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Abstract 

In the context of the firing of ceramic tiles the problem of simulating the final shape of 

the body is relevant because several defects can occur and the tile can be rejected if the 

conditions of the firing are inadequate for the geometry and materials of the tile. The 

existing literature on this problem indicates that previous works present limitations in 

aspects such as not using a model characteristic of ceramics at high temperatures and 

oversimplifying the problem. As a response to such shortcomings, this article presents a 

simulation with a 3-dimensional Norton’s model, which overcomes the difficulties 

because it is characteristic of ceramics at high temperatures. The results of our simulated 

experiments show advantages with respect to the identification of the mechanisms that 

contribute to the final shape of the body. Our work is able to divide the history of 

temperatures in stages where the evolution of the thermal, elastic and creep deformations 

is simplified and meaningful. That is achieved because our work found that curvature is 

the most descriptive parameter of the simulation, the most important contribution of this 

article. Future work is to be realized in the creation of a model that takes into account that 

the shrinkage is dependent on the history of temperatures. The main shortcoming of the 

paper is the lack of physical experiments to corroborate the simulations. 

Glossary 
: Mean curvature of a surface S at a point p.  

: Set of discrete mean curvatures at the nodes of the upper face of the 

ceramic tile. 
: Set of discrete mean curvatures at the nodes of the lower face of the 

ceramic tile. 
: Set of thermal strains in one direction. Von Misses thermal strains are 

not defined. 
: Set of Von Mises elastic strains. 

: Set of Von Mises creep strains. 
: Set of Von Mises stresses. 

: Average of set . The set can be:  or . 
: Standard deviation of set . 

: Maximum absolute value of set . 

: Set of first principal, second principal and third principal stresses 

respectively. 

1  Introduction 



Several assumptions have to be made to model at some extent the sintering of pure 

ceramic materials. Some of these assumptions are: (i) no chemical reactions occur, (ii) 

the particles that compose the material are of the same compound and (iii) the sintering 

mechanisms are well defined. Because of the complexity of the materials often used to 

make floor and wall covering ceramic tiles, these basic assumptions do not hold. 

However, there is a need for computational models that can predict at least some final 

properties. 

Computational models of the firing can have uses in the prediction of the dimensional 

parameters of the tile. The acceptable parameters, including curvature, are described in 

the standard ISO10545-2 ([1]). Predicting the curvature of the tile in the oven and after it 

is cooled is  important for the ceramic industry, as an appreciable final curvature can 

cause the product to be rejected. In addition, an appreciable and non-uniform curvature 

during the firing can cause the decoration to be damaged or have other effects in the final 

properties of the tile. In our approach the mean curvature of the surface is defined at 

every point of the surface. The definition of mean curvature and its discretized form can 

be found in  [2]. 

This article is organized as follows: Section 2 discusses the current state of art in 

computer simulation of ceramic tile firing.  Section 3 describes the methodology used in 

this article, as a result of the conclusions of our literature review.  Section 4 presents the 

results of the proposed methodology. Section 5 concludes the article. 

 

2 Literature Review 
The “fit-to-reality” approach when modeling the sintering of a ceramic solid uses full 

constitutive equations. Full constitutive equations include parameters obtained from the 

microscopic structure of the powder to calculate the shape of the body. Full constitutive 

equations need parameters that are complex to obtain and define. Simulations and 

equations do change with the stages of the sintering, so they should then be defined and 

considered on a specific time and context. This approach is used in [3-5]. Even for the 

purest ceramics, certain stages of the sintering require phenomenological parameters, that 

is, parameters from experimental models rather than from microstructure models. Mixed 

models, like the ones used in [6,7], use phenomenological constitutive equations in stages 

where the sintering is more complicated and full constitutive equations in stages where 

the microstructural parameters can be found.  

