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Abstract. In this paper we will show how hypergraphs and some mea-
sures related to them can help in extracting information about Col-
lective Transportation Line Networks. We will also prove that these
measures satisfy certain properties that validate their use to compare
the connectivity of different networks.

1 Introduction

Collective Transportation Line Networks (CTLN) have been classified as complex
systems. In order to understand the organization and functioning of these systems, in
the last two decades graph theory representation has been applied and several coeffi-
cients and measures have been introduced. Some of the features studied to characterize
networks representing complex systems are the average path length and the clustering
coefficient (see [I]). These two measures were modified by Latora and Marchiori [2]
in order to fit them to transportation networks. Thus, in the last paper, the local
and global efficiency were adapted so that they could be applied to transportation
networks, instead of the average path length and clustering coefficient, respectively.
In particular, these concepts have been applied to the Boston subway [3]. The related
concept of vulnerability has been applied (see [4]) to other subway networks along the
world. More recently, indexes to evaluate the robustness of a railway network against
interruptions in the normal functioning of its links (both accidental interruptions and
intentional attacks) have been introduced in [5].

CTLN planning contains several intertwined problems: network design, line plan-
ning, timetabling, resource scheduling, etc., with several agents (public organizations,
private companies, users) involved. Three layers can be distinguished from the net-
work perspective: the infrastructure network, the line network, and the passenger
system. In this work, we are concerned with the line network level, where one is usu-
ally interested in analyzing the connectivity of its lines, i.e., how easy/hard it is to
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transfer from one line to another. CTLN riders are reluctant to transferring from one
line to another because of inconvenience and extra travel time. It can be noted that,
in urban CTLN, the proportion of users who transfer twice is very low and nearly
nobody transfers three times, in these cases they prefer to use a different mode of
transportation.

Since graphs are not enough to study the transfer system, in order to analyze
the connectivity of CTLN, in Section [2] we represent them as hypergraphs and their
corresponding linear graphs. Some related measures will be presented and analyzed
in Section Bl For the sake of readability, all technical proofs have been omitted here
and are presented in the technical report [6] instead. Four metro systems have been
chosen for comparing the values of these measures in Section [

2 Representation of line networks by means of hypergraphs and
their associated linear graphs

In this paper we are interested in analyzing the functioning of a collective trans-
portation line network (CTLN) with respect to the number of transfers. For this pur-
pose, several graph representations are used. We will represent a collective transporta-
tion line network G by its set of lines, that is, G = {L1, ..., Ly}, where L; = {s{, ..., s} }
are the i-th line and its set of stations, so that 53'» and 53'» 41 are directly linked, for
alli=1,...0,j=1,...k — 1. If s};i and s} are also linked, L; is a circular line. In
the upper graph of Figure [[l we show an example of a collective transportation line
network.

Let us define three different structures associated to the CTLN: the transit hy-
pergraph and its associated linear graph and multigraph. A collective transportation
line network can be represented by a hypergraph (see [7,[8]) as follows.

Definition 1 Let G = {Ly,..., Ly} be a CTLN. We define H = (V(H), E(H)) as
its associated hypergraph, where the node set V(H) = {s1,..., sk} is formed by the
stations of G and the hyperedge set E(H) = {L1,...,L¢} consists of the network lines
so that each hyperedge L; consists of a subset of V(H): the stations/stops where L;
stops. From now on, we call this hypergraph a transit hypergraph.

Note that elements in F(H) do not need to be pairs of elements of V(H), as opposed
to standard graphs.

Figure [l bottom left graph shows the transit hypergraph of the Vienna metro
network where, for the sake of readability, only transfer stations (7;) have been de-
picted. On every hyperedge, the number of stations constituting the corresponding
metro line is indicated. It is interesting to note how the graphical representation of
a relatively complex network can be highly simplified by means of its corresponding
hypergraph. In the following, H refers to a general hypergraph and H to the transit
hypergraph.

The following definition introduces the second network structure we are to study:
the concept of linear graph (see [78]) associated with the transit hypergraph.

