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Deriving pseudo-vertical waveforms from small-footprint full-

waveform LiDAR data

When processing scanning LiDAR data, it is commonly assumed that the
extracted full-waveform LiDAR pulse registers truly vertical information of
forest canopies. This assumption may lead to uncertain results for the spatio-
temporal analysis of the waveforms due to off-nadir scanning angles and various
trajectories traveled by the pulses in overlapping strips. In this letter we
investigate these assumptions, and undertake some preliminary analysis to
overcome their impacts on forest-based LiDAR analyses. Our results demonstrate
that for a standard LiDAR forest acquisition program in Oregon, USA, most of
the hits (83%) are acquired off-nadir, which leads to positional displacements on
the ground of the full-waveforms of about 0.20 m for each one-meter height
increment. We propose an approach to synthetize multiple waveform data into
composite waveforms containing the vertical profile of vegetation for a given
location. This approach is based on partitioning the aboveground vertical space
into voxels and using the maximum full-waveform intensity value to construct
new full-waveforms comprising the vertical information of the various
waveforms crossing over a location. Our initial results indicate that deriving
spatio-temporal metrics from the composite pseudo-vertical full-waveforms
produces a more consistent response across adjacent height levels, which in turn
enables a more complete characterization and more vegetation structure to be
retrieved. We conclude that this type of pseudo-vertical full-waveform analysis is
necessary to more fully understand the impact of the return signals from tree

crowns.
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1. Introduction

LiDAR (Light Detection And Ranging) technology has experienced a significant
increase in application within the forestry community and is routinely used to estimate a
range of structural parameters for forest inventory in a number of countries and

jurisdictions (van Leeuwen and M. Nieuwenhuis 2010). To date, the most common type



of LiDAR data acquired is discrete return data where the return pulse is digitized into a
small number of discrete three-dimensional coordinates, usually coinciding with the
return of the first and last energy components and some intermediate energy peaks (Hall
et al. 2005).

Recently, small-footprint full-waveform LiDAR sensors have been developed
which have the potential to provide new opportunities for vegetation studies (Mallet and
Bretar 2009; Allouis et al. 2012). Full-waveform sensors register the complete returned
backscattered signal, and analysis of the full-waveform should enable researchers to
describe, more fully, the physical properties of the intercepted objects. The amplitude of
the waveform at any height is proportional to the amplitude of the energy received at
that given height, the amount of reflective material intercepted, the orientation of that
material, and its reflectance (Hyde et al. 2005). The use of full-waveform data is
increasing in some forestry applications, such as single tree detection (Reitberger et al.
2009; Yao, Krzystek and Heurich 2012), dead tree identification (Miicke, Hollaus and
Pfeifer 2012), tree species classification (Reitberger, Krzystek and Stilla 2008;
Neuenschwander, Magruder and Tyler 2012; Heinzel and Koch 2011; Sarrazin et al.
2012; Neuenschwander 2012; GuangCai 2012), and forest structural variables
estimation (Koetz et al. 2006; Wu et al. 2009; Kim et al. 2009; Ferraz et al. 2012;
Kronseder et al. 2012; Sumnall, Hill and Hinsley 2012).

Although commercial small-footprint full-waveform systems are relatively new,
large-footprint full-waveform LiDAR data have been available in the past two decades.
One of the earliest large-footprint airborne full-waveforms sensors was SLICER
(Scanning LiDAR Imager of Canopies by Echo Recovery, 10 m footprint) and more
recently LVIS (Laser Vegetation Imaging Sensor, 25 m footprint) both of which have

been applied to vegetation studies worldwide (Hyde et al. 2005; Lefsky et al. 1999; Ni-



Meister, Jupp and Dubayah 2001; Blair, Rabine and Hofton 1999; Drake 2002).
Moreover, since 2003 GLAS (Geoscience Laser Altimeter System) sensor, carried by
ICESat satellite, provides waveform data from space with 70 m footprint. In addition to
successful application to estimate various parameters, such as vegetation vertical
structure (Harding and Carabajal 2005) or biomass predictions (Boudreau et al 2006;
Peterson, Nelson and Wylie 2012), a number of studies have used this data to validate
spaceborne and airborne data products (Sun et al. 2008).

