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Abstract 

Anaerobic membrane bioreactors for urban wastewater treatment present interesting 

advantages when compared with aerobic treatments, such as less sludge production, lower 

energy demand and biogas generation. However, the generated effluent cannot generally be 

discharged without further ammonium and phosphate elimination. This thesis studies the 

removal of these inorganic nutrients by means of microalgae cultivation.  

The main objective of this work is therefore to obtain an autochthonous microalgal culture and 

to investigate its ability to grow on an already existing anaerobic effluent, as well as to 

research the extent to which ammonium and phosphate can be removed. Moreover, this thesis 

aims at providing the kinetic expressions which reproduce the main processes involved, in 

order to provide the basis for process simulation and design. 

Microalgae were isolated from a local wastewater treatment plant and their ability to grow on 

the anaerobic effluent –while successfully removing ammonium and phosphate– was 

demonstrated. An excellent water quality was obtained with a semicontinuous cultivation 

mode under constant illumination. The Scenedesmus and Chlorococcum genus proliferated 

more efficiently and thus became predominant in the culture. Results also showed that 

phosphorus was the limiting nutrient in the anaerobic effluent to be treated. The influence of 

phosphorus limitation on ammonium and phosphate removal, as well as the influence of 

temperature in ammonium removal, were then studied under laboratory conditions. Kinetic 

expressions which reproduce the observed effects were proposed and validated, taking also 

into account the effect of light intensity. Additionally, a Scenedesmus-dominated culture was 

grown under varying light and temperature in an outdoor flat-plate photobioreactor, with 

constant monitoring of light intensity, temperature and ammonium concentration. Acceptable 

results were obtained in the reproduction of the experimental data, albeit with less accuracy 

than under laboratory conditions. 

The work here presented demonstrates the feasibility of coupling a microalgal cultivation 

system to an anaerobic membrane bioreactor for urban wastewater treatment. The basic 

factors affecting microalgal nutrient removal are researched, and mathematical models are 

provided which reproduce these effects. 
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Resumen 

En el tratamiento de aguas residuales urbanas, los bioreactores anaerobios de membranas 

presentan ventajas interesantes frente a los tratamientos aerobios. Algunas de estas ventajas 

son la menor producción de fangos, un menor consumo energético y la producción de biogás. 

Sin embargo, y generalmente, el efluente obtenido no puede ser vertido al medio sin una etapa 

previa de eliminación de amonio y fosfato. La presente tesis estudia la eliminación de dichos 

nutrientes inorgánicos empleando para ello un cultivo de microalgas. 

El objetivo principal de este trabajo es, por tanto, la obtención de un cultivo autóctono de 

microalgas y la evaluación de la capacidad que éstas tienen tanto de crecer en un efluente 

anaerobio como de eliminar el amonio y el fosfato presentes. Asimismo, se pretenden 

proporcionar las bases para la simulación y el diseño del sistema de depuración propuesto, 

mediante la obtención de las expresiones cinéticas que reproduzcan los principales procesos 

involucrados. 

En primer lugar se ha demostrado la capacidad de las microalgas, aisladas en una estación 

depuradora de aguas residuales, de crecer en el efluente anaerobio y de eliminar con éxito el 

amonio y fosfato en éste presente.  El agua tratada, obtenida mediante un proceso 

semicontinuo y con iluminación constante, presenta una excelente calidad. Los géneros 

Scenedesmus y Chlorococcum han proliferado más eficientemente y han llegado a ser los 

predominantes en el cultivo. Los resultados obtenidos indican que el nutriente limitante en el 

efluente a tratar es el fósforo y por tanto la influencia de la limitación de fósforo en la 

eliminación de nutrientes ha sido estudiada en condiciones de laboratorio, junto con la 

influencia de la temperatura en la velocidad de eliminación de amonio. Han sido propuestas y 

validadas las correspondientes expresiones cinéticas que reproducen los efectos observados, 

teniendo en cuenta en todo momento la influencia de la intensidad de la luz. 

Por otro lado, un cultivo dominado por la especie Scenedesmus ha sido cultivado en el 

exterior, bajo condiciones cambiantes de luz y temperatura monitorizadas constantemente 

junto con la concentración de amonio. Los datos obtenidos han sido reproducidos mediante 

modelación matemática con resultados aceptables, si bien la precisión obtenida es menor que 

en condiciones de laboratorio. 
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La presente tesis demuestra la viabilidad de combinar un cultivo de microalgas con un 

bioreactor de membranas para el tratamiento de agua residual urbana. Se exponen asimismo 

los factores básicos que influyen en la velocidad de eliminación de nutrientes, y se presentan 

los modelos matemáticos necesarios para reproducir los efectos observados. 

Este trabajo se incluye en el marco de un proyecto nacional de investigación financiado por el 

Ministerio de Economía y Competitividad de título “Estudio experimental de la recuperación 

como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un 

AnBRM y un cultivo de microalgas” (CTM2011-28595-C02-01/02). La presente tesis 

doctoral ha sido también financiada por el Ministerio de Educación, Cultura y Deporte a 

través de una ayuda para contratos predoctorales de Formación del Profesorado Universitario 

(AP2009-4903).  
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Resum 

En el tractament d’aigües residuals urbanes, els bioreactors anaerobis de membrana tenen 

avantatges interessants respecte als tractaments aerobis. Alguns d’aquests avantatges són: 

menys producció de fangs, menys consum energètic i la producció de biogàs. No obstant això, 

i en general, l’efluent obtingut no es pot tornar al medi sense una etapa prèvia d’eliminació 

d’amoni i fosfat. Aquesta tesi estudia l’eliminació d’aquests nutrients inorgànics emprant per a 

fer-ho un cultiu de microalgues. 

 

L’objectiu principal d’aquest treball és, per tant, l’obtenció d’un cultiu autòcton de 

microalgues i l’avaluació de la capacitat que aquestes tenen tant de créixer en un efluent 

anaerobi com d’eliminar l’amoni i el fosfat presents. Així mateix, volem proporcionar les 

bases per a la simulació i el disseny del sistema de depuració proposat, mitjançant l’obtenció 

de les expressions cinètiques que reprodueixen els principals processos involucrats. 

 

En primer lloc, s’ha demostrat la capacitat de les microalgues, aïllades en una estació 

depuradora d’aigües residuals, de créixer en l’efluent anaerobi i d’eliminar amb èxit l’amoni i 

el fosfat presents. L’aigua tractada, obtinguda mitjançant un procés semicontinu i amb 

il·luminació constant, presenta una qualitat excel·lent. Els gèneres Scenedesmus i 

Chlorococcum han proliferat més eficientment i han arribat a ser els predominants en el cultiu. 

Els resultats obtinguts indiquen que el nutrient limitant en l’efluent per tractar és el fòsfor, i 

per tant la influència de la limitació de fòsfor en l’eliminació tant d’amoni com de fosfat ha 

sigut estudiada en condicions de laboratori, juntament amb la influència de la temperatura en 

la velocitat d’eliminació d’amoni. S’han proposat i validat les expressions cinètiques 

corresponents que reprodueixen els efectes observats, tenint en compte en tot moment la 

influència de la intensitat de la llum. 

 

D’altra banda, s’ha cultivat a l’exterior un cultiu predominat per Scenedesmus, sota condicions 

canviants de llum i temperatura, que al seu torn s’han monitorat constantment, juntament amb 

la concentració d’amoni. Les dades obtingudes s’han reproduït mitjançant simulació 

matemàtica amb resultats acceptables, encara que la precisió obtinguda és més baixa que en 

condicions de laboratori. 
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La nostra tesi demostra la viabilitat de combinar un cultiu de microalgues amb un bioreactor 

de membrana per al tractament d’aigua residual urbana. La tesi exposa així mateix els factors 

bàsics que influeixen en la velocitat d’eliminació de nutrients, i presenta els models 

matemàtics necessaris per a reproduir els efectes observats. 