Definition 2 Let G = {Ly,...,L¢} be a CTLN, and let H be its associated hyper-
graph. The linear graph of H is denoted by L(H) = (V(L(H)), E(L(H))), where:

— V(L(H)) ={L1,...,Le} representing the network lines (hyperedges of H).
— E(L(H)) is the set of transfer edges connecting lines with intersections between
them. These transfer edges are denoted by e;;.
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Observe that each hyperedge in H corresponds with a node in £(H), and two nodes
in £(H) are linked if and only if the corresponding hyperedges in H have non-empty
intersection.

Note that the linear graph is assumed to be a simple or strict graph, where multiple
edges between nodes are not permitted. So, if lines L; and L; have common stations
then there exists a unique edge e;;, independently of the number of common stations.
For some purposes, it becomes interesting to consider the linear graph as a multigraph
LM(H), i.e., a graph in which multiple edges are permitted. In this last case, the
number of multiple edges connecting two lines in £(H) will be equal to the number of
transfer stations between them in H. In the rest of the paper £ (H) will be referred
to as the linear multigraph of G.

Figure [l bottom center and bottom right graphs show the linear graph and linear
multigraph of the Vienna metro network. Note that each node represents a line and
there is an edge (or a multiple edge) between two lines if and only if they share one
station (or more than one transfer stations).

3 Connectivity measures at each level of abstraction

In this section we introduce several measures that will evaluate the connectivity
of a collective transportation line network in terms of its transfers: the characteristic
path length, the clustering coefficient, the local efficiency and the global efficiency.

Remark 1 All these measures are invariant to scale changes in the measurements of
physical (spatial) distances when they are defined topologically. In the rest of this
section this property will be complemented with others which validate the use of
these measures in order to compare the connectivity of different networks.

3.1 Characteristic path length

A measure of the separation between pairs of nodes in a graph is given by the
average length of the shortest paths, also known as characteristic path length, defined
as the mean of the length of the shortest path over all pairs of nodes, (see [11[@]). We
will extend this definition so that this index can be applied to the transit hypergraph
and its associated linear graph, and we will see that such new definitions give valuable
information about the connectivity of a CTLN.

3.1.1 Characteristic path length on graph £(H) and multigraph £ (H)

We begin with the linear graph. Over this level of abstraction, the characteristic
path length will give an average measure of how easy it is for passengers to transfer
between the lines of a CTLN. Before defining this first measure, we need to introduce
the distance on this linear graph that will be used.

Definition 3 du)(Li, Lj) is the topological distance between the nodes L;, L; of the
graph L(H), i.e., the number of edges that a shortest path between L; and L; contains.
In other words, dz ) (Li, Lj) is the number of transfers one needs for traveling from
line L; to line Lj.

We trivially have that dg ) (Li, Lj) = 1 if and only if L; N L; # 0, that is, if there is
a transfer station from line L; to line Lj;, and dzm)(Li, Lj) > 1 otherwise. Besides,
dzm < £ —1 because we are assuming a connected CTLN.
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Definition 4 We define the characteristic path length of the linear graph L(H) with
[V(L(H))| > 1 as the average distance in L(H), i.e.,

2
[V (L(E)|([V (L(H)] - 1) > deen(Li Ly).

i<j

L(L£(H)) =

Therefore the characteristic path length in £(H) represents the average number
of transfers one needs for traveling between lines in the CTLN. Note as well that this
measure makes no sense when the network consists of one line only.

The next proposition proves two properties that, together with the trivial invari-
ance to scale changes noted in the previous remark, allow us to use the characteristic
path length as a connectivity measure for collective transportation line networks. Such
two properties are: staying within a predefined range of variation and monotonicity.