 

Trying to reduce the number of parameters and the difficulty to obtain them, some 

simulations restrict their objectives. For example, they only use geometric parameters 

like linear shrinkage to obtain the final shape of the solid. Ref [8] presents a simulation 

that uses the principle of the Master Sintering Curve, ([9]), which states that the 

geometric parameters used in constitutive equations are functions only of density for a 

given powder and green-body process. The parameters used are fewer, but they have to 

be obtained for every powder process. This makes the experiments difficult to replicate. 

As usual, there is a definite shortage of reports on traditional ceramics. 

In continuum mechanics, constitutive equations that do not rely in the microstructure of 

the material are used. Macroscopic constitutive equations that do not rely in the 



microstructure are able to explain the changes of the shape using simple parameters like 

elastic, thermal and creep deformations; or mechanical stresses. Calculating mechanical 

stresses when the body is at low temperatures allows finding the possibility of brittle 

fracture. In traditional ceramics, the complexity of the materials and processes involved is 

high. This is the reason why only a macroscopic approach that does not take into account 

the microstructure of the material can be used. Few simulations of the firing of ceramic 

tiles have been made. In [10, 11] a linear approach is used to simulate the deformation of 

a ceramic tile. However, the behavior that stoneware, (the most common material used 

for floor covering ceramic tiles), shows at high temperatures is nonlinear. In [12] a 

nonlinear constitutive equation is used. However, the model is not characteristic of 

ceramics at high temperatures and it is used because it fits the data. In this reference, the 

authors argue that Norton’s model was not used because for different forces applied to a 

specimen, different parameters that fit the model are obtained. The subject has been 

widely studied and it is known to be a characteristic of ceramics ([13, 14]). The model in 

[12] only considers displacements in 2 directions, which does not comply with the 

physical problem. In that reference, strains are averaged through the thickness of the 

specimen, which over-simplifies the problem. 

2.1 Conclusions of the Literature Review 
After reviewing the literature, the authors have found the following conclusions: 

1. Full constitutive equations can only be used with engineering ceramics. Even in that 

case, the models are  restricted. 

2. The models that use geometrical parameters have only been tested with engineering 

ceramics and their parameters have to be obtained for every powder process. 

3. Currently, models that use macroscopic constitutive equations are the only ones that 

can be used with traditional ceramics. 

4. Previous simulations do not use a model characteristic of ceramics at high 

temperatures. 

5. Previous simulations cannot easily evaluate the contribution of each deformation. 

6. The central curvature is used to evaluate the shape of the tile. The central curvature 

cannot evaluate other defects like non-uniformity. 

Our article will address the shortcomings in the following manner: 

1. A constitutive equation from macroscopic parameters is used because, as shown in 

conclusions 1, 2 and 3, other approaches cannot be used with traditional ceramics. 

2. We use Norton’s model, which is characteristic of ceramics at high temperatures, to 

address conclusion 4. Norton’s model is nonlinear but simply described and can be used 

to find elastic and creep deformations and also stresses, which addresses conclusion 5. 

3. We evaluate the curvature at every point of the surface, which addresses conclusion 6.  

 

3 Methodology 
Our simulation is divided into two physical problems: (i) a thermal simulation, which 

calculates the distribution of temperatures in the body, and (ii) a structural simulation, 

which uses the temperatures to calculate the thermal deformations and the resulting 

stresses and mechanical strains that the thermal deformations produce. The deformation 



of the ceramic tile appears because of the difference of temperatures between the lower 

and upper faces, which causes the body to have different expansions across the depth of 

the thickness. 

The evolution of the different mechanical, thermal and geometric parameters of a tile 

with defined thickness is first evaluated. This thickness is representative and allows the 

observation of the evolution of the parameters of the tile independent of the thickness. 

After that, tiles with different thicknesses are also evaluated so the evolution of the 

parameters can be parameterized. The geometric parameters of the tile are shown in table 

1. 

Table 1: Geometric parameters of the tile. 

Parameter Value 

Sides of the Tile: 33cm x 33cm. 

Defined Thickness: 20mm. 

Variable Thickness: 14mm, 18mm, 20mm and 24mm. 

For the thermal simulation, constant different temperatures were applied at the upper and 

lower faces of the tile. The parameters are shown in table 2. 

 

Table 2: Thermal parameters of the tile. 

Parameter Value 

Density of the Tile : 2150  

Thermal Conductivity : 0.57  

Heat Capacity : 1250  

 

The program of temperatures was characteristic of ceramic tiles firing. It can be seen in 

Figure 1. 

 

Figure 1: Temperatures in each of the surfaces of the tile as a function of time in the 

oven. 

 

For the structural problem the tile is minimally constrained so equations can be 

formulated and solved, without restricting deformations in any direction. A linear 

coefficient of thermal expansion, (α), is used. The data from Ref. [12] was digitized, 

([15]), and  is shown in Fig. 2. Norton’s model is appears in equation (1). 



    (1) 

In equation (1),  is the strain as a function of time,  is the tensile stress,  is 

Young’s modulus.  and  are temperature-dependent constants which define the creep 

behavior of Norton’s model. 

 

 

Figure 2: Linear coefficient of thermal expansion as a function of the time. 

 

In this paper, parameters for Norton’s model have been determined which fit the data 

from [12]. The stress-relaxation data was divided in two parts: (i) a fast application of the 

load in which the deformation is assumed as elastic and (ii) a measure of the stress 

required to maintain the strain obtained after (i). The graphs were digitized and the 

parameters ,  and  were obtained. Non-linear least squares regression, ([16, 17]), was 

used to fit the parameters, which appear in Table 3. 

 

Table 3: Structural constants of the constitutive model for the study 

    

    

    

    

    

    

    

    

    

 

Our simulation used ANSYS
®
 for the FEA (Ref. [18]). We selected the elements 

SOLID90 for the thermal problem and SOLID186 for the structural problem. Our 

simulations included large deformations. The total time spent by each simulation was 

around 30 days using two Core 2 Duo Processors at 2.33 GHz and 1.7 GB of RAM. 

The curvatures as a function of the time have been evaluated using the algorithm from 

Ref. [2]. The average was calculated as , where  is the number of nodes. At the 

borders  has been interpolated by using the values at the neighbor nodes interior to the 

face. 



 

4 Results 

4.1 Evolution of the tile with defined thickness 
In Fig. 3 a summary of the curvatures as function of the time is shown. 

  
Figure 3(a): Average and maximum, (abs), mean 

curvatures of the lower face of the tile 

Figure 3(b): Average and maximum, (abs), mean 

curvatures of the upper face of the tile. 

 
Figure 3(c): Standard deviation of the mean curvatures of the faces of the tile. 

Figure 3: Figs. 3(a), 3(b) and 3(c) show  and ; ; and ; 

and  and , respectively, as functions of the time. 

 

The structural problem has been created with the next 4  variables: (i) the thermal strains, 

(ii) the elastic strains, (iii) the creep strains and (iv) the stresses. Von Mises elastic and 

creep strains summarize mechanical strains while the Von Mises stresses summarize 

stresses. The creep formulations in ANSYS
®
 depend on the Von Mises stresses. Since the 

thermal strains are equal in all directions, the Von Misses formulation cannot be applied. 

As an alternative, the value of the thermal strains in one direction was used to summarize 

them. Fig. 4 shows average, maximum and minimum stresses and strains for the tile with 

thickness 20mm during the time in the oven. 

  



Figure 4(a): Average, maximum and minimum . Figure 4(b): Average, maximum and minimum 

. 

  

Figure 4(c): Average, maximum and minimum 

. 

Figure 4(d): Average, maximum and minimum . 

Figure 4: The evolution of strains and stresses is shown. Fig. 4(a) shows, , Fig. 4(b) 

shows , Fig 4(c) shows  and Fig. 4(d) shows . 

 

According to the curvature, the firing of the tile can be divided in three stages: 

First stage:  As the ceramic body starts to expand, the lower face becomes convex and 

the upper one turns concave. The stage continues until the absolute values of  and 

 reach a maximum. The maximum temperature at the end of the stage is near the 

temperature of the maximum thermal expansion coefficient, (T=884K, Fig. 2). This stage 

corresponds to the time interval [0s, 218s]. In this stage the elasticity is significantly 

bigger than in the rest of the measurements since the highest peaks of stresses appear and 

the possibility of failure because of brittle fracture is higher. The maximum stress, (0.263 

MPa), is reached in the program of temperatures at t=205s. As a comparison, the 

mechanical strength of a ceramic tile after drying has been determined as 2.20MPa in Ref 

[19]. 

Second stage: It corresponds to the time interval [218s, 950s]. The second stage is the 

most important for the final properties of the tile.  becomes much higher than  

and the creep strains, (  accumulate to contribute to the final shape of the body. In 

this stage,  and  change sign and reach a maximum absolute value. 

The second stage starts when  begins to decrease and  begins to increase.  

and  become almost 0 at the same time, at t=383s.  keeps decreasing until it 

reaches a minimum, which coincides with the time at which the lower face reaches the 

maximum temperature of the program, (t=950s). Fig. 5 shows the distribution of the 

curvatures at 950s. The amounts  and  are high at t=950s .  

It can be seen that there are many local maxima and minima near the borders. The non-

uniformity is a consequence of the high differences among the values of  between 

the center and borders. 



  

Figure 5(a): The distribution of  at 950s. Figure 5(b): The distribution of  at 950s. 

Figure 5: The distribution of  and  at 950s. 

 

In the second stage the stresses are relaxed quickly and the deformations become more 

measurable. At the beginning of the stage, (t=218s), the  in the upper face is higher 

than in the lower face. This is reversed as the curvature changes of sign. At the end of the 

stage (t=950s) the  are higher in the lower face. 

The stresses that produce the creep strains are reactions to the difference of expansions 

caused by the geometrical gradient of temperatures. Fig. 6 displays the first principal 

stresses, ( ), and the third principal stresses, ( ). The lower face shows positive values 

for  . The upper face shows negative values for . The lower face is mostly in tension 

and the upper face mostly in compression, so creep strains should expand the lower face 

more than the upper. Even when at the end of the second stage the lower face is concave 

and the upper one is convex, which would seem counterintuitive. All the second stage has 

the characteristic that  is higher in the lower face than in the upper one. The 

distribution of stresses during the second stage, and the consequent creep strain determine 

the geometry at the end of the third stage. Fig. 6(b) illustrates that  decreases and 

becomes stable in the third stage. 

 

  
Figure 6(a): Distribution of the first principal 

stresses (in Pa) at 950s at the lower face of the tile.  

Figure 6(b): Distribution of the third principal 

stresses (in Pa) at 950s, at the upper face of the tile. 

Figure 6: Distribution of the first and third principal stresses at 950s. 

 



Third stage: It occurs as the differences in the temperature of the body are eliminated. 

The lower face reaches the maximum temperature at the beginning of the third stage, at 

950s.  increases and  decreases until the temperature of the upper face also 

reaches the maximum (at 1070s). The change of  and  between 950s and 1070s 

is linear. When the temperature becomes uniform and the residual stresses start to relax, 

 is positive and and  is negative. At the end of the program,  and  are 

low.  at the end of the third stage is higher than  at the end of the first stage 

(which is a local maximum and the maximum of the first stage). 

4.2 Comparison of the Evolution of Ceramic Tiles with 

Variable Thickness During the Firing 

  

Figure 7(a): Average of  of 

the four geometries of tiles as a 

function of the oven time. 

Figure 7(b): Average of  of the four geometries of tiles as a 

function of oven time. 

  

Figure 7(c): Std. dev. of  of 

the four geometries of tiles as a 

function of the oven time. 

Figure 7(d): Std. dev. of  of the four geometries of tiles as a 

function of the oven time. 

Figure 7: Figs. 7(a) and 7(b) show  and  for the four geometries of ceramic 

tiles. Figs. 7(c) and 7(d) show  and  for both faces for the 

four geometries of ceramic tiles. 

 

The stages that appeared in the 20mm ceramic tile also appeared in the rest of the 

geometries. This means that the stages of the mean curvature are only dependent on the 

program of temperatures and the properties of the tile. They do not depend on the 

thickness. 



Fig. 7 displays the evolution of Mean Curvature and its Standard Deviation along the 

time axis, for 4 thickness levels.  Figs 7(a) and 7(b) show the evolution of Mean 

Curvatures in the lower and upper face, respectively.  Figs 7(c) and 7(d) illustrate the 

evolution of the Standard Deviation of the Mean Curvature, for the analog cases. 
 

Fig. 8(a) shows the average creep strains for the 4 geometries. Elastic strains appear in 

Fig. 8(b)) and stresses appear in Fig. 8(c). 

  
Figure 8(a): Average of  of the four geometries 

of tiles as a function of oven time. 

Figure 8(b): Average of  of the four geometries 

of tiles as a function of oven time. 

 

 Figure 8(c): Average of  of the four geometries.  

Figure 8: ,  and  of the four geometries of tiles as a function of the time. 

 

The absolute  and  increase as the tile thickness decreases. The shapes of the 

curves were similar, with steeper slopes in the thinner models.  and 

 are higher for the thinnest tiles. However, the shapes of the curves are 

very different, and the curves show a more sensitive behavior to the reduction of 

thickness than to . 

 



Figure 9: Tile that shows the maximum  for the ceramic tile with defined thickness. 

 

The maximum  are the following: (i) thickness=14mm, stress=0.474MPa, t= 205s, (ii) 

thickness=18mm, stress=0.314MPa, t=205s, (iii) thickness=20mm, stress=0.263MPa, 

t=205s and (iv) thickness=24mm, stress=0.197MPa, t=201s. Fig. 9 shows  for the tile 

with thickness=20mm and t=182s. At that time, the  for the tile was the maximum. 

The figure shows that the maximum stresses appear near the middle of the borders of the 

tile. 

5 Discussion and Conclusions 
A flat tile is a goal of the firing itself. The evaluation of the curvature at every point of 

the tile allows the manufacturer to control more appropriately the temperature in stages 

where de differences of the curvatures are more notorious. This paper shows that the 

curvature also helps to divide the firing into stages of the history of temperatures. These 

stages help to isolate the different effects of the viscoelastic constitutive equation and the 

thermal expansion of the body. The curvature changes in a more predictable way than the 

rest of the physical parameters evaluated. The main conclusion of the simulated tests is 

that the curvature is the most determinant parameter of the history of temperatures and 

the most important parameter to control when designing a program of temperatures. 

Other conclusions of the paper are: 

1) The magnitudes of  and  decrease as the thickness increases, but the local 

maximums appear at the same time. The shape of the curve of  and 

 is not the same for all the thicknesses, but the values are higher with 

thinner tiles.  and  are reflected in the homogeneity of the 

surfaces. The distribution of curvatures indicates that the measurements at different 

points of the tile are necessary to control the shape of the tile. 

2) The tile at low temperatures has a brittle behavior. To evaluate the possibility of brittle 

fracture, more constants than just mechanical strength are needed and they have to be 

measured at high temperatures. However, the maximum  reached by the thinnest tile is 

much lower than the maximum mechanical strength measured on the dry tile ([19]). On 

the other hand, deformations caused by creep are significant and the defects caused by 

creep are important and cause concern in the manufacturers. 

3) When the temperature becomes uniform, (and no stresses exist), the curvature of the 

tile is opposite to the sign that the thermal expansion forces on the tile that prevail most 

of the oven time. 

5.1 Future Work 

Future work is needed in the creation of a model that takes into account that the shrinkage 

is dependent on the history of temperatures. In this manner, we are able to simulate the 

time interval in the oven when the temperature is sharply decreased until the tile is cold 

and the curvature stabilizes. Intensive experimental work is also needed to corroborate 

the simulations . 
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