 

Aquesta tesi doctoral s’inclou en el marc d’un projecte nacional de recerca finançat pel 

Ministeri d’Economia i Competitivitat amb el títol “Estudio experimental de la recuperación 

como biogás de la energía de la materia orgánica y nutrientes del agua residual, acoplando un 

AnBRM y un cultivo de microalgas” (CTM2011-28595-C02-01/02). La tesi doctoral ha sigut 

també finançada pel Ministeri d’Educació, Cultura i Esport a través d’una ajuda per a 

contractes predoctorals de formació del professorat universitari (AP2009-4903). 
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Thesis outline 

An introductory chapter I describes the context of the present work and provides some 

theoretical information on wastewater treatment and microalgal biology and technology. 

Future trends of microalgal-related fields of study are also sketched.  

In chapter II the first approach to microalgae cultivation in the effluent of a Submerged 

Anaerobic Membrane Bioreactor is presented. The ability of autochthonous microalgae to 

sustain growth based on this specific waste stream is proved, and a preliminary assessment of 

the achieved level of nutrient elimination is made. The influence of a light/dark cycle and of 

the cellular/hydraulic retention time on their productivity is also studied. Chapter III shows 

the results of a study in which biomass was cultivated in semicontinuous mode for a longer 

period of time. The high stability of the proposed culture system was demonstrated, together 

with the ability of the mixed culture to render a high quality wastewater. 

Following chapters deal with the mathematical modeling of the processes taking place in the 

culture. Thus, chapter IV studies the interaction between cellular phosphate content and 

ammonium removal rate. A kinetic expression for microalgal growth which reproduces this 

interaction is presented. The study shown in chapter V demonstrates the influence of cellular 

phosphate content on phosphate removal and proposes a kinetic expression to reproduce this 

effect. Chapter VI presents a short study under controlled conditions which confirms the 

temperature dependence of the microalgal ammonium removal rate and suggests how to 

mathematically represent this dependence. Chapter VII validates a kinetic expression for 

reproducing the effect of both temperature and light fluctuations on the microalgal ammonium 

removal rate when the culture is subject to outdoor varying conditions. Finally, a calibration 

methodology is proposed in chapter VIII with which to obtain the decay constant of a 

microalgal culture in the dark. 

Chapter IX contains the general discussion whereas the conclusions are enumerated in 

Chapter X. A flow diagram has been included in an Appendix where the time evolution of 

the experiments is shown, in order to clarify the history of the cultures used along the 

chapters. 
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Introduction 

1. Situation of the present work 

Water is an essential natural resource for all living forms. It is crucial in all natural 

ecosystems, and for human health and food supply. We need large amounts of quality water to 

live and function as a society. As a consequence, liters and liters of wastewater loaded with 

organic and inorganic pollutants leave our homes, public spaces and industries each day.  

Natural water systems have the ability to eliminate water pollutants, the so called self-

purification capacity. However, this capacity has a limit which is very often exceeded by 

human activities. Therefore, with the increase and concentration of population and industry, 

water and wastewater treatment systems must be developed to avoid degradation of the 

resource. Still, water shortage and water pollution are two of the main problems that mankind 

encounters today, to different degrees, in most areas of the planet. 

Water is necessarily at the core of sustainable development, since it is through water that 

environmental sustainability can be achieved, while encouraging economic growth and 

helping reduce poverty. It is an enormous challenge for all members of society (users, policy 

makers, scientists and industry) to strive for a sustainable use of such a vital resource. 

At the same time, about 80% of the global energy demand is provided by fossil fuels (Chen et 

al., 2011), which are non-renewable and aggravate global climate change. The world is 

currently faced with energy challenges derived from the increasing demand and shortage of 

fossil fuel reserves, its variable prices, supply insecurity and related environmental concerns 

such as the production of greenhouse gases. It is therefore crucial to develop cost-effective 

means of obtaining renewable energy. Briens (2008) estimated that biomass could provide 

around 25% of the world energy demand, while providing a number of valuable products as 

well.  

Microalgae are, in this context, a proposed solution for renewable energy production. Energy 

from microalgae can be obtained via a series of transformation processes, such as 

transesterification of the lipid fraction, anaerobic digestion, fermentation, biophotolysis or 
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other thermochemical processes (Brenan and Owende, 2010). Microalgal biofuels such as 

biodiesel, biogas, bioethanol or biohydrogen are already being successfully obtained at small 

scale, but current methods require significant improvements for attaining feasible industrial 

scale production (Acién, 2012, Chisti, 2013).  

Mass cultivation of microalgae requires a substantial amount of nutrients (mainly N and P). 

Thus, artificial fertilizer consumption constitutes a significant fraction of the total costs for 

microalgal growth (7.5% of the direct costs of biomass production, according to Molina 

Grima et al., 2003). The production of these fertilizers also consumes an important amount of 

energy (Hullat et al., 2012), thus compromising the sustainability of algal biofuels.  

Cultivation of microalgae requires important volumes of water as well, due to the low density 

of the cultures. Calculations of the water footprint of microalgal biodiesel have highlighted the 

need to use non-potable water for achieving an economic and environmentally sustainable 

process (Subhadra and Edwards, 2011).  

Given the high costs of nutrients and water in microalgae cultivation, the use of wastewater 

has been proposed as a viable means to enhance the sustainability of algal biofuel production, 

since it can freely provide both the nutrients (N and P) and the growth medium (water) 

(Christenson and Sims, 2011, Craggs et al., 2011). The obvious nexus that microalgae 

establish between water, energy and nutrients recovery makes this combination possible. It 

becomes possible for wastewater treatment systems to abandon their traditional role of energy 

consumers and to aim at being energy producers instead, while inorganic nutrients are not 

only removed but actually recovered, given the possible use of the microalgal biomass as 

organic fertilizer (after, for instance, oil extraction (Rodolfi and Zitelli, 2009) or anaerobic 

digestion (Weiland, 2010)). 

For all of the above, current microalgal research is mainly oriented toward biomass and/or 

lipid production, with a significant number of studies focusing on the use of wastewater as 

growth medium. The starting point of the work presented here is the need to remove inorganic 

nutrients from a specific wastewater, and its aim is to do so using a non-conventional 

treatment method. Instead, a microalgal system is proposed, tested and proven suitable. The 

behavior and characteristics of the microalgal culture grown on the specific wastewater (a 
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submerged anaerobic membrane bioreactor (SAnMBR) effluent) are then further studied and 

mathematically modeled. 

2. Wastewater treatments. SAnMBR 

Wastewater treatments can be divided into three categories: physical, chemical and biological. 

In the first category, mechanical forces are applied to remove pollutants, while chemical 

treatments eliminate contaminants by means of chemical reactions, and are always applied in 

conjunction with physical or biological processes. As for biological wastewater treatments, 

they imply the action of microorganisms such as bacteria. 

Depending on the degree of pollutant removal required and on the characteristics of the 

wastewater, different unit operations from the aforementioned categories are combined into a 

treatment scheme. In a traditional municipal wastewater treatment plant (WWTP), for 

instance, a primary treatment uses physical processes to eliminate particles from the water, 

and is followed by a secondary treatment which consists of an aerobic biological treatment, 

usually an activated sludge system. A tertiary treatment polishes the water with a more 

specific technique, for instance removing viruses and bacteria with a UV irradiation unit. 

Wastewater treatment is an energy-intensive activity. A study of the economic and 

environmental profile of 24 wastewater treatment plants by Rodriguez-García et al. (2011) 

found the related energy consumption to lie between 0.13 and 1.37 kWh per m
3 

of treated 

wastewater. In the case of aerobic biological treatments, some studies reveal that bioreactor 

aeration amounts up to 60% of the total WWTP energy consumption (Metcalf and Eddy, 

2003, Hernandez-Sancho et al., 2011). Moreover, the energy demand –and therefore the 

associated costs– are expected to increase in the future, while restrictions in the quality of the 

discharged water and the produced sludge also increase.  

Anaerobic wastewater treatments are, in this respect, a step forward in reducing energy 

consumption and promoting organic matter revaluation. The anaerobic treatment of 

wastewater is based on a series of consecutive biological reactions through which anaerobic 

bacteria transform, in the absence of oxygen, the complex organic compounds present in the 

water into simpler products: biogas and digested sludge. Biogas is a gaseous mixture of CH4 
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and CO2 which can also contain small amounts of H2, N2, and H2S. It is a renewable energy 

source which can be used, for instance, in a gas engine to generate electricity and heat. The 

generated sludge can be used as slow-release fertilizer (Mulbry et al., 2005). 

Apart from a lower energy demand (since no oxygen supply is needed) and biogas generation, 

anaerobic treatments present the following advantages versus aerobic treatments: i) reduced 

amount of sludge generation (up to ten times lower than in aerobic treatment according to 

Jeison, 2007), ii) high capacity to treat slowly degradable substances and iii) the possibility of 

nutrient recovery. On the other hand, anaerobic processes for wastewater treatment also 

present some disadvantages, such as i) the need to operate at high solids retention time or high 

temperatures (due to the slow growth of the anaerobic microorganisms), ii) the high sensitivity 

of the biomass to process overloads and iii) its low settleability, which involves operating with 

big reaction volumes. 

Submerged anaerobic membrane bioreactors combine the use of membrane technology 

with anaerobic processes. In a SAnMBR the treated wastewater is separated from the 

produced sludge via membrane filtration. This renders a solids-free effluent and allows the 

decoupling of the solids retention time and the hydraulic retention time. Smaller reactor 

volumes are thus possible, and low-growth rate microorganisms are not washed out from the 

system, resulting in a higher microbial biodiversity and enhanced organic matter removal. For 

the given reasons, SAnMBR technology is a promising alternative for urban wastewater 

treatment, in which wastewater is treated with a smaller energy demand, biogas is generated, 

and a small fraction of the inorganic nutrients are recovered in a stabilized sludge which could 

be used as fertilizer. Pilot-scale SAnMBRs have been evaluated with promising Chemical 

Oxygen Demand (COD) removal rates (Giménez et al., 2011), but discharge is not always 

possible without further nitrogen and phosphorus removal (Stuckey, 2012). 

3. Microalgae 

3.1. Photosynthesis 

Microalgae are unicellular microorganisms which are able to undertake photosynthesis. The 

term encompasses prokaryotic (cyanobacteria) and eukaryotic microorganisms. Although 
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some microalgae have the ability to use organic compounds as energy and/or carbon source, 

most microalgae are photoautotrophs: they uptake inorganic carbon from the medium in the 

form of CO2 (gas) or HCO3
-
, and use light as source of energy.  These are the microorganisms 

this thesis deals with. 

Photosynthesis is a process of outmost importance, since it is through photosynthesis that 

green plants and algae introduce inorganic nutrients in the base of trophic chains in their 

ecosystems, making use of sunlight to generate organic matter which is consumed by other 

organisms.  

In the overall process of photosynthesis, some reactions are light-dependent while others are 

light-independent. Light dependent reactions take place in the thylakoid membranes (situated 

inside chloroplasts and cyanobacteria) and are catalyzed by the protein complexes which 

conform the photosynthetic reaction centers. First, photons are captured by these reaction 

centers containing chlorophyll and other pigments. Electrons, protons and O2 are then stripped 

from water molecules. Electrons reduce NADP
+
 to NADPH, and ATP is also formed. In the 

dark reactions of photosynthesis (Calvin Cycle), CO2 molecules are converted into 

carbohydrates such as glucose, using the previously generated NADPH and ATP. The general 

equation for photosynthesis is therefore: 

    n CO2 + n H2O + 8n h  → (CH2O)n + n O2 

where h  represents the energy of one photon, defined by its frequency   ) and the Planck 

constant (h). The process of transforming CO2 into sugars is called carbon fixation. The CO2 

fixation process increases the pH in the medium, since hydroxyl groups (OH
-
) progressively 

accumulate.  

3.2. Use of microalgae 

Microalgae accumulate organic matter in the form of proteins, lipids, carbohydrates, 

hydrocarbons, pigments and other small molecules. The commercial interest of microalgae 

resides in some cases in the latter: special high-value compounds, such as β-carotene, 

polyunsaturated fatty acids (PUFA), antioxidants, phycocyanin or astaxanthin, which are used 

by the pharmaceutical industry (Pulz and Gross, 2004). Microalgae have also been cultivated 
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for human and animal nutrition (food-coloring, food supplements, nutraceuticals; aquaculture 

and animal husbandry, respectively).  

In recent decades, however, microalgae have raised an enormous interest as a renewable 

energy source. Production of biodiesel from microalgae is a rapidly emerging field. Biodiesel 

is obtained via transesterification of the biomass lipid fraction, which is the reason why a large 

number of studies on microalgal cultures nowadays focus on lipid productivity maximization. 

Microalgal biomass can be transformed in other ways too to obtain different fuels: biogas is 

obtained from anaerobic digestion of the biomass and ethanol is obtained from alcoholic 

fermentation. Under anaerobic conditions microalgae photoproduce H2 gas, a clean and 

efficient energy carrier. Different thermochemical conversion processes of microalgal biomass 

are also possible (gasification, pyrolysis and liquefaction) to obtain products such as syngas, 

bio-oil, charcoal and other liquid fuels. Finally, direct combustion of microalgal biomass 

with moisture content below 50% is also possible for heat, power and steam production. 

The residues generated during anaerobic digestion, oil extraction and pyrolysis have potential 

agricultural applications as animal feed or biofertilizers (soil conditioners), just as some of 

the biopolymers, proteins and carbohydrates directly produced by the microalgae. 

A very interesting and promising feature of microalgal research nowadays is the combined 

production of renewable energy and biomass resources with distinctive environmental 

applications for pollution control. The characteristic CO2 fixation and wastewater nutrient 

removal ability of microalgal cultures, together with the possible recovery of the nutrients in 

the form of soil fertilizers, support both the sustainability and economy of microalgal 

production process (Brenan and Owende, 2010). 

Microalgae can typically be used to capture atmospheric CO2 and CO2 emissions from 

power plants and other industrial processes where fossil fuels are burnt, provided they can 

tolerate the high levels of SOX and NOX that are present in the flue gases (Lam et al., 2012, 

Cheah et al., 2015). Some species are also able to assimilate CO2 from soluble carbonate such 

as Na2CO3 and NaHCO3 (Guangmin et al., 2014). 

Wastewater nutrient removal might be considered as a complementary function from the 

point of view of microalgal biomass producers, which improves the production process 
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economy or sustainability. However, it has long demonstrated a potential per se in the field of 

wastewater treatment. The combination of both approaches has made microalgal nutrient 

removal a real alternative in competition to traditional systems. In fact, based on current 

technologies, algae cultivation for biofuels without the use of wastewater is unlikely to be 

economically viable or provide a positive energy return, according to Pittman et al (2011). 

Lundquist et al. (2010) analyzed several different scenarios of algae-based wastewater 

treatment coupled with biofuel production and came to a similar conclusion: the near-term 

outcome for large scale algae biofuels production is not favorable without wastewater 

treatment as the primary goal.  

The use of microalgae for wastewater treatment will be discussed in section 4 of this chapter.  

3.3.  Factors affecting microalgal growth 

3.3.1. Light 

Parameters affecting growth are common to all microalgae, although the influence is different 

among species: the minimum, optimum and maximum values of each parameter are 

characteristic of each strain. For this reason, the productivities obtained in specific culture 

systems will also depend on the microalgae considered. 

Light is generally the limiting factor in outdoor microalgal productivity (Pulz, 2008). 

Artificial illumination can contribute to continuous production, but obviously at a higher 

energy input. Photosynthetic microorganisms make use of the so called photosynthetically 

active radiation (PAR), the waveband of the solar radiation from 400 nm to 700 nm, which 

accounts for approximately 40% of the total.  

Microalgal growth is directly proportional to the intensity of the PAR radiation, provided this 

intensity is below a certain limit. This phenomenon is called photolimitation. Above a certain 

light intensity, photosynthesis is inhibited due to damage in the reception centers of the 

microalgae. This phenomenon is called photoinhibition, and usually happens around 

intensities of 1700 to 2000 µE·m
-2

·s
-1

 (Griffiths, 2013). Microalgae adapt to changes in light 

intensity by changing their pigment content.  
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An important parameter in photobioreactor design and operation is the light penetration 

distance, which depends on the incident light intensity, the surface scattering and the culture 

light attenuation. Light attenuation depends on the culture density and the light wavelength. A 

light gradient is generated inside the reactor in the direction of light penetration, so that cells 

situated further from the reactor surface receive a lower light intensity than those situated near 

the reactor surface. Therefore, in a high-density algal culture under high irradiance (such as 

mid-day sunlight), it is possible that photoinhibition takes place at the culture surface and 

photolimitation a few centimeters below the surface. An essential interplay is thus established 

between hydrodynamic characteristics of the reactor, mixing system, light intensity 

oscillations and cycles, and microalgal metabolism.  

3.3.2. Inorganic nutrients 

The main inorganic nutrients which autotrophic microalgae uptake from their growth 

medium are carbon, nitrogen, phosphorus and sulfur. Other micronutrients are iron, sodium, 

potassium, calcium, magnesium, chlorine, manganese, nickel, boron, zinc, copper, 

molybdenum and cobalt. 

According to the Grobbelaar (2004) formula (C106H181O45N16P), 1.7 g CO2 are needed to 

generate one g of biomass. For this CO2 to be taken by the microalgae, the pressure of the gas 

in the culture medium must be at least 0.1 – 0.2 kPa (Doucha et al., 2005). CO2 supply and O2 

removal are, after light supply, the most important challenges in photobioreactor operation. 

Nitrogen content of microalgal biomass oscillates between 3 – 12 % of its dry weight 

(Reynolds, 2006). Microalgae take nitrogen from the medium in the form of ammonium 

(NH4-N), nitrate (NO3-N), nitrite (NO2-N) and, in organic form, urea (CO(NH2)2). Although 

nitrate is usually the most abundant source of inorganic nitrogen in the environment, 

ammonium is taken up preferentially, since nitrite and nitrate have to be reduced prior to 

assimilation, which is a process for which the microalgae need extra energy (Reynolds, 2006). 

Ammonium is, however, toxic at high concentrations for most microalgal species. 

Phosphorus is taken up in the form of orthophosphate (PO4-P), whose bioavailability in the 

medium depends on the pH (due to the possibility of precipitation). Phosphorus is an essential 

requirement for microalgae, since it is a component of nucleic acids which govern protein 
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synthesis and of the ATP which powers intracellular processes. Phosphorus content of healthy, 

replete and active growing cells is 1 – 1.2 % of their dry weight (Reynolds, 2006).  

However, in practice, microalgal P content varies due to diverse mechanisms of adaptation to 

the medium. Reynolds (2006) estimated the minimum phosphorus cell quota to be around 0.2 

– 0.4 % of ash-free biomass, although some species show a minimum value which is an order 

of magnitude smaller. Minimal intracellular phosphorus concentrations are achieved when 

microalgae grow under P-starving conditions.  

On the other hand, when luxury phosphorus uptake takes place, microalgal P content can raise 

up to values like 3.85% as measured by Powell et al. (2009). The main phosphorus storage 

bodies in microalgae are polyphosphates, which are unbranched chains of PO4
-
 groups linked 

together by oxygen bridges. The amount of polyphosphate present in the cells depends on 

different factors, such as the available phosphate in the medium, light or temperature (Powell 

et al., 2008).  

3.3.3. Temperature 

After light, temperature is the most important factor in microalgae cultivation, both for open 

and closed culture systems (Torzillo et al., 1991). Microalgal growth increases proportionally 

with temperature below an optimum temperature and is reduced above it. A bell-shaped curve 

describes the relationship between microalgal activity and temperature, although individual 

shapes are species dependent, and also influenced by environmental conditions (Ras et al., 

2013). Some microalgal species are able to grow in a wide range of temperatures (Chlorella, 

for example, can grow between 5 and 42 ºC (Li et al., 2013)) and most species can tolerate 

temperatures up to 15 ºC lower than their optimal temperature. However, exceeding the 

optimum temperatures by only 2 – 4 ºC may result in the total loss of the culture (Richmond, 

1999).  

In open pond systems water evaporation compensates for temperature increases, which 

constitutes a basic temperature control system. In closed cultivation systems cooling or 

heating might be needed depending on the site climate. The necessity of cooling might be 

avoided by decreasing the amount of light incident on the reactor with the use of external 

shading. 
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3.3.4. pH 

Another important parameter affecting algal growth is the pH of the medium. In most 

microalgal cultures, pH ranges between 5 and 9 (Razzak et al., 2013). Since photosynthesis 

raises pH in the medium due to CO2 depletion (Zhou et al., 2014), pH control is achieved by 

CO2 addition and, occasionally, in laboratory scale studies, chemical addition. High pH in the 

culture medium also influences microalgal growth indirectly, in the sense that nutrients 

become unavailable, mainly due to ammonia stripping (loss of ammonium) and precipitation 

of various compounds (loss of phosphate).  

3.3.5. Dissolved oxygen 

Dissolved oxygen (DO) concentration needs to be controlled in the culture medium since high 

DO inhibits the process of CO2 fixation. High radiation and high temperatures favor this 

inhibition. Several microalgal species can only survive for a short period of time, in the range 

of 2 or 3 hours, in an oxygen supersaturated medium (Tredici and Materassi, 1992). Increasing 

turbulence and air stripping are strategies used for decreasing DO in the culture medium. 

3.3.6. Agitation 

Agitation facilitates mass and heat transfer, prevents biomass sedimentation and wall biofilm 

formation and contributes to pH homogenization. It also contributes to cell distribution among 

the differently illuminated parts of the culture. In high density cultures, turbulence is of great 

importance to avoid nutrients gradients and light heterogeneity. On the other hand, the shear 

stress which each species of microalga can stand also needs to be taken into account. 

3.4.  Production of microalgae 

3.4.1. Microalgal culture systems 

Microalgal culture systems are generally divided into open and closed systems. The most 

commonly used artificial open systems are raceway ponds, which are shallow recirculation 

channels (0.2 – 0.5 m deep), usually in an oval shape. A paddle wheel in continuous operation 

contributes to culture mixing and recirculation. CO2 is normally taken from surface air, 
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although sometimes submerged aerators are installed. Open ponds are the cheapest method for 

large-scale microalgal production because of their lower construction costs, easier 

maintenance and cleaning and due to a lower energy input. The risks of contamination with 

other species are, on the other hand, higher than in closed systems and monoculture is only 

possible for some species which can survive in extreme culture environments (high salinity, 

high alkalinity). Until today, only a few species of microalgae have been found to grow well at 

a commercial scale in open ponds (Razzak et al., 2013). 

Closed systems are transparent photobioreactors made of plastic or glass and with diverse 

geometries. Tubular, flat plate and cylindrical columns are the most common. These systems 

are more expensive to build, maintain and operate, but permit a better control of temperature 

and other operation parameters. Contamination risk is also reduced, making monocultures 

easier. Biomass productivity is higher in closed systems, which results in smaller footprint and 

lower harvesting costs. Nevertheless, global costs are still higher than those of open systems.  

Column photobioreactors offer the best controllable growth conditions, the most efficient 

mixing (they are aerated from the bottom) and the highest volumetric mass transfer rates 

(Eriksen, 2008). They are low-cost, compact and easy to operate. They can be illuminated 

internally, and the inner part can be eliminated to create an annular photobioreactor with a 

smaller fraction of its volume far from the light source.  

Tubular photobioreactors consist of arrays of cylinders with smaller diameter (generally 

smaller than. 0.1 m), which can be arranged horizontally, vertically, inclined or as a helix. The 

culture is recirculated with a pump or an airlift system. CO2 depletion, O2 accumulation and 

pH variation limit the possible length of the tubes, making scale up only possible with 

integration of multiple reactor units (Brenan and Owende, 2010). Tubular reactors are more 

suitable for outdoors cultures since they expose a larger surface area to sunlight.  

Flat plate photobioreactors are some of the earliest forms of closed systems developed. Their 

entire surface area is well illuminated and therefore they present higher photosynthetic 

efficiency than tubular reactors (Richmond, 2000). They can also be tilted to assure maximal 

exposure to direct beam radiation (Hu et al., 1996). The DO path corresponds to the height of 

the reactor and prevents oxygen buildup, which is a serious problem in other kinds of reactor. 

Moreover, they are easy to clean, both from the outside and the inside, which means that 
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issues like wall fouling by microalgal growth and salt deposition can be handled with ease. 

Stirring is also very effective, and it is normally achieved by injecting compressed air through 

perforated tubes on the bottom of the reactor (Cheng-Wu et al., 2001). According to Posten 

(2009), flat plate reactors are surely the most robust design. 

3.4.2. Microalgal harvest systems 

Microalgae harvesting constitutes around 20 – 30 % of the total productions costs (Molina 

Grima et al., 2003) and is therefore a decisive step for energetic and economical balance of the 

process. Due to their small size (0.5 – 30 µm), it is generally difficult to separate microalgae 

from their growth medium, although some cyanobacteria settle or float and some species are 

able to bioflocculate, which results in an easily settleable biomass. 

Depending on microalgal size, culture density, subsequent use and economic factors (such as 

the price of the final product), different harvesting techniques will be applied. Generally, on a 

first step called bulk harvesting (flocculation, settling or flotation) a microalgal concentration 

of 2 – 7 % is achieved (Brenan and Owende, 2010). A second thickening step, requiring more 

energy (centrifugation or filtration), further concentrates the slurry. In microalgae production 

for added-value compounds extraction, centrifugation is the most common thickening 

technique. It is a rapid method and biomass concentrations of up to 95% are achieved 

(Heasman et al., 2000). Its disadvantages are the high energy input and the specialized 

maintenance required and the risk of cell damage due to high gravitational and shear stress 

forces. Centrifugation is therefore not always economically feasible. Filtration is performed 

with microfiltration or ultrafiltration membranes, which can be hollow fiber membranes 

(submerged in the tank) or have tangential flow configuration (external membranes). The 

higher costs of filtration processes come from pumping and membrane replacement, which 

makes them cost-effective only for small volumes (less than 2 m
3
·d

-1
) (Molina Grima et al., 

2003). For processing more than 20 m
3
·d

-1
, centrifugation might be more economic (Molina 

Grima et al., 2003).  
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4. Microalgae for wastewater treatment 

The use of microalgae for wastewater treatment was first proposed by Oswald and Gotaas 

(1957). They have since then been used around the world in stabilization ponds or high rate 

algal ponds (HRAPs). However, these technologies have been used mostly in small 

communities or farms due to their big spatial footprint and the development and generalization 

of other systems such as the activated sludge (AS). Dependence of seasonally-changing light 

and temperature, difficulty in biomass harvesting and risk of protozoa, fungus and virus 

contamination possibly acted in favor of other treatment methods.  

However, in recent decades, the use of microalgal cultures for wastewater treatment has been 

given more and more consideration, for reasons mentioned in previous sections of this 

chapter. As possible solutions to biomass harvesting problems, flocculation and biomass 

immobilization have been researched. Flocculation can be attained by the addition of 

chemical flocculants, by changing culture conditions (pH, DO, temperature, nutrient 

depletion) and by use of microalgae which are able to autoflocculate, such as Ankistrodesmus 

falcatus, Scenedesmus obliquus and Tetraselmis suecica (Salim et al., 2011). Immobilization 

of microalgae takes place in different kinds of matrices or natural polymers, which are easily 

separated from the medium. A review of immobilized microalgae for removal of pollutants is 

presented by de Bashan and Bashan (2010). 

On the other hand, high photosynthetic biomass productivities are needed to obtain a 

significant and effective nutrient removal. It is for this reason that most authors use 

photobioreactors for microalgal growth and wastewater treatment. Moreover, the right 

strains have to be selected which are able to stand the specific environmental conditions and 

wastewater characteristics in each case. Chlorophyceae are a class of microalgae which have 

demonstrated to be especially resistant to diverse wastewaters and very efficient in removing 

nutrients from them. Chlorella and Scenedesmus are the most abundant genera found in 

microalgae-based wastewater treatment systems (Craggs et al, 2003; Pittman et al, 2011). 
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4.1. Microalgal nutrient removal in wastewater 

The use of artificial wastewaters allows for simplified laboratory scale studies, where biotic 

factors do not need to be addressed. Most artificial media contain high nutrient concentrations, 

whereas organic matter or potentially toxic compounds are not present. Competition with 

other bacteria or predation from protozoa are also avoided, as well as inhibitions by 

segregated substances. These studies cannot be underestimated, since they have made the 

obtention of a variety of kinetic and stoichiometric parameters possible (see for instance Aslan 

and Kapdan, 2006). Comparison among species and reactors configurations can also be made. 

Nonetheless, studies of microalgal growth in wastewater obtained at its source –and not 

artificially generated– are obviously mandatory when the final objective is the application of 

microalgae for wastewater treatment.  

Abundant literature can be found on microalgal use for wastewater treatment. In the 

following lines a review of part of this literature is presented. The review mostly focuses on 

studies treating urban wastewater. A small mention is made to wastewaters from farming 

activities and other industrial activities, and finally studies dealing with anaerobic effluents are 

presented. 

Most studies with urban wastewaters constitute a sort of tertiary treatment, since the main 

potential of microalgae in wastewater treatment is the removal of inorganic nutrients such as 

nitrogen and phosphorus. Chlorella and Scenedesmus are again amongst the most usually 

found genera. Some specific examples of recent studies follow: 

Wang and Min (2009) evaluated the growth of Chlorella in the wastewater from four different 

points in a WWTP: prior to primary settling, after secondary settling, after AS system and on 

the sludge centrate. They obtained the corresponding nutrient elimination rates and growth 

rates (highest for the microalgae grown on centrate). They also demonstrated aluminium, 

calcium, iron, magnesium and manganese removal. 

Ruiz-Marín et al. (2010) obtained 60 – 100 % ammonium elimination in batch cultures of 

Scenedesmus obliquus and Chlorella vulgaris treating urban wastewater. 
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Singh and Baldwin (2012) isolated four microalgal species from the environment and 

cultivated them in the effluent of an aerobic membrane bioreactor treating domestic 

wastewater, in order to eliminate the remaining inorganic nitrogen and phosphorus 

concentrations. They worked with batch and continuous reactors, obtaining in the latter 

average eliminations of 50% NH4-N, 75% NO2-N, 35% NO3-N and 60% PO4-P.  

De Alva et al. (2013) cultivated Scenedesmus acutus in two different municipal wastewater 

discharges (pre-treated and post-treated) under laboratory conditions. 94% organic nitrogen 

and 66% phosphate were eliminated in the pretreated wastewater. Better results on biomass 

productivity and lipid accumulation were obtained in the wastewater than in microalgae grown 

in an enriched medium. 

Dickinson et al. (2013) cultivated Scenedesmus sp. as tertiary treatment of urban wastewater 

in continuous mode and studied the relationship between carbohydrate, fatty acids and lipid 

productivities and hydraulic retention times, concluding that the rate of nutrient removal 

strongly controls the composition of the biomass. They reported maximum removal rates of 22 

mg N·l
-1

·d
-1

 and 2.5 mg P·l
-1

·d
-1

. 

Samorí et al. (2013) studied biomass growth and productivities of a newly isolated freshwater 

algal strain (Desmodesmus communis) and a natural consortium of microalgae cultivated in 

batch under laboratory conditions with primary and secondary effluents from a local WWTP. 

They obtained higher biomass productivity for D. communis than for the natural consortium 

(0.138 – 0.227 vs.
 
0.078 g·l

-1
·d

-1 
in the primary effluent enriched with CO2), as well as better 

nutrient removal efficiency: almost 100% of ammonium and phosphorus were removed. Due 

to the resulting biomass composition, anaerobic digestion appeared to be the most appropriate 

biofuel conversion process. 

Gentili (2014) also demonstrated that mixtures of pulp and paper wastewater with municipal 

and dairy wastewater have great potential as growth medium for algae biomass and lipid 

production together with effective wastewater treatment. He obtained high (> 90%) 

ammonium and phosphate removal from Selenastrum minutum and a locally isolated algal 

strain (Scenedesmus sp.). 
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Ramos Tercero et al. (2014) cultivated Chlorella protothecoides in different urban 

wastewaters (after primary treatment, in the waste sludge and after disinfection) under 

laboratory conditions, and obtained high (> 90%) ammonium and nitrate removals and 

acceptable (50 – 70 %) phosphate removals in most cases. Microalgal growth rate and other 

kinetic parameters were also obtained. 

Gao et al. (2014) cultivated Chlorella vulgaris in a membrane photobioreactor using treated 

sewage as medium and obtaining a biomass productivity of 0.04 g·l
-1

·d
-1

, removing 4.13 mg 

N·l
-1

·d
-1

 and 0.43 mg P·l
-1

·d
-1

. 

Wastewaters from farming activities usually present a high concentration of nutrients. 

Several studies have demonstrated the ability of microalgae such as Botryococcus braunii (An 

et al., 2003), Microspora willeana, Ullothrix sp. or Rhizoclonium hierglyphicum (Pittman et 

al, 2011) to remove these nutrients. 

It has also been proven that some microalgae are able to eliminate organic toxic compounds 

or heavy metals usually present in some industrial wastewaters. Biomass is, in most of these 

cases, generated in smaller amounts due to a slower growth caused by low nutrient 

concentrations. An exception to this is shown in a study by Chinnasamy (2010), where a 

considerable amount of biomass is generated cultivating three microalgal species (Chlorella 

saccharophila, Pleurochrysis carterae and Botryococcus braunii) in a wastewater from the 

textile industry. 

Some studies are found in the literature which deal with different kinds of anaerobic effluents 

treated with microalgae, although in most cases the effluent is diluted due to the high nutrient 

(especially ammonium) concentrations and/or high turbidity. For example, Park and Jin 

(2010) reported that the microalga Scenedesmus eliminated 5 – 6 mg N·l
-1

·d
-1

 from a filtered 

anaerobic digestion effluent from a piggery farm. The amount of inorganic carbon supplied by 

this effluent allowed microalgal growth without additional CO2 injection. 

Cai et al. (2013) demonstrated a growth rate of 0.645 d
-1

 of Nannochloropsis salina in diluted 

(6%) anaerobic digester centrate. The highest biomass productivity, in batch culture, was 92 

mg·l
-1

·d
-1

 and nitrogen and phosphorus elimination in semicontinuous mode were 35.3 and 3.8 

mg·l
-1

·d
-1

, respectively. 
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Escudero et al. (2014) demonstrated the ability of Chlamydomonas acidophila to grow in the 

effluent generated by the anaerobic digestion of a mixture comprising 60% pig slurry, 30% 

cheese whey and 10% sheep manure. The effluent contained concentrations of up to 1000 mg 

NH4-N ·l
-1

 out of which 8.8 mg·l
-1

·d
-1

 were removed.  

Prajapati et al. (2014) diluted the liquid fraction of the digestate after microalgal anaerobic 

digestion (Chroococcus sp.) and used it as growth medium for further biomass production, 

demonstrating the stability of this “closed loop” process. 

Uggetti et al. (2014) have also reported the growth of a mixed microalgal culture dominated 

by Scenedesmus sp. on the digester effluent of a WWTP. Their study shows a significant 

increase in biomass production with higher digestate and microalgal initial concentration, in 

spite of initial growth rate reduction. 

Sepúlveda et al. (2015) recently reported a productivity of 0.4 g·l
-1

·d
-1

 of Nannochloropsis 

gaditana grown on anaerobic digestion centrate at 30 – 50 % dilution. The biomass obtained 

had the same composition (protein and lipid content) as when grown in artificial medium. An 

excess of nitrogen in the effluent was indicated by the fact that 80 – 90 % of the phosphorus 

was eliminated (at a rate of 5.7 mg P·l
-1

·d
-1

), whereas removed nitrogen (at 35 mg N·l
-1

·d
-1

) 

resulted only a 20 – 40 % of the total. 

5. Present and future trends 

As mentioned in section 1 of this chapter, the technical feasibility of microalgal production 

has, by now, been widely demonstrated. However, economic and environmental 

sustainability are key obstacles for its commercialization. Dozens of start-up companies are 

attempting to commercialize algal biofuels, while realizing that current production methods 

require significant improvement (Chisti, 2011). Most of the recent studies attempting to scale-

up microalgal production are in the first stage, i.e., scaling up from laboratory to pilot scale or 

to modest production plant scale (Wu et al., 2014). Nevertheless, large scale algal biomass 

production in HRAPs for treatment of municipal wastewaters was reported decades ago 

(Oswald and Golueke, 1960, Oswald, 1988) and also recently (Park et al., 2011). 
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For the establishment of a significant microalgal industry, i.e., for increased sustainability of 

microalgal production processes, efforts need to be made in two main directions. On the one 

hand, technical advances are necessary in order to increase the economical and energetic 

efficiency of the whole process (operation and maintenance of reactor, pumps, utilities, 

harvesting system and other elements). On the other hand, innovative system integration 

seems mandatory for the extension of microalgal processes. Microalgae are considered to be 

futuristic raw material for establishing a biorefinery because of their potential to produce 

multiple products (Trivedi et al., 2015) –biorefining consists of sustainable biomass 

processing to obtain energy, biofuels and high value products at the same time, as in Kouia et 

al. (2015). In this line of action, coupling microalgae cultivation with wastewater treatment 

is considered as one of the most promising routes to produce bio-energy and bio-based 

byproducts in an economically viable and environmentally friendly way (Zhou et al., 2014), as 

previously mentioned in section 3.2 of this chapter. 

Indeed, various life cycle assessment (LCA) studies have demonstrated the environmental 

sustainability of wastewater-based algal biofuel production processes (Clarens et al., 2010). 

Yang et al. (2011) calculated that 90% of freshwater, 94% of nitrogen and 100% of potassium, 

magnesium and sulfur could be saved when producing microalgal biofuels using wastewater 

as growth medium, and Mu et al. (2013) confirmed the higher sustainability performance of 

microalgae grown in wastewater than cultures grown in freshwater. 

The main problems to overcome when culturing microalgae in wastewater, which are 

actually common to general microalgae production, are i) the low cell densities, low lipid 

content and moderate growth rates attained, ii) the risk of culture contamination or culture 

crash, and iii) the variability of the process when performed under outdoor conditions. A 

special challenge when treating wastewater with microalgae is the variability of nutrients 

content in the wastewater, and the possible unsuitable nutrient ratios. Possible solutions and 

needed research related to these main problems follow: 

Higher cell densities and growth rates might be obtained with changes in environmental 

conditions, such as working in the optimal temperature, light intensity or pH. For this, studies 

of the microalgal behavior under different conditions must be combined with the design of 

new cultivation strategies, such as fed-batch operation, deceleration-stat (Van Wagenen et al., 
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2015), two phase operation, mixotrophy or semicontinuous cultivation. Semicontinuous 

operation is one of the simplest and most efficient strategies, although it has rarely been 

researched in outdoor systems (Zhou et al., 2014). 

Lipid accumulation is often enhanced by nitrogen depletion in the medium, which is not a 

realistic option in the case of wastewater treatment, where the nitrogen content in the medium 

is necessarily significant. In this case, two stage cultivation systems can be used, as 

mentioned previously in this section, where in a first step microalgal biomass is allowed to 

grow, removing nutrients from the wastewater, and in a second step it is maintained in a 

nitrogen free medium in order to increase its lipid or carbohydrate content (Chen et al., 2015). 

On the other hand, instead of biodiesel production, other energy recovery options might be 

better applied in the case of wastewater treatment with microalgae, such as anaerobic 

digestion or others as presented in section 3.2. Anaerobic digestion of algal biomass (or of its 

spent fraction after extraction of the substances of interest) has the added advantage of nutrient 

recovery, since the digested sludge can be applied as fertilizer. According to Klein-

Marcuschamer et al. (2013), nitrogen recovery through anaerobic digestion is necessary for 

sustainable production of algal biofuels. Therefore, research in this area should focus on 

obtaining a microalgal culture which presents the best combination of nutrient removal and 

biogas yield. 

Obtaining robust microalgae strains which tolerate different types of wastewaters and 

environmental stresses, or which minimize culture collapse risks by being more resistant to 

contamination by bacteria, virus, fungi, or grazing microorganisms, should be a priority when 

designing wastewater treatment systems. Locally isolated algal strains tend to adjust better to 

local environments (Xin et al., 2010, Zhou et al., 2012). The reason for this is that local 

species are a priori adapted to the regional biotic and abiotic factors dominant in the 

environment. Regionally-based phycoprospecting (selecting indigenous microalgae with 

characteristics favourable to pollution control and bioresource production in the area of 

interest) is, according to Wilkie et al. (2011), the most sustainable path for the development of 

algae-based solutions and an ongoing line of research. Microalgae consortiums also 

performed better than monocultures in terms of nutrient removal and biomas productivity 

(Woertz et al., 2009, Chinnasamy et al., 2010). 
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It has been reported that, theoretically, productivity in continuous cultivation systems is two 

to five times higher than that of batch systems (Fernandes et al., 2015). Operating in 

continuous mode enables the achievement of higher cell densities, which in turn also reduces 

harvesting costs. The complexity of operating in continuous mode resides in the dependence 

of microalgae on light availability and intensity (Cuaresma et al., 2011). This dependence 

makes it necessary to adjust dilution rates during dark and light periods, or might be 

counteracted by using artificial illumination, although this incurs higher costs. Moreover, 

contamination risks are higher due to a prolonged time of operation, and similarly, biomass 

attachment to the walls of the reactors becomes a bigger problem. This can be fought by 

increasing turbulence or manual or mechanical wall scraping. It is still necessary to provide 

demonstrative case studies which prove the advantages of continuous cultivation and allow a 

rigorous and realistic techno-economic assessment (Fernandes et al., 2015). 

For productivity maximization and product quality, permanent control of cultivation 

parameters is necessary. In the case of continuous cultivation, especially outdoors, it is 

essential to monitor the parameters by sensors and to know in advance the behavior of the 

microalgae under the cultivation conditions. As an example of efforts made to overcome the 

problem of light variability, Mairet et al. (2015) developed a static and an adaptive controller 

in order to regulate the light attenuation factor by changing the dilution rate, and thus optimize 

algal productivity. Generally, for a proper control of the process, information about optimal 

growth conditions and basic performance of the culture should be previously collected. 

Biomass growth and composition models should be then developed, since models are 

essential for monitoring and control (Fernandes et al., 2015). Naturally, the same applies 

regarding water quality in the case of microalgal cultivation for wastewater nutrient removal. 

Model-based bioprocesses control is not yet a mature technology, but a fundamental 

research field with high potential (Fernandes et al., 2015).  

6. Mathematical modeling of microalgae 

In the field of wastewater treatment, mathematical models constitute useful tools for WWTP 

design, simulation and water quality prediction. Simulation and water quality prediction are 
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helpful for plant control and operation, and can increase efficiency and reliability of the 

process. 

The effect of single factors influencing algal growth (such as those mentioned in section 3.3 

of this introduction) have been modeled separately and different authors have also proposed 

different combinations of these expressions in order to model multiple factors 

simultaneously. These include, for instance, multiplicative models, the selection of a single 

limiting parameter or mathematical equations to express interactions between two parameters 

(the so called “coupled models”). An additional complication is the fact that microalgae 

cultures are able to vary their composition in order to adjust to the changing environment and 

depending on their history (photoadaptation, lipid accumulation under nitrogen stress, or 

temperature acclimation). 

A large part of the first models developed for microalgae were devoted to their behavior in 

rivers, lakes and oceans (Geider et al., 1998, Reichert, 2001). Some of the selected responses 

were oxygen production rate, chlorophyll content, C:N ratios in the cells, or microalgae 

measured as suspended solids. It was later, in views of their industrial application, that other 

kinds of models were developed. Some examples are those models which predict production 

of lipids, sugars or other storage molecules (Mairet et al., 2011, Packer et al., 2011, Adesanya 

et al., 2014). Some authors have also developed models which calculate biomass production in 

bioreactors taking into account –apart from the biological processes– the main physical 

phenomena (variable light and temperature, mixing, gas transfer or others) (Vunjak-

Novakovic, et al., 2005, García-Camacho et al., 2012, Pegallapati and Nirmalakhandan, 

2012,). In this field, computational fluid dynamics has also been applied for designing and 

modeling photobioreactors, as reviewed by Bitog et al. (2011). 

In summary, there exists abundant literature in microalgal modeling, since the number of 

possible combinations of factors taken into account and parameters chosen as model response 

is immense. As the number of parameters taken into account increases, the accuracy of the 

response normally does so, too. Evidently, and unfortunately, the complexity of the model 

obtained also escalates. Therefore, a compromise always needs to be sought between accuracy 

and applicability. In practice, authors generally develop models adapted to their needs and the 

scope of their research. 
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Objectives 

The aim of this thesis is to study the nutrient recovery process from an anaerobic membrane 

bioreactor effluent by using a microalgal culture. Moreover, this thesis aims at obtaining the 

main kinetic expressions governing the process. 

The partial objectives which must be accomplished to achieve the main objective are: 

To isolate the autochthonous microalgae culture and to study its growth in the existing 

anaerobic effluent, as well as its evolution (changes in the population) and its stability. 

To assess the nutrient removal levels attained during microalgal cultivation, thus proving the 

microalgal system to be a valid option for anaerobic effluent treatment. 

To study the influence of the operational parameters of the process, such as cellular retention 

time or light cycles, as well as the influence of temperature. 

To study microalgal intracellular nutrient storage and its influence on nutrient uptake 

(ammonium, phosphate) from the media, developing reliable mathematical expressions to 

represent these interactions. 

To study the influence of outdoor varying conditions (light and temperature) in microalgal 

nutrient removal, developing a kinetic expression for successful prediction of nutrient removal 

in an outdoor and pilot scale wastewater treatment facility. 
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Chapter II 

 

A first approach to indigenous microalgal cultivation 

A: Ruiz-Martínez, A., Martí Ortega, N., Ferrer, J., Seco, A. Cultivation of microalgae for 

nutrient removal from the effluent of a submerged anaerobic membrane bioreactor 

(SAnMBR). IWA International Conference EcoTechnologies for Wastewater Treatment 

(ecoSTP). Santiago de Compostela (Spain), June 25
th

 to 27
th

, 2012. 

and 

B: Ruiz-Martinez, A., Murgui, M., Ferrer, J., Seco, A. Cultivation of indigenous microalgae 

for nutrient removal using a submerged anaerobic membrane bioreactor (SAnMBR) effluent: 

Effect of cellular retention time. Young Algaeneers Symposium. Wageningen (The 

Netherlands), June 14
th

 to 16
th

, 2012. 

 

An already existing SAnMBR system, run at pilot plant scale by the CALAGUA research 

group, eliminates organic matter from municipal wastewater to desired levels. A post-

treatment was proposed, intended to further eliminate inorganic nutrients (ammonium and 

phosphate) which display variable concentrations between 40 – 60 mg NH4-N·l
-1

 and 6 – 7 mg 

PO4-P·l
-1

.  

The aim of the studies here presented was to assess the performance of a wastewater treatment 

consisting of autochthonous microalgae cultivation for nutrient elimination in this 

anaerobically treated wastewater. The ability of natural occurring microalgae to grow in the 

SAnMBR effluent (SAnMBRe) was proved, and the extent of biomass growth and nutrient 

elimination were analyzed under different conditions of cultivation mode, cellular retention 

time and illumination. 
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A: Ruiz-Martínez, A., Martí Ortega, N., Ferrer, J., Seco, A. Cultivation of microalgae for 

nutrient removal from the effluent of a submerged anaerobic membrane bioreactor 

(SAnMBR). IWA International Conference EcoTechnologies for Wastewater Treatment 

(ecoSTP). Santiago de Compostela (Spain), June 25
th

 to 27
th

, 2012. 

1. Introduction 

The term microalgae encompasses a wide spectrum of microorganisms, which can be 

eukaryotic or prokaryotic (cyanobacteria) but have one ability in common: the use of 

inorganic carbon (in the form of CO2, HCO
-
 or CO3

-2
) for biomass growth through 

photosynthesis. This process in which organic matter is created from inorganic compounds 

(nutrients and carbon) takes the necessary energy from a light source, thus transforming light 

energy into chemically stored energy.  

Microalgal biomass is therefore a potential source of renewable energy: it renders lipids for 

biodiesel production, as well as constituting a readily biodegradable substrate which can be 

subjected to anaerobic digestion to obtain biogas. Other microalgae applications for obtaining 

energy are sugar fermentation for ethanol production or different means of thermochemical 

conversion. Hydrogen production under sulphur deficiency has also been studied (Brenan and 

Owende, 2010). 

Production costs reduction and higher sustainability in terms of energy use and environmental 

footprint are among the main goals which microalgae cultivation technology still has to 

achieve. To this respect, the use of wastewater as a source of nutrients for microalgal growth 

is a promising alternative, given the high costs of artificial cultivation media, and the added 

benefits of eliminating nutrients from wastewater streams while generating energetically 

profitable biomass (Pittman et al, 2011). 

The present study is the first step in designing and developing a microalgal cultivation system 

that eliminates inorganic nutrients from urban wastewater which has been previously treated 

in a submerged anaerobic membrane bioreactor. The SAnMBR removes, on average, 89% of 

the COD present in the incoming wastewater (approximately 500 mg COD·l
-1

) and generates 

biogas, mainly composed of methane and CO2. The organic matter content in its effluent is 
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therefore low, but ammonium and phosphate are still present in concentrations over the legal 

limit for discharge. Thus, the microalgal cultivation is proposed as a post-treatment of this 

existing SAnMBR. The aim of this study is twofold: on the one side, to assess the growth of 

autochthonous microalgae using this effluent (SAnMBRe) as culture media, and to evaluate 

the extent of nutrient removal achieved. On the other side, to evaluate the influence of light 

and dark cycles in the process. 

2. Material and methods 

The microalgae used were obtained from the walls of the secondary clarifier in the Carraixet 

Wastewater Treatment Plant in Valencia, Spain, and Scenedesmus sp. identified as the main 

group present. 

The average concentrations of ammonium and phosphate in the SAnMBRe were 44.6 mg 

NH4-N·l
-1

 and 7.02 mg PO4-P·l
-1

, respectively. 

In the first part of the experiment the microalgae were cultivated in 1 l glass bottles 

illuminated by fluorescent lights. The light intensity was 120 µE·m
-2

·s
-1

. The initial dry 

biomass was 17 mg, and a total of 860 ml of SAnMBRe, distributed among the 10 days of 

total culture time, was added to the bottles.  

In the second part of the experiment, the microalgae (with an initial concentration of 400 mg 

TSS·l
-1

), were cultured for 11 days in semi-batch mode in 1 l glass bottles. The light intensity 

was 120 µE·m
-2

·s
-1

 and the cellular retention time (CRT) was equal to the hydraulic retention 

time (HRT): 2 days. The bottles were fed daily. 

Finally, the light intensity was increased to 200 µE·m
-2

·s
-1

 and the microalgae were cultured 

during 24 days in 2 l glass bottles under light/dark cycles (12:12) and continuous light (24:00) 

(see figure II.1). The initial biomass concentration was 190 mg TSS·l
-1

. Air enriched with CO2 

was added to increase agitation and to provide carbon source. The CRT was kept at 2 days. 
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3. Results and discussion 

In the first part of the experiment the initial biomass of 17 mg grew up to 360 mg (dry weight) 

after 10 days, eliminating 86% and 100% of ammonium and phosphate respectively (figure 

II.1).  Nitrite and nitrate concentrations were negligible. 

During the second part of the experiment (figure II.2) the microalgal culture was able to 

maintain its biomass concentration, actually showing a final TSS value of 452 mg·l
-1

, which 

means a 13% increase. On average, 87% of NH4-N and 95% of PO4-P were eliminated. 

Nutrients were consumed at an N:P ratio of 7. Again, nitrification was not observed. 

 

Figure II.1: Batch experiment. The bars show the added amount of nutrients (accumulated). The 

dots represent nutrients in the media. The biomass concentration, measured as total suspended 

solids (TSS) (mg), is also shown.  

The cultures in the 2 l glass bottles subject to light and dark cycles (figure II.3) presented a 

final biomass concentration after 24 days of 120 mg TSS·l
-1

, which means a biomass loss of 

37% with respect to the initial value. Therefore, the deprivation of light for 12 hours daily 

exerted a negative consequence in the growth of the studied microalgae. However, the system 

still stayed viable during at least the first 24 days of cultivation and eliminated 48% of NH4-N 

and 68% of PO4-P. On the other hand, the continuously illuminated bottles showed an increase  
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Figure II.2: Semicontinuous mode. The bars show the concentration of incoming nutrients 

(SAnMBR effluent). The dots represent the concentration of nutrients achieved in the culture. 

TSS are also shown. 

 

Figure II.3: Semicontinuous mode. Light and dark cycles (12:12) and continuous illumination 

(24:0). The bars show the concentration of incoming nutrients (SAnMBR effluent). The dots 

represent the concentration of nutrients achieved in the cultures. TSS are also shown.  
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in their microalgae concentration, achieving 259 mg TSS·l
-1

. Nitrification was not observed 

and nitrogen and phosphorus elimination were of 57% and 69% respectively. This shows that 

deprivation of light has a stronger influence on biomass growth than on nutrient removal, in 

the studied conditions. 

4. Conclusions 

The ability of autochthonous microalgae to sustain growth based on a SAnMBR effluent is 

demonstrated. A doubling time of approximately one day can be achieved in the conditions 

studied (CRT of 2 days). Satisfactory nutrient elimination rates were obtained. However, there 

is place for further research aiming at optimizing the system towards higher biomass 

concentration and higher nutrient removal rate. Additionally, the light/dark cycle to which the 

microalgae are subjected influences their productivity and is thus an important factor to 

analyze, in order to find the optimum illumination time which balances energy consumption, 

biomass production and nutrient elimination.  
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B: Ruiz-Martinez, A., Murgui, M., Ferrer, J., Seco, A. Cultivation of indigenous microalgae 

for nutrient removal using a submerged anaerobic membrane bioreactor (SAnMBR) effluent: 

Effect of cellular retention time. Young Algaeneers Symposium. Wageningen (The 

Netherlands), June 14
th

 to 16
th

, 2012. 

 

This study assessed the performance of an indigenous microalgae polyculture for wastewater 

treatment. The microalgae were isolated from the secondary clarifier of a local wastewater 

treatment facility and belonged to the chlorococcales order of the Chlorophyceae. The culture 

was kept in 2 l glass bottles under continuous (24:0) and cyclic (12:12) illumination, provided 

with fluorescent lamps (200 µE·m
-2

·s
-1 

PAR), and run in a semicontinuous mode: the 

microalgae were daily purged and fed with the effluent of a submerged anaerobic membrane 

bioreactor (SAnMBR) thus keeping a constant volume and identical cellular retention time 

(CRT) and hydraulic retention time (HRT). The SAnMBR effluent displayed average 

concentrations of 54 mg NH4-N·l
-1

 and 7 mg PO4-P·l
-1

.  

Algal biomass, evaluated as total suspended solids (TSS) in the culture, showed a definