypoclorite solution 

for 7 min, rinsed with sterile distilled water several times, and placed in closed 

Petri dishes (Ø 9 cm) under aseptic conditions on a Murashige and Skoog 

culture medium (Sigma-Aldrich) containing 0 (M1), 15 (M2), 40 (M3), 60 (M4) or 

100 (M5) mM NaCl for a germination test under salinity conditions. The pH was 

adjusted to 5.7. Each treatment experiment (genotype x salinity concentration) 

consisted in four separated replicates of 100 seeds. Seeds were allowed to 

germinate in a phytotron (Sanyo MLR-350H) at 25ºC, 85% RH and 16 h 

irradiance (PAR: 45 mol m-2 s-1). The number of germinated seeds was 

recorded daily using radicle extrusion ( 2mm long) as criterion.  

Germination data of each replicate were fitted to the logistic function18 G =  A[1 

± exp ( β – kt)] -1, defined as a special form of the Richards function, where G = 

cumulative germination (%); t = germination time (days); and A, β and k are 

function parameters, being A the maximum germination percentage (asymptote 

when t→∞), k is a “rate parameter” and β places the curve in relation to the time 

axis, without any biological significance. In addition, derived quantities with 

biological significance were also calculated, as the time at the inflexion point to 

reach 50% of final germination percentage (Gt 50 = β/k, days), and mean 

relative cumulative germination rate (k/2, days-1).Variables (A, β/k and k/2) were 
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analysed by ANOVA (Statgraphics Plus 5.1 for Windows, Statistical Graphics 

Corp.). Percentage data were arcsin transformed before analysis. Mean 

separations were performed with the LSD test at P<0.05. 

3.3.3. Experiment 3: Grafting of two cultivars onto four selected genotypes 

of experiment 1 

 

 The experiment was performed during 2012 in a sweet pepper producing area 

in Valencia, Spain, using ‘Adige’ F1 (Lamuyo type; Sakata Seeds, Japan) and 

‘Lipari’ F1 (Italian type; Clause Spain) cultivars, grafted onto four salinity tolerant 

genotypes 3, 5, 12 and 14, according to the results obtained in Expt. 1. 

Ungrafted ‘Adige’ and ‘Lipari’ plants were used as controls. Grafted and 

ungrafted plants were transplanted on the 21th of March at a density of 2.1 

plants m-2 in a sandy soil (pH=8.0; EC(1/5)=1.2 dS m-1; Sand= 76%), under 

polyethylene greenhouse. The electrical conductivity and pH of the irrigation 

water were 3.5 dS m-1 and 7.60, respectively with 88 meq l-1 of Na+ and 111 

meq l-1 of Cl-. Fertilizers were applied at a rate (kg m-1) of 200 N, 50 P2O5, 250 

K2O, 110 CaO and 35 MgO19.  

The tube grafting method was used, by cutting the growing tip of the rootstock 

at a 45º angle below cotyledons, attaching subsequently the scion, previously 

cut at a 45º angle above cotyledons and fixing rootstock and scion with a clip.  

Harvest was performed from the end of May until the end of July. Fruits were 

graded in two classes: marketable and unmarketable fruits. The latter fruits 

were mainly (>95%) affected by BER. 

A randomized complete block design was performed with three replicates, each 

consisting of 25 plants. Data were subjected to ANOVA and means were 
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compared using Fisher’s least significance difference (LSD) test at P<0.05 

(Statgraphics Plus 5.1 for Windows, Statistical Graphics Corp.).  

 

3.4. RESULTS 

 

3.4.1.Effect of stress conditions on photosynthetic parameters 

 

The pepper genotypes grown under control conditions in this study differed 

significantly (P<0.05) among themselves in the net CO2 fixation rate (Fig. 1). 

The genotypes 2, 4, 6, 7, 8, 10, 13 and 14 showed the highest photosynthetic 

rates, with values near or above 20 mol CO2 m-2 s-1. In contrast, genotypes 1, 

3, 11 and 12 showed the lowest rates.  

In March (T1), after 2 months of salinity conditions, the genotypes 2, 3, 5, 12, 13 

and 14 maintained the photosynthetic rate and stomatal conductance under salt 

conditions, when compared to controls (Fig. 1A and B). In genotypes 6 and 11, 

stomata closed by the effect of salinity, although AN remained unaffected. Net 

photosynthesis rate and stomatal conductance decreased due to salt stress in 

the remaining genotypes (Fig. 1A and B). 

After 5 months of treatment (T2), the net photosynthetic rate in genotypes 1, 3, 

5, 12 and 14 did not differ from controls under salinity conditions  (Fig. 1C). 

However, only genotype 1 maintained the stomatal conductance (Fig. 1D) in 

response to salt conditions without significant differences respect to control. 

Nevertheless, comparing the gs value of the 18 genotypes in the control 

treatment, genotype 1 had the lowest.  
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Figure 1. Leaf gas exchange parameters in pepper genotypes measured after 2 (T1) 1 

and 5 months (T2,) in the control (1 dSm -1, ) and irrigated with water salinity (5 2 

dSm-1, ). AN, net photosynthesis at T1 (A) and T2, (C) and stomatal 3 

conductance to water vapour (gs) at T1 (B) and T2 (D). Values are means of 8 4 

samples. For comparison of means, analysis of variance (ANOVA) followed by the 5 

least significance differences (LSD) test calculated at P< 0.05, was performed. 6 

Values for each genotype followed by different letter indicate significant differences. 7 

Not letter indicates non-significant difference for each genotype.  8 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Leaf gas exchange parameters in pepper genotypes measured after 2 (T1) and 5 

months (T2) in the control (1dSm-1, ) and irrigated with water salinity (5 dSm-1, ). AN net 

photosynthesis at T1 (A) and T2 (C) and stomatal conductance to water vapour (gs) at T1 (B) and 

T2 (D). Values are means of 8 samples. For comparison of means, analysis of variance (ANOVA) 

followed by the least significance differences (LSD) test calculated at P<0.05, was performed. 

Values for each genotype followed by different letter indicate significant differences. Non letter 

indicates non-significant difference for each genotype  
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Along T1 and T2 a logarithmic correlation between net photosynthetic rate and 

stomatal conductance was observed (AN = 6.62 ln gs + 26.4; R2 = 0.80). In 

addition, stomatal conductance was also related to substomatal CO2 

concentration (Ci = 67.6 ln gs + 355; R² = 0.86).  

Fv/Fm ratio did not changed along the experiment neither among genotypes nor 

treatments (data not show).  

In summary, the net photosynthetic rate of the genotypes ‘Tresor’ (3), ‘Serrano’ 

(5), ‘ECU-973’ (12) and ‘BOL-58’ (14) was not affected by salinity conditions 

and consistently in both measurements.  

 

3.4.2. Seed germination test 

 

 The selected salt-tolerant genotypes in Experiment 1 (3, 5, 12 and 14) and the 

genotype 8 (sensitive to salinity) were used to test the germination potential 

under salinity conditions. 

The ANOVA of the logistic function parameters A, β/k and k/2 of our studies are 

shown in Table 1. The interaction “Genotype x Salinity” was significant 

(P<0.01). The coefficients of determination (R2) for curves ranged from 0.90 to 

0.989 and F ratio values of the statistical model were significant (P<0.01). The 

source of variation (P<0.01) for β/k was 79.79 of total sum of square appeared 

for genotypes.  
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Table 1. Analysis of variance of parameters A(%), β/k (days) and k/2 (days-1), obtained by curve-

fitting to logistic function for seeds from different genotypes and salt concentrations. 

  Percentage of the total sum of square+ 

   Source  A  β/K  k/2 

Genotypes  11.970**  79.798**  48.972** 
Salt concentration  19.911**  9.252**  8.918** 
Genotypes x Salt  28.612*  6.807**  18.850** 
Error  39.507  4.143  23.260 
Standard deviation ++  3.066  0.649  0.761 

 *,** indicated significant at p≤0.05 and p≤0.01, respectively. 
+ For each component, the sum of squares is given as a percentage of the total. 
++ Calculated as the square root of the nutrient between the absolute value of the 
residual sum of squares (using the units indicate) and the degrees of freedom of the error. 

 

The fitted curves corresponding to the average values of each variance source 

(genotype and NaCl concentration) are shown in Fig. 2. High values (>80%) of 

final germination were reached in most of combinations under salinity 

conditions. The seeds with higher A values had also a higher germination rate. 

The seeds of the genotypes 8 and 12 showed the slower germination rates (Fig. 

2), requiring higher periods to reach 50% of final germination. By contrast, the 

genotype 5 showed the highest values of maximum germination percentages, 

requiring the shortest periods to reach 50% of final germination (Fig. 2).  
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Figure 2. Logistic models (G =  A[1 ± exp ( β – kt)] -1 ) fitted to cumulative pepper seed 

germination curves of the genotypes: 3 (̶̶̶̶), 5 (·····), 8 (– –), 12 (–∙∙–∙∙) and 14 (––  ––) during 16 

days under different salinity conditions: M1 (control), M2 (15mM NaCl), M3 (40mM NaCl), M4 

(60mM NaCl) and M5 (100mM NaCl). 
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3.4.3. Field experiment 

 

In general terms and for both cultivars ‘Adige’ and ‘Lipari’, genotype 3 and 

followed by genotype 14, gave the best response when used as rootstocks 

(Table 2). Furthermore, in all grafted plants the efficiency was higher compared 

with ungrafted plants (except in genotype 12 grafted onto ‘Lipari’). This was 

reflected by a higher marketable yield and lower unmarketable yield due to 

BER. However, total yield was similar for ‘Adige’ in all grafted or ungrafted 

plants. No differences were found between marketable yield of ungrafted plants 

and grafted plants onto genotypes 5  and 12 (Table 2). 

In ‘Lipari’, marketable yield were lower when 5 and 12 genotypes were used, 

mainly for 12. But the highest losses in the unmarketable fruits was achieved in 

ungrafted plants with significant differences respect to grafted plants  (Table 2).  

The percentage of fruits affected by BER was lower in ‘Lipari’ than in ‘Adige’. 

The fruit number and the mean fruit weight of commercial fruits were similar in 

all ‘Lipari’ combinations but not in ‘Adige’ plants, where a lower number heavier 

fruits were obtained when using the rootstock 12.  
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Table 2. Production parameters: yield (kg m-2), fruit number per m2 and mean fruit weight (g 

fruit-1) of marketable and unmarketable yield, percentage of the number of unmarketable yield 

(%) and total yield (kg m-2)  

Cultivar 
Rootstock 
genotype 

Marketable yield Unmarketable yield 
Total 
yield 

kg m-2 
    Fruit 
number m-2 

g fruit-1 kg m-2 % 
Fruit 

number 
m-2 

kg m-2 

Adige 3 3.4 a 26.3 a 129.5 b 1.5 b 30.3 c 8.5 b 4.9 
 5 1.5 bc 15.2 bc 98.8 b 3.6 a 72.2 a 25.8 a 5.1 
 12 1.8 bc 10.0 c 187.8 a 2.2 b 56.4 ab 19.8 a 3.9 
 14 2.5 ab 19.9 ab 125.8 b 1.9 b 40.1 bc 7.6 b 4.4 
 ungrafted 1.4 c 12.1 bc 112.9 b 3.2 a 70.7 a 17.7 a 4.6 
 Significance 

(F values) 
P<0.05 P<0.05 P<0.01 P<0.01 P<0.01    P<0.01 NS 

Lipari 3 4.1 a 14.3 289.6 1.5 c 26.3 c 2.1 b 5.6 a 
 5 3.1 bc 14.3 220.4 1.7 b 36.4 ab 24.3 a 4.8 ab 
 12 2.6 c 13.0 206.7 1.3 c 34.0 b 21.2 a 3.9 b 
 14 3.9 ab 15.2 257.2 0.8 d 17.0 d 7.2 b 4.7 ab 
 ungrafted 3.1 bc 11.8 267.4 2.1 a 41.3 a 13.5 ab 5.3 a 
 Significance 

(F values) 
P<0.05   NS      NS P<0.01  P<0.01     P<0.05 P<0.05 

Values are mean of n=50 plants of cultivar “Adige” and “Lipari” grafted or not onto genotype 3, 5, 12 

and 14. Different letters in each column indicate significant differences at P<0.05 using the LSD test. 

NS – not significant. 

 

3.5. DISCUSSION 

 

The productivity of several commercial pepper crops (mainly bell peppers) is 

limited by salinity stress in many areas of the world. The screening of salt-

tolerant pepper has been developed mainly in genotypes with poor commercial 

value20,21. A new perspective for screening genotypes is their use as rootstocks 

to improve the tolerance of a desirable cultivar to abiotic stresses. With this aim 

we tested 18 pepper genotypes grown under salinity conditions in a greenhouse 

in the Mediterranean area.  
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Salinity can affect photosynthesis as a result of ion imbalance, ion toxicity and 

osmotic stress in plants14,22. A limitation of CO2 supply due to partial stomatal 

closure has been described as an early response to salt stress21. In this work, 

stomatal conductance and photosynthesis were negatively affected by salinity in 

T1 and T2 periods in some genotypes. The low substomatal CO2 concentration 

under stomata closure suggested stomatal constraints to photosynthesis. 

Stomatal conductance decreased in salinity conditions in genotypes 3, 5, 12 

and 14 at T2 but not at T1, although AN did not show significant differences 

along the experiment in these genotypes when compared to controls. This can 

be explained by the fact that only very critically low levels of gs in these 

genotypes affected photosynthesis, which is in agreement with5,23.  

The reduction in photosynthesis rate can also be due to alterations in leaf 

photochemistry14. The leaf chlorophyll fluorescence ratio, Fv/Fm is a classic 

parameter reflecting the whole PSII function, and its decrease is associated with 

PSII damage or photoinhibition under environmental stresses24. In our 

experiment, the Fv/Fm measured both periods did not show significant 

differences between control and stress treatments, implying that PSII activity 

was not affected by salt stress. Other studies have shown little or no effect on 

Fv/Fm21,25-27 even when leaf growth and gas exchange were reduced. The 

decrease of stomatal conductance and the photosynthesis rate, leaving PSII 

unaffected suggested a highly resistant PSII activity under stress conditions26,28 

and/or that the limitation of photosynthesis by reduction of Rubisco activity does 

not occur until this stress is highly severe14,29. Based on fluorescence and gas 

exchange parameters, our results suggested that diffusional restriction is the 

main factor that limits photosynthesis in sensitive pepper genotypes in our 

salinity conditions.  
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Since the limitation by CO2 was the main factor responsible for the decrease in 

the net photosynthetic carbon uptake rate30, we selected the AN as the indicator 

parameter of sensitivity or tolerance with regard to salinity stress.  

We observed some differences in the photosynthetic performance between T1 

and T2 in some pepper genotypes. Genotypes 2, 6, 11 and 13 showed a 

decrease in AN at T2 but not at T1 under salinity condition, and only genotype 1 

did not show significant differences at T2 but it did at T1. These results may 

indicate that the genotypes after a period of salinity exposure were more 

sensitive under our growth conditions. A longer exposure to salinity conditions, 

which may cause ion accumulation in the leaves31 or alterations in osmotic 

adjustment32 and can be the cause of higher photosynthetic decrease.   

Since many crops show different sensitiveness at different stages of their 

ontogeny, others may have a similar response among them. In that case, 

determining the response of the seeds in terms of the germination performance 

under salinity stress conditions would be useful to accelerate the screening 

process.  

The sensitivity or tolerance to salinity during the germination stage is species-

dependent; many crop are vulnerable to stress during seed germination33, while 

others are relatively tolerant34. Salt stress can reduce germination either by 

limiting water absorption by the seed35, by affecting the mobilisation of stored 

reserves36, by directly affecting the structural organization or synthesis of 

proteins in germinated embryos37 or by intake of toxic ions, which may affect 

metabolic activities38. In our study, in general terms, the maximum germination 

rate decreased and/or the seeds required a longer period to reach the 50% of 

the final germination percentage as NaCl increased in the media. However the 

magnitude of this response varied among genotypes. Those that germinated 

rapidly at low stress conditions also germinated properly at high stress levels. 
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The same effect was demonstrated33 in different Lycopersicum accessions 

under salinity. The genotype 5 showed the highest germination rate even at 

100mM NaCl and it had higher photosynthetic rate under salinity conditions at 

T1 and T2, On the other hand, genotype 12 showed a lower maximum 

germination rate and required a longer period to reach the 50% of final 

germination percentage, but it had a higher photosynthesis rate under salinity 

stress at T1 and T2. This indicates that this genotype is more sensitive to 

salinity stress during germination or requires more time to germinate. Finally, 

genotype 8 takes longer to germinate, even in the control treatment, compared 

to other genotypes, at the end the germination percentage was high but it was 

sensitive at T1 and T2.  

The observed differences in the response to salinity-tolerance in the genotypes 

during germination phase were not representative of salinity tolerance of these 

potential rootstocks during T1 and T2. As a consequence, our results indicate 

that the screening of pepper genotypes for salinity tolerance based only in the 

germination performance is not a good indicator of their sensitivity in the adult 

plant-stage. Nevertheless, the selection of a desirable rootstock only for the 

germination phase is not limiting factor because from an agronomic point of 

view grafting is done in commercial nurseries, where seeds are germinated in 

optimal conditions, i.e. no saline water and substrates, due to the high cost of 

the seeds.  

The screening of salt tolerant genotypes has been used for the introduction of 

salt-tolerant crops20,21, although these crops often have poor yield and low 

quality fruits. Grafting is a well established technique for crop production under 

salinity conditions3,39. The increase of salt tolerance observed in grafted plant is 

due to the use of salt tolerant rootstocks, although plants grafted onto different 

rootstocks respond more or less differently to salinity40. Several authors (see 
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review3) have reported an increase in growth and fruit yield in grafted plants 

under salinity conditions, mainly in tomato40,41, watermelon42,43 or eggplants44,45, 

but there are few studies about the effect of grafting of pepper plants under 

salinity conditions. Our proposal is the use of select salt tolerant pepper 

genotypes as rootstocks. Pepper is classified as moderately sensitive to salt 

stress but its response is cultivar-dependent21,46. The graft of interesting but 

salt-sensitive pepper cultivars (‘Adige’ and ‘Lipari’) onto our salt tolerant 

genotypes (3, 5, 12, 14) may provide the capacity for inducing salt tolerance on 

them. In general terms, our results indicate that the selected tolerant genotypes 

induced a better response to the scions when used as rootstocks in comparison 

with ungrafted plants. The grafted pepper plants had, in general higher 

marketable yields compared with the ungrafted cultivars when cultured in high 

saline water and soil. The marketable yield with regard to the total fruit yield was 

relatively low in ungrafted ‘Adige’ plants (30%) and in ‘Adige’ plants grafted on 

genotype 5 (29%) compared with those grafted on 3 (70%), 14 (57%) and 12 

(45%). The genotype 5 resulted in lower marketable yields when used as 

rootstock of both cultivars. This genotype seems to have affinity problems, as 

the same has been observed in other experiment under water stress 

conditions47 and this fact could explained the lower marketable fruit yields.  

More experiments need to be carried out in this direction to understand the 

interactions rootstock-scion in these selected genotypes.  

The occurrence of BER was the main cause of the unmarketability of the fruits 

in both tested cultivars. Pepper has been described as very susceptible to 

BER48. This disorder has been associated to a local deficiency of calcium49. The 

high incidence of BER in our experiment could be due to the high salinity both  

in the nutrient solution and soil, combined with the climatic conditions of spring-

summer, with high temperatures and high leaf transpiration rates as has been 
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observed50 in pepper, and this can diminish the calcium partitioned to the fruits. 

In our study, tolerant rootstocks to saline stress significantly decreased the 

percentage of BER in the fruits respect to ungrafted plants, although it was high 

by our salinity conditions, this is an important conclusion from this study, as this 

disorder adversely affect marketable yields and as it can diminish used tolerant 

rootstocks. On the other hand, the occurrence of BER not only depended on the 

rootstock but also on the scion used since ‘Lipari’ had lower percentage of BER 

than ‘Adige’. Therefore, the salt tolerance of the grafted plants is a combination 

of the salt tolerances of both scion and rootstock39.  

3.6. CONCLUSIONS 

 

The photosynthetic rate AN is a useful sensitive parameter for the selection of 

salt tolerant genotypes and it is related to the plant production, what has been 

validated in terms of yield and fruit quality under salinity conditions. The use of 

salt-tolerant rootstocks has been proved as an excellent and sustainable 

strategy to improve the salt tolerance of pepper plants, even though the level of 

improvement depends on the sensitivity of the scion. Wild pepper genotypes 

used as rootstocks are interesting as a source of tolerance to salinity stress. 

Nevertheless, further studies are needed to search the best scion/rootstock 

combinations in order to optimize the crop value. 
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4.1. ABSTRACT  

 

Recent studies have shown that tolerance to abiotic stress, including water 

stress, is improved by grafting. In a previous work, we took advantage of the 

natural variability of Capsicum spp and selected accessions tolerant and 

sensitive to water stress as rootstocks. The behaviour of commercial cultivar 

‘Verset’ seedlings grafted onto the selected rootstocks at two levels of water 

stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was 

examined during 14 days. The objective was to identify the physiological traits 

responsible for the tolerance provided by the rootstock in order to determine if 

the tolerance is based on the maintenance of the water relations under water 

stress or through the activation of protective mechanisms. To achieve this goal, 

various physiological parameters were measured, including: water relations; 

proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase 

activity; and antioxidant capacity. Our results indicate that the effect of water 

stress on the measured parameters depends on the duration and intensity of 

the stress level, as well as the rootstock used. Under control conditions (0% 

PEG) all plant combinations showed similar values for all measured 

parameters. In general terms, PEG provoked a strong decrease in the gas 

exchange parameters in the cultivar grafted onto the sensitive accessions, as 

also observed in the ungrafted plants. This effect was related to a lower relative 

water content in the plants, provoked by an inefficient osmotic adjustment that 

was dependent on reduced proline accumulation. At the end of the experiment, 

chronic photoinhibition was observed in these plants. However, the plants 

grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, 

maintained the protective capacity of the photosynthetic machinery mediated by 

osmotic adjustment (based on a higher proline content). In addition, water 
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stress limited uptake and further NO3
- transfer to the leaves. An increased 

nitrate reductase activity in the roots was observed, mainly in plants grafted 

onto the sensitive rootstocks, as well as the ungrafted plants, and this was 

associated with the lessened flux to the leaves. This study suggests that PEG-

induced water stress can be partially alleviated by using tolerant accessions as 

rootstocks.  

 

Key words: graft; osmotic potential; pepper; photosynthesis; water stress 
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4.2. INTRODUCTION 

Pepper is one of the most important cultivated crops in the Mediterranean 

climate, where water shortage is a major problem limiting productivity. An 

improvement of plant yield under drought is one of the main scientific and 

economic challenges in these areas. Plants exposed to water stress may have 

different types of response: susceptibility, resistance mediated by avoidance, or 

tolerance. Water stress plant tolerance involves biochemical, physiological, and 

morphological mechanisms that enable plants to function during periods with 

decreased water availability (Nio et al., 2011) and prevent or alleviate damage. 

One of the important pathways to enhance water stress tolerance is through 

osmotic adjustment (OA), which maintains the leaf turgor necessary for 

stomatal opening and thus sustains photosynthesis and growth (Huang et al., 

2010; Nio et al., 2011). Various types of compatible solutes accumulate: such 

as sugars, proline, gycinebetaine, or potassium (Munns et al., 1979; Morgan, 

1992; Nio et al., 2011). These compounds can be added to a list of non-

enzymatic antioxidants that plants need to counteract the inhibitory metabolic 

effects of reactive oxygen species (ROS) provoked by stress (Gill and Tuteja, 

2010). They also play a role in the stabilisation of enzymes and proteins, as well 

as in the protection of membrane integrity (Patade et al., 2012).  

Photosynthesis is extremely sensitive to water stress. The effects of water 

stress can be direct: such as decreased CO2 availability caused by diffusion 

limitations through the stomata and/or the mesophyll (Flexas et al., 2007); or by 

alteration in CO2 fixation reactions (Lawlor and Cornic, 2002). Photosynthetic 

responses to water stress are complex since they involve the interplay of 

limitations taking place at different parts of the plant  (Chaves et al., 2009). 

Alterations in the photosynthetic process can provoke alteration in the uptake 
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and translocation of mineral nutrients (Calatayud et al., 2008). Nitrate reductase 

(NR) is a key enzyme responsible for nitrogen (N) assimilation and is connected 

with carbon metabolism (Masclaux-Daubresse et al., 2010): N assimilation 

requires NADH to drive NR, as well as carbon skeletons derived from 

photosynthesis for synthesis of aminoacids (Yousfi et al., 2012). A large fraction 

of leaf N is allocated to the photosynthesis apparatus. NR activity has been 

reported to decrease under water stress (Foyer et al., 1998); but the effect on 

grafted pepper has not been previously studied.  

Mechanisms for plant adaptation and survival to water stress have been 

favoured by natural selection. Taking advantage of drought-resistant accessions 

is an important gateway for obtaining tolerant crops (although in pepper these 

accessions have a poor commercial value). A new perspective to improve 

resistance to water stress is the use of these tolerant accessions as rootstocks 

for a desirable commercial cultivar. Grafting has become a valid strategy to 

increase tolerance in plants under several abiotic stresses (Huang et al., 2010; 

Martínez-Ballesta et al., 2010; Colla et al., 2010). The interactions between 

graft, vegetable plants, and water stress have been mostly studied in tomato 

(Sánchez-Rodríguez et al., 2013) and melon (Rouphael et al., 2008); and there 

are no reports on physiological alterations of pepper after grafting and exposure 

to water stress. Water scarcity is a major problem in arid and semi-arid regions 

and limited information exists regarding water stress tolerance in pepper grafted 

plants using accessions as rootstock. Our study offers promising results that 

could improve the understanding of several physiological mechanisms involved 

in scion and pepper rootstock interaction under water stress conditions.  

In previous experiments we selected four accessions: two that were resistant 

and two that were sensitive to water stress (Calatayud et al., 2011). The aim of 

the present work is to study the responses to water stress of a commercial 
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pepper cultivar grafted onto these rootstocks in order to identify the 

physiological traits responsible for the tolerance to this stress. Furthermore, we 

want to assess if this tolerance is based on the ability to maintain the water 

relations under low water availability little water is available; or through the 

activation of protective mechanisms in the scion – and if these effects depend 

on intensity of the water stress. For this purpose, several physiological 

parameters were determined, including: photosynthesis; chlorophyll (Chl) 

fluorescence; lipid peroxidation levels; relative water content (RWC); proline 

concentration; osmotic potential; and NR activity. We present evidence that 

grafting plants onto appropriate (tolerant) rootstocks is a good tool against water 

stress mediated by an efficient osmotic adjustment. Furthermore, these 

physiological parameters could be useful for screening processes when 

selecting tolerant plants.  

 

4.3. MATERIALS AND METHODS 

 

4.3.1. Plant material and greenhouse conditions 

Based on previous studies (Calatayud et al., 2011), the drought tolerant 

accessions ‘ECU-973’ of Capsicum chinense Jacq. (code 12) and ‘BOL-58’ of 

Capsicum baccatum L. var. pendulum (code 14), and the water stress 

susceptible accessions ‘Piquillo de Lodosa’ (code 8) and ‘Serrano’ of Capsicum 

annuum L. (code 5) were chosen as rootstocks in this study. The pepper 

cultivar ‘Verset’ (California type; Rijk Zwaan) was grafted onto these four pepper 

accessions. The pepper seeds were sown on 1 December 2011 in 100-cell 

polystyrene trays filled with peat-based substrate and kept under a Venlo-type 

glasshouse. The plants were transplanted to 54-cell trays. The graft was 
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performed on 12 February using the tube grafting method (cutting the growing 

tip of the rootstock at a 45º angle below the cotyledons, attaching the scion, 

previously cut at a 45º angle above the cotyledons, and fixing the rootstock and 

scion with a clip). Ungrafted ‘Verset’ plants were used as controls. 

One month after grafting, the plants were placed in 5 L polyethylene pots 

covered with aluminium sheets (the root system having been previously washed 

clean of substrate). Pots were filled with a nutrient solution containing (in mmol 

L-1): 12.3 NO3
-; 1.02 H2PO4

-; 2.45 SO4
2-; 3.24 Cl-; 5.05 K+; 4.23 Ca2+, 2.55 Mg2+ 

and micronutrients (15.8 µM Fe2+, 10.3 µM Mn2+, 4.2 µM Zn2+, 43.5 µM B5+, 1.4 

µM Cu2+) that had been artificially aerated. The electrical conductivity and pH of 

this nutrient solution was 2.1 dS m-1 and 6.5, respectively. Nutrient solution was 

added daily to compensate for absorption. After 7 days of seedling acclimation 

to the pots, PEG 8000 (Sigma Co) was dissolved in a nutrient solution for 

inducing osmotic stress at 3.5% and 7% PEG. The osmotic potential of the 

solutions, measured with a vapour osmometer (Digital osmometer, Wescor, 

Logan, USA), were -0.35 and -0.77 MPa respectively. Nutrient solution (0% 

PEG) was approximately -0.05 MPa due to the presence of the nutrient salt.  

The treatments were defined by three PEG levels (0%, 3.5%, and 7%) and four 

plant combinations (the cultivar ‘Verset’ grafted onto rootstock accessions 5, 8, 

12 and 14).  The grafted combinations (rootstock/cultivar) were labelled as: 

5/cultivar, 8/cultivar, 12/cultivar and 14/cultivar. The ungrafted  cultivar was 

used as control. The layout was completely randomised with three replications 

for each combination and six plants per replication.  

All physiological measurements were performed at 7 (T1) and 14 (T2) days 

after PEG addition on a fully expanded mature leaf (third or fourth leaf from the 

shoot apex).  
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During the culture, plants were grown in a Venlo-type greenhouse under natural 

light conditions (610- -2 s-1) and temperature ranges were 21-24 ºC; 

and relative humidity was 52-72%.  

 

4.3.2. Water relations 

The osmotic potential of leaf sap (s in MPa) was measured using an 

osmometer (Digital osmometer, Wescor, Logan, USA). Two independent 

determinations were performed on each replicate and plant combination, 

obtained from 6 plants per treatment and combination. 

The leaves were tightly wrapped in aluminium foil, frozen at -70 ºC, and stored 

in liquid nitrogen. After thawing, sap was collected from syringes at 25 ºC and 

placed in the osmometer (Rodríguez-Gamir et al., 2010). Osmolyte content 

(mmol kg-1) was converted to MPa using the Van’t Hoff equation. The osmotic 

adjustment (OA) was determined as the difference between the osmotic 

potential of the leaves at full turgor for control plants and the stressed plants 

(Garcia-Sanchez et al., 2007). Full turgor was achieved by rehydrating the 

leaves with distilled water in darkness for 24 h. 

Six other similar leaves from two independent plants of each plant combination, 

PEG treatment, and replicate were collected to determine the (RWC) as (FW-

DW)/(TW-DW) x 100 where FW is fresh weight, DW is dry weight, and TW is 

turgid weight. 

4.3.3. Proline determination 

Proline content was determined as described by Bates et al. (1973). Leaf 

pepper tissue (0.05 g) was ground in 3% sulfosalicylic acid, the homogenate 
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was filtered, and 0.75 mL glacial acetic acid, and 0.75 mL ninhydrin reagent 

(1.25 g ninhydrin in 30 mL glacial acetic acid and 20 mL 6N phosphoric acid) 

were added to an aliquot of the filtrate. The reaction mixture was boiled for 1 

hour, and readings were taken at a wavelength of 520 nm in a 

spectrophotometer. Three independent determinations were performed in three 

different extracts, obtained from 18 plants per treatment and combination (one 

leaf per plant or 500 mg (FW) of roots, and six plants per extract). 

 

4.3.4. Photosynthetic activity and chlorophyll fluorescence 

CO2 fixation rate (AN, mol CO2 m-2 s-1), stomatal conductance to water vapour 

(gs, mol H2O m-2 s-1), transpiration rate (E, mmol H2O m-2 s-1), and substomatal 

CO2 concentration (Ci, mol CO2 mol-1 air) were measured at steady-state while 

maintaining the plants at 1000 mol m-2 s-1 during 10-15 min  and 400 ppm CO2 

with a LI-6400 (LI-COR, Nebraska, USA). Light curves were previously 

performed (data not shown) and AN was saturated at 900 mol m-2 s-1. Current 

fluorescence yield (Fs) and the maximum light adapted fluorescence (Fm’) were 

determined with the LI-6400 in the presence of an actinic illumination of 1000 

μmol photons m-2 s-1, and photochemical PSII efficiency (PSII) was computed as 

the quotient (Fm’ – Fs)/Fm’ (Genty et al., 1989). 

To evaluate the presence of chronic photoinhibitory processes, the variable 

fluorescence ratio Fv/Fo= Fm-Fo/Fo (Babani and Lichtenthaler, 1996) was 

measured on leaves after 15 minutes in darkness using a portable pulse 

amplitude modulation fluorometer (PAM-2100, Walz, Effeltrich, Germany). The 

background fluorescence signal for dark adapted leaves (Fo) was determined 

with a 0.5 mol photon m-2 s-1 measuring light at a frequency of 600 Hz. The 
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application of a saturating flash of 10000 mol photon m-2 s-1 enabled 

estimations of the maximum fluorescence (Fm). 

Gas exchange and fluorescence determinations were performed from 9:00 am 

to 11:00 am (GMT). One measurement per plant was performed, and ten 

different plants were used (n=10) for each PEG treatment and plant 

combination. 

 

4.3.5. Nitrate reductase activity 

Nitrate reductase activity (EC 1.6.6.1) was determined in vivo following the 

methods described by Hageman and Hucklesby (1971) and Jaworki (1971). 

Discs of 1 cm diameter in mature fresh leaves, or pieces of 1 cm in roots, were 

punched out. Samples (200 mg) were suspended in a glass vial containing 10 

mL of 100 mM potassium phosphate buffer (pH 7.5), 1% (v/v) n-propanol and 

100 mM KNO3. The glass vial was subjected to vacuum infiltration three times in 

order to induce anaerobic conditions in the incubation medium. Plant samples 

were incubated in a water bath at 30 ºC for 60 min in the dark and placed in a 

boiling water bath for 5 min to stop enzymatic reaction. Nitrite released from 

plant material was determined colourimetrically at 540 nm (spectrophotometer 

PerkinElmer, Lambda 25) by adding 0.02% (w/v) N-Naphthylethylenediamine 

and 1% sulphanilamide. A standard curve with KNO2 was prepared to calculate 

the amount of NO2 contained in the samples (Calatayud et al., 2008). Sampling 

and replicates were used as described for proline determination. 
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4.3.6. Lipid peroxidation 

Lipid peroxidation was estimated through malondialdehyde (MDA) 

determinations using thiobarbituric acid reaction, according to the protocol 

reported by Heath and Parker (1968), and modified in Dhindsa et al. (1981). 

The non-specific background absorbance reading at 600 nm was subtracted 

from specific absorbance reading at 532 nm. Sampling and replicates used as 

described for proline determination. 

4.3.7. Statistical analyses 

The results were subjected to multifactor variance analysis (Statgraphics 

Centurion for Windows, Statistical Graphics Corp.). The effect of the genotype 

and stress level was estimated and significant interactions (genotype x stress 

level) were observed for all the analysed parameters. The mean comparisons 

were performed using Fisher’s least significance difference (LSD) test at P < 

0.05.  

 

4.4. RESULTS 

4.4.1. Plant water status 

Seedling under control conditions maintained RWC leaf values above 90% 

during the experiment (Fig. 1). The presence of PEG in the nutrient solution 

reduced the RWC of the leaves (Fig. 1). At T1 this effect was more dramatically 

observed at 7% PEG, and the ungrafted cultivar was the most sensitive (37%; 

Fig. 1A). The 12/cultivar and 14/cultivar plants were less affected (70% and 

68%, respectively; P < 0.05). After 14 days (T2) RWC fell, even at 3.5% PEG 

(Fig. 1B). The ungrafted plants, as well as the 5/cultivar and 8/cultivar plants 
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had lower RWC values at 80% (P < 0.05). These genotypes showed the lowest 

reductions at 7% PEG (Fig. 1B), and the ungrafted plants had the lowest RWC 

values (35%), followed by the 5/cultivar and 8/cultivar plants (P < 0.05). The 

12/cultivar and 14/cultivar plants maintained RWC values near 90% under 3.5% 

PEG without significant differences with respect to their controls and between 

63%-65% at 7% PEG, respectively (P < 0.05).  
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Figure 1. Effect of PEG addition at 0% ( ), 3.5% ( ) and 7% ( ) on 

relative leaf water content (RWC %) during 7 day (A) and 14 day exposure (B) in ungrafted 

pepper plants (cultivar ‘Verset’) and cultivar grafted onto accessions 5, 8, 12 and 14. Dates are 

mean values  SE for n= 6. Within each plant combination different letters indicate significant 

differences at P<0.05 (LSD test). 
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4.4.2. Leaf osmotic potential 

 

Leaf osmotic potential values at T1 and T2 are shown in Fig. 2. The s 

remained unchanged in control conditions during the experimental period, with 

values near -1 MPa. The osmotic potential decreased in relation to time 

exposure and PEG concentration. At 3.5% PEG, the 14/cultivar plants showed 

the largest decreases (P < 0.05) in s at T1 and T2 (Fig. 2A,B). This effect was 

also observed at T1 in the ungrafted plants and in the 12/cultivar plants at T2. 

At higher PEG concentrations, the 12/cultivar and 14/cultivar plants showed the 

lowest s values during the experiment (P < 0.05). Furthermore, the 5/cultivar 

and 8/cultivar as well as the ungrafted plants showed significant but less intense 

decreases (Fig. 2).  
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Figure 2. Leaf osmotic potential (MPa) in ungrafted pepper plants (cultivar ‘Verset’) and cultivar 

grafted onto accessions 5, 8, 12 and 14 after PEG addition at 0% ( ), 3.5% ( ) and 

7% ( ) during 7 day (A) and 14 day exposure (B). Dates are mean values  SE for n= 6. 

Within each plant combination different letters indicate significant differences at P<0.05 (LSD 

test). 
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Osmotic adjustment was observed at T1 in ungrafted plants and in 14/cultivar 

plants at 3.5% PEG, and in 12/cultivar and 14/cultivar plants at 7% PEG (Table 

1). After 14 days, the highest OA was induced in the 12/cultivar and 14/cultivar 

plants at both PEG concentrations (Table 1).  

 

Table 1. Osmotic adjustment (MPa) in the grafted pepper plants (cultivar ‘Verset’) onto the 

pepper accessions 5, 8, 12 and 14. Ungrafted ‘Verset’ plants were used as controls. 

Determinations were performed after 7 (T1) and 14 (T2) days under water stress conditions by 

PEG addition (3.5% and 7%). Each value is the mean of six independent determinations. 

  Cultivar 5 8 12 14 

T1 3.5% PEG 

7% PEG 

0.81* 

0.07  

0.12  

-0.30  

0.25 

-0.41 

0.27  

2.12* 

1.17* 

1.38* 

T2 3.5% PEG 

7% PEG 

0.23  

0.06  

0.04  

-0.27  

-0.09 

-0.41 

0.61* 

0.98* 

1.25* 

1.71* 

Significant differences in relation to controls (0% PEG and full turgor) (P<0.05) 
are indicated by asterisks 

 

4.4.3. Accumulation of proline 

 

Proline accumulation was induced in pepper seedlings by drought and PEG 

exposure (Fig. 3). No effect of stress level was observed in the accumulation of 

proline. At T1 (Fig. 3A) a slight increase (P < 0.05) was observed in all 

genotypes irrespective of the PEG concentration in the culture medium, except 

for 12/cultivar and 14/cultivar plants where the proline concentration decreased 

with respect to the controls. Proline levels increased after 14 days (T2) (Fig. 3B) 
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of water stress treatment. Two to three-fold increases were observed in the 

cultivar and 5/cultivar and 8/cultivar plants. The maximum increase was found 

for 12/cultivar and 14/cultivar plants (P < 0.05), with rises from 12 mg/ g DW at  

0% PEG to 32 and 49 mg/ g DW under 7% PEG conditions, respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Changes in proline concentration (mg proline /g DW) from ungrafted pepper plants 

(cultivar ‘Verset’) and cultivar grafted onto accessions 5, 8, 12 and 14 after PEG addition at 0%(

), 3.5% ( ) and 7% ( ) during 7 day (A) and 14 day exposure (B). Dates 

are mean values  SE for n= 6. Within each plant combination different letters indicate 

significant differences at P<0.05 (LSD test).  
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4.4.4. Photosynthetic parameters 

 

PEG provoked a significant reduction in the photosynthetic rate (Fig. 4A, B), 

stomatal conductance (Fig. 4C,D), and photochemical PSII efficiency (Fig. 

4E,F) in the studied pepper genotypes.  

At T1 the AN progressively diminished with the drought stress level in the 

ungrafted plants and 5/cultivar plants (Fig. 4A). In the 8/cultivar and 14/cultivar 

plants no significant effect of 3.5% PEG was observed; and in the 12/cultivar 

plant, the photosynthetic rate fell at 3.5% PEG; but did not fall further at 7% 

PEG. In the ungrafted plants, the photosynthetic rate reached null values at T2 

in the 7% PEG media (Fig. 4B). At this concentration, the 12/cultivar and 

14/cultivar plants showed smaller reductions (P < 0.05) in the photosynthetic 

rate. No effect for PEG concentration was observed in the grafted plants at T2 

(Fig. 4B). 

Differences in the stomatal conductance to drought were observed among 

genotypes (Fig. 4C,D). At T1, the ungrafted plants, 5/cultivar, and 8/cultivar 

plants maintained higher stomatal openings at 3.5% PEG when compared to 

12/cultivar and 14/cultivar plants (P < 0.05). In addition, gs fell to values near 

zero at 7% PEG in these genotypes. By contrast, stomata closed to values near 

0.1 mol m-2 s-1 in 12/cultivar and 14/cultivar plants, irrespective of the stress 

level (Fig. 4C), and did not change at T2 (Fig. 4D). Stomatal conductance was 

also strongly reduced in the ungrafted, 5/cultivar, and 8/cultivar plants at T2.  

Substomatal CO2 concentration (Ci) decreased with stomatal closure in all 

grafted plants (data not shown). In contrast in the ungrafted cultivar, Ci 

increased (P < 0.05) at low stomatal conductances under water stress. 
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Fig. 4. Net CO2 assimilation rate (AN; mol CO2 m-2 s-1) (A, B); leaf stomatal conductance (gs; mol 

H2O m-2 s-1) (C, D) and actual quantum efficiency of PSII (PSII) (E, F) in ungrafted pepper plants 

(cultivar ‘Verset’) and cultivar grafted onto accessions 5, 8, 12 and 14 after PEG addition at 0% (

), 3.5% ( ) and 7% ( )during 7 day (A, C, D) and 14 day exposure (B, D, 

F). Dates are mean values  SE for n= 10. Within each plant combination different letters 

indicate significant differences at P<0.05 (LSD test).  
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No effect for 3.5% PEG on the PSII was observed at T1 in the ungrafted, 

5/cultivar, and 8/cultivar plants (Fig. 4E). By contrast, this parameter fell by 

more than 55% of the control values at 7% PEG in these genotypes. In 

12/cultivar and 14/cultivar plants, the reduction provoked by PEG ranged from 

75 to 81% of control values at T1, irrespective of the stress level. At T2, the 

response of the photochemical PSII efficiency was similar to that observed for 

the photosynthetic rate (Fig. 4B). 

Similar Fv/Fo values were observed for all genotypes under control conditions 

(Fig. 5A,B). No changes were produced at T1 by 3.5% PEG, except for the 

8/cultivar plants (where Fv/Fo increased with respect to its control). However, at 

7% PEG, Fv/Fo fell in the ungrafted plants (32% of control value) and, to a 

lesser extent in the 5/cultivar and 8/cultivar plants (Fig. 5A). At T2, the decrease 

in Fv/Fo increased with the stress level (Fig. 5B). The ungrafted plants showed 

the lowest values, being zero at 7% PEG; while 12/cultivar and 14/cultivar 

plants showed the smallest reduction (P < 0.05) in Fv/Fo at 7% PEG (Fig. 5B).  

 

4.4.5. Changes in nitrate reductase activity 

 

Differing responses of NR activity to drought were observed in leaves and roots 

(Fig. 6). NR activity increased in roots (Fig. 6B,D) in all the water stress 

treatments when compared to control conditions – the highest values (P < 0.05) 

being for ungrafted plants, 5/cultivar, and 8/cultivar plants at 7% PEG and T2 

(Fig. 6D). By contrast, water stress decreased NR activity in the leaves, and the 

lowest value (P < 0.05) was observed for ungrafted plants at 7% PEG followed 

by 5/cultivar and 8/cultivar plants (Fig. 6A, C). In the leaves, after 7 and 14 days 
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of severe water stress, 12/cultivar and 14/cultivar plants showed the highest NR 

activity levels – while the lowest values were observed in the ungrafted plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Variations in dark-adapted Fv/Fo ratio in leaves of ungrafted pepper plants (cultivar 

‘Verset’) and cultivar grafted onto accessions 5, 8, 12 and 14 after PEG addition at 0% ( ), 

3.5% ( ) and 7% ( ) during 7 day (A) and 14 day exposure (B). Dates are mean 

values  SE for n= 10. Within each plant combination different letters indicate significant 

differences at P<0.05 (LSD test). 
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Figure 6. Nitrate reductase activity (mol NO2 g-1 FW) in leaf (A, C) and roots (B, D) of ungrafted 

pepper plants (cultivar ‘Verset’) and cultivar grafted onto accessions 5, 8, 12 and 14 after PEG 

addition at 0% ( ), 3.5% ( ) and 7% ( ) during 7 day (A, B) and 14 day 

exposure (C, D). Dates are mean values  SE for n= 6. Within each plant combination different 

letters indicate significant differences at P<0.05 (LSD test). 

 

4.4.6. Lipid peroxidation 

Lipid peroxidation in pepper leaves increased with time and PEG levels (Fig. 7). 

At T1 MDA content increased with higher PEG levels (Fig. 7A) in all plants. The 
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increase was highest in the ungrafted plants. After 14 days of exposure, lipid 

peroxidation increased significantly at 7% PEG in all plants and 12/cultivar and 

14/cultivar plants at 3.5%. It is noteworthy that no further MDA accumulation 

was produced in these genotypes at 7%, whereas MDA accumulated to higher 

levels in 5/cultivar, 8/cultivar, and ungrafted plants (Fig. 7B). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Leaf malondialdehyde content (nmol MDA g-1 FW) in leaves of ungrafted pepper plants 

(cultivar ‘Verset’) and cultivar grafted onto accessions 5, 8, 12 and 14 after PEG addition at 0% (

), 3.5% ( ) and 7% ( ) during 7 day (A) and 14 day exposure (C). Dates 

are mean values  SE for n= 6. Within each plant combination different letters indicate 

significant differences at P<0.05 (LSD test). 
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4.5. DISCUSSION 

 

Water stress induced by PEG led to significant changes in physiologic 

parameters in pepper seedlings. The effect depended on the duration and the 

intensity of the stress level. Moreover, consistent differences were observed 

between susceptible (5 and 8) and tolerant accessions (12 and 14) when used 

as rootstocks, although such differences vanished in the absence of water 

stress. The following discussion aims to establish which physiological 

processes could explain the different responses among grafted plants, including 

tolerant and sensitive accessions such as rootstocks and ungrafted plants. 

Water status in a plant is highly sensitive to water stress and therefore is 

dominant in determining plant responses to stress. Leaf RWC decreased under 

water stress, but its effects were significantly dramatic only under the 7% PEG 

treatment. The highest RWC values (62-67%) were observed in the 12/cultivar 

and 14/cultivar plants after 14 days, when compared with ungrafted plant values 

(34%) (P < 0.05). Similarly, the leaves of tomato plants grafted onto Solanum 

mammosum – (with a greater ability for passive water uptake) maintained 

higher leaf water potential than self-grafted plants – despite greater water loss 

through transpiration under water stress conditions (Weng, 2000).   

An alteration in the relationship between RWC and s was found. In this sense, 

the leaf s was lowest in 12/cultivar and 14/cultivar plants, compared with 

5/cultivar, 8/cultivar, and ungrafted plants; although the RWC values at 3.5% 

PEG in T1 and T2 remained unchanged. This can be explained by the fact that 

the relationship between s and RWC is not unique (Acevedo et al., 1979), and 

other factors such as the rate of transpiration, stomatal aperture, or 

development of the root system can modulate this relation (Weng, 2000). 
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Nevertheless, decreases in s may have contributed to the ability of these 

accessions (12 and 14) to uptake more water from the nutrient solution and 

could have minimised the harmful effects of water stress (Nio et al., 2011; Ming 

et al., 2012). Significant correlations were demonstrated between s and the 

tolerance to drought in different crops, i.e. PEG-tolerant chilli pepper clones 

(Santos-Díaz and Ochoa-Alejo, 1994); tomato PEG-adapted cell lines (Handa et 

al., 1982); or barley after 36 days without irrigation (González et al., 2008).  

Although the decrease in s could be a consequence of a reduction in the water 

content of tissues, active osmotic adjustment was observed in the studied 

genotypes, and mainly in the plants grafted onto the tolerant genotypes (12 and 

14). The osmotic adjustment may have involved the accumulation of a range of 

osmotically active molecules, including organic compounds such as sugars, free 

aminoacids, glycinebetaine, soluble proteins, and organic acids (Chaves et al., 

2003); and with macronutrients such as inorganic components (Patakas et al., 

2002). Free proline is considered an important osmoprotectant and 

accumulation following salt, drought, and heavy metal exposure is well 

documented (Gill and Tuteja, 2010). In our work, a strong correlation between 

s decrease and proline content increase was observed at T2 (s = -0.752 

[proline] - 0.205; r2 = 0. 87; P < 0.05) for all plant combinations and treatments; 

and at T1 for 5/cultivar, 8/cultivar, and ungrafted plants (s = -0.087 [proline] - 

0.540; r2 = 0. 79; P < 0.05). Nevertheless, the decrease at T1 in s was not 

related to the increase in proline in the 12/cultivar and 14/cultivar plants (s = 

0.318 [proline] - 6.288; r2 = 0.62; P < 0.05). At this earlier period, other 

components such as glycinebetaine, carbohydrates, aminoacids, and 

macronutrients could have contributed to reducing the osmotic potential (Munns 

et al., 1979; Morgan, 1992; Navarro et al., 2003) in these plant combinations. 

Similar time-dependent behaviour was reported in wheat (Nio et al., 2011), 

where K+ was mainly involved in the osmotic responses to water stress during 
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earlier periods; whereas proline was mainly accumulated after long exposures. 

Alternatively, pepper plants (12 and 14) could have used the mineral 

components of the nutrient solution to produce the decrease in osmotic 

potential, such as described for sugarcane cells (Patade et al., 2012) during the 

first seven days of water stress.  

The osmotic adjustment, mainly through the increase in proline content, and 

related to the duration and severity of the water stress, helped the 12/cultivar 

and 14/cultivar plants maintain tissue water status and avoid drought-induced 

damage. Similar results were obtained by Anjum et al. (2012) in pepper plants.  

Moreover, osmolyte proline accumulation was proposed to act as a protein 

stabilizer, a metal quelator, an inhibitor of lipid peroxidation, and a scavenger of 

radical oxygen species (ROS) under salt, drought, and metal stress (Gill and 

Tuteja, 2010). Production of these species at higher levels may damage cellular 

membrane and other biologically vital components such as chlorophylls, DNA, 

proteins, and lipids (Blokhina et al., 2003). Lipid peroxidation is considered to be 

one of the most damaging processes as its decreases membrane fluidity; 

increases the leakiness of the membranes, and inactivates receptors, enzymes, 

and ion channels. The final product of lipid peroxidation is MDA – which is used 

as an index of oxidative membrane damage (Calatayud et al., 2002; Ozkur et 

al., 2009). In our work, improvement in proline accumulation under water stress 

helped maintain osmotic potential; and may also be involved in protection 

against oxidative damage as indicated by lower levels of MDA in the 12/cultivar 

and 14/cultivar plants (mainly at the end of the experiment under 7% PEG). 

These results indicate that these genotypes when used as rootstocks provide 

protection to the scion. By contrast, the ungrafted plants and 5/cultivar and 

8/cultivar plants showed less capacity to retain water in their cells: a minor 
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decrease of s, was associated with a minor increase in proline concentration, 

and as a consequence, a higher level of lipid peroxidation.  

The oxidative stress provoked by water stress had a direct effect on proper PSII 

function. The Fv/Fo parameter, a sensitive Chl fluorescence ratio is related to 

the maximum quantum yield of PSII photochemistry (Babani and Lichtenthaler, 

1996). A decline in Fv/Fo indicates a disturbance or damage of the 

photosynthetic apparatus, and has been frequently used as an indicator of 

photoinhibition (Calatayud et al., 2004). A decrease in the Fv/Fo ratio occurs 

under water stress, and the most dramatic decrease occurred in ungrafted 

plants at T2 under 7% PEG, where the values were zero. According to our 

observations (see above), the Fv/Fo ratio suggested a higher resistance for 

12/cultivar and 14/cultivar plants to water stress. The decrease in Fv/Fo in 

ungrafted plants, 5/cultivar, and 8/cultivar plants may be as a result of an 

increase in protective non-radiative energy dissipation associated with a 

regulated decrease in photochemistry – described as down-regulation and/or 

chronic photodamage of the PSII centres (Genty et al., 1989; Osmond, 1994). 

The Fv/Fo ratio seems a robust parameter, and several authors have concluded 

that PSII photochemistry cannot be impaired by relatively severe water stress; 

although AN and gs can decrease significantly (Lawlor and Tezara, 2009). In our 

experiment, all plant combinations, regardless of the Fv/Fo values, showed a 

significant decrease in the net carbon gain, due in part to stomatal closure that 

restricts water losses. The decrease in the rate of photosynthesis may be due to 

the chronic water stress effect of metabolic inhibition, or the down-regulation of 

photosynthesis as described by Chaves et al. (2003) and Cornic (2000). 

Distinguishing between these alternatives is difficult (Flexas et al., 2004). 

Acclimation to water stress requires responses that enable essential reactions 

of primary metabolism to continue for the plant to tolerate water deficit (Foyer et 

al., 1998). The ability to maintain the functionally, or protective capacity of the 
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photosynthetic machinery under water stress, is of major importance for drought 

tolerance in pepper plants (del Amor et al., 2010). Our results indicate that 

rootstocks 12 and 14 provide the variety with the ability to maintain water 

relations and protective mechanisms that enable the maintenance of a residual 

photosynthetic rate (on ‘stand-by’). The robust behaviour of the cultivar ‘Verset’ 

grafted onto accessions 12 and 14 was in accordance with our previous results 

in field conditions where water availability was reduced by 50% compared to the 

control treatment (Calatayud et al., 2013). In this experiment, pepper cultivar 

grafted onto these genotypes showed higher marketable fruit production when 

compared with ungrafted plants and ‘Verset’ grafted onto 5 and 8 (Calatayud et 

al., 2013). 

Maintenance of tissue water status helps the plants to avoid the dehydration 

and protects the carboxylation and other enzymes from inactivation and 

denaturation (Anjum et al., 2012). By contrast, a strong decrease in the 

photosynthetic rate in 5/cultivar, 8/cultivar plants, and ungrafted plants, along 

with a decrease in RWC (a weak osmotic adjustment), and a decrease in Fv/Fo 

was observed under water stress. In the absence of protective mechanisms, an 

increase in oxidative damage was produced (measured as lipid peroxidation) 

and chronic photoinhibition of metabolic machinery limiting photosynthesis. The 

degree of oxidative stress has been described as being closely associated with 

the resistance/susceptibility of a genotype to water stress (Mittler, 2002; Anjum 

et al., 2012).  

At the whole plant level, water scarcity induces complex changes in C and N 

metabolism resulting from modifications in the availability of nutrients (Foyer, 

1998; Imsande and Touraine, 1994). In addition to the discussed changes in 

carbon assimilation, water stress may restrain nitrate acquisition by the roots, 

as well as restrict the ability of plants to assimilate and reduce nitrogen (Yousfi 
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et al., 2012; Kocheva et al., 2007). In most herbaceous plants, NR activity takes 

place predominantly in the leaves (Scheurwater et al., 2002; Reda et al., 2011). 

In our results under control conditions, where the plants have free access to 

nutrients, NR activity was higher in leaves than in roots in all plant combinations 

at T1 and T2. The reduction of NO3
- in the leaves may provide the advantage of 

enabling the direct use of excess reductants produced by photosynthesis (Pate, 

1983). In our work, the predominant site of NO3
- reduction (leaves or roots) was 

dependent on the water stress intensity and time of exposure. NR activity in 

leaves decreased considerably in all plant combinations under drought, but 

especially in ungrafted plants, as well as 5/cultivar and 8/cultivar plants. 

However, since NR activity was calculated on a FW basis, and PEG treatment 

affected the RWC of the leaves, the absolute value of NR activity could be 

overestimated in these treatments. The utilisation of nitrate in the leaves is 

governed by CO2 fixation (Larsson et al., 1989). In our results, a decrease in NR 

activity in the leaves can be linked to a decline in the rate of photosynthesis due 

to stomatal closure, according to Fresneau et al. (2007); or due to a decrease in 

the NO3
- transport from root to leaves due to loss of turgor and lower 

transpiration flow (Sharma and Dubey, 2005; Yousfi et al., 2012). Water stress 

would limit the uptake and further the transfer of NO3
- to upper plant parts 

(Yousfi et al., 2012), and subsequently, a part of the nitrate uptake could be 

reduced in the roots. Observed differences in NR activity may depend on PEG 

concentration, time exposure, and plant combinations. After 7 days under 3.5% 

PEG with moderate photosynthesis inhibition, NR activity was located mainly in 

the leaves. This could be interpreted as that the rate of carbon fixation was not 

a limiting factor for NO3
- reduction (Larsson et al., 1989). When the water stress 

was severe (7% PEG), or when the time exposure with PEG was longer (14 

days), photosynthetic activity was compromised, and under this extreme 

situation the behaviour between rootstocks differed. Sensitive genotypes (5 and 

8) with lower NR activity in the leaves showed low levels of photosynthetic 
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activity, i.e. when internal CO2 concentration was reduced due to stomatal 

closure (Fresneau et al., 2007) and greater root NR activity (irrespective of PEG 

concentration). Tolerant rootstocks (12 and 14) showed increased root NR 

activity at only T2 in 7% PEG, although to a lesser extent. This could be 

because the remaining water transpiration flux (highest E values) enables 

reductions through the NO3
- transport to the leaves. The significant increase in 

root NR activity may indicate that nitrate flux to roots was not restricted by water 

stress and that active NO3
- reduction occurs in the roots, possibly due a minor 

transpiration flux to leaves.  

Considering the overall results of this study, we can conclude that the response 

of commercial pepper cultivar to water stress can be improved by grafting when 

using appropriate accessions as rootstocks. It seems that grafting methods 

could be a useful tool for increasing resistance to water stress. Under these 

experimental conditions, accessions 12 and 14 grafted onto cultivar, alleviate 

the water stress effect. This effect may be attributed to enhanced osmotic 

adjustment because of active proline accumulation (as reflected by the lower 

reduction in RWC) which may protect leaves from excessive dehydration 

caused by damaged photosynthesis systems. In addition, the methods used in 

this work appear to be suitable for testing the water stress resistance of pepper 

rootstocks.  
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5.1. ABSTRACT  

 

Grafting has been proposed as an interesting strategy that improves the  

responses of crops under salinity. In pepper, we reported increased fruit yield of 

the commercial ‘Adige’ cultivar under salinity when grafted onto accessions 

Capsicum chinense Jacq. ‘ECU-973’ (12) and Capsicum baccatum L. var. 

pendulum ‘BOL-58’ (14), whereas no effect was observed when grafted onto 

accession Capsicum annuum L var. ‘Serrano’ (5). We also analysed the 

physiological and biochemical mechanisms related to the tolerance conferred 

by these rootstocks. Responses to salinity (40mM NaCl) were studied in the 

different plant combinations for 30 days by determining water relations, mineral 

content, proline accumulation, photosynthetic parameters, nitrate reductase 

activity and antioxidant capacity. Higher salt tolerance was achieved when the 

‘Adige’ cultivar was grafted onto the 12 genotype, which allowed not only lower 

Na+ and Cl- accumulation in the scion, but also ion selectivity maintenance, 

particularly Na+/K+ discrimination. These traits led to a minor negative impact on 

photosynthesis, nitrate reductase activity and lipid peroxidation in grafted scion 

leaves. This work suggests that using tolerant pepper rootstocks that maintain 

the scion’s ion homeostasis is a promising strategy to provide salinity tolerance 

and can consequently improve crop yield.  

 

Key words: Graft; NaCl; Ions; Pepper; Photosynthesis; Yield, Water relations 
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5.2. INTRODUCTION 

 

Sweet pepper is one of the most important vegetable crops in arid and semiarid 

regions with salinity problems, and is considered sensitive to salinity [1, 2], even 

though salt tolerance can vary between pepper genotypes [3]. Maas [4] 

reported a salinity resistance threshold of 1.5 dS m-1, below which no effect on 

growth and a 14% decrease in biomass production for every additional 1 dS m-1 

were observed. Thresholds ranging from 0 to 2 dS m-1 and slopes of salinity 

response curves ranging from 8% to 15% have been reported for greenhouse 

peppers [5, 6]. By way of example, the use of irrigation water of 4.4 dS m-1 [7] 

resulted in reductions of 46% in pepper dry biomass and of 25% in marketable 

pepper fruits. In pepper plants, the negative effects of salinity on yield have 

been mainly described as a result of increased salt in leaves, which can lead to 

salt toxicity and may result in reduced total photosynthesis, which modifies the 

carbon balance required to maintain growth [2]. The results of the salt ions 

responsible for such inhibition in pepper plants are controversial. Accordingly, 

Na+ or Cl- can lead to inhibition [8, 9], an increase in Na+ accumulation in leaves 

can be responsible [10], or increased Cl- may be the cause of disturbance in the 

plant [5].  

Grafting plants onto tolerant rootstocks is one of several approaches that can 

cushion the impact of salinity [11] and is a common agronomic practice in 

tomato and melon. Several studies have been conducted in these species to 

elucidate the mechanisms involved in increased salinity tolerance of grafted 

plants. This increased tolerance of grafted plants is generally associated with 

their capacity to exclude or retain and/or accumulate toxic ions, Na+ and Cl- in 

rootstock roots, thus limiting their transport to leaves rather than through the 

synthesis of osmotically active metabolites or the induction of antioxidant 

systems [12-14]. Other authors have indicated that influence of rootstock on the 
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salt tolerance of the scion is due to a more efficient control of stomatal functions 

(changes in stomatal regulation and water relations), which indicate that the 

grafting incision may alter hormonal signalling between roots and shoots [15]. In 

other cases, this raised tolerance has been explained by the re-establishment of 

ionic homeostasis [16].  

Nevertheless, the mechanism of resistance against salinity in grafted plants 

displays great complexity in association with specific rootstock/scion 

interactions [17,18], and can vary among species. As far as we know, very few 

studies of this type have been conducted in pepper to elucidate whether or not 

salt tolerance conferred by rootstocks is also due to exclusion and/or retention 

mechanisms, as in tomato or melon given their better capacity to alleviate the 

toxic effects of salts or other processes; e.g., maintenance or water relations or 

antioxidant capacity. Guifrida et al. [19] found that stunted growth due to salinity 

was attenuated in pepper-grafted plants when compared to non-grafted plants 

associated primarily with reduced uptake of salt ions and, therefore, with a 

lower concentration of these ions in the grafted plants instead of maintaining 

leaf turgor by osmotic adjustments. 

In previous experiments we selected three pepper accessions with different 

degrees of salinity tolerance [20] under mild salt stress. In this study, we used 

these accessions as rootstocks and we identified different behaviours in 

response to salinity for fruit yield. In order to identify the reason for this disparity, 

the second step was to study the physiological responses to salinity stress 

involved in increased tolerance of some pepper-grafted plants and to test the 

hypothesis that tolerance might be related to the role of rootstocks in altering 

the stress perception by the scion. To fulfil these objectives, we discussed 

differences in pepper-grafted plants adaptation mechanisms in response to mild 

salt stress by comparing some physiological parameters: photosynthesis; lipid 
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peroxidation levels; relative water content (RWC); proline concentration; 

osmotic potential (S); ions concentration; nitrate reductase activity (NR). We 

present evidence that grafting plants onto appropriate (tolerant) rootstocks is a 

good tool against salinity stress, which is mediated mainly by reducing ionic 

toxicity to the scion, and it improves yield. 

 

5.3. MATERIAL AND METHODS 

5.3.1. Plant material  

Based on previous studies, we selected three pepper accessions (wild types) 

with a different salinity tolerance [20]: ‘ECU-973’ of Capsicum chinense Jacq. 

(code 12) as being tolerant; ‘BOL-58’ of Capsicum baccatum L. var. pendulum 

(code 14) as being moderately tolerant; and ‘Serrano’ of Capsicum annuum L. 

(code 5) as being less tolerant. These accessions were chosen as rootstocks 

and the pepper cultivar ‘Adige’ (Lamuyo type, Sakata Seeds, Japan) was 

grafted onto these three pepper accessions in this study. The pepper seeds for 

grafting were sown on 1 December in 100-cell polystyrene trays filled with peat-

based substrate and kept in a Venlo-type glasshouse. The graft was performed 

on 12 February using the tube-grafting method (cutting the growing tip of the 

rootstock at a 45º angle below the cotyledons, attaching to the scion, previously 

cut at a 45º angle above the cotyledons, and fixing the rootstock and scion with 

a clip). The grafted combinations (cultivar/rootstock) were labelled A/5, A/12 

and A/14. Ungrafted ‘Adige’ plants were sown 2 weeks later to obtain plants 

with a similar biomass to grafted plants at the time of transplantation (10-12 true 

leaves). 
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5.3.2. Soil-field experiment 

 

One month after grafting and for 2 consecutive years, grafted and ungrafted 

plants were transplanted in a sweet pepper-producing area in Valencia (east 

Spain) with salinity problems in soil and water. Plant density was 2.1 plants m -2 

in sandy soil (pH=8.0; ECes as saturated past was 6.64 dS m-1; Sand= 76%) in 

polyethylene greenhouses. The electrical conductivity and pH of the irrigation 

water were 4.5 dS m-1 and 7.60, respectively, with 32 meq l-1 of Na+ and 41 meq 

l-1 of Cl. Fertilisers were applied at a rate of 200 UF N, 50 UF P2O5, 250 UF 

K2O, 110 UF CaO and 35 UF MgO [20]. A randomised complete block design 

was used with three replicates, each consisting of 25 plants/year. Fruit was 

harvested from the end of May to the end of July and marketable fruits were 

weighed.  

 

5.3.3. Hydroponic greenhouse experiment 

 

One month after grafting, the root system of the plants was washed to clean the 

substrate and plants were placed in 5 L polyethylene pots covered with 

aluminium sheets. Pots were filled with a standard nutrient solution for pepper 

[21]. The electrical conductivity (EC) and pH of this nutrient solution was 1.7 dS 

m-1 and 6.5, respectively. Nutrient solution was added daily to compensate for 

uptake. After 7 days of leaving seedling plants to acclimatise to pots, salinity 

treatment was initiated by adding NaCl (40mM) to the nutrient solution to reach 

an EC of 5.2 dS m-1 NaCl, similarly to that used in the soil-field experiment.  
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Treatments were defined by two salinity levels (0 and 40mM NaCl) and four 

plant combinations: the cultivar ‘Adige’ grafted onto rootstock accessions 5, 12 

and 14, and ungrafted ‘Adige’ plants were used as the controls. The layout was 

completely randomised with three replications per combination and six plants 

per replication. 

During the culture, plants were grown in a Venlo-type greenhouse under natural 

light conditions (610- -2 s-1), temperature ranges were 21-24ºC, and 

relative humidity was 52-72%.  

All the physiological measurements were taken on 14 (T1) and 28 (T2) days 

after NaCl addition on fully expanded mature leaves (third or fourth leaf from the 

shoot apex).  

 

5.3.4. Water relations 

 

The osmotic potential of leaf sap (s in MPa) was measured with an osmometer 

(Digital osmometer, Wescor, Logan, USA). Two independent determinations 

were made on each replicate and plant combination, obtained from six plants 

per treatment and combination at T1 and T2. 

Leaves were tightly wrapped in aluminium foil, frozen in liquid nitrogen and 

stored at -80ºC. After thawing, sap was collected from syringes at 25ºC and 

placed in the osmometer. Osmolyte content (mmol kg-1) was converted into 

MPa using the Van’t Hoff equation [22]. 

Six other similar leaves from two independent plants of each plant combination, 

salinity treatment and replicate were collected to determine the (RWC) as (FW-
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DW)/(TW-DW) x 100, where FW is fresh weight, DW is dry weight, and TW is 

turgid weight [22]. 

 

5.3.5. Ion analysis 

 

The leaves and roots collected at T1 and T2 for n  5 samples of each 

treatment and plant combination were dried at 70ºC for 4 days. Dried samples 

were digested in a mixture at 70% of HNO3-HClO3 (2:1). Macronutrients (K+, 

Ca2+, Mg2+ and Na+) were measured by ICP emission spectrometry (iCAP 6000, 

Thermo Scientific. Cambridge, United Kingdom).  

The chloride concentration (Cl-) in the dry plant material was extracted with 

0.1N HNO3 in 10% (v/v) acetic acid and was determined by potentiometric 

tritation with AgNO3 in a chloride analyzer (Sherwood, MKII 926). The results 

were expressed as mg g-1 DW. 

 

5.3.6. Proline determination 

 

Proline content (mg g-1 DW) was determined as described by [23]. Leaf pepper 

tissue (0.05 g) was ground in 3% sulphosalicylic acid, the homogenate was 

filtered, and 0.75 mL of glacial acetic acid and 0.75 mL of ninhydrin reagent 

(1.25 g ninhydrin in 30 mL glacial acetic acid and 20 mL 6N phosphoric acid) 

were added to an aliquot of the filtrate. The reaction mixture was boiled for 1 h, 

and readings were taken at a wavelength of 520 nm in a spectrophotometer. 

Three independent determinations were made in three different extracts 
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obtained from 18 plants per treatment and combination (one leaf per plant, and 

six plants per extract). 

 

 

5.3.7. Photosynthetic activity and chlorophyll fluorescence 

 

The CO2 fixation rate (AN, mol CO2 m-2 s-1), stomatal conductance to water 

vapour (gs, mol H2O m-2 s-1), transpiration rate (E, mmol H2O m-2 s-1) and 

substomatal CO2 concentration (Ci, mol CO2 mol-1 air) were measured in the 

steady state while maintaining plants at 1,000 mol m-2 s-1 for 10-15 min  and 

400 ppm CO2 with a LI-6400 (LI-COR, Nebraska, USA). Light curves were 

previously performed (data not shown) and AN was saturated at 900 mol m-2 s-

1. The gas exchange and fluorescence determinations were made from 9 am to 

11 am (GMT). One measurement per plant was taken, and ten different plants 

were used (n=10) for each treatment (control and salinity stress) and plant 

combination. 

 

5.3.8. Nitrate reductase activity 

 

Nitrate reductase activity (EC 1.6.6.1) in leaves was determined in vivo 

following the methods described by [24,25]. Discs, 1 cm in diameter, were 

punched out of mature fresh leaves. Samples (200 mg) were suspended in a 

glass vial containing 10 mL of 100 mM potassium phosphate buffer (pH 7.5), 

1% (v/v) n-propanol and 100 mM KNO3. The glass vial was subjected 3 times to 

vacuum infiltration in order to induce anaerobic conditions in the incubation 
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medium. Plant samples were incubated in a water bath at 30ºC for 60 min in the 

dark and were placed in a boiling water bath for 5 min to stop the enzymatic 

reaction. The nitrite released from the plant material was determined 

colorimetrically at 540 nm (spectrophotometer PerkinElmer, Lambda 25) by 

adding 0.02% (w/v) N-naphthylethylenediamine and 1% sulphanilamide. A 

standard curve with KNO2 was prepared to calculate the amount of NO2 that the 

samples contained. Sampling and replicates were used as described for proline 

determination. 

 

5.3.9. Lipid peroxidation 

 

Lipid peroxidation in leaves was estimated through malondialdehyde (MDA) 

determinations using the thiobarbituric acid reaction following the protocol 

reported by [26], and modified in [27]. The non-specific background absorbance 

reading at 600 nm was subtracted from the specific absorbance reading at 532 

nm. The sampling and replicates used were those described for proline 

determination. 

 

5.3.10. Statistical analyses 

 

The results were subjected to a multifactor variance analysis (Statgraphics 

Centurion for Windows, Statistical Graphics Corp.). The effect of the genotype 

and salt stress level was estimated and significant interactions (genotype x 

stress level) were observed for some analysed parameters. Only the 

significance for the comparisons made among stress levels for each plant 
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combination is shown in the figures. The significance of the comparisons made 

among genotypes is indicated in the text. Mean comparisons were made using 

Fisher’s least significance difference (LSD) test at P < 0.05. 

The data obtained in some measurement parameters were subjected to linear 

regression and analyses to identify the relationships between the physiological 

parameters.  

5.4. RESULTS 

5.4.1. Fruit yield 

No differences (P<0.05) in fruit yield were observed between the study years 

(data not shown), thus the average data are presented (Table 1). Accession 12, 

followed by 14, gave the best response in marketable fruit yield when used as 

rootstocks (Table 1).  

Table 1. Marketable fruit yield under water and soil salinity conditions. Values are the mean of 

n=50 plants and standard error of the cultivar ‘Adige’ grafted or not onto genotypes 5, 12 and 14 

for 2 years. Different letters in each column indicate significant differences at P<0.05 using the 

LSD test 

Plant combination kg plant-1 

Ungrafted 0.560 ± 0.014 c 

A/5 0.640 ± 0.056 bc 

A/12 0.960 ± 0.028 a 

A/14 0.840 ± 0.169 ab 
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5.4.2. Water relations 

 

Plant water relations were assessed by the determination of RWC and s (Figs. 

1 and 2). No changes in RWC were observed in the experiment in any plant 

combination, except for ungrafted plants (Fig. 1A, B), where RWC diminished 

(P< 0.05) after salt treatment.  

 

 

 

  

 

 

 

Figure 1. Effect of NaCl addition at 0 mM ( ) and 40mM ( ) on relative leaf 

water content (RWC %) for exposures of 14 days (A) and 28 days (B) in ungrafted pepper plants 

(cultivar ‘Adige’) and the cultivar grafted onto accessions 5, 12 and 14. Dates are mean 

valuesSE for n=6. In each plant combination, different letters indicate significant differences at 

P < 0.05 (LSD test) 

 

The s of all the plant combinations significantly reduced (P< 0.05) under 

salinity at T1 and T2 (Fig. 2). At T1, no significant interaction was found. At T2, 



                       174 | 

differences between treatments were greater in ungrafted and A/5 than in A/12 

and A/14 (P< 0.05).  

 

Figure 2. Leaf osmotic potential (MPa) in ungrafted pepper plants (cultivar ‘Adige’) and the 

cultivar grafted onto accessions 5, 12, and 14 after addition of NaCl at 0mM ( ) and 

40mM ( ) for exposures of 14 days (A) and 28 days (B). Dates are mean valuesSE for 

n=6. In each plant combination, different letters indicate significant differences at P < 0.05 (LSD 

test) 

 

5.4.3. Ion partitioning 

 

The Na+ concentration in leaves and roots increased under NaCl (Fig. 3A) in all 

the plant combinations. The Na+ concentration in leaves was higher in ungrafted 

and A/5 plants (Fig. 3A) if compared with A/12 and A/14 (P<0.05) at T1 and T2 

under salinity. In general terms, the Na+ concentration in the roots under salinity 

was higher than in leaves (Fig. 3B), with a lower concentration found in A/12 

and A/14. 
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Chloride content was approximately 4 times higher than Na+ in leaves. The Cl- 

concentration in leaves (Fig. 3C) increased with a higher NaCl concentration 

and time exposure, but this incident did not occur in roots (Fig. 3D) and in none 

of the plant combinations. Ungrafted and A/5 obtained the highest Cl- levels in 

leaves, whereas A/12 and A/14 plants showed a greater accumulation in roots 

(P<0.05) (Fig. 3D).  

In general terms, a consistent K+ content reduction trend was observed in 

leaves at T1 under saline conditions in all the plant combinations (Fig. 3E). This 

decrease occurred at T2 only in ungrafted and A/5 plants, but not in A/12 and 

A/14, where no significant differences in the K+ levels were found if compared 

with their controls (Fig. 3E). In roots, a marked increase in K+ content was 

observed in A/12 at T1 (Fig 3F). In contrast, the K+ concentration at T2 did not 

change in A/5 and A/14 under salinity (Fig. 3F).  

The Na+/K+ ratio increased significantly depending on salt application and the 

exposure time in the ungrafted and A/5 leaves (Fig. 3G). The lower values 

(P<0.05) in leaves were observed for A/12 and A/14. In the root compartment 

(Fig. 3H) under salt treatment at T1, the Na+/K+ values increased in ungrafted 

and A/5. At T2, the Na+/K+ ratio in roots lowered under salt conditions if 

compared to the values obtained at T1 in these plant combinations due to a 

sharp drop in the Na+ content in roots at T2. 
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Figure 3. Concentrations of Na+ (A, B), Cl- (C, D), K+ (E, F) in mg g-1 DW and the Na+/K+ ratio (G, H) 

in the leaves and roots of ungrafted pepper plants (cultivar ‘Adige’) and the cultivar grafted onto 

accessions 5, 12, and 14 after addition of NaCl at 0mM and 40mM for exposures of 14 days (

, ) and 28 days ( , ), respectively. Dates are mean valuesSE 

for n=6. In each plant combination, different letters indicate significant differences at P < 0.05 

(LSD test).  
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The Ca2+ (Fig. 4A) and Mg2+ levels (Fig. 4C) were similar in leaves for the 

tandem ungrafted and A/5 plants, with reduced plant exposure to NaCl (Fig. 4). 

In A/12 and A/14, the Ca2+ and Mg2+ concentrations in leaves showed minor 

variations between the control and treated samples (Fig. 4 A, C). In roots, the 

Mg2+ levels (Fig. 4D) lowered in all the plant combinations with time, while the 

Ca2+ levels lowered in A/5 at T1 and T2, but increased in ungrafted, A/12 and 

A/14 at T2 (Fig. 4B). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Ionic concentration of Ca2+ and Mg2+ in the leaves (A, C) and roots (B, D) in mg g-1 DW 

of ungrafted pepper plants (cultivar ‘Adige’) and the cultivar grafted onto accessions 5, 12, and 

14 after addition of NaCl at 0mM and 40mM for exposures of 14 days ( ,  ) and 

28 days ( , ), respectively. Dates are mean valuesSE for n=6. In each plant 

combination, different letters indicate significant differences at P < 0.05 (LSD test). 
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5.4.4. Proline content in leaves 

 

Under the control conditions, no significant differences were found in the proline 

leaf content between plant combinations with time. Salinity gave rise to 

increased leaf proline content (P<0.05). This increase was similar for all the 

plants at T1 (Fig. 5A). At T2 (Fig. 5B) under 40mM NaCl, proline content 

substantially increased in ungrafted and A/5 if compared with their control 

values, but not in 12/cultivar and 14/cultivar (P< 0.05), which showed similar 

values to T1. 

 

 

 

 

 

 

 

Figure 5. Changes in the proline concentration (mg proline g-1DW)  from ungrafted pepper plants 

(cultivar ‘Adige’) and the cultivar grafted onto accessions 5, 12 and 14 after addition of NaCl at 

0mM ( ) and 40mM ( ) for exposures of 14 days (A) and 28 days (B). Dates are 

mean valuesSE for n=6. In each plant combination, different letters indicate significant 

differences at P < 0.05 (LSD test) 
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5.4.5. Gas exchange parameters 

 

As shown in Figure 6, the AN (Fig. 6A, B) and gs (Fig. 6C, D) of the grafted 

plants did not differ from those of the ungrafted plants under the control 

conditions. The photosynthesis rate significantly lowered in all the plants 

(P<0.05) in response to salt stress, except 12/cultivar at T2, when the AN values 

did not significantly differ from those of the control (Fig. 6B).  

A decrease in gs under salt treatment was observed in all the plants (Fig. 6C, 

D). Significant differences were found for the ungrafted, A/5 and A/14 plants if 

compared to 12/A at T1 and T2. A minor decrease, but with a significant 

difference compared to its control, was noted for 12/cultivar.  

Instantaneous carboxylation efficiency, estimated by the AN/Ci ratio (Fig. 6E, F), 

reduced in ungrafted, A/5 and A/14 at T1 and T2. Interestingly at T2, minor 

differences were seen in the AN/Ci values in A/12, followed by A/14, if compared 

to their controls, but no significant differences were observed between them.  
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Fig 6.  The Net CO2 assimilation rate (AN; mol CO2 m-2 s-1) (A, B); leaf stomatal conductance (gs; 

mol H2O m-2 s-1) (C, D) and instantaneous carboxylation efficiency (AN/Ci; E, F) in ungrafted 

pepper plants (cultivar ‘Adige’) and the cultivar grafted onto accessions 5, 12 and 14 after 

addition of NaCl at 0mM ( ) and 40mM ( ) for exposures of 14 days (A, C, E) and 

28 days (B, D, F). Dates are mean valuesSE for n=10. In each plant combination, different letters 

indicate significant differences at P < 0.05 (LSD test). 
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5.4.6. Nitrate reductase activity in leaves  

 

Salt stress resulted in diminished NR activity in leaves after 14 (Fig. 7A) and 28 

(Fig 7B) days of mild NaCl treatment. Under salinity, the greatest NR activity at 

T1 and T2 was seen for A/12 plants, with significant differences (P< 0.05) if 

compared to ungrafted and A/5. Nevertheless, the inhibition percentages due to 

salt application at T2 were not associated with the NR control values: 74% for 

ungrafted, 50% for 5/cultivar, 22% for 12/cultivar and 32% for 14/cultivar (Fig. 

7B).  

 

 

 

 

 

 

 

 

Figure 7. Nitrate reductase activity (µmol NO2 g-1 FW h) in the leaves of ungrafted pepper plants 

(cultivar ‘Adige’) and the cultivar grafted onto accessions 5, 12 and 14 after addition of NaCl at 

0mM ( ) and 40mM ( ) for exposures of 14 days (A) and 28 days (B). Dates are 

mean valuesSE for n=6. In each plant combination, different letters indicate significant 

differences at P < 0.05 (LSD test) 
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5.4.7. Lipid peroxidation 

 

At T1 (Fig. 8A), MDA content increased and significant differences were 

observed only in the ungrafted plants. After 28 days of salt exposure, lipid 

peroxidation increased significantly in the ungrafted and 5/cultivar plants 

(P<0.05). It is noteworthy that no further MDA accumulation occurred in any of 

the plant combinations (Fig. 8B). 

 

 

 

 

 

 

Fig 8. Leaf malondialdehyde (MDA) content (nmol MDA g-1FW) in the leaves of ungrafted pepper 

plants (cultivar ‘Adige’) and the cultivar grafted onto accessions 5, 12 and 14 after addition of 

NaCl at 0mM ( ) and 40mM ( ) for exposures of 14 days (A) and 28 days (B). 

Dates are mean valuesSE for n=6. In each plant combination, different letters indicate 

significant differences at P < 0.05 (LSD test) 

 

5.4.6. Relationship between osmotic potential, ions and proline 

concentrations and photosynthesis in leaves 

Regression analyses were performed with the physiological study parameters to 

identify the dependence relations among them. Only the significant linear 
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relations that help to understand the tolerance mechanisms to salinity (Na+, Cl- 

and K+ concentration and proline level vs. osmotic potential and AN, and the 

relations between MDA concentrations and salt ions and AN) are shown in Table 

2.  

At T1 and T2, the data gave an inverse linear relationship among S and Na+, 

Cl- and proline, but a positive correlation with the K+ level in leaves. Proline was 

the parameter that obtained the steepest slope values to modify S. A positive 

linear correlation among the MDA concentrations in leaves vs. Cl- and Na+ was 

observed with strong dependence for the last of them. The AN level showed an 

inverse linear relation with MDA. 

AN at T1 correlated negatively with the Na+, Cl- and proline concentrations, but 

not significantly only for the last parameter (P> 0.05). The regression analysis 

indicated inhibition of AN with greater dependency of Na+ and Cl-. Nevertheless 

at T2, AN lowered, which was due mainly to an increased proline concentration. 

Although AN showed a positive dependency with the K+ levels, no significant 

influence was found, not even at T1 and T2.  
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Table 2. Linear regression and statistical analysis between mineral ions concentration (mg g-1 

DW) in the leaves of the cultivar “Adige” ungrafted and grafted onto different pepper genotypes 

(5, 12 and 14), and proline (mg g-1 DW), as related to osmotic potential (s s in MPa), CO2 

fixation rate (AN, mol CO2 m-2 s-1) and malondialdehyde (nmol MDA g-1 FW). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Salt treatment time Regression equations   P*            R2 

T1   S= -0.021[Na+] -1.05 

S= -0.006 [Cl-] – 0.99 

S= 0.02 [K+] – 1.61 

S= -0.22 [Proline] – 0.64 

 

AN = -0.641 [Na+] + 21.35 

AN = -0.1616 [Cl-]  + 22.47 

AN = 0.642 [K+] + 2.48 

AN = -7.856 [Proline] + 37.28 

 

MDA = 0.401[Na+] + 15.96                  

MDA = 0.099[Cl-] + 15.31             

MDA = -0.716[AN] + 28.73 

0.0035 

0.0003 

0.008 

0.0229 

 

0.0002 

0.0017 

0.1333 ns 

0.0548 ns 

0.0182 

0.0352 

0.0352 

0.782 

0.898 

0.716 

0.616 

 

0.919 

0.828 

0.701 

0.593 

0.633 

0.549  

0.551 

 

T2   

  

S= -0.029 [Na+] -1.13 

S= -0.0065 [Cl-] – 1.105 

S= 0.021 [K+] – 1.87 

S= -0.143 [Proline] – 1.02 

 

AN = -0.647 [Na+] + 21.81 

AN = -0.144 [Cl-]  + 22.46 

AN = 0.537 [K+] + 4.88 

AN = -2.943[Proline] + 24.38 

 

MDA = 0.3898[Na+] + 13.04                 

MDA = 0.068[Cl-] + 13.43             

MDA = -0.619[AN] + 26.46 

 

0.0001 

0.0031 

0.0514 ns 

0.0332 

 

0.0004 

0.0032 

0.0794 ns 

0.0018 

0.053  

0.1921 ns 

0.0283 

0.923 

0.792 

0.495 

0.986 

 

0.897 

0.788 

0.635 

0.910  

0.4848 

0.2646 

0.579 
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5.5. DISCUSSION 

 

We demonstrated that the behaviour, based on fruit yield, of the ‘Adige’ pepper 

cultivar to moderate salt stress can be improved when grafted onto robust 

rootstocks. This result was related to the performance of some physiological 

parameters when ungrafted and grafted plants were compared. Nevertheless, 

the effect of the graft itself as a barrier to restrict the transport of toxic salt ions 

from roots to leaves cannot be ruled out since the cultivar was not grafted onto 

its own roots. The best salt acclimation was obtained when accession 12 was 

used as a rootstock (A/12), based on not only yield, but also on the minor 

negative effects caused by salt treatment on photosynthesis, NR activity and 

lipid peroxidation. Furthermore, some favourable physiological characteristics 

for salt acclimation, such as higher K+ Ca2+ and Mg2+ levels in leaves and a 

lower Na+/K+ ratio, were seen in this plant combination. The latter parameter 

has been demonstrated as a good indicator of salt tolerance [28].  

Salt tolerance in plants is usually associated with the ability to restrict the 

uptake and/or transport of saline ions from roots to leaves and their 

compartmentalisation [29]. In this study, more Cl- was withheld in the roots of 

rootstocks in A/12 and A/14, and less Cl- was transported to their leaves if 

compared with the ungrafted and A/5 plants under NaCl stress (P<0.05). This 

suggests either maximised Cl- retrieval to the rootstock or a retention 

mechanism in the roots of these plant combinations. Unlike Cl-, rootstocks 12 

and 14 showed a reduced Na+ net uptake, consequently their leaves gave a 

lower Na+ concentration value if compared with the others (P<0.05). Two 

mechanisms can explain the lower Na+ concentration in roots: firstly, as 

suggested by Aktas et al. [3], in salt-tolerant pepper genotypes, a plasma 

membrane Na+/H+ antiporter protein is activated in root cells upon NaCl 
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exposure to extrude Na+ from roots into the growth medium. This mechanism 

has been reported in different grafted plants, such as melon [30–32], tomato 

[29,33,34], watermelon [35] and cucumber [36]. Alternatively, the root system of 

rootstocks 12 and 14 might be able to control Na+ influx and to allow minor entry 

from medium to roots, as reported for pumpkin roots [14].  

Regarding concentration; leaf Cl- accumulation exceeded that of Na+ in all the 

plant combinations. This is in accordance with the results obtained by Navarro 

et al. [37] and Chartzoulakis and Klapaki [5] in the ‘Orlando’ variety and the 

‘Sonar’ pepper variety, respectively. The higher Cl- concentration, if compared 

to Na+ (mainly in roots), can be linked to a higher passive uptake root 

component and a very feebly active Cl- uptake system [38]. However, it is 

unknown whether some rootstocks are capable of regulating the transport of 

Na+ or/and Cl- to leaves [39]. Based on our results, the capacity to regulate Na+ 

and Cl- uptake and transport could be linked to the ability of vigour rootstocks 

(comparing A/5 vs. A/12 and A/14), which indicates that the involved 

physiological and biochemical mechanisms operate at the rootstock level, as 

observed in grafted melon plants [13] or cucumber plants [14]. Nevertheless, 

the lower foliar Na+ and Cl- content observed in the tolerant grafted plants (A/12 

and A/14) can also be associated with the stimulated growth and development 

of the shoot, which led to the dilution of toxic ions.  

Regulation of ion homeostasis and selectivity, particularly Na+/K+ discrimination, 

is closely linked to the lower Na+ concentration and its relation to salt tolerance 

[40]. Given the similar physico-chemical structure between Na+ and K+, a high 

Na+ concentration in the external solution can lower the K+ level in the tissues of 

many plants species [41]. In our study, the Na+/K+ ratio in leaves of the 

ungrafted and A/5 pepper plants under salinity was significantly higher (P< 0.05) 

than those of the plants grafted onto rootstocks 12 and 14, and the latter is able 
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to select, use and transport K+ to leaves, as in many vegetable-grafted plants 

exhibiting salinity tolerance; e.g., tomato [12], melon [42] or cucumber [17,36]. 

However, the direct relation between K+ homeostasis and salinity tolerance has 

not been well-established [11]. In some species, Na+ can be balanced by a 

higher K+ concentration [43], while in other plants, tolerance is due to the 

capacity of roots to maintain K+ transport in the xylem, as in tomato-grafted 

plants [44]. Accordingly, a different behaviour for K+ accumulation in leaves was 

observed in A/12 and A/14 under the salt conditions. The significant increase in 

the K+ concentration in leaves from T1 to T2 could be related with long-term 

developed tolerance to salt mediated through the major K+ transport in these 

grafted plants. 

Despite the negative effect on plant growth derived from its toxic effect, 

accumulation of ions under salinity can help maintain the turgor pressure of 

plants [37,45]. In addition, different osmolytes can be involved in the reduction 

of S, including organic compounds such as sugars, free amino acids, 

glycinebetaine, soluble proteins, proline and organic acids [46–48], and/or 

macronutrients such as inorganic components [49]. According to our results, a 

strong negative correlation between the reduction in leaf s and salt ions 

content for all the plant combinations was observed in the experiment. The 

linear regressions equations showed that Na+ and Cl- display a different 

response on s. The lower osmotic potential seems to be achieved mainly by 

Na+ and, to a lesser extent by Cl-. This can be explained by a more marked 

change in Na+ accumulation if compared to Cl- between the ungrafted and A/5 

vs. A/12 and A/14 plants, rather than by the absolute concentration of both ions. 

The reduced osmotic potential assigned to Na+ was consistent with pepper 

plants [50], and salt-tolerant species such as Centarurea ragusina [51], Atriplex 

nummularia [52] or Aster tripolium [53]. The contribution of K+, Mg2+ and Ca2+ to 
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s under the salinity conditions in our study was more relevant in the A/12 and 

A/14 plants at T2, where K+, Mg2+ and Ca2+ represented 30-35% of the total 

ions if compared to 15% in the ungrafted and A/5 plants.  

The adjustment of the osmotic potential through inorganic ion uptake supposes 

a much lower energy cost than that conferred by the organic molecules 

synthesised in the cell [54]. However in order to reduce s, ungrafted and A/5 

plants required proline synthesis to produce sufficient osmotics under salt stress 

conditions. As a result, the reduction in s strongly related to proline 

accumulation in these plant combinations (r2= 0.95), but more weakly so in A/12 

and A/15 (r2 = 0. 36). Although high proline levels or other compatible solutes 

may protect plants by scavenging the oxygen-free radicals caused by salt stress 

[11,36.55,56], the amounts observed in the ungrafted and A/5 plants were 

related with the greater salt sensitivity of these genotypes, as reported for other 

species such as wheat [57], barley [58], Centaurea ragusina [51] or rice [59]. 

Plants respond to lower water availability under salinity by reducing their leaf 

transpiration, stomatal conductance, and by adjusting their root water uptake 

[60,61]. Under prolonged periods of exposure to salt, root conductivity can be 

partially recovered, mainly through the accumulation of compatible solutes 

and/or ions in roots. These responses should be involved in the maintenance of 

the relative water content in the leaves of grafted pepper genotypes in the 

experiment. Despite the reduction of the leaf osmotic potential and stomatal 

conductance described in the ungrafted plants, no root conductivity recovery 

should occur in the experiment since RWC was significantly lower under 

salinity. According to this relation, a reduction in either the functionality or the 

amount of aquaporins has been reported to occur in pepper plants under 

salinity [37,62]. 
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In this experiment, the Na+ and Cl- concentrations did not provoke salt toxicity 

symptoms in our pepper plants, and only minor leaf chlorosis was noted and 

small necrotic areas were observed mainly in ungrafted plants. These results 

agree with the higher lipid peroxidation levels reported in ungrafted plants when 

compared with grafted plants. Lower MDA concentrations were found in A/12 

plants, followed by A/14. Nevertheless, gas exchange parameters were affected 

after a 2-week salt exposure and extended to T2. Excessive Na+ and Cl- 

accumulation is harmful and may disrupt the integrity of the photosynthetic 

apparatus [31]. In line with this, a positive dependence between MDA and the 

salt ion concentration and a negative relation with the photosynthesis values 

were established. Reduced photosynthetic capacity can be related to higher leaf 

Na+ or Cl- concentrations [29,35,63,64]. In our experiments, the highly 

significant correlation found between AN and Na+ and Cl- foliar concentrations 

suggested that both ions can be involved in reduced photosynthesis, although 

the regression analyses indicated a predominant inhibition effect by Na+. This 

effect can be linked to the concentration level in leaves and/or a major toxic 

power to promote inhibition. In contrast to the reductions observed in the other 

plant combinations, maintenance of AN in the A/12 plants can be attributed, at 

least in part, to increased K+ levels or to other beneficial macronutrients, such 

as Ca2+ and Mg2+, which contribute to better regulate stomata regulation under 

salinity [41]. Notwithstanding, gs significantly lowered under mild salt stress in all 

the plant combinations and for the time exposures, which corroborates a 

previous finding that gs are very sensitive to salt [55,65]. In addition, the 

diminished instantaneous carboxylation efficiency (AN/Ci) noted at T1 and T2 in 

the ungrafted, A/5 and A/14 plants suggests that salt stress affects 

photosynthesis by metabolic limitations, probably in association with reduced 

Rubisco carboxylase activity [66]. In contrast, stomatal limitations to 
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photosynthesis should occur in A/12 at T1 and T2 since no changes in AN/Ci 

were observed under salinity [67].  

There is evidence that photosynthesis regulates nitrate reduction by modulating 

NR activity [68,69], which agrees with the results presented herein, which 

indicate that salt application diminishes AN and NR activity. The most tolerant 

rootstock (A/12) in AN terms exhibited lower NR inhibition if compared with the 

others. A drop in NR by salt can be due to: reduced nitrate transport to leaves, 

mainly because of nitrate/chloride competition [70]; inactivation of NO3
- 

transporters by toxic effects of salt ions [71]; the disruption of root membrane 

integrity [62]; diminished NO3
- transport from roots to leaves due to a lower 

transpiration flow [22] and, consequently, low NO3
- loading into the root xylem, 

which affects NR activity [72]. Accordingly, and in accordance with the results 

obtained, the more marked decrease noted in NR activity (ungrafted and A/5 

plants) in leaves can be associated with higher Cl- and Na+ accumulations 

and/or lower carbon fixation rates.  

In conclusion, the greater salt tolerance of grafted plants shown in yield, mainly 

the A/12 (and A/14) combinations, can be attributed to their ability to restrict Cl- 

transport to leaves and to diminished Na+ loading in roots and leaves, thus 

favouring K+ (Ca2+ and Mg2+) uptake and allowing a smaller osmotic potential 

with a lower energy cost. These traits led to a minor inhibitory effect on 

photosynthesis and NR activity, which favourably affected fruit yield when 

compared with the A/5 and ungrafted plants. Nonetheless, although ionic and 

water homeostasis are crucial parameters in salt tolerance, the maintenance of 

shoot vigour and leaf function are vitally important, as described in other 

species, such as tomato [44, 73] or melon [30]. The relative contribution of both 

groups of processes to induced tolerance to salinity in grafted pepper plants 

needs to be further assessed. An effect of the grafting procedure per se cannot 
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be simply ruled out, and self-grafted plants should also be assayed under 

salinity conditions. Knowledge of the physiological and biochemical processes 

that promote salt stress tolerance can improve our understanding of not only the 

mechanisms involved in scion and rootstock interactions, but also of the 

selection of robust rootstocks to be used under field salinity conditions.  
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CHAPTER 6 
Can a robust rootstock of pepper 
improve a scion’s salt tolerance? 
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6.1. ABSTRACT 

 

The performance of a wild-type salt-tolerant pepper (Capsicum annuum L.) 

accession (A25) as a rootstock was assessed. A greenhouse experiment was 

conducted to determine growth, mineral partitioning, gas exchange and 

chlorophyll a fluorescence parameters, antioxidant systems and proline content 

in a commercial pepper cultivar Adige when grafted onto A25 plants (A/A25) and 

ungrafted plants (A) under salinity conditions (80 mM NaCl) for 14 days. Salt 

stress induced significantly stunted growth of A plants (-40.6% of leaf DW) 

compared to the control conditions, while no alterations were observed in A/A25 

at the end of the experiment. Accumulation of Na+ and Cl− in leaves and roots 

was similar in either grafted or ungrafted plants. Conversely, SOD, CAT and APX 

activity and the non-photochemical quenching coefficient significantly increased 

under high salinity in A plants. Despite the activation of protective mechanisms, 

A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of 

AN390) and substantial buildup of MDA by-product, which suggests they are 

unable to counteract salt-triggered damage. In contrast, A/A25 plants did not 

show alterations in photosynthesis under salinity and MDA levels only increased 

slightly. Our results underline that, as grafted plants, A/A25 showed higher salt 

tolerance, likely due to ion compartmentalization and proline accumulation. Under 

80 mM of NaCl, the A/A25 plants grown in the field also yielded a larger amount 

of marketable fruit (+75%) and showed lower Blossom end Root incidence (-

31%). 

 

Keywords: Capsicum annuum; Grafting; NaCl stress; Growth; Photosynthesis; 

Antioxidant system 
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6.2. INTRODUCTION 

 

One of the most important challenges in agriculture is knowledge of crop 

responses under global change conditions since the induced alterations in 

agricultural ecosystems will affect plant metabolism and productivity. These 

effects on plants will differ for each region depending on current climatic 

conditions. In the Mediterranean region, predictive models of climate change 

indicate a combination of reduced rainfall and increased temperature that will 

further impose higher evapotranspiration loss and increased water stress 

problems for many crop species (Chartzoulakis and Psarras, 2005; Majumder, 

2015). The reduced availability of high-quality irrigation water will also increase 

the use of saline water, thus further aggravating already existing water and soil 

salinity problems (Jensen et al., 2014). The term “salinity” implies high 

concentration of salts in soil and/or water, and NaCl constitutes the predominant 

part of this salinity (Türkan and Demiral, 2009). Nowadays, about 7% of the 

world`s land area and 20% of irrigated land are affected by salinity (Ferreira-Silva 

et al., 2010). Salinity affects plant performance through the development of 

osmotic stress and disruption of ion homeostasis (Munns and Tester, 2008; 

Shabala and Munns, 2002; Penella et al., 2015). In general terms, effects of 

salinity on plants are the result of both water stress (due to a higher osmotic 

potential in soil as compared to plant tissues) and a toxic effect caused by the 

influx of Na+ and Cl- ions into plant tissues (Tuteja, 2007; Munns and Tester, 

2008). The final result of these effects is a wide range of physiological, metabolic 

and genomic changes that provoke alterations in photosynthesis, carbohydrate 

partition, respiration, increased reactive oxygen species (ROS) production, and 

an unbalanced uptake of other nutrients (Parida and Das, 2005, Hu and 

Schmidhalter, 2005; Chaves et al., 2009). Overall, the physiological changes 

induced by salinity correspond to diminished plant growth and yields. 
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In spite of these deleterious effects, plants present different degrees of tolerance 

to salinity, conferred by biochemical pathways, which can alleviate the negative 

effect of salt toxicity; amongst them: (I) retention and acquisition of water 

mediated by the biosynthesis of osmotically-active metabolites (mainly proline, 

glycine-betaine or sugars) (Singh et al., 2014); (II) maintenance of ion 

homeostasis, which minimizes the perturbation of toxic effect of Na+ and Cl- into 

plant tissue and/or favors compartmentalization in vacuoles (Rivero et al., 2014; 

Razzaghi et al., 2015); (III) induction of antioxidant systems (Ashraf et al., 2012; 

Hu et al., 2012; Wang et al., 2012; Fini et al., 2014); (IV) over production of 

hormones, mainly abscisic acid (Krasenski and Jonak, 2012; Yoshida et al., 

2014); (V) synthesis of specific stress-associated molecules such as heat-shock 

proteins (Wang et al., 2004; Krasenski and Jonak, 2012; Perez-Salamò et al., 

2014); or (VI) late embryogenesis abundant proteins (Parida and Das, 2005, 

Radíc et al., 2013). In summary, a plant’s response to salinity results from many 

different morpho-anatomical, biochemical and physiological adaptations, which 

has led to long lists of plants being established: from sensitive, moderately-

tolerant to tolerant species (Ashraf and Wu, 1994; Shannon and Grieve, 1998; 

Munns, 2002, Grieve et al., 2012). Therefore, salt tolerance is dependent not only 

on plant species, but sometimes different genotypes that belong to the same 

species can also have a different degree of salt tolerance (Shabala and Munns, 

2012). Modifications of salt-sensitive crops, based mostly on the manipulation of 

genes that protect and maintain the function and structure of cellular components 

under salinity stress represent an important goal in the last few decades 

(Golldack et al., 2011; Peleg et al., 2011). However, the nature of the genetically-

complex mechanisms of salinity stress tolerance and lack of public acceptance 

of genetic transformation mean that other approaches have to be considered in 

an attempt to obtain salt-tolerant genotypes. 
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A promising perspective to improve resistance to salinity, recently utilized also for 

herbaceous species, is the use of grafting of commercial cultivars onto robust 

rootstocks. Pepper is one of the most important crops in Spain which is usually 

classified as a salt-sensitive species (Kurunc et al. 2011; del Amor and Cuadra-

Crespo, 2011), even though Aktas et al. (2006) observed that salt tolerance can 

vary amongst pepper genotypes. Given the poor genetic basis of cultivated 

pepper accessions, the screening of wild pepper species has been performed in 

previous works to assess naturally-occurring genetic variation to salinity in order 

to select salt-tolerant rootstocks (Penella et al., 2014). Tomato and melon are the 

commonest species in which the grafting practice has been efficiently applied to 

obtain salt-tolerant morphs (Estañ et al., 2005, Edelstein et al., 2011, Orsini et 

al., 2013). It has been demonstrated that tolerance in a grafted plant corresponds 

to the capacity for exclusion and/or retention of toxic ions Na+ and Cl- in rootstock 

roots, which limits their transport to leaves rather than the synthesis of osmotically 

active metabolites (Estañ et al., 2005, Edelstein et al., 2011, Orsini et al., 2013). 

In a previous work, a wild-type pepper accession (code A25) with high tolerance 

to salinity was selected. This rootstock was the most tolerant one to salinity 

compared to other rootstocks in terms of yield (unpublished data). The aim of the 

present work was to characterize the performance of Adige, a commercial pepper 

cultivar (Penella et al., 2014) sensitive to salinity stress when grafted onto a 

robust salt-tolerant rootstock, such as A25 (A/A25 plants). In particular, stomatal 

responses, antioxidant systems and proline accumulation were investigated to 

elucidate the salt tolerance-based mechanisms found in A/A25. For this purpose, 

A (ungrafted) pepper plants versus A/A25 plants, subjected to mild salt stress (80 

mM NaCl) for 14 days, were compared in the open air and in the greenhouse. 

6.3. MATERIAL AND METHODS 
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6.3.1. Plant material  

 

Based on previous studies, a pepper accession of Capsicum annuum L. from the 

COMAV Genebank at the UPV university (Valencia, east Spain) was selected, 

which was tolerant to salinity (code A25). This accession was chosen to be used 

as a rootstock and pepper cultivar ‘Adige’ (A) (Lamuyo type, Sakata Seeds, 

Japan) was the scion. Seeds of A25 were sown in 96-hole seed trays filled with 

an enriched substrate for germination. After 2 months, A-plants were grafted onto 

A25 (A/A25). The graft was performed by the tube-grafting method (Penella et 

al., 2015). The ungrafted ‘Adige’ (A) plants were sown 2 weeks later to obtain 

plants with a similar biomass to that of the grafted plants at the time of 

transplantation (10-12 true leaves). The plants obtained by the aforementioned 

procedure were utilized for both field and greenhouse experiments. 

 

6.3.2. Soil -field experiment 

 

A preliminary experiment was conducted in spring/early summer 2013 in a field 

with soil with a moderate salt concentration (pH=8.0; EC as saturated past was 

6.64 dS m-1; Sand= 76%). The electrical conductivity and pH of the irrigation 

water were 7.5 dS m-1 and 7.60, respectively, with 57.5 meq l-1 of Na+ and 71.2 

meq l-1 of Cl-. Plant density was 2.5 plants m-2 in sandy soil (in polyethylene 

greenhouses). Fertilizers were applied at a rate of 200 UF N, 50 UF P2O5, 250 

UF K2O, 110 UF CaO and 35 UF MgO. A randomized complete block design was 

used with three replicates, each consisting of 25 plants. There was no significant 

difference among replicates in production. Ripe fruits were harvested from the 
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end of May to the end of July, and marketable and unmarketable fruits, mainly 

due to blossom end rot (BER), were weighed. 

 

6.3.3. Greenhouse experiment 

 

Seeds were sown on January 29th (2014) and the grafting for A/A25 performed 

on March 29th. After 3 weeks of acclimation, 30 plants of each combination (A 

and A/A25) were separated into two groups: controls (C) and NaCl-treated plants 

(+NaCl). For salt treatment, 80 mM of NaCl were added to a half-strength 

Hoagland’s solution (pH 6.5±0.1; EC 8.0 dS m-1). Both groups were watered daily 

with excess half-strength Hoagland’s solution (pH 6.5±0.1; EC 1.1 dS m-1) to 

minimize salt accumulation in the substrate for the 14 d that the experiment 

lasted. Potted plants were grown under greenhouse conditions at the facilities 

provided by the University of Pisa (Pisa, Italy). Temperatures ranged between 8.7 

°C and 22.9 °C during the day, and remained above 12 °C at night. Relative 

humidity (RH) was between 37.7% and 96.3%, with daily maximum 

photosynthetically active radiation (PAR) levels within the greenhouse range of 

850-1530 µmol m-2 s-1 (directly provided by sunlight). 

All the physiological measurements were taken on fully expanded mature leaves 

(third or fourth leaf from the shoot apex) at the end of the salt treatment period. 

Two independent physiological determinations were made on each replicate and 

plant combination, obtained from six plants per treatment and combination. 
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6.3.4. Biomass and ion determination 

 

Plants were harvested after 14 d of treatment. Leaves and roots were separated 

and their fresh weight (FW) was recorded. For dry weight (DW) determinations, 

leaves and roots were dried at 70 °C for 72 h in a laboratory oven and then 

weighed. Leaves and roots were milled and digested with concentrated HNO3. 

Na+ and K+ were measured with an atomic absorption spectrophotometer 

(Ultrospec 2100, Pharmacia). Chloride analysis was performed on the water 

extracts of dry materials. The sample (250 mg DW) was incubated in water at 60 

°C for 30 min. Following centrifugation, the supernatant was collected and Cl- was 

determined in an ion cromatograph (DX-100 ion chromatograph DionexTM, 

Thermo Scientific). 

 

6.3.5. Water potential and relative water content 

 

The leaf water potential at pre-dawn (w) and the relative water content (RWC) 

were measured on the leaves sampled before dawn by a standard methodology 

(Guidi et al., 2008). 

 

6.3.6. Gas exchange and PSII photochemistry measurements 

 

The net CO2 assimilation rate, stomatal conductance (gs) and intercellular CO2 

concentration (Ci) in the saturating light (AN390, i.e. at 80028 mol quanta m-2s-2 

and 390 mol CO2 mol-1) determinations were taken on fully expanded leaves 
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(3rd- 4th leaf from the apex) at room temperature (RT) and 75% RH with a portable 

Li-COR 6400 (Li-Cor Inc.) infrared gas analyzer. In the same leaves, the 

response of light-saturated CO2 assimilation to variable internal CO2 

concentrations (A/Ci curves) was measured as reported in Guidi et al. (2008). 

From the A/Ci curves, the following photosynthetic parameters were calculated 

according to Long and Bernacchi (2003): the apparent maximum carboxylation 

rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Vcmax, the 

maximum rate of the electron transport (Jmax), which is equivalent to the ribulose-

1,5-bisP (RuBP) regeneration rate, and use of triose-P (TPU). 

The chlorophyll a fluorescence parameters were estimated from the 

measurements taken on the dark- (for 30 min) and light-adapted leaves (about 

800 µmol m-2s-1) by IMAGING-PAM (Walz, Effeltrich, Germany). The maximum 

quantum efficiency of PSII was calculated as Fv/Fm = (Fm - F0/Fm). The operating 

quantum efficiency of PSII photochemistry, PSII, was calculated as (F′m - F′)/F′m. 

The electron transport rate was calculated as ETR= 0.5 x PSII x PAR x 0.84 

µequivalents m-2 s-1. The photochemical quenching (qP) factor was determined 

as (F′m - F′)/(F′m - F′0). Non photochemical quenching (NPQ) was expressed as 

Fm/F′m – 1, where F′m was maximal fluorescence during a saturating flash of light 

of about 8000 mol m-2 s-1, and F′0 was the minimal fluorescence estimated by 

the approach of Oxborough and Baker (1997) F0′ = F0/(Fv/Fm + F0/Fm′). 

 

6.3.7. Leaf lipid peroxidation 

 

Leaf lipid peroxidation was estimated with the malondialdehyde (MDA) 

concentration measurements taken by the thiobarbituric acid reaction, as 

reported in Penella et al. (2015). 
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6.3.8. Antioxidant enzymes  

 

Antioxidant enzyme activities were measured in the fresh leaf material extracted 

with 1 mL of 100 mM potassium phosphate buffer (pH 7.0) that contained 

ethylenediamine tetra-acetic acid (EDTA). The extract was then centrifuged at 

11000 x g at 4 °C for 15 min, and the supernatant was used for all the enzyme 

assays, while the protein determinations were performed with the Protein Assay 

Kit II (Bio Rad). 

Superoxide dismutase (SOD; EC 1.15.1.1) activity was measured at 560 nm, 

based on the inhibition of nitroblue tetrazolium (NBT) reduction by SOD (Beyer 

and Fridovich, 1987). One unit of SOD was defined as the enzymatic amount 

required to reduce the NBT reduction state by 50%. Catalase (CAT; EC 1.11.1.6) 

activity was measured at 270 nm by determining the rate of conversion of H2O2 

into O2 and water, as described by Cakmak and Marschner (1992). Catalase 

activity was expressed as µmol H2O2 per mg protein and per minute. Ascorbate 

peroxidase (APX; EC 1.11.1.11) activity was determined following the H2O2-

dependent oxidation of ascorbate (AsA) at 265 nm in a reaction mixture 

composed of 50 µM AsA, 90 µM H2O2, 50-100 µg proteins and 0.1 M phosphate 

buffer (pH 6.4) (Nakano and Asada, 1981). APX activity was corrected by 

subtracting the non-enzymatic H2O2-dependent ASA oxidation and H2O2-non-

dependent ASA oxidation. APX activity was expressed as µmol AsA per mg 

protein and per minute.  

 

 



                       212 | 

6.3.9. Proline  

 

Proline content was determined according to the method of Bates et al. (1973) 

with some minor modifications. Plant material (100 mg FW) was ground in an ice-

cold mortar with 2 mL of 3% sulfosalicylic acid. Homogenates were centrifuged 

for 30 min at 10,000 xg at 4 °C. The supernatant was filtered through 0.2 µm 

Minisart® SRT 15 aseptic filters and 1 mL of the filtrate was mixed with equal 

volumes of glacial acetic acid and of ninhydrin reagent (1.25 g ninhydrin, 30 mL 

of glacial acetic acid, 20 mL 6 M H3PO4), and was incubated for 1 h at 100 °C. 

The reaction was stopped by placing test tubes in ice-cold water. Samples were 

vigorously mixed with 2 mL toluene. After 20 min, the light absorption of the 

toluene phase was estimated at 520 nm, with toluene used for a blank. The 

proline concentration was determined with a standard curve and calculated on a 

FW basis. 

 

6.3.10. Tocopherol and -carotene determination 

 

The amount of α-tocopherol and ß-carotene was determined by HPLC according 

to Döring et al. (2014). Thirty mg of leaves were homogenized in 3 mL of 100% 

HPLC-grade methanol and incubated overnight at 4 °C in the dark. The 

supernatant was filtered through 0.2 µm Minisart® SRT 15 aseptic filters and 

immediately analyzed. The analysis was performed at RT with a reverse-phase 

Dionex column (Acclaim 120, C18, 5 µm particle size, 4.6 mm internal diameter 

× 150 mm length) and methanol/ethylacetate (68/32, v/v) was used as the mobile 

phase (flow rate 1 mL min-1). α-tocopherol and ß-carotene were detected at 280 

nm and 445 nm, respectively. Pure authentic standards were used to quantify the 

α-tocopherol and ß-carotene content of each sample. 
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6.3.11. Ascorbic acid content  

 

Total ascorbate (AsAt), dehydroascorbate (DHA) and reduced ascorbate (AsA) 

were determined as described by Degl’Innocenti et al. (2005), based on the 

method of Kampfenkel et al. (1995). The ratio between AsA and AsA total 

(AsA/AsAt) was reported. 

 

6.3.12. Statistical analysis  

 

The experiment was completely randomized and the results were subjected to a 

two-way ANOVA (Statgraphics Centurion for Windows, Statistical Graphics 

Corp.) with salt treatment and plant type as the variability factors. The data of 

marketable fruits and the percentage (angularly transformed) of the fruits affected 

by BER were subjected to a one-way ANOVA with plant type as the variability 

factor. Means (n=6; ± SE) were compared using Fisher's least significance 

difference (LSD) test at P < 0.05. 
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6.4. RESULTS 

 

6.4.1. Fruit yield 

 

Adige grafted onto accession A25 (A/A25) gave the best response in marketable 

fruit yield associated with the lowest percentage of BER with significant 

differences with A plants (Table 1).  

Table 1. Marketable fruit yield and percentage of fruit affected by Blossom end Root (BER) 

under water and soil salinity conditions. Values are the mean of 50 replicates per cultivar 

Adige ungrafted (A) or grafted onto the A25 genotype (A/A25). Different letters in each 

column indicate significant differences at P<0.05 using the LSD test, following a one-way 

ANOVA test with plant type as the variability factor. 

     Graft 
combination 

                        Marketable yield                                  BER 
                             (kg plant-1)                                       (%) 

 

       A                         1.84 b                                            49a 
 

 

       A/A25                         3.23 a                                        18b   

 

 

6.4.2. Ion partitioning 

 

After 14 days of culture in the greenhouse, Na+ (Fig. 1A, D) and Cl- (Fig. 1B, E) 

increased in both roots and shoots under salinity (80 mM NaCl) in both plant 

types. The Cl− concentration was higher in leaves (Fig. 1E) than in roots (Fig. 1B) 

(3.3 vs. 6.1 mg g-1 DW, respectively; P<0.01), while no differences were observed 

in Na+ content (1.5 vs. 1.7 mg g-1 DW in roots and leaves, respectively; P<0.01). 

The K+/Na+ ratio was higher in leaves than in roots (4-fold; P<0.001), and was 

significantly lower in both plant organs when salinity was applied (Fig. 1 C, F).  
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Figure 1. Mineral content (on a DW basis) in the roots and leaves of the control (white bars) and 

salt-treated plants (black bars) of pepper cultivar Adige, ungrafted (A) or grafted onto the A25 

genotype (A/A25). Means (n=6; ± SE) with different letters being significantly different at 0.05 

according to a two-way ANOVA, with salt treatment and plant type as the variability factors. 

 

6.4.3. Water potential 

 

Leaf water potential (w) significantly decreased following NaCl treatment in both 

genotypes, and reached values of -0.22 and -0.32 MPa in A and A/A25, 

respectively (Fig. 2). However, no differences between the control and stressed 

plants in RWC were observed (Fig. 2, inside). 
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Figure 2. Water potential and RWC (inside) of cultivar Adige, ungrafted (A) or grafted onto the A25 

genotype (A/A25) under salinity conditions (black bar). Control is represented by white bars. 

Means (n=6 ± SE) with different letters are significantly different at 0.05 according to a two-way 

ANOVA with salt treatment and plant type as the variability factors. Absence of letters (inside box) 

indicates that the F ratio was not significant. 

 

6.4.4. Gas exchange and chlorophyll fluorescence parameters 

 

At ambient atmospheric CO2 concentrations, salinity significantly lowered the net 

assimilation rate at light saturation (AN390), but only in A plants, whereas no 

differences were observed in A/A25 between controls and salt-treated individuals 

(Table 2). The intercellular CO2 concentration (Ci) lowered in the salt-treated 

leaves of A/A25, but no differences were observed in A. Stomatal conductance 

(gs) decreased significantly in both plant combinations (Table 2). The effects of 

NaCl treatment on Vcmax and Jmax were pronounced in A plants (with a significant 
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difference compared to its control), whereas no effects were detected in A/A25. 

Interestingly these two parameters were higher in A/A25 compared to A plants 

under control. Likewise, no effects on TPU were observed following salt stress in 

A/A25 and, once again, a significant reduction in the ungrafted A plants was 

observed (Table 2). 

 

Table 2. Gas exchange parameters of cultivar Adige ungrafted (A) or grafted onto the A25 

genotype (A/A25) under salinity conditions. Plants maintained in optimal nutrient solution 

represent the controls. The CO2 assimilation rate at 390 µmol mol-1 CO2 (μmol CO2 mol-1) (AN390), 

the intercellular CO2 concentration (µmol CO2 mol-1) (Ci) and stomatal conductance to water vapor 

(mol H2O m-2 s-1) (gs) were determined from the response curve of the CO2 photoassimilation 

versus light intensities. The apparent maximum carboxylation rate of Rubisco (Vcmax, µmol CO2 m-

2s-1), the maximum rate of electron transport (Jmax, µmol e- m-2 s-1), which is the equivalent to the 

RuBP regeneration rate, and the use of triose-P (TPU; µ Pi m-2s-1) were determined from response 

curve of CO2 photoassimilation vs. Ci. Values are the mean of four replicates per genotype. 

Different letters in each column indicate significant differences at P<0.05 using the LSD test, 

following a two-way ANOVA test with NaCl treatment and plant type as the variability factors.  

 

 

 

 

 

 

       Graft        
combination  Treatment AN390 Ci gs Vcmax Jmax TPU 

A  control 6.91 b 221.0 a 0.092 b 64.5 b 71.5 b 4.75 a 

  NaCl 3.76 c 210.5 ab 0.035 c 31.0 c 44.0 c 2.40 b 

               

A/A25  control 9.45 a 214.0 ab 0.135 a 124.0 a 103.5 a 5.55 a 

  NaCl 8.18 ab 179.0 b 0.082 b 137.0 a 99.5 a 4.60 a 
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The maximum PSII quantum yield of primary photochemistry (Fv/Fm) did not 

change in both the genotypes following salinity stress, but showed values typical 

of healthy leaves (Björkman and Demmig, 1987) (data not shown). The ETRs for 

each plant combination subjected, or not, to salinity were plotted according to 

PAR (Fig. 3A, B). When PAR fell within the 0-200 μmol m−2 s−1 range in both plant 

types, the light-response curves of the ETR for the pepper-stressed plants closely 

overlapped that of the controls. Yet when PAR was above 200 μmol m−2 s−1, in 

A-stressed plants, a significant separation of the light-response curves of ETR 

occurred (Fig. 3A). In A/A25 plants, the curves for control and salt did not show 

significant differences due to PAR (Fig. 3B). 

The decrease in ETR in A salted plants was mainly caused by the substantial rise 

in NPQ (Fig. 3C). In A/A25 no differences in the NPQ values between the controls 

and treated plants were detected (Fig. 3D). The qP coefficient remained 

unchanged in A/A25 under salt stress (Fig. 3F), and lowered in A-stressed plants 

(Fig. 3E). 
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Figure 3. Electron transport rate (ETR), non-photochemical quenching (NPQ) and photochemical 

quenching coefficient (qP) in response to photosynthetic active radiation (PAR) in cultivar Adige, 

ungrafted (A) or grafted onto the A25 accession (A/A25) under salinity conditions (closed circles). 

The plants maintained in optimal nutrient solution represent controls (open circles). Values are 

the mean of 6± SE replicates per plant combination.  
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6.4.5. Antioxidant enzymes  

 

SOD activity increased significantly in both genotypes following salinity (Fig. 4A), 

but the rise in A/A25 was even more pronounced. In A plants, CAT activity 

increased significantly following salinity conditions (Fig. 4B), whereas no changes 

in APX activity were recorded (Fig. 4C). A different behavior was observed in 

A/A25 plants, in which salt stress did not induce changes in CAT activity, but 

significantly reduced APX activity (Fig. 4B, C). 
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Figure 4. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity in 

leaves of cultivar Adige, ungrafted (A) or grafted onto the A25 genotype (A/A25) under salinity 

conditions (black bar). Control is represented by white bars. Means (n=6; ± SE) with different 

letters are significantly different at 0.05 according to the two-way ANOVA, with salt treatment 

and plant type as the variability factors. 
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6.4.6. Effect of salt treatment on lipid peroxidation, α-tocopherol, β-

carotene, ascorbate and proline  

 

NaCl treatments led to a significant rise in the levels of the MDA by-products 

content in both kinds of pepper plants (Fig. 5A), but this increase was higher for 

A plants under salt stress. The -tocopherol concentration (Fig. 5B) was also 

affected by NaCl treatment in A plants, whose a significant reduction was 

detected, but no differences were found between controls and treated plants for 

A/A25 (Fig. 5B). Another important antioxidant in chloroplast is -carotene, which 

did not change in all plants following salt stress (Fig. 5C), even though a smaller 

amount was found in A/A25 compared to A plants (Fig. 5C). Finally, total AsA 

significantly increased in A plants under salinity conditions (+256% as compared 

to the controls). The decrease in the AsA/AsA total ratio in A salt-stressed leaves 

(from 0.85 to 0.52 in controls) indicated that a large amount of AsA was oxidized 

into DHA (Fig. 5D). In A/A25 plants, a significant increase in the AsA/AsA total 

ratio was reported following the salinity treatment (Fig. 5D). 

Proline content sharply increased, but only in A/A25 plants following NaCl stress, 

whereas no changes in A plants were observed (Fig. 6A).  
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Figure 5. Malondialdehyde by-products (MDA), -tocopherol, -carotene and ascorbic acid in the 

leaves of cultivar Adige, ungrafted (A) or grafted onto the A25 accession (A/A25) under salinity 

conditions (black bar). Control is represented by white bars. In graph D, different forms of 

ascorbate are reported. The numbers above the bars indicate the AsA/AsA total ratio and capital 

letters indicate the difference. Means (n=6 ±SE) with different letters are significantly different at 

0.05 according to the two-way ANOVA, with salt treatment and plant type as the variability 

factors. 
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Figure 6. Proline content in the leaves of cultivar Adige, ungrafted (A) or grafted onto the A25 

genotype (A/A25) under salinity conditions (black bar). Control is represented by white bars. Each 

value represents the mean of 6 samples ± SE. Means with different letters are significantly 

different at P≤0.05 according to the two-way ANOVA, with salt treatment and plant type as the 

variability factors.   

 

6.4.7. Biomass  

A/A25 plants developed a bigger root system than A plants (Fig. 7). No significant 

effect of salinity was noted on root FW and DW between the same plant types 

(Fig. 7A, C). The root FW/DW ratio did not change in both genotypes (Fig. 7E). A 

sharper drop in shoot biomass (leaf FW and DW) occurred as a consequence of 

salinity stress in A plants, but no changes in A/A25 were observed (Fig. 7B, D).On  

the contrary in A/A25, the FW/DW leaves ratio significantly lowered, but only in 

A/A25 (Fig. 7F) 
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Figure 7. FW and DW, and their ratio for the root and leaves of cultivar Adige, ungrafted (A) or 

grafted onto the A25 genotype (A/A25) under salinity conditions (black bar). Control is 

represented by white bars. Each value represents the mean of 6 samples ± SE. Means with 

different letters are significantly different at 0.05 according to the two-way ANOVA, with salt 

treatment and plant type as the variability factors. Absence of letters indicates that the F ratio of 

the interaction is not significant.  
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6.5. DISCUSSION 

 

Under salinity stress, reduced plant growth is induced by different biochemical, 

physiological and molecular alterations (Munns, 2002; Krasensky and Jonak, 

2012). The selection of salt tolerant accessions to be used as rootstocks could 

be a promising approach to ameliorate the negative effects of salinity on pepper 

productivity (Penella et al., 2015). In the present study, we demonstrated that 

peppers grafted onto the accession A25 were less sensitive to salt stress 

compared to their ungrafted counterparts. The lower salt sensitivity exhibited by 

A/A25 was clearly demonstrated by the lack of negative effects on plant growth, 

increased marketable yield and the fewer BER symptoms appearing. The 

ameliorative effect of grafting on plant’s growth under salinity conditions fully 

agrees with other findings in tomato and melon (Santa-Cruz et al., 2002; Estañ 

et al., 2005; Martinez-Rodriguez et al., 2008; He et al., 2009).  

In a plant, accumulation of Na+ and Cl- in roots, and mainly in leaves, is the main 

deleterious consequence of salt exposure, which can inhibit different metabolic 

functions (Munns, 2002; Shabala and Munns, 2012). The mechanisms by which 

grafting improves salt tolerance can be numerous. For example, it has been 

reported that the positive effect induced by using a salt-tolerant rootstock in citrus 

is related to the rootstock’s ability to exclude chloride, the main toxic ion in this 

species (Fernandez-Ballester et al., 2003; Moya et al., 2002). Similarly, 

rootstocks of Vitis spp. also vastly differ in their ability to exclude Cl-, and also in 

their salinity tolerance given that the main cause of salt-induced damage in 

grapevines is related to Cl- accumulation (Stevens et al., 1996; Fisarakis et al., 

2001; Gibberd et al., 2003). In contrast, sodium has been reported to be the main 

ion responsible for NaCl toxicity in pepper (Penella et al., 2015) and tomato 

(Fernandez-Garcia et al., 2004). Martinez-Rodríguez et al. (2008) reported the 

effectiveness of grafting to enhance fruit yield in tomato and provided evidence 
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that the positive effect induced by rootstocks is related to the re-establishment of 

ionic homeostasis. 

In the present study, both the A and A/A25 salt-treated plants exhibited similar 

Na+ and Cl- levels in both leaves and roots, and presented a lower K+/Na+ ratio 

compared with their controls. Hence the ability to restrict the uptake and/or 

transport of ions from roots to leaves was similar in A and A/A25. This means that 

the avoidance/reduction of salt uptake was not the factor that conferred salt 

tolerance to A/A25 plants, a similar finding to that already reported by He et al. 

(2009) in tomato-grafted plants. This notion is further confirmed as pepper-grafted 

plants accumulated even more ions (both Na+ and Cl-) under salinity in leaves 

than the ungrafted ones. The drop in the K+/Na+ ratio was attributable to the 

higher Na+ content as plants did not lose their K+ uptake ability.  

According to Munns biphasic model (Munns and Tester, 2008), salt tolerance can 

be improved by reducing the negative osmotic effects on growth and/or 

maintaining leaf-root growth and functions for longer by diluting toxic ions 

(Balibrea et al., 2000; Yeo, 2007). Maintenance of shoot and root vigor is 

dependent mainly on photosynthetic capacity and gas exchange attributes 

(Duarte et al., 2014; Penella et al., 2015). Photosynthetic activity remained 

unchanged in A/A25 plants under salt conditions compared to their controls and, 

therefore, also in the supply of photosynthates to plants, as confirmed by the 

absence of reduced plant growth. Conversely, the leaf CO2 assimilation rate 

sharply dropped in the salt stressed A plants compared to both controls and 

A/A25 plants. Salt stress has been reported to reduce CO2 assimilation through 

different mechanisms: (I) decreased stomatal conductance (Chaves et al., 2009; 

Shabala and Munns, 2012); (II) reduced mesophyll conductance to CO2 (Flexas 

et al., 2004); (III) impaired Rubisco activity (Galmes et al., 2013). Stomatal 

closure is certainly one of the main responses of plants under salinity to minimize 
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water loss (Aroca et al., 2012; Shabala and Munns, 2012). Stomatal conductance 

decreased under salt treatment in both the A and A/A25 plants, which could be 

one of the reasons for their unchanged RWC values, and this suggests a typical 

conservative strategy (Tardieu and Simonneau, 1998; García-Sánchez et al., 

2010; Sade et al., 2012). Notably in the grafted plants, the CO2 assimilation rate 

did not change in relation to gs reduction under salinity conditions. In contrast, in 

A plants the sharp reduction in gs induced a marked decrease in AN390 (about -

45%), to suggest that mesophyll limitations also occurred, as confirmed by the 

unchanged Ci. Accumulation of intercellular CO2 was also likely attributable to the 

marked reduction in the Vcmax as observed in A plants. Other authors have 

reported that carboxylation efficiency under stress conditions is limited by the 

amount, activity and kinetics of Rubisco, as well as by an effect on CO2 diffusion 

limitation (Carmo-Silva and Salvucci, 2012; Koyro et al., 2013). The A/Ci curves 

also showed a significant decrease in Jmax in A salt-treated plants and TPU, 

according to the Farquhar model (Farquhar et al., 1980), whereas no alterations 

were observed in grafted plants. These results suggest that carboxylation 

efficiency, ribulose-1,5-bisphosphate regeneration and triose-phosphate 

utilization were maintained in A/A25, whereas these processes were severely 

unpaired in A. The TPU rate has been proposed to at least provide an indication 

of the feedback between growth and CO2 assimilation (Wullschleger, 1993). The 

sharp drop in AN390 in the A salt-treated plants related to the limitation in TPU can 

be considered one of the main reasons for reduced growth (Long and Bernacchi, 

2003; von Caemmerer, 2000; Sharkey et al., 2007). 

The stomatal and biochemical limitations imposed on photosynthesis in A plants 

submitted to the salt treatment were likely accompanied by a lowered  ATP and 

NADPH consumption rate for CO2 assimilation, which would imply a lower down-

regulated ETR rate (Baker and Rosenqvist, 2004). A progressive drop in ETR 

can be compensated by increased thermal dissipation (NPQ) (Medrano et al., 
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2002). Accordingly, NPQ increased once A plants were subjected to salinity, even 

though they underwent higher excitation pressure on PSII and more reaction 

centers were closed, as evidenced by an over-reduction of QA (Calatayud and 

Barreno, 2001; Guidi and Calatayud, 2014; Kalaji et al., 2014). This is particularly 

evident at high light (800-1000 µmol photons m-2 s-1) when salt stress can 

accelerate photodamage to the reaction center of PSII (Nishiyama and Murata, 

2014). Even though the actual PSII efficiency was compromised, the dissipation 

mechanisms were able to preserve PSII to irreversible damage, and the Fv/Fm 

values remained unchanged. Conversely, the chlorophyll fluorescence 

parameters in the A/A25 salt-treated plants confirmed that no alterations occurred 

in the biochemical and photochemical chloroplast processes, as previously 

revealed by gas exchange analyses. These results coincide with previous 

findings, which highlight that the use of tolerant rootstock improves the 

photosynthesis performance of the scion under salinity conditions (Moya et al., 

2002; Massai et al., 2004; He et al., 2009; Penella et al., 2015). 

Although the marked accumulation of toxic ions occurred in the A/A25 plants 

subjected to salinity, no effects were detected in photosynthesis and, 

consequently, the antioxidant systems were further activated in these plants, 

except SOD activity. Conversely, the activity of the most important enzymes 

involved in removing and/or scavenging ROS (SOD, CAT and APX) was 

significantly stimulated in the A plants under salinity. The activities of these 

enzymes and/or antioxidant molecules have long since been described as being 

actively involved in response to several abiotic stresses, including salt toxicity in 

both grafted and ungrafted plants (López-Gómez et al., 2007; He et al., 2009; 

Sanchez-Rodríguez et al., 2012; Shaheen et al. 2013). In this context, it is 

assumed that the simultaneous involvement of different antioxidant components 

is necessary to obtain an increase (and/or a faster response) in plant defenses 
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when plants face high salinity (Jaleel et al., 2009). However in the A plants, the 

antioxidant system did not efficiently sustain ROS scavenging in relation to 

salinity-triggered ROS production, as demonstrated by the marked increase in 

the MDA by-product levels. 

AsA is a key metabolite that plays key roles in plant stress and is the most 

important H2O2-reducing compound, which acts together with glutathione in the 

ascorbate-glutathione cycle (Foyer and Noctor, 2011; Foyer and Shigeoka, 

2011). Total AsA increased significantly (about 44% compared to the controls) in 

the A plants under salinity, and the AsA/(DHA+AsA) ratio also sharply dropped, 

which indicates that a high AsA oxidation rate occurred. No differences were 

observed in the total AsA and AsA/(DHA+AsA) ratio in the A/A25 plants under 

salt stress compared to their controls. Ascorbate is also essential for -tocopherol 

regeneration (Szarka et al., 2012), a lipophilic antioxidant and an indispensable 

protector of plant membranes (Mène-Saffrané and DellaPenna, 2010; Das and 

Roychoudhury, 2014). Despite the increase in the amount of DHA found in A 

plants under salinity, oxidation of AsA was not sufficient to efficiently sustain the 

-tocopherol regeneration rate given that this compound decreased in these 

plants. The inability to efficiently sustain -tocopherol regeneration can further 

increase membrane lipid peroxidation, as revealed by the dramatic increase in 

the MDA by-products level in A plants under stress. 

Accumulation of osmolytes, such as proline, is a well-known adaptive mechanism 

in plants against salt stress conditions (Ashraf and Foolad, 2007; Szabados and 

Savouré, 2010). Several studies have attributed a dual role to proline: compatible 

osmolyte and antioxidant compound (Szabados and Savouré, 2010). It has been 

previously reported that under salt stress proline can contribute by stabilizing 

many functional units, such as Complex II, in the electron transport chain and key 

enzymes, such as Rubisco (Ashraf et al., 2008). In A/A25 leaves, proline content 
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increased 2.6-fold in the presence of NaCl excess, compared to a non-significant 

increase noted in A leaves. 

Our results generally suggest that A/A25 plants were tolerant to the salt 

concentration adopted in this experiment given the adjustments made in the 

physiological processes. In fact, stomatal closure preserves excess water loss, 

as evidenced by the maintenance of RWC. At the same time, the reduction of gs 

was not limiting for CO2 assimilation, which did not change in A/A25 plants under 

salinity. However, these plants accumulated in plant tissues a high concentration 

of toxic ions, i.e., Cl- and Na+ (even higher than in A plants under stress). Three 

mechanisms are available to plant cells for preventing excessive Na+ 

accumulation in the cytosol to: (I) restrict Na+ by selective ion uptake; (II) store 

Na+ in vacuoles; (III) export Na+ back to the growth medium or to the apoplastic 

space (Zu, 2001). It has been reported in the euhalophyte Salicornia europaea 

that a high Na+ concentration in the shoots did not lead to a reduced plant growth 

and photosynthesis, which implies that the mechanism adopted by this species 

is to store Na+ in the vacuoles (Lv et al., 2012). The fact that no effects were 

observed at the physiological and biochemical levels in A/A25 plants suggests 

that these plants under saline conditions could either restrict excess salts in 

vacuoles or compartmentalize ions in different (other?) tissues, where they are 

less harmful (Zhu, 2003). However, the high salt ions concentration in the 

apoplastic space of leaves can occur and lead to the partial dehydration of cells, 

and turgor loss, or can damage the plasma membrane surface (Speer and Kaiser, 

1991; Volkmar et al., 1998). Accumulation of toxic ions in the apoplast can 

enhance NADPH-oxidase activity, the main producer of signal transduction-

associated ROS in cells during these processes (Mittler et al., 2004), and can 

lead to anion superoxide production (Rejeb et al., 2015). This toxic compound 

spontaneously dismutes to oxygen and hydrogen peroxide, but the uncatalyzed 
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dismutation reaction rate is second-order compared to the initial superoxide 

concentration (Buchanan et al., 2002). In contrast, the catalyzed dismutation 

reaction by SOD is of the first-order. For this reason, SOD activity, which 

increased in A/A25 plants under salinity, quickly led to H2O2 production: this could 

be the beginning of a reaction cascade in response to salt stress (Miller et al., 

2011; Rejeb et al., 2015). According to this concept, Bose et al. (2013) reported 

that the intrinsically higher SOD levels in halophytes are required for the rapid 

induction of the H2O2 ‘signature’, and to trigger a cascade of adaptive (genetic 

and physiological) responses. Recently, several research works have indicated 

that proline accumulation occurs in stressed plants and can be mediated by 

signaling molecules, including H2O2 (e.g. Zhu, 2002; Zhang et al., 2008; Yang et 

al., 2009; Wen et al., 2013). In this context, it may be speculated that proline is 

the key metabolite by which A/A25 plants tolerated the salinity conditions 

imposed in the present experiments. Conversely, it would seem that the main 

effect may be related to the robustness of the rootstock A25. Other mechanisms 

not contemplated herein could be implicated in the resilience of A/A25. 

In conclusion, the grafting technique can be considered a valid strategy for 

ameliorating the salt tolerance of pepper. The larger amount of marketable fruits 

and the lower BER incidence in the A/A25 plants under salt is the best 

demonstration of A25 rootstock’s validity under high salinity.  
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CHAPTER 7 

Could we anticipate the 
incompatibility phenomena in 

pepper grated plants? Chlorophyll 
fluorescence imaging reflects 

histological studies 
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7.1. ABSTRACT 

 

The cellular events that led to a successful grafting in plants require the 

development of functional vascular connections. Until now, graft union 

development has been studied by destructive methods like anatomic and 

histological studies. We proposed a quick and non-invasive method to estimate 

(in)-compatibilities in pepper plants through the variations in chlorophyll 

fluorescence images (CFI). To validate this method we compared CFI values 

with histological studies in order to demonstrate if CFI can reflect the 

morphological and anatomical development at the graft interface between both 

graft partners in pepper. To reach this objective we used the commercial pepper 

cultivar ‘Adige’ and different Capsicum spp. accessions typified with different 

compatibility degrees in terms of yield and quality in previous works performed 

by this research group and different graft combinations with known graft 

compatibility as controls: eggplant grafted on S. torvum and pepper homografts 

(high compatibility), pepper grafted on S. torvum and pepper grafted on tomato 

like incompatibles. Many repair mechanisms at the graft area can be supported 

by photosynthetic activity; an increase in photochemical processes can help to 

facilitate the graft union.  The best graft union showed a higher Fv/Fm values 

associated with higher values of photosynthetic induction processes (PSII and 

qP) as well as with vascular regeneration across the graft interface. The results 

showed that CFI monitoring changes in photosynthesis ways reflect histological 

behaviour measurements in grafted pepper plants. CFI can be used to evaluate 

graft compatibility at early stages of development as a prediction method of 

studying (in) compatibility in grafted plants; anticipating quickly future 

incompatibility problems in the field.  
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7.2. INTRODUCTION 

Grafting can be defined as the natural or deliberate fusion of plant parts so that 

vascular continuity is established between them and the resulting genetically 

composite organism functions as a single plant (Mudge and Janick, 2009). 

Grafting is a technique that has been widely used for centuries in woody plants. 

Nowadays, this technique is being greatly expanding in vegetables plants 

particularly in Solanaceae and Cucurbitaceae families, to reduce pathogens 

infections (Biles et al., 1989; Padgett and Morrison, 1990) or to increase 

resistance to abiotic stresses, such as drought (Penella et al., 2014a,b,c; 

Sánchez-Rodríguez et al., 2013), salinity (Orsini et al., 2013; Penella et al. 

2015), or heavy metals (Savvas et al., 2010). This is also used to enhance 

nutrient uptake (Ruiz et al., 1997) or to increase yields and fruit quality (Penella 

et al., 2013; Rouphael et al., 2010).  

During the graft union formation between rootstock and scion, many 

researchers have observed callus proliferation (from both the rootstock and the 

scion), callus bridge formation, differentiation of cambium tissue from callus 

cells and the production of secondary xylem and phloem (Aloni et al., 2010; 

Hartmann et al., 2002; Pina and Errea, 2005). A low or incorrect callus 

formation between the rootstock and scion could lead to defoliation, reduction of 

scion growth and low survival of grafted plants (Johkan et al., 2009; Kawaguchi 

et al., 2008) reducing water flow to shoots (decreased hydraulic conductance) 

(Martínez-Ballesta et al., 2010). 

There is no precise definition of graft compatibility and generally means the 

establishment of a successful graft union as well as extended survival and 

proper functioning of the composite rootstock-scion (Goldschmidt, 2014). Graft 

incompatibility may be defined as failure to form a successful graft union. A lack 
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of, or decrease in number of differentiated vascular bundles, or the dysfunction 

of differentiated vascular bundles at the graft union has been reported to inhibit 

transport of nutrients to scion (Schöning and Kollmann, 1997; Wang and 

Kollmann, 1996). Characterization of incompatibility is not a simple process 

because graft combinations can initially unite with apparent success, but 

gradually develop incompatibility symptoms with time, due to either alimited 

and/or not fully functional vascular reconnection between scion and rootstock at 

the graft interface which causes the subsequent failure of the graft union (Errea 

et al., 1994, 2001) or the development of abnormal growth patterns (Kawaguchi 

et al., 2008). 

The major causes implicated in graft incompatibility in Solanaceous crops are 

anatomical and/or biochemical (Deloire and Hébant, 1982; Ives et al., 2012).  

Pepper (Capsicum annuum) is grown in most countries of the world, with 1.93 

million of ha cultivated area and is one of the most important crops in 

Mediterranean area. Grafted pepper plants are used to cope with biotic and 

abiotic stresses. Peppers have been described as compatible only with other 

Capsicum species but not with all of them. In this sense, Otsuka (1957) 

reported that tomato/pepper or pepper/tomato graft combinations were 

completely incompatible because plant growth was severely suppressed, in 

contrast with other Solanaceae species like tomato or eggplant, which are able 

to be grafted onto some different species within their family (Ives et al. 2012, 

Deloire et al., 1982, Kawaguchi et al. 2008; Miguel et al., 2007).  

The first methods used to predict graft incompatibility relied on external 

symptoms such as swollen union, death or decline in vegetative growth and 

vigour of the scion, and marked differences in growth of both scion and 

rootstock (Otsuka, 1957). Afterwards, physiological and anatomical methods for 
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the diagnosis of graft (in)-compatibility have been developed, such as the 

measurement of peroxidase and catalase concentrations as the enzymes 

implicated in graft development (Fernandez-Garcia et al., 2004); the hormone 

levels (Yin et al., 2012); ROS production (Irisarri et al., 2015); accumulation of 

sugars (Kawaguchi et al. 2008), hydraulic root conductivity (Clearwater et al., 

2004) or histological measurements (Pina et al., 2012). However, all these 

methods are invasive (destructive), slow and/or most of them are thought to 

woody plants. 

The use of X-ray tomography to visualize the 3D structure of the graft union 

(Milien et al., 2012) is a non-destructive method to evaluate internal structure in 

the graft area, but the potential impact of the ionizing effects of the X-rays on 

the living tissue can be negative, as it has been demonstrated in a growth 

inhibited Arabidopsis seedling (Dhondt et al., 2010) and consequently has to be 

considered. 

Another non-destructive method without effects on the plant tissues and on the 

subsequent development of the plant is the use of the chlorophyll fluorescence 

imaging (CFI). CFI has been used to predict compatibility in melon-grafted 

plants (Calatayud et al., 2013). The method of CFI is based on the hypothesis 

that grafting causes stress in plants: mechanical wounding in scion and 

rootstocks result in localized cell deaths, loss of water and solute, and 

disruption of the vascular system. The activation repair mechanisms requires a 

high metabolic demand of the plant in the grafting area, as it needs to supply 

carbon skeletons, synthesis of new molecules or increasing antioxidant 

enzymes activity. As many of these processes can be supported by 

photosynthetic activity and changes in photosynthesis are associated to 

variations in fluorescence parameters, the use of images for monitoring 
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florescence parameters will allow visualize possible alterations in grafted plants. 

This could be an intuitive, quick and non-invasive method providing detailed 

information on spatial and temporal heterogeneity. The potential of having a 

rapid and non-destructive method to diagnose compatibility in grafted plants 

could be of great economic importance in the seedling production industry. 

As mentioned before, CFI has been used with success to predict compatibility in 

melon graft plants, where Fv/Fm ratio, associated with maximal quantum yield 

of PSII, was identified as a sensitive chlorophyll fluorescence parameter useful 

to distinguish compatible from incompatible graft unions. Nevertheless, CFI`s 

advantages have not been tested with other plant species yet. 

The aim of this work was to evaluate the potential of CFI to predict 

compatibility/incompatibility in different pepper plant combinations using positive 

controls (pepper grafted onto pepper) and negative controls (tomato/pepper and 

eggplant/pepper), connecting values of CFI parameters to histological studies in 

order to demonstrate if CFI can reflect the morphological and anatomical 

development at the graft interface between both graft partners in pepper. 

In order to establish this correlation, the commercial pepper cultivar ‘Adige’ and 

the different Capsicum sp accessions typified with different compatibility 

degrees in terms of yield and quality in previous works performed by this 

research group (Penella et al. 2013, Penella et al. 2014a, c, Penella et al. 

2015). All the tested accessions were highly or moderately resistant to salt or 

drought stress (Penella et al. 2013; 2014a,b,c; 2015). In this study, we also 

used different graft combinations with known graft compatibility as controls: 

eggplant grafted on S. torvum and pepper homografts (high compatibility), 

pepper grafted on S. torvum and pepper grafted on tomato like incompatibilities. 

 



                                                                                                                                         253 | C h a p t e r 7  
 

7.3. MATERIAL AND METHODS 

7.3.1. Plant materials and grafting plants 

In this study, a total of nine combinations of plants were evaluated for graft 

compatibility. Cultivar “Adige” Capsicum annuum L. (Lamuyo type; Sakata) 

(code A), was grafted onto the accessions of C. annuum L. (code A25 and code 

A5), Capsicum chinense Jacq. (code C12), Capsicum baccatum L. var. 

pendulum (code B14) used in previous studies on physiological and 

agronomical responses that showed different compatibility degree (Penella et 

al., 2013, 2014a, c, 2015). In addition, A cultivar was grafted onto commercial 

rootstocks Solanum torvum Sw. “Torvum vigor” (Ramiro Arnedo) (code ST) and 

onto L. esculentum x L. hirsutum “Beaufort” (De Ruiter Seeds) (code TOM) 

described in the bibliography as incompatible (Kawaguchi et al., 2008). Besides 

tomato var. Gordal (Mascarell seeds) was grafted on ST (ST/TOM), this 

combination has been described as moderately incompatible (Kawaguchi et al., 

2008). Solanum melongena L. eggplant “Cristal” (semillas Fitó) (code EGG) 

was also grafted onto ST (ST/EGG) and self-grafted plants of ‘Adige’ (A/A) were 

used as positive controls (Table 1). 

Plants were sown on 15th January 2014 in 104-cell polystyrene trays filled with 

peat-based substrate and kept under a Venlo-type glasshouse. The plants were 

transplanted to 54-cell trays. The different graft combinations were performed 

on 21 March using the tube grafting method (cutting the growing tip of the 

rootstock at a 45º angle above the cotyledons, and fixing the rootstock and 

scion with a clip) (Penella et al., 2013).  
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Table 1. Plant combinations and their code used in histological and chlorophyll fluorescence 

measurements 

      

 

 

 

 

 

 

 

 

 

 

7.3.2. Light microscopy 

The graft interfaces were fixed 30 days after grafting (DAG) in 3% 

glutaraldehyde in 50 mM Sorensen buffer (28.5% KH2PO4 50 mM and 71.5 % 

Na2HPO4 mM.) at pH 7.2 for 2 h. After that, plant material was washed four 

times during 15 min in the same buffer. After infiltration in LR white 

resin:ethanol (1:2 v/v, 1:1 v/v, 2:1 v/v) for 60 min per stage, the specimens were 

embedded in historesin LR white overnight (London Resin Co., Woking, Surrey, 

Rootstock (code) Scion Graft plant 

C. annuum L.  var. Adige ( A) Adige (A) A/A 

C. annuum    (A25) Pepper var. Adige (A) A25/A 

C. annuum    (A5) Pepper var. Adige (A) A5/A 

C. baccatum  (B14) Pepper var. Adige (A) B14/A 

C. chinense   ( C12) Pepper var. Adige (A) C12/A 

S. torvum (ST) Eggplant var. Cristal (EGG) ST/EGG 

S. torvum (ST) Pepper var. Adige (A) ST/A 

S. torvum (ST) Tomato var. Gordal (TOM) ST/TOM 

Tomato Beaufort (BEU) Adige (A) BEU/A 
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UK) at 4 ºC according to Tadeo et al. (1997), and transversally sectioned at 2 

µm using glass knives in a Leica RM 2165 Rotary Microtome (Leica 

Instruments, Heidelberg, Germany). The sections were stained in 0.05% 

toluidine blue 0 (Cl 52040, Merck, Darmstad, Germany) (O’Brien and McCully, 

1981), desiccated and mounted in Eukitt Mounting Medium 15322 (Electron 

Microscopy Sciences, Hatfield, PA, USA). Representative sections of three 

tissue samples per plant from ten plants were viewed under a Leitz Ortholux II 

fluorescence microscope (Leitz, Wetzal, Germany) operating in an optical mode 

and the images were captured with a Leica DC300 camera.  

 

7.3.3. Chlorophyll fluorescence imaging 

 

CFI measurements of grafted plants were performed 30 DAG from 15-20 plants 

per combination at 2 cm above and below the graft interface and the graft 

interface using an imaging-PAM fluorometer (Walz, Effeltrich, Germany). All 

plants were placed in the dark for 10 min prior to measurement. Images and 

values of minimum Chl fluorescence yield in the dark-adapted state, Fo, were 

determined using light pulses at low frequency (1 Hz). Maximum fluorescence 

Fm was determined by applying a blue saturation pulse (10 Hz). The maximum 

quantum yield of PSII photochemistry (Fv/Fm ratio) was determined as Fm-

Fo/Fm and images were captured. Actinic illumination (260 mol m-2 s-1) was 

then switched on and saturating pulses were applied at 20 s intervals for 5 min 

to determine F`m and Chl fluorescence during actinic illumination (Fs). The 

actual quantum efficiency of PSII photochemistry (PSII= (F`m-Fs)/F`m) (Genty 

et al., 1989), photochemical quenching (qP= (F`m-Fs)/(F`m-F`o) (Schreiber et 

al., 1986) and the non-photochemical quenching (NPQ= F`m-Fs/F`m) (Bilger 
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and Björkman, 1991) were calculated. The value of F`o was estimated using the 

approximation of Oxborough and Baker (1997), F`o = Fo/(Fv/Fm + Fo/F`m). The 

PAM-software selects areas in the fluorescence image for each plant. Three 

areas in stem of the plants (graft area, the rootstock and the scion) were 

selected. Fluorescence parameter values of all pixels within each area were 

averaged. Each value in the tables is the mean of the corresponding area of all 

samples (obtained from 15-20 different plants). Figure 2 shows the images of 

only a single plant (representative plant). Further information on CFI 

measurements can be obtained from (Calatayud et al., 2008, 2013) .  

 

7.3.4. Statistical analysis 

 

One-way ANOVA was performed (Statgraphics Centurion XVI for Windows, 

Statistical Graphics Corp.) to compare the means of the fluorescence 

parameters. Mean separations were performed when significant differences 

were found using the least significance difference at P<0.05. 

 

7.4. RESULTS AND DISCUSSION 

 

7.4.1. Histological evaluation of scion/rootstock interactions 

 

Table 1 summarizes the plant codes used for histological and CFI studies. 

Pepper homo-grafting (A/A) and the use of the intra-specific grafts (rootstock 

and scion belonging to the same botanical species) rootstocks B14, C12 and 
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A25 showed a higher yield (Penella et al., 2014a, c; Penella 2015). Whereas, 

the intra-specific combination ‘Adige’ grafted onto the rootstock A5 (A5/A) had a 

lower growth than other grafted plants (A/B14, A/C12 and A/A25) and its stem 

diameter at the graft union was approximately three-fold greatest and provided 

lower fruit yields (Penella et al., 2013, 2014a). 

The cellular events that led to a successful graft union include adhesion of the 

two graft partners, callus cell proliferation at the graft interface and cross-bridge 

formation of the vascular bundle to establish a functional vascular connection 

(reviewed by (Aloni et al., 2010; Goldschmidt, 2014; Mudge and Janick, 2009; 

Pina and Errea, 2005). Nevertheless, incomplete or non-functional vascular 

connections impede the vital upward and downward whole plant transfer 

routesm, which might result in a dieback of the graft. By 30 DAG, a well 

developed vascular graft union was observed in the pepper homografts (A/A) 

and intraspecific heterografts eggplant grafted on Solanum torvum (ST/EGG) 

(Fig. 1A and 1B) and ‘Adige’ grafted in the pepper rootstock accessions A25 

and C12 (Fig. 1C, D). In these combinations, most of the necrotic layer was 

absorbed at this stage and group of small callus cells are clustering resembling 

symplastic domains which is a prerequisite to begin more vascular 

differentiation (Pina et al., 2009). Higher levels of vascular differentiation were 

observed in the combination A25/A (Fig. 1C) than in the combination C12/A (Fig 

1. 1D). In all combinations, cluster of callus cells were associated with the cut 

ends of the xylem from which them were derived and filled the graft interface. 

‘Adige’ grafted on rootstock accession B14/A showed a high cellular activity at 

the graft interface and callus cells bridging the two graft partners (Fig. 1E). 

Some developing tracheid elements were observed but not completely new 

xylem and phloem formation was displayed across the graft union 30 DAG. 

Similar anatomical results were obtained when grafted tomato onto Solanum 
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torvum (ST/TOM) (more distantly taxonomic species) (Fig. 1F), indicating that 

the compatibility behaviour of both graft combinations (B14/A and ST/TOM) was 

similar, moderately compatible, as reported by Kawaguchi et al. 2008 for 

ST/TOM. 

A stronger level of graft incompatibility was observed when pepper cv. ‘Adige’ 

was grafted onto rootstock accession A5 (A5/A). In this case, histological 

examination provided clear evidence of discontinuous xylem elements in the 

graft union as well as large areas of unbroken necrotic lines along the wounded 

edges of the rootstock and the scion (Fig. 1G). This result was consistent with 

the anatomy of the severely incompatible union tomato/pepper (BEU/A) (Fig 

1H). In addition, ‘Adige’ grafted on Solanum torvum (ST/A) produced weak 

unions, characterized by limited fusion between both graft partners (Fig. 1I) and 

the presence of cells enriched with green material inside the vacuoles similar to 

phenolic compounds, that are involved in the incompatibility reaction inhibiting 

division, development and differentiation into new tissues during the graft union 

formation (Errea, 1998; Hudina et al., 2014; Pina et al., 2012).  

In these three combinations A5/A, BEU/A and ST/A, the rootstock and scion 

tissue produced new vascular elements as well, but these did not cross the 

scion/rootstock border and therefore no graft union was formed. In incompatible 

heterografts between Arabidopsis grafted on tomato rootstock, it was reported 

that the remaining necrotic layer that developed at the graft interface seemed to 

inhibit the differentiation of vascular tissue across the graft union, either directly 

or indirectly, and thus prevented full vascular graft union formation between the 

two plants, since neither vascular bridge nor full graft union was visible 

(Flaishman et al., 2008). Other studies also reported the presence of narrow 

and irregular xylem elements in incompatible tomato/pepper heterografts (Ives 

et al., 2012, Kawaguchi et al., 2008). 
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Figure 1. Transversal sections of different graft combinations 30 days after grafting. A) ‘Adige’ 

grafted on ‘Adige’, (A/A). B) Eggplant grafted on ‘Solanum torvum’, ST/EGG. C) ‘Adige’ grafted on 

the rootstock accession ‘A25’, A25/A. D) ‘Adige’ grafted on the rootstock accession ‘C12’, C12/A. 

E) ‘Adige’ grafted on the rootstock accession ‘B14’, B14/A. F) Tomate grafted on ‘Solanum 

torvum’, ST/TOM. G) ‘Adige’ grafted on the rootstock accession A5, A5/A. Asterisks (*) show 

limited fusion between both graft partners. H) ‘Adige’ grafted on the tomato rootstock Beaufort, 

BEU/A. Asterisks represent phenols stained green into the vacuoles. I) ‘Adige’ grafted on 

Solanum torvum, ST/A. Bars= 200 µm (A, F, G) and 400 µm (B, C, D, E, H and I). Abbreviations: 

VUF: vascular union formation, T: traqueid elements; St: stock, Sc: Scion; NL: necrotic layer; CC: 

cluster of callus cells; P: pith cells; AFS: air filled space 
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7.4.2. Chlorophyll fluorescence imaging in grafted plants 

 

The same grafted plants combinations (Table 1) used for histological evaluation 

were analysed by CFI. 

In table 2, the mean values of Fv/Fm ratio for rootstock, scion and graft area of 

the nine plant combinations are shown. The Fv/Fm is one of the most common 

fluorescence parameter, as it is an indicator of plant stress (Rolfe and Scholes, 

2010) and reflects the maximal efficiency of excitation capture of dark-adapted 

plants and is correlated with the number of functional PSII reaction centers 

(Oquist and Chow, 1992). Attending to Fv/Fm values in the rootstock area, four 

groups of plants can be distinguished according to ANOVA analyse: A/A, 

A25/A, B14/A, C12/A, ST/TOM and ST/EGG showed the higher Fv/Fm values, 

A5/A with intermediate value, followed of the combination BEU/A and with lower 

Fv/Fm value ST/A. In compatible tomato grafted plants observations of the 

structure of graft union showed formation of xylem and phloem vessels through 

the graft union 8 days after grafting (Fernández-García et al., 2004). But narrow 

and irregular connections were observed in graft union between incompatible 

graft plants as tomato/pepper or pepper/tomato 3 weeks after grafting 

(Kawaguchi et al., 2008). CFI measurements were performed at 30 days after 

grafting, therefore the anatomical symptoms associated with graft (in)-

compatibility has been already internally manifested. The lower Fv/Fm ratio in 

rootstocks areas have been measured in incompatible heterografted plants 

BEU/A and ST/A. As reported by the histological study, a weak graft connection 

occurs in these plants combinations, in such a way that it is expected that the 

translocation of assimilate from scion to the rootstock result in higher 

carbohydrate concentration in the scion part and lower concentration in the 

rootstocks (Kawaguchi et al., 2008). A limited assimilate supply to the 

rootstocks could reduce the size of root system and decreased metabolic 
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activity increasing damage to the photosynthetic apparatus and decreasing 

Fv/Fm in rootstock area. Likewise, the Fv/Fm values in the graft area followed 

the same tendency showed by the rootstock area, but the values underwent an 

important decrease for the incompatible grafts ST/A and BEU/A. It is probably a 

consequence of the weak connection between rootstocks (S. torvum and 

tomato) and the scion in the graft area since similar results were obtained in 

less compatible melon grafted plants (Calatayud et al., 2013). A low or incorrect 

callus formation lead to a bad vascular connection at the rootstock-scion graft 

interface affecting water and nutrient translocation that can alter the 

photosynthesis behaviour in the graft zone (Martínez-Ballesta et al., 2010). For 

this reason, Fv/Fm values decreased to a greater extent compared with 

rootstocks values. These insufficient connections of vascular bundles were 

reflected in the scion part with lowest Fv/Fm values in ST/A and BEU/A (Table 

2). Fv/Fm images of representative’s samples (Fig. 2) allowed visualize the 

rootstock, graft and the scion areas, indicating that the technique is able to 

display large areas of graft zones. These results are in agreement with the 

observations reported in melon grafted plants (Calatayud et al., 2013). The 

observation of color changes (ranging from black (0.000) to pink (1.000) 

revealed spatial changes in the Fv/Fm images. In A/A, A25/A, B14/A, C12/A, 

ST/TOM and ST/EGG different intensities of blue colors were observed 

associated with higher values of Fv/Fm. In A/A5 a black line was observed 

across graft area-scion indicating a null Fv/Fm values. A dramatic change in 

colors from blue-green and brown of Fv/Fm in ST/A and BEU/A were observed, 

that correspond with lower Fv/Fm values. It should be noted that the scion area 

in ST/A and BEU/A showed the colors green and brown associated with lowest 

Fv/Fm values. 
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Table 2. . Fv/Fm values for different plants combinations in the areas of the rootstock, graft zone 

and scion 

Plant combination Fv/Fm rootstock Fv/Fm graft area Fv/Fm 

scion 

A/A 0.760a 0.746a 0.760a 

A25/A 0.781a 0.774a 0.779a 

B14/A 0.791a 0.770a 0.774a 

C12/A 0.807a 0.753a 0.757a 

A5/A 0.754ab 0.723b 0.709b 

ST/EGG 0.782a 0.770a 0.760a 

ST/A 0.675c 0.233d 0.306d 

ST/TOM 0.788a 0.769a 0.757a 

BEU/A 0.713b 0.633c 0.453c 
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Figure 2. Chlorophyll fluorescence images of Fv/Fm after dark-adapted 30 days after grafting in 

different plant combinations: ‘Adige’ grafted on Adige, (A/A). ‘Adige’ grafted on the rootstock 

accession A25, A25/A. ‘Adige’ grafted on the rootstock accession B14, B14/A. ‘Adige’ grafted on 

the rootstock accession C12, C12/A. ‘Adige’ grafted on the rootstock accession A5, A5/A. 

Eggplant grafted on Solanum torvum, ST/EGG. Tomato grafted on Solanum torvum, ST/TOM. 

‘Adige’ grafted on Solanum torvum, ST/A. ‘Adige’ grafted on the tomato rootstock ‘Beaufort’, 

BEU/A. The false colour code depicted at the bottom of each image ranges from 0.000 (black) to 

1.000 (pink). Images were taken from a single plant.  
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When Fv/Fm values were compared at the scion from the different graft unions, 

the decrease in incompatible unions were more marked. Four categories could 

also be well definited: compatible plants (A/A, A25/A, B14/A, C12/A, ST/TOM 

and ST/EGG), moderate compatible A5/A and incompatible TOM/A and strong 

incompatible ST/A. If a weak graft connection occurs in A5/A, TOM/A and ST/A, 

the probability of nutrient uptake reaching the scion decrease, leading to 

alteration of PSII photochemistry (Calatayud et al., 2013). In order to study the 

cause of this noticeable decline in Fv/Fm at the scion area, we analysed their 

photochemical and non-photochemical processes (Table 3). Photochemical 

statistical analysis allowed differentiating four groups: A/A, A25/A and ST/EGG 

with higher values of PSII and qP; B14/A, C12/A and ST/TOM with moderate 

decrease of photochemical processes; A5/A with considerable decrease and 

the last group with the plant combinations ST/A and BEU/A with the lowest 

photochemical values. The decrease in Fv/Fm for the graft combinations A5/A, 

BEU/A and ST/A (Table 2) could be the result of an increase in protective non-

radiative energy dissipation, photodamage of PSII centres or both (Osmond, 

1994). Inasmuch as NPQ is believed to indicate the capacity for photoprotective 

process (Osmond, 1994), the decline in Fv/Fm ratio was attributable to PSII 

stress, because NPQ was adversely affected in scion areas for the three plant 

combinations (Table 3). In severely damaged tissues resulted in a decreased in 

NPQ values (Berger et al., 2007). In addition, the lower qP levels (Table 3) in 

these plant combinations compared with compatible union indicate that the 

capacity for reoxidizing QA decrease, increased excitation pressure on PSII and 

contributed to the closure of PSII reaction centres. Closed PSII centres may 

cause an increase in QA pool fully reduced and deny the possibility of electron 

transport to PSI and beyond (Seaton and Walker, 1990). According with this 

result, the PSII, correlated with the quantum yield of non-cyclic electron 

transport (Genty et al., 1989), and was markedly reduced mainly in ST/A and 



                                                                                                                                         265 | C h a p t e r 7  
 

BEU/A (Table 3). This decrease in the photochemical processes seems 

reasonable to attribute that the ATP and NADPH might be considered reduced 

in these plant combinations. This reflect that a low or incorrect callus formation 

(Fig. 1) affected vascular connection in the rootstock/scion interface and may 

determine a decrease in water and nutrient translocation (Martínez-Ballesta et 

al., 2010) affecting photosynthesis performance limiting the availability of 

assimilate for plant growth.  

A higher PSII and qP in scion area in compatible and moderate compatibility 

grafted plants A/A, A25/A, B14/A, C12/A, ST/TOM and ST/EGG could be 

related with a greater supply of carbohydrates (Quilliam et al., 2006), 

development of defence reactions (Guidi et al., 2007) or associated to sink 

metabolism in this area surrounding of wound provoked by grafted (Calatayud 

et al., 2013). This increase in photochemical process can feed the new 

connections formation at the graft interface. Associated with an electron flow 

stimulated (PSII), NPQ increased as a protection mechanism in these plant 

combinations (Berger et al., 2007).   

 

7.4.3. Connecting values of CFI parameters to histological studie 

 

CFI and histological observations allowed distinguishing different compatibility 

behaviour in our nine combinations through its fluorescence parameters and the 

anatomical changes. Plant combinations with higher Fv/Fm values associated 

with higher values of photosynthetic induction processes (PSII and qP) were 

comparable to highest cellular activity and vascular regeneration across the 

graft interface indicating a higher compatibility. Evidences of this high 
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relationship between CFI and anatomical observations can be a source 

metabolism in the vicinity of the graft area (scion). These cells with a greater 

capacity for carbohydrate synthesis would contain higher concentrations of 

Calvin cycle allowing a rapid induction of PSII. The graft area can act as a sink 

of carbohydrates for restoring the adhesion of both graft partners, incite callus 

cell proliferation and bring with success the functional vascular connection.  

In general terms, under histological point of view and CFI values, three plants 

combinations groups could be set up: A/A, ST/EGG and A25/A with highest 

compatibility, expressed as higher PSII and qP and high cellular activity. 

ST/TOM and B14/A can be definite as moderate compatibility with intermedia 

values of CFI and not completely new xylem and phloem formation. C12/A 

displayed a better compatibility than B14/A under histological studies but 

moderate compatibility in terms of CFI values.  The third group was the 

incompatible plants combinations, A5/A, BEU/A and ST/A with a lowest PSII 

and qP and discontinuous xylem elements and unbroken necrotic lines.  

Anatomical and CFI observations provided clear evidences that the graft 

combination A25/A showed the highest vascular regeneration across the graft 

interface. Therefore, A25 is highly recommended for grafting pepper cultivars in 

this salt and hydric tolerant rootstock, that facilitate the free movement of water 

and solutes across the graft interface. 

 

7.5. CONCLUSIONS 

CFI provided information on graft stage and represents a quick and non-

invasive technique for screening (in)-compatibility union in vegetables. The 
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main interest of CFI methods is associated with the image that permits large 

areas of graft zones to be viewed. One practical advantage of CFI is that not 

requires sample preparation, is not destructive or invasive. In addition, CFI 

allows evaluate the graft union development on the same graft plant overtime, 

and anticipate the incompatibility problems between new tested rootstock/scion 

combinations. CFI monitoring changes in photosynthesis ways reflect 

histological behaviour measurements in grafted pepper plants. However, CFI 

does not replace systematically classical histology in terms of understanding 

morphological and anatomical developments at the graft interface. 
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8.1. GENERAL DISCUSSION 

 

The productivity of several commercial pepper crops (mainly bell peppers) is 

limited by salinity stress and water scarcity in many areas of the world (Campos 

et al., 2014; Delfine et al., 2000; Kurunc et al., 2011). Grafting has been 

proposed as an interesting strategy that improves yields and quality of many 

crops under these stresses (Colla et al., 2010a; Lee and Oda, 2010; Schwarz et 

al., 2010). However, at the moment no commercial pepper rootstocks can 

confer abiotic stress tolerances to the scion grafted onto them. In fact, most 

studies performed on pepper grafted plants have been focused on both 

obtaining resistances to biotic stresses and obtaining yield increments, but few 

works have been done to study the effect of grafting on salt and water stress in 

pepper plants, despite it is known that grafted plants show tolerances to abiotic 

stresses and improve yields in other crops like tomato (Djidonou et al., 2013; 

Estañ et al., 2005; Sánchez-Rodríguez et al., 2013) or melon (Colla et al., 

2010b; Edelstein et al., 2011; Orsini et al., 2013). 

Therefore, the main objective of this PhD has been the understanding of 

mechanisms of tolerance to salt and water stresses of pepper accessions in 

order to use those tolerant as rootstock of pepper scions. The study cover 

different aspects: the acquisition of germplasm; the screening based on 

biomass and photosynthetic parameters; the agronomic tests of the selected 

accessions used as rootstocks in terms of vigor, yields and fruit quality; the 

characterization of the affinity/compatibility observed between some genotypes 

and the physiological and biochemical basis of these tolerances. 
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In this study accessions from the five major cultivated species of Capsicum (C. 

annuum, C. chinense, C. baccatum, C. frutescens and C. pubescens) have 

been studied and compared to commercially available rootstocks.  

A new perspective for screening genotypes tolerant to abiotic stresses has been 

performed. It is known that photosynthesis is normally reduced when plants are 

under any case of stress (Bota et al., 2004; Chaves et al., 2002; Mittler, 2006). 

In our results, photosynthesis and stomatal conductance have been found as 

good indicator to distinguish between tolerant and sensitive genotypes to both, 

water and salt stress. This observation was confirmed by their biomass, as the 

latest is the most well-known effect of these stresses (Delfine et al., 2000; 

Nebauer et al., 2013; Perica et al., 2008), considering that a decline of AN can 

be considered one of the main reason of growth reduction (Flexas et al., 2004; 

James et al., 2008; Long and Bernacchi, 2003). In fact, in our experiments 

grafted plants onto tolerant accessions an absence of negative effects on plant 

growth was realized, correlated with a maintenance of AN. The ameliorative 

effect of grafting on plant’s growth is in agreement with other findings in tomato 

and melon (Estañ et al., 2005; He et al., 2009; Martinez-Rodriguez et al., 2008; 

Santa-Cruz et al., 2002). 

Some accessions belonging to C. annuum, C. chinense and C. baccatum have 

shown superiority against water scarcity and salinity. For these reasons, 

experiments were continued with these species. Moreover, some accessions 

behaved as tolerant to both stresses, ranking theirself as the most interesting 

plant material for further research. Few studies can be found in which a 

rootstock can tolerate both water scarcity and salinity, and mainly are done in 

woody plants, such as grapevine (Walker et al. 2002; Meggio et al. 2014)  and 

citrus (García-Sánchez et al., 2007; Rewald et al., 2012; Syvertsen et al., 1988), 

finding only some in tomato (Albacete et al., 2015). None of the studied 
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accessions belong C. frutescens and C. pubescens shown tolerances to both 

water and salt stress screening experiments, being discarded in the next 

experiments. 

Pepper yields of several pepper cultivars of different commercial types (“Adige”, 

Lamuyo type, “Lipari”, Italian type and “Verset”, California type) were generally 

increased when grafted onto the best genotypes selected (A25, C12 and B14). 

The occurrence of BER was the main cause of the unmarketability of the fruits 

in the tested cultivars. It should be noted that this increase is mainly due to a 

declining production of fruits affected by BER. In other words, total production of 

fruits generally was not increase but rather commercial fruits rate was higher 

because minor production losses were achieved. Moreover, the occurrence of 

BER not only depended on the rootstock but also on the scion used. By 

contrast, grafting did not increase yield in control conditions when C12 and B14 

accessions were used, but A25 allowed a marketable yield increase under 

control conditions of 37%, and 118% under salt conditions compared with 

ungrafted plants in the same conditions.  

Since many crops show different sensitiveness at different stages of their 

ontogeny, others may have a similar response among them. In that case, 

determining the response of the seeds in terms of the germination performance 

under salinity stress conditions would be useful to accelerate the screening 

process. The sensitivity or tolerance to salinity during the germination stage is 

species-dependent; many crops are vulnerable to stress during seed 

germination (Foolad and Lin, 1997), while others are relatively tolerant (Murillo-

Amador et al., 2002). For these reasons, the selected genotypes were further 

studied under salt stress during the germination phase. In contrast to the 

observed photosynthesis behavior, during the vegetative and reproductive 

stage, germination rates observed were not representative of a higher salinity 
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tolerance, and for this reason they can not be used as a tolerance indicator for 

these stresses in pepper plants. 

The Chl a fluorescence parameter Fv/Fm is the maximum quantum yield of PSII 

photochemistry and is frequently used as an indicator of damage photoinhibition 

(Gorbe and Calatayud, 2012; Guidi and Calatayud, 2014; Kalaji et al., 2014). 

However, in our screening studies Fv/Fm did not result as sensitive as other 

photosynthetic parameters. Changes were only observed in photosynthetic 

quantum conversion (ФPSII) and non-photochemical quenching (NPQ) noted in 

sensitive genotypes. A decrease in ФPSII favored the development of NPQ in 

sensitive genotypes compared to the tolerant accessions. The NPQ constitutes 

an important protective response that could dissipate excitation energy in light-

harvesting antenna complex (Muller et al., 2001) and avoid photoinhibition 

damage (Calatayud et al., 2006) as indicated by the unchanged Fv/Fm ratios. 

Similar results were found in other species such as Gossipum hirsutum 

(Masacci et al., 2008) under water stress, Acacia floribunda (Sommerville et al., 

2010), and rose (Calatayud et al., 2008). 

For obtaining a desirable responses tackling abiotic stress, is necessary that 

scion and rootstock show a good compatibility. From screening experiments, 

some accessions like A5 were selected as valid genotypes to be used as 

rootstocks. Surprisingly, agronomic experiments revealed worst results than 

expected. For this reason we decide to study the physiological basis of graft 

compatibility as a previous step to evaluate the behavior of the rootstocks in the 

field, and also to understand the physiological response of grafted pepper 

plants to abiotic stresses. In addition, detecting the compatibility grade in 

advance will permit to apply the grafting technique more efficiently, with lower 

cost, ensuring better performance as grafted plants. 
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To tackle these different histological observations like callus formation, new 

cambium and vascular connections, as well as chlorophyll fluorescence 

parameters like Fv/Fm, ФPSII, NPQ, and qp were evaluated in the different graft 

combinations with different compatibility degrees. As expected, the higher level 

of graft incompatibility was confirmed when pepper was grafted onto S. torvum 

and “Beaufort” (tomato), followed by A5, despite of its promising results 

obtained in the screening but related with its incompatible response in the 

agronomical tests. In this case, histological examination provided clear 

evidence of discontinuous xylem elements in the graft union as well as large 

areas of unbroken necrotic lines along the wounded edges of the rootstock and 

the scion. These observations were correlated with lower Fv/Fm, ФPSII, NPQ, 

and qp values. By contrast, anatomical observations and CFI values provided 

clear evidences that the graft combinations A/A and A/A25 showed the highest 

vascular regeneration across the graft interface, whereas the accessions B14 

and C12 were moderately compatible with higher CFI parameters and 

agronomical and physiological good responses under abiotic stress. 

In conclusion, our results showed that CFI reflects the anatomical performance 

of the graft status and can be a useful and non-destructive technique for the 

assessment of graft compatibility in pepper grafted plants.      

Finally, physiological and biochemical basis of the tolerances of pepper grafted 

plants was studied. Thus, rootstocks and scions under water stress and salinity 

were deeply studied. In our experiments, a commercial pepper cultivar grafted 

onto the tolerant selected rootstocks was used. In this way, we identified the 

physiological traits responsible for the tolerance and also differences in pepper 

grafted plants adaptation mechanisms in responses to salt and water stresses 

were analyzed. The plant tolerance might be related to the role of rootstock in 

altering the stress perception by the scion.  
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At a similar osmotic pressure of the nutritive solution, provoked by NaCl or PEG 

pepper plants grafted plants onto the accessions C12 and B14 rootstocks 

activated tolerance mechanisms based on ion exclusion or retention under 

salinity, whereas osmotic adjustment based on proline accumulation was 

performed under water stress. Several studies have attributed a dual role to 

proline: compatible osmolyte and antioxidant compound (Hayat et al., 2012; 

Jaleel et al., 2007). Free proline is considered an important osmoprotectant and 

accumulation following salt, drought, and heavy metal exposure is well 

documented (Gill and Tuteja, 2010).  

Decreases in Ψs may have contributed to the ability of the tolerant accessions to 

uptake more water from the soil or the nutrient solution and could have 

minimized the harmful effects of water and salt stresses (Ming et al., 2012; Nio 

et al., 2011). Although the decrease in Ψs could be a consequence of a 

reduction in the water content of tissues, active osmotic adjustment was 

observed mainly in the plants grafted onto the selected tolerant genotypes. The 

osmotic adjustment may have involved the accumulation of a range of 

osmotically active molecules, including organic compounds such as sugars, free 

amino acids, glycinebetaine, soluble proteins, organic acids and proline 

(Chaves et al., 2003), and with macronutrients such as inorganic components 

(Patakas et al., 2002). In our works, a strong correlation between Ψs decrease 

and proline content increase was observed in plants grafted onto the selected 

genotypes.   

The maintenance of scion homeostasis under salinity was achieved through the 

restriction of Cl- transport to leaves and to diminished Na+ loading in roots and 

leaves, thus favoring K+ uptake. Nonetheless, although ionic and water 

homeostasis are crucial parameters in abiotic stress tolerance, the maintenance 

of shoot vigor and leaf function are vitally important. In this way, plants grafted 
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onto A25 accession accumulated high concentration of toxic ions in plant 

tissues. According to Munns’ biphasic model (Munns and Tester, 2008), salt 

tolerance can be improved by reducing the negative osmotic effects on growth 

and/or maintaining leaf-root growth and functions for longer to dilute toxic ions 

(HajibagherI et al. 1989; Silva et al. 2008; Radić et al. 2013). In this 

combination, the absence of negative effects at physiological and biochemical 

level indicates that under saline conditions these plants either restrict the 

excess salts in the vacuole or compartmentalize the ions in different tissues 

where they are less harmful, as have also identify by other authors in tomato 

grafted plants (He et al., 2009). As a further confirm, grafted plants onto A25 

under salinity accumulated in leaves even more ions (both Na+ and Cl-) than the 

ungrafted one. The reduction of K+/Na+ ratio was attributable to the higher Na+ 

content given that plants did not lose their K+ uptake ability. According to our 

results, a strong negative correlation between the reduction in leaf Ψs and salt 

ions content was observed. 

Under both stresses, a minor negative impact on photosynthesis (mainly AN and 

gs), nitrate reductase activity and lipid peroxidation were observed on scion 

leaves grafted onto C12, B14 and A25 rootstocks the later only under NaCl 

addition.  

We speculate that under a stress stimulus proline represents the key metabolite 

by which plants could face water scarcity and salinity conditions. Proline content 

was increased in the presence of NaCl in plants grafted onto A25 compared to 

non-significant increment in leaves of ungrafted or and also was increased in 

plants grafted onto C12 and B14 accessions under PEG conditions, compared 

to plants grafted onto A5 and A8 sensitive rootstocks. We didn’t observe this 

increase under NaCl conditions in C12 and B14 plant combinations. Perhaps in 
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that experiments, the level of induced stress was not strong enough for these 

tolerant plants to synthetize proline, or plants could maintain their metabolic 

processes through ion retention or exclusion. Summarizing, improvement in 

proline accumulation under water and salt stresses helped maintaining osmotic 

potential and may also be involved in protection against oxidative damage as 

indicated by lower levels of MDA in plants grafted onto the selected accessions.  

Better maintenance of the photosynthesis rate and a better regulate stomata 

regulation under stress conditions were noted when plants were grafted onto 

the selected genotypes. 

There is an evidence that photosynthesis regulates nitrate reduction by 

modulating NR activity (Kaiser and Spill, 1991; Yousfi et al., 2012), which 

agrees with the results presented in this doctoral thesis. The most tolerant 

rootstocks in AN terms exhibited lower NR inhibition under water and salt stress, 

if compared with the plants grafted onto sensitive genotypes and ungrafted. 

These studies represent the first body of experimental evidence which 

demonstrates as the grafting technique is a valid grafting technique as a valid 

strategy for facing water and salt stress of pepper. From agronomic studies we 

have demonstrated that this resilience is conferred when a robust rootstock is 

selected, through changes in the scion behavior when grown under abiotic 

stresses. Moreover, as it was previously known, the physiological and 

biochemical strategies that plants develop to cope with stresses are diverse, 

such as retention or ion selection, compartmentalization of toxic ions in the 

vacuole, or proline synthesis among others. At the end, all processes lead to 

higher pepper yields in grafted plants under abiotic stressed environments. 

Specifically, from our agronomic, physiological and compatibility experiments, 

the genotype “A25”, a C. annuum accession, has shown promising 

characteristics to be a robust rootstock for its tolerances to water and salt 
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stresses, improving the results obtained by commercial rootstocks in both 

conditions. This priceless plant material could be further improved by breeding 

programs, being an excellent “starting” material. 
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FINAL CONCLUSIONS 

 

From all the studies performed in this PhD in order to understand the 

mechanisms of tolerance to salt and water stresses of pepper accessions to 

use them as rootstocks of pepper scions, we can conclude that, 

 Photosynthesis rate measurements could be considered a useful parameter 

to screen large collections of pepper accessions to drought and salinity 

tolerance  

 Satisfactory yields were obtained when our selected genotypes by the 

photosynthetic rate were used as rootstocks in both water and salt stresses, 

confirming that some wild Capsicum genotypes used as rootstocks are 

interesting as a source of tolerance to abiotic stress  

 The selected accessions provide yields comparable or superior to 

commercial rootstocks commonly used in pepper crops mainly due to a fruits 

affected by BER decline 

 Chlorophyll Fluorescence Imaging (CFI) is a good tool to evaluate 

scion/rootstock compatibility degree, reflecting the anatomical performance 

of the graft status, been a promising technique, fast and non-invasive, to 

early predict compatibility in different combinations and in a large number of 

plants 

 The selected tolerant Capsicum rootstocks use several strategies to face 

water scarcity and salt stress: enhancing osmotic adjustment through proline 

accumulation; restricting Cl- transport to leaves and Na+ loading in roots and 

leaves, thus favoring K+ (Ca2+ and Mg2+) uptake and allowing a decrease in 

the osmotic potential, increasing SOD synthesis and decreasing of ROS 

synthesis. Consequently, minor inhibitory effect on photosynthesis and NR 
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activity, and minor amount of MDA are shown when tolerant rootstocks were 

used in grafted plants. 

 As a summary, there are accessions of Capsicum capable of bearing 

moderate both salt and drought conditions through different mechanisms, 

and confer these tolerances to pepper cultivars via grafting, when good 

compatibility exists, that can be measured with CFI. 
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