Proposition 1 Consider a CTLN G, and let L(H) be its associated linear graph. Let
L(L(H)) be the characteristic path length of the linear graph. We have that:

1. 1 < £(L(H)) < ¢ — 1. The nearer to 1, the more interconnected the lines are.
L(L(H)) = 1 means that for all pairs of lines of C there is a transfer station that
directly connects them. £(L(H)) = ¢ —1 can only be achieved when the G consists
of two lines that are connected (note that in this case £ —1 =1).

2. £(L(H)) is monotone decreasing in the sense that, if G' is obtained when adding
a new link to G connecting two lines, we have that £(L(H)) < £(L(H)), where
L(H) is the linear graph of G'. Moreover, S(L(H)") < £(L(H)) if and only if the

new link connects two lines that were not directly connected in G.

Proof. See [d]. O
The reader may note that the same properties proven in the previous section hold
for the characteristic path length on the linear multigraph £M (H).

3.1.2 Characteristic path length on transit hypergraph H

We now continue with the transit hypergraph. Over this level of abstraction, the
characteristic path length will give an average measure of how easy it is for passengers
to transfer between the stations of a CTLN. Before defining this first measure, we
need to introduce the distance on this transit hypergraph that will be used.

Definition 5 du(s;, s;) is the length of the shortest ordinary (s;,s;)-chain. All the
nodes incident to the same hyperedge (stations belonging to the same line) lie distance
1 apart. So, dw(s;, ;) is the minimum number of different lines one needs in order to
travel from station s; to station sj. Another interpretation for du(s;, s;) is the number
of transfers one needs in the trip from s; to s; plus one.

Note that in our collective transportation line network setting dm(s;, s;) is well defined
since we are considering connected networks only. From this distance, the character-
istic path length on the transit hypergraph, denoted by £(H), can be analogously
defined as the characteristic path length on the linear graph, see Definition [l

The following proposition states that the characteristic path length of the transit
hypergraph, which gives a measure of the connectivity of a CTLN, satisfies the same
two basic properties of this type of measures: it lies within a predefined range and
satisfies a monotonicity property.

Proposition 2 Consider a CTLN G, and let H be its associated transit hypergraph.
We have that the characteristic path length on H satisfies the following two properties:
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1 1< L(H) < 3(0+2).
2. Let G' be a CTLN obtained when adding one new link joining two lines of G, and
let H' be the associated hypergraph. Then £(H) > £(H').

Proof. See [6]. O

3.2 Clustering coefficient

Transitivity is an important concept in social network analysis. In a social system,
the probability of two friends having common friends is very high. The usual way of
measuring the transitivity of a network G is by means of the fraction of transitive
triples, i.e. the fraction of connected triples of nodes which also form triangles of
interactions (see [I0HIZ]). This is a classic measure used in social sciences to indicate
how much a network is clustered locally. Note that the number of possible triples of
nodes in G is (g) Another indicator to measure the local degree of clustering known
as clustering coefficient C is defined in [I] and it is adapted to £(H), £M (H) and H
in the following sections.

3.2.1 Clustering coefficient on linear graphs £(H) and £ (H)

The clustering coefficient in £(H) will measure the degree/existence of connectiv-
ity between its nodes. Since nodes in L(H) are lines in the CTLN and edges represent
the connections between pairs of lines, the clustering coefficient C' will be an indi-
cator of the robustness/interconnectivity of the line configuration. More precisely,
the clustering coefficient at this linear graph will take into account the number of
transfers one needs to do for traveling from one line to another. Thus, at this level
of abstraction, the number of stations of each line is not considered, and so, neither
are the travels between pairs of stations of the same line. These aspects will be taken
into consideration at the transit hypergraph later on.

Definition 6 Let G be a CTLN and let L(H) be its associated linear graph. We
consider the clustering coefficient C' on the linear graph L(H) as in [1). So, for each
node i € V(L(H)), the subgraph L;(H) formed by all first neighbors of i is considered.
In such subgraph, node i and all edges incidents to i are eliminated. If node i has k;
neighbors, then L;(H) will have k; nodes and at most k;(k; — 1)/2 edges. C;(L;(H))
is the fraction of these edges that actually exist and C(L(H)) is the average of C;,
calculated over all nodes:

1
C(L(H)) |V(£(H))|iEV(ZL(H))OZ-(,cZ—(H)),
where |
Ci(Li(H)) = number of edges in L;(H)

ki(k; —1)/2
We consider that if |L;(H)| = 1, then C;(L;(H)) = 0.

As stated before, the clustering coefficient in £(H) measures the degree/existence
of connectivity between its nodes, but it does not take into account the number of
transfer nodes in H. In order to consider, not only if one can transfer between two
lines, but also the number of possibilities to transfer (i.e., number of transfer nodes
in H), one should consider the following definition of the clustering coefficient C' in

LM ().
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Definition 7 Let LM (H) be the neighbor multigraph associated to i € V(LM (H))
and let U™ be a threshold that represents the maximum number of transfer nodes
that can exist between two lines. If node i has k; neighbors, then LM (H) will have at

most Um‘”w multiedges. C;(LM (H)) is the fraction of these edges that actually

exist and the clustering coefficient C(LM (H)) on the linear multigraph L (H) is the
average of C;(LM(H)), calculated over all nodes:

1
C(LM(H)) = Ci(L} (),
Ve 2
where
number of edges in LM (H)
Umaezf,(k; —1)/2

Ci(L}M (H)) =

3.2.2 Clustering coefficient on transit hypergraph H

The global clustering coefficient on hypergraphs is defined in [I3]. In this work, we
analyze the clustering coefficient from a local point of view, which, to the best of our
knowledge, has not been considered for hypergraphs in the literature. The natural
extension of the local clustering coefficient for graphs [I] to the case of hypergraphs
would be to consider hyperedges instead of edges. However, with this extension, the
higher the number of hyperedges, the higher the value of C, which in the case of
CTLN would mean that, for two given networks with the same number of nodes, the
one with more lines would yield a better clustering coefficient than the network with
less lines. This is not the aspect we would like to measure in this section, but the
level of connectivity between stations, i.e., a measure of the number of transfers one
needs to do for traveling between two stations. So, stations in the same line would
be very well connected, followed by the stations separated by one transfer, then by
those separated by two transfers and so on.

For that reason, in order to define the local clustering coefficient on hypergraphs,
we refer to the primal graph of a hypergraph and will make calculations on it using
the terminology of hypergraphs. Some previous definitions related to hypergraphs are
necessary.

Definition 8 For a hypergraph H and a set X C V(H), the subhypergraph induced
by X is the hypergraph H[X] = (X,{eNX :e € E(H)}).

The primal graph, also called the Gaifman graph (see [I])]) of a hypergraph is the
graph with the same nodes as the hypergraph, and edges between all pairs of nodes
contained in the same hyperedge.

In [I5], a graph representing direct connections in the Indian Railway Network
(IRN) is defined, and the usual local clustering coefficient is calculated over it, requir-
ing for that a high number of calculations. It is easy to see that this graph structure
coincides with the primal graph. We will prove that using hypergraph structures sim-
plifies calculations. We now introduce the notion of clustering coefficient in the primal
graph following the usual local clustering definition [I].

3.2.3 Primal graph. Clustering coefficient on Gy

Definition 9 Let Gy be the primal graph of the transit hypergraph H. We will con-
sider the clustering coefficient of Gy defined as in [1] and denoted by C(Gu), G,
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being the subgraph formed by all first neighbors of i. Mathematically,

1
€6 = G & OO

where ber of ed G
_number of edges in Gy,

ki being the number of nodes of G, .

Two drawbacks of this coefficient in CTLNs are:

— C(Gm, ) equals one when 7 is a nontransfer station (belongs to just one hyperedge),
— C(Gn,) € [0,1] for transfer stations (belongs to more than one hyperedge).

In other words, transfer nodes are somehow penalized by this measure.

3.2.4 Computing the clustering coefficient in the primal graph using the terminology of
hypergraphs

Computing the clustering coefficient in the primal graph requires a high computa-
tional effort. First of all, the primal graph must be calculated by adding edges between
each pair of nodes belonging to the same hyperedge. Secondly, this high increment of
the number of edges at the primal graph makes its application to complex networks
too hard. For this reason, in [I5] the clustering coefficient is calculated for only some
stations of the network instead of the complete IRN. One of the disadvantages of the
primal graph is that the information about hyperedges is lost (in CTLN this is the line
structure). This information about the line structure is relevant and it even enables
the simplification of calculations for computing the clustering coefficient. Therefore,
we will propose a different methodology to calculate the clustering coefficient based
on hypergraph properties.

Remark 2 Note that at the hypergraph level, every pair of nodes in a same hyperedge
are related and this relation is represented by an edge in the primal graph. Then, at the
primal graph, the number of edges between nodes that belong to the same hyperegde
in the original transit hypergraph is equal to the number of pairwise combinations
between them.

To calculate this number of pairwise combinations the number of pairwise combi-
nations between elements of a hyperedge is defined.

Definition 10 Let H be a hypergraph. For each node s; € H, we consider the asso-
ciated neighbor subhypergraph H;. Let LY € E(H;) be a hyperedge of H;, we define
Comb(L;'-) as the number of possible pairwise combinations between elements of L;'-,
i.€.
o L (L = 1)
Comb(L}) = %

The clustering coefficient of the primal graph of the hypergraph can be more easily
calculated by means of the hypergraph terminology, as will be shown in Theorem [I]
where some simplifications and combinatorics help to group the same type of pairs.
This simplifies the counting process and reduces the computational complexity.

Since V(Gg) = V(H), we refer to the original hypergraph when dealing with
nodes and their membership to a hyperedge. So, intersection nodes are the ones
belonging to more than one hyperedge.
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Theorem 1 Let s; € V(H) = V(Gg) be a node of H and let H; be the neigh-
bor subhypergraph associated to s;. Denote by L} a hyperedge of H;, for j € I =
{1,..,|E(H;)|}. Then the clustering coefficient of the primal graph can be calcu-
lated using the hypergraph terminology, distinguishing between intersection and non-
intersection nodes, as follows:

1
G = WG 2, O

where

(a) If s; € V(H) is a non-intersection node, then C(Gp,) = 1.

(b) If s; € V(H) is an intersection node, then the following is applied:

iy (_1)k_100mb(ijEE(Hi),jGJQI,|J|:k L)
Comb(U,es L;)

Proof. See [6]. O

3.3 Local and global efficiency

The clustering coefficient suffers from several limitations, as it is shown in [3]
[T6]: it is ill-defined in several cases, and it only works in the topological network,
where the only information retained is about the existence or the absence of a link,
and nothing is known about the link’s length. Some new measures are proposed
in [2LBLI6HIS], by introducing the efficiency E, which is valid both for weighted
and unweighted networks. They argued that the global efficiency plays the role of
the inverse of the characteristic path length and the local efficiency is similar to the
clustering coefficient. The description of the network in terms of its efficiency extends
the small-world analysis to disconnected networks and to real systems that are better
represented as weighted networks.

3.3.1 Local and global efficiency on linear graph £(H)

In this section we define both the global efficiency and the local efficiency measures
for the linear graph level, which measure how efficiently passengers can move from
one line to another from a global and a local point of view, respectively.

Definition 11 We define the global efficiency indicator of the linear graph L(H) as
the average of the inverse of the distances in L(H), i.e.,

2 1

Egiop(L(H)) = [V (CHE)|(|V(LH) - 1) ; degy (Lis Ly)

Once more, this indicator is defined if |V (L(H))| > 1, which implies that the corre-
sponding CTLN consists of at least two lines.

The following proposition proves that this measure can be applied to evaluate the
connectivity of CTLNs, because it satisfies the two basic properties we also proved
for the characteristic path length: it belongs to a predefined range, and it is monotone
(as well as the general invariance to scale changes). These two properties allow us to
use this index to compare different networks.
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Proposition 3 Consider a CTLN G, and let L(H) be its associated linear graph. We

have that:

1. ﬁ < Egop(L(H)) < 1. The nearer to 1, the more interconnected the lines are.
Eg00(L(H)) = 1 means that for all pairs of lines of G there is a transfer station
that directly connects them. Eqop(L(H)) = 715 if and only if { = 2.

2. Egiop(L(H)) is monotone increasing in the sense that, if G' is obtained when
adding a new link that connects two lines in G, we have that Eg.,(L(H)) >
Egiop(L(H)), where L(H)" is the linear graph of G'. Moreover, Egop(L(H)) >
Eg0p(L(H)) if and only if the new link connects two lines that were not directly
connected in G.

Proof. This proof can be done analogously as the proof to Proposition [l O
We now define a new measure: the local efficiency indicator, which evaluates how
efficiently passengers can move between lines from a local point of view.

Definition 12 We define the local efficiency indicator as the average global efficiency
of the subgraph L;(H) = (V; = V(L;(H)), E; = E(L;(H)) formed by all first neighbors
of L; in L(H).

1
EIOC(‘C(H)) = W ;Eglob (ﬁi (H))a
where

2 1
-~ Vil(vil = 1) o drmy(Lj, L)

The reader may note that the same properties proven for the global efficiency
indicator hold for the local efficiency indicator, that is: 25 < Ejo(L(H)) < 1, it is
invariant against scale changes, and it is monotone increasing. It is interesting to note
that our intervals improve those that have traditionally been stated (in [L6HIS| the
global and local efficiency indicators are shown to be in the interval [0,1]).

Egion(Li(H))

3.3.2 Local and global efficiency on transit hypergraph H

We now adapt the same efficiency indicators as before for the transit hypergraph
H. In this case, the global efficiency and the local efficiency will measure how efficiently
passengers can move between stations. We define the global efficiency indicator of
the transit hypergraph H as the average of the inverse of the distances du(s;,s;)
analogously as we did in Definition [[1l Again, this indicator can be used to compare
networks due to the properties proven in the following proposition:

Proposition 4 Consider a CTLN G, and let H be ils associated hypergraph. Let
Egi05(H) be the global efficiency of the transit hypergraph H. We have that:

1. % < Egop(H) < 1. The nearer to 1, the more interconnected the stations are.
Egiop(H) = 1 would mean that all pairs of stations of G belong to the same line,
which is not possible because we are considering C'TLN with at least two lines.

2. Egiob(H) is monotone increasing in the sense that, if G' is obtained when adding
a new link to G, we have that Egop(H') > Egop(H), where H' is the transit
hypergraph of G'. Moreover, Egop(H') > Eg0p(H) if and only if the new link
connects two lines that were not directly connected in G.

Proof. See [6]. O
Just like we did for the primal graph, we can define the local efficiency measure

for the transit hypergraph H, which will be denoted by Ej,.(H). The reader may

note that Ej,.(H) satisfies the same properties, that is, it belongs to (1/¢,1) and it is
monotone increasing.



10 Will be inserted by the editor

Table 1: Results of the studied measures for network Vienna, Los Angeles, Montreal
and Moscow.

Networks Levels C £ Eioc Egiop

Hypergraph ~ 0.9413 1.9067 0.9678 0.5971
Vienna Linear graph  0.8666 1.2 0.9333 0.9
Multigraph 0.5833 — - -
Hypergraph 0.9698 2.2113 0.9744 0.5621
Los Angeles  Linear graph  0.5333 1.5 0.6 0.7833
Multigraph 0.3999 — - -
Hypergraph ~ 0.9258 1.7291  0.9598 0.6767
Montreal Linear graph  0.5833  1.3333 0.5833  0.8333
Multigraph 0.2916 - -
Hypergraph ~ 0.9054 2.0050 0.9463 0.5506
Linear graph  0.7866 1.3636 0.8919 0.8181
Multigraph 0.4975 —

Moscow

4 Numerical example

In this section, the applicability of the measures presented in this paper will be
illustrated on several real CTLNs. In order to obtain comparable results, we focus on
the same type of CTLN. More precisely, since some aspects of metro systems have
been researched in the last years [3l4] we will consider four real world metro networks.

We have chosen the Vienna, Moscow, Montreal and Los Angeles metro networks
since they constitute a good spectrum of several types of metro networks from size
and connectivity points of view.

— Vienna metro network (see Figure[l]) is a medium size network (88 stations) with,
a priori, well connected lines. With respect to its structure, it can be classified as
a cartwheel configuration. The percentage of transfer stations with respect to the
total number of stations equals 0.1136.

— Los Angeles metro network (see Figure ) is a medium size network (71 stations)
with, a priori, low connected lines. With respect to its structure, it can be classified
as a tree configuration. The percentage of transfer stations with respect to the total
number of stations equals 0.0563.

— Montreal metro network (see Figure B]) is a medium size network (68 stations)
with, a priori, rather well connected lines. With respect to its structure, it can be
classified as a grid configuration. The percentage of transfer stations with respect
to the total number of stations equals 0.0589.

— Moscow metro network (see FigureH)) is a large size network (147 stations) with,
a priori, well connected lines. With respect to its structure, it can be classified as
a cartwheel configuration. The percentage of transfer stations with respect to the
total number of stations equals 0.1701.

For metro networks, the threshold U™ (needed to calculate the clustering coef-
ficient C'(L£M (H)) for the linear multigraph) can be fixed to two, since two connected
lines seldom share more than two transfer stations. It should be mentioned that, if
two lines share several contiguous stations, which happens when two or more lines
have a common track (as it occurs in Los Angeles network), then we only consider
the first and the last stations of the track as transfer stations between these lines.

In Table[land Table[2 it can be observed that the behaviour of the measures is not
same at both the linear and the hypergraph levels, in the sense that they do not lead
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Table 2: Different orderings of the metro networks Vienna (Vn), Los Angeles (LA),
Montreal (Mn) and Moscow(Ms), depending on measure and level of abstraction
(based on values of Table [T).

Levels C £ Eloc Eglob
H LA-Vn-Mn-Ms Mn-Vn-Ms-LA  LA-Vn-Mn-Ms Mn-Vn-LA-Ms
L(H) Vn-Ms-Mn-LA  Vn-Mn-Ms-LA  Vn-Ms-LA-Mn  Vn-Mn-Ms-LA
LM(H)  Vn-Ms-LA-Mn - - -

to the same ordering of the networks based on the values of each coefficient. That
is, according for example to the clustering coefficient, at the hypergraph level Los
Angeles achieves the best value, followed by Vienna, Montreal and Moscow, whereas
at the linear level is Vienna the one that reaches the best value of this coefficient,
followed by Moscow, Montreal and Los Angeles.

In order to better understand the behavior of the measures at each level, we will
analyze the particularities of the networks and their relation with the values obtained
in Table [ for each level.

Concerning the clustering coefficient at the hypergraph level, as stated above,
Vienna’s is lower than Los Angeles’, which is due to the fact that the percentage
of non-transfers stations in Vienna is lower than in Los Angeles. Note that, when
considering the primal graph or the graph of direct connections [I5], non-transfer
nodes lead to C; = 1 (see Theorem [II), which increases the average C. In other
words, for two networks with the same number of stations, the higher number of
transfer stations the lower the clustering coefficient. So, transfer stations are somehow
penalizing the value of the clustering coefficient. This analysis of the transfer system
should be complemented to have a more complete vision of the reality and also in
order to avoid extreme cases, such as the example of a network with all its lines
disconnected and whose clustering coefficient would be equal to one (one is the upper
bound of the clustering coefficient).

The linear level becomes then necessary in order to complete the analysis of the
CTLN so that transfer stations do not penalize. Note that at this level, stations are
not taken into consideration but just lines and their connections. A network with all
its lines disconnected has a clustering coefficient equal to zero at the linear graph
level, since the corresponding linear graph has no edges. So, depending on the level
of abstraction taken into consideration, the maximum or the minimum threshold for
the clustering coefficient is achieved.

At the linear graph it can be observed that, for example, Vienna and Los Angeles
have the same number of nodes, since both are networks consisting of five lines.
However, the linear and multiple linear clustering coefficients are higher for Vienna
than for Los Angeles at this level. This is due to the fact that Vienna s linear graph
is nearly a complete graph (see Figure [I]), in the sense that most lines are pairwise
connected. So, transferring between two lines is normally allowed by means of just
one transfer.

Note that lines in the Moscow network are well connected. This fact is reflected
in the average degree of the nodes in the linear graph (close to 7) and in the high
values of the clustering coefficient at the linear and multiple graph. However, at the
hypergraph level, the value of this measure is the lowest of the four networks, due to
the fact that the percentage of non-transfer nodes is the highest amongst them.

Recall that, at the multigraph level, each edge between two nodes (lines) represents
a transfer station between the lines. As it can be observed in FigureBl any pair of lines
of Montreal network share no more than one transfer station, so there are no multiple
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edges at its corresponding multigraph. This leads to the fact that the value of the
clustering coefficient at the linear level is exactly twice the clustering coefficient at the
multigraph (U™** equals two). Another consequence of the absence of multiegdes at
Montreal multigraph is that, if we compare it with Los Angeles network, although the
clustering coefficient at the linear graph is larger for Montreal than for Los Angeles,
the opposite occurs considering the clustering coefficient at the multigraph since Los
Angeles network does have multiedges at the multigraph.

As stated by [2] and commented in Section B3] it can be observed that the clus-
tering coefficient and the local efficiency play the same role, as it can be observed
at the hypergraph level, where the order induced by the local efficiency is the same
as the one induced by the clustering coefficient: Los Angeles achieves the best value,
followed by Vienna, Montreal and Moscow. Also, the global efficiency and the inverse
of the characteristic path length have the same behavior (see [2] and Section B3),
as it can be seen in the order of the networks induced by these concepts: Vienna,
Montreal, Moscow and Los Angeles.

The characteristic path length represents the average number of transfers one
needs for traveling between nodes, understanding nodes as lines at the linear level
and as stations at the hypergraph level. Analogously as commented for the clustering
coefficient, the characteristic path length does not necessarily induce the same order
at both levels. For example, the average number of transfers one needs to travel
between lines is smaller for Vienna than for Montreal and the opposite happens for
transferring between stations. Again, this responds to the fact that Vienna’s linear
graph is nearly a complete graph, which makes it the network that achieves the best
values of the measures at the linear level (see Table 2]). The number of transfers one
needs for transferring between lines at Vienna’s metro network is then the lowest of the
studied ones since most of its lines are directly connected. However, if one observes in
deep the Vienna’s metro network (Figure[l]), line 6 is the one with the highest number
of stations and it has no direct connection with line 2 neither with line 3. This absence
of connections between lines with high number of stations elevates the average of the
number of transfers one needs to do for transferring between stations. On the contrary,
the line in Montreal’s metro network (Figure B]) with the highest number of stations
is line 1, followed by line 3. These two lines are directly connected, which decreases
the average number of transfers one needs to do for transferring between stations in
the whole network.

5 Conclusions

In this work, we have represented a collective transportation line network (CTLN)
by means of hypergraphs and their corresponding linear graphs. In order to analyze
the functioning of a CTLN, with respect to the number of transfers, several measures
have been considered.

Two different abstraction levels and their respective coefficients regarding line
routes are presented in this work. In the examples, each level corresponds to different
interpretations of reality: the linear graph level measures connectivity between lines,
whereas the hypergraph level measures connectivity between stations.

We have also seen that hypergraphs significantly reduce the computation of the
clustering coefficient with respect to other methods found in the literature.
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