Compared to discrete return LiIDAR datasets, full-waveforms provide large
amounts of data about the forest canopy. To date, two approaches for processing full-
waveforms have emerged (Mallet and Bretar 2009). Signal decomposition and pulse
detection methods can be used to extract a large number of echoes from the waveforms
themselves, and therefore create very dense point clouds. Standard techniques can be
applied to these point clouds similar to those used for discrete LIDAR data, such as
height and cover metrics, height percentiles, and others derived from canopy height
models. A second approach, which has received less attention, is based on a spatio-
temporal analysis of the return waveform, to extract detailed geometric and radiometric
information. Previously, this type of approach was developed for SLICER, LVIS and
GLAS and provides metrics such as Height of Median Energy (HOME), peak distances,
canopy roughness, waveform energy, etc. (Drake et al 2002; Carabajal and Harding
2005; Duong 2010). To date, some researchers have adapted these spatio-temporal
approaches to small-footprint data in order to incorporate or complete these descriptors
for individual waveform analysis (Neuenschwander, Magruder and Tyler 2009; Heinzel
and Koch 2011; Sarrazin et al. 2012; Neuenschwander 2012; GuangCai et al. 2012;

Hofle, Hollaus and Hagenauer 2012).



While spaceborne sensors (GLAS) have a small off-nadir pointing angle (Bretar,
Pierrot-Deseilligny and Roux 2004) and SLICER has near-nadir viewing, most full-
waveforms acquired by LVIS or small-footprint sensors are off-nadir. The closer the
pulses are located to the edge of the swath width, the greater the acquisition scanning
angle, and therefore the more oblique path travelled by the pulse. The effect of off-nadir
pointing has been analyzed from both large footprint observations (Neuenschwander
2008; Yang, Ni-Meister and Lee 2011) and simulated data (Pang et al. 2011) with
results indicating that the waveform is stretched as off-nadir angle increases. As
airborne LiDAR acquisition is generally composed by many overlapping strips (Bretar,
Pierrot-Deseilligny and Roux 2004), waveforms for specific locations may have been
recorded from several flight trajectories. Consequently, the various waveforms
representing specific three-dimensional locations within a canopy would have traveled
different paths and, hence, crossed different canopy elements prior to intersection.
These different transition paths may be especially problematic when summarizing
information on forest canopies due to the large number of intercepted objects, the high
density of LIDAR data, and the limited penetration power of the laser pulse. If not
correctly accounted for, the false assumption that waveforms register vertical
information on the forest canopy may lead to ambiguous outcomes for a same location.

In order to avoid relying on assumptions of vertical waveforms across the entire
scan swath and integrating non-vertical waveforms from different flight trajectories, we
propose an approach that allows multiple waveform data to be synthesized into
composite waveforms representing the correct vertical profile of vegetation for a given
location. The proposed approach utilizes voxels to partition the vertical space around
the canopy using the maximum full-waveform recorded intensity value to construct new

waveforms comprising the vertical information of the various waveforms crossing over



a location. This approach is divided into four steps: de-noising and smoothing, spatial
location and normalized height calculation, space partitioning by means of voxels, and
pseudo-vertical full-waveform construction. With this voxel-based model of LIDAR
pulses, we expect a more realistic and accurate representation of the pulse’s vertical
transmission to correct the off-nadir effect. Therefore it is a more appropriate approach
for modeling a range of forest structural attributes.

In this letter we will: (i) examine the proportion of off-nadir pulses and compute
the positional error associated with those non-vertical hits; (i1) propose a new approach
to derive pseudo-vertical full-waveforms; and (iii) compare and contrast the behavior of
spatio-temporal metrics computed from pseudo-vertical waveforms and from observed

waveforms.

2. Study Area and Data

Data acquired for this research came from the Panther Creek Cooperative
Research Project (Flewelling and McFadden 2011), which is intended to develop a suite
of LiDAR applications for forest managers and currently involves over forty researchers
and land managers representing federal, state and local agencies, landowners, a LIDAR
provider, universities, and consultants.

The Panther Creek study area is a 2,258 ha forested area located in the east side
of the coastal mountain range in Oregon, USA, with an elevation ranging from 100 to
700 m. The dominant species is Douglas fir, offering within half of the stands with the
reminder mixed with other conifers (western hemlock, western cedar and grand fir), or
deciduous species (red alder and bigleaf maple). Average tree height is 40 m. Full-
waveform LiDAR data were acquired on July 15 2010 by Watershed Sciences, Inc. for
the United States Bureau of Land Management (USBLM) using a Leica ALS60 sensor

mounted in a Cessna Caravan 208B. The system acquired data at 105 kHz pulse rate,



flown at 900 meters above ground level, with a scanning angle of £14° from nadir, a
waveform temporal sample spacing of 2 ns and a footprint size of 0.25 m. This
configuration yielded a nominal pulse density of >8 points/m2. The study area was
surveyed with opposing flight line side-lap of >50% (>100% overlap) to reduce laser
shadowing and increase laser coverage. LiDAR data were distributed in LAS 1.3
format. In addition to the full-waveform data, a Digital Terrain Model (DTM) was
provided by Watershed Sciences, Inc. based on last return pulses acquired within this
LIDAR mission with a documented Root-Mean-Square Error using 33 GPS ground

control points of 0.19 m.

3. Method

3.1.  Determination of the off-nadir full-waveforms

To determine the number of off-nadir full-waveforms for a given forest stand,
the scanning angle for each hit is required. This information is recorded within the LAS
1.3 files which also contain the discrete return positions, their associated full-waveform,
the return point location within the waveform, and the parameters defining a parametric
line equation to extrapolate points along the associated waveforms (see ASPRS 2010).
The “scan angle rank™ value recorded in the LAS file however is rounded to an integer
making it imprecise for our analysis. For this reason, the parametric line equation was
used to provide additional information on the three dimensional spatial displacement for
each waveform record. This information and trigonometric equations (Baltsavias 1999)
were then used to retrieve a more precise scanning angle for each pulse without any

rounding or ranking.



3.2.  Spatio-temporal metrics derived from full-waveforms

A set of spatio-temporal metrics characterizing the return full-waveform was
used to estimate the variability introduced into the analysis of the observed waveforms
on the assumption they were acquired vertically. The following metrics were calculated
to assess the effect of considering the observed full-waveforms as vertical: HOME,
roughness of outermost canopy, number of peaks, and return waveform energy. Several
of these metrics were initially developed using large-footprint waveform sensors.
However, the use of the metrics at finer scales provided by small-footprint data has been
shown to be successful, and most of the variables can readily be used to describe within
crown — rather than within stand canopy — variations (Neuenschwander, Magruder and
Tyler 2009; Heinzel and Koch 2011; Neuenschwander 2012; GuangCai et al. 2012;
Hofle, Hollaus and Hagenauer 2012). HOME represents the height associated to median
energy location, and it is computed as the distance from the ground (defined by the
DTM) to the position were the return energy is divided into two equal parts. The
roughness of outermost canopy is defined as the distance from the waveform beginning
to the first peak, usually considered as the peak of canopy. The number of peaks is
derived from a peak detection process, and it describes the number of height levels
crossed by the waveform. The return waveform energy represents the total received

energy aboveground.

3.3.  Construction of pseudo-vertical full-waveforms

To date, a small number of studies have proposed combining several non-
vertical waveforms to retrieve fully vertical information. Allouis et al. (2012) computed
cumulative waveforms from the sum of full-waveforms signals falling within a tree-
crown boundary. Wu et al. (2012) proposed an angular rectification based on the

interpolation of waveform record intensity values, whereas Buddenbaum, Seeling and



Hill (2013) used the mean intensity value. These approaches, however, may mask or
blur the information of most significant peaks of waveforms by averaging or mixing
them with other less relevant intensity values. To reduce this unwanted diffusion of the
height and intensity our approach has four key steps: de-noising and smoothing, spatial
location and normalized height calculation, space partitioning by means of voxels, and
pseudo-vertical full-waveform construction.

1) An initial noise assessment was performed to distinguish between noise and
actual signal by establishing a threshold determined as the mean plus four times the
standard deviation (Duong 2010). After removing noisy waveforms, the background
noise of each full-waveform was suppressed. Full-waveforms were then smoothed and
any remaining noise removed using a Gaussian filter, with a kernel size defined by the
Full Width at Half Maximum.

1) Each full-waveform record was spatially located using the information
contained in LAS files. Each waveform record was normalized by computing the
difference between their height and the DTM, discarding from the analysis those
records located belowground.

1i1) Next, vertical canopy space was partitioned in regular voxels. To produce
waveforms with analogous dimensions than the originals, 0.25 % 0.25 % 0.30 m voxels
were created, approximately corresponding to the footprint size and the distance
traveled by the pulse during the temporal sample spacing of the full-waveform. Each
voxel was filled with the maximum amplitude value of waveform records within it. The
maximum was used to preserve in the composited waveforms the significance of the
major returns of the observed waveforms. As Figure 1 shows, the returned intensity of
the waveforms acquired at off-nadir angles is slightly lower than those acquired from

angles closer to nadir. For angles less than or equal to 7°, the gain reduction is less than



1%, while the reduction for larger angles is lower than 3%. This implies that the
scanning angle has a minor effect on the returned intensity. Still, by assigning the
maximum value to characterize the pseudo-vertical waveform, our approach favors
near-nadir scan angles in place of off-nadir returns.

iv) Lastly, the pseudo-vertical full-waveforms were constructed by extracting

the information contained in the vertical voxels over a specific location.

4. Results

The frequency distribution of hits and scanning angle for an actual LiDAR strip
is shown in Figure 2. As expected, near-nadir hits (acquired with a scanning angle < 3°)
accounted for only 17% of the total acquired pulses. As a result, 83% of pulses were
non-nadir, with 22% > 12° (Figure 2). The relationship between scanning angle from
nadir and the positional displacement on the ground computed at vertical 1 m
increments is shown in Figure 3. The figure indicates that, at nadir, the maximum
positional displacement for each 1 m height increment is < 0.05 m, whereas at a
maximum scanning angle this horizontal displacement (computed as defined by
Baltsavias 1999) can be as large as 0.20 m. Given an average tree height of 40 m in our
study area, this results in a maximum horizontal displacement in excess of 8 m, and
greater than 10 m for the largest scanning angle values registered (14°).

The results of the pseudo-vertical full-waveform voxels approach for a specific
voxel column (a) and the observed non-vertical waveforms associated with this same
vertical location are shown in Figure 4. As the figure shows multiple waveforms
intersect this column of 3D voxels, with none providing a comprehensive description of
the vertical structure. A number of the waveforms have peaks in intensity around 40 m
height (Figure 4.b, Figure 4.c, Figure 4.d,), whereas other waveforms (Figure 4.e,

Figure 4.f) have their major peaks at heights between 15 and 20 m. There is a third



group for waveforms distributed at a range of heights that only show minor interaction
(Figure 4.g, Figure 4.h). Since the pseudo-vertical full-waveforms are composed by the
maximum intensity information of all the observed waveforms crossing a vertical space,
independent of the spatial location of the hits, several of these peaks may not be
represented by the composite full-waveform characterizing a specific vertical location.

Differences between the individual non-vertical pulses within the same column
of voxels are also evident when we examine a range of spatio-temporal metrics
computed from each waveform (see Table 1). Results indicate that, while some metrics
(return waveform energy and HOME) are relatively consistent across all of the
intersecting waveforms (coefficient of variation ranging from 25 to 33%), some others,
such as VDR and the number of peaks, produce very high coefficient of variation values
(ranging from 70 to 109%). These very large values results demonstrate that the
assumption of vertical waveforms can produce highly variable outcomes due to
differences in scanning angle with the waveforms which in fact are traveling along very
different flight trajectories, intersecting a range of stand structure.

Figure 5 shows the behavior of various spatio-temporal metrics (HOME, return
waveform energy, number of peaks, and roughness of outermost canopy) for an
example plot computed from the observed (above) and the pseudo-vertical (bellow) full-
waveforms with 0.25 m pixel size. The metrics for the observed waveforms are located
according to the coordinates of their anchor point. Assuming multiple anchor points in
the vertical space associated with the same location, the average metric value of all
related waveforms is used to characterize that location. The use of composite pseudo-
vertical full-waveforms characterizes the vertical structure of each location with a single
waveform, avoiding situations where several waveforms are related to a same location.

The results show that pseudo-vertical full-waveforms provide a denser and more



continuous coverage, resulting in fewer null pixels when compared to the observed
waveforms. The spatio-temporal metrics computed from the pseudo-vertical full-
waveforms show an enhanced characterization of vegetation, allowing more structure to
be retrieved and producing a more consistent response at adjacent height levels. In
addition, there is an increased variability in the metrics across the observed land cover
types (forest, other vegetation and bare soil). This potentially facilitates increased

discrimination among different land covers and vegetation types.

5. Conclusions

The use of three dimensional voxel space for representing full-waveform
LiDAR data provides an alternative to the direct analysis of observed full-waveforms
which are mostly collected from off-nadir angles. The proposed pseudo-vertical full-
waveforms condense and summarize the main returned energy information of the
several observed full-waveforms crossing the vertical space of a location, with
analogous temporal sample spacing and footprint dimensions. In contrast to the direct
analysis of observed full-waveforms, peaks and energy distribution of composite
waveforms are related with the actual vertical space of a specific location. Results
suggest that considering pseudo-vertical full-waveforms to derive spatio-temporal
metrics instead of observed waveforms may lead to an enhanced description of the
vegetation structure, producing a denser full-waveform coverage. The results presented
in this letter are a result of preliminary analysis and suggest that additional research
should be undertaken as analysis of small-footprint, full-waveform LiDAR data
becomes more commonplace in forestry applications. These investigations could
include a more exhaustive validation of the model using field data, and to more
comprehensively model the effect of the variation of returned intensity due to changes

in altitude, which may hinder the retrieval of some returns.
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Table 1. Spatio-temporal metric values for the various waveforms related to hits located
within the same vertical space. WF = Waveform (see Figure 4), HOME = Height of
Median Energy, Vertical Distribution Ratio, NP = Number of Peaks, RWE = Return

Waveform Energy.
WF HOME VDR NP RWE
b 41.2 0.02 1 403
c 41.2 0.00 4 292
d 40.2 004 3 431
e 17.1 0.59 1 526
f 17.7 0.58 1 485
g 30.8 027 3 280
h 35.9 0.15 6 308
CV 033 1.09 0.70 0.25




Figure 1. Returned intensity variation in relation to scanning angle. Mean +standard

deviation values are shown.
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Figure 2. Histogram of LiDAR pulses relative to scanning angle.
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Figure 3. Horizontal displacement for off-nadir scanning angles computed per 1 m

change in height increment.
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Figure 4. Pseudo-vertical waveform of an specific voxel column (a), and observed full-

waveforms related to hits within the same vertical space (b, c, d, e, f, g, h).
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Figure 5. (a) Normalized digital surface model showing the height distribution of an
example plot. (b) Graphical representation of a set spatio-temporal metrics
characterizing the observed off-nadir full-waveforms (above) and the composite
pseudo-vertical full-waveforms (below). The acronyms and abbreviations used are:
HOME: height of median energy; RWE: return waveform energy; NP: number of
peaks; and Rough.: roughness of outermost canopy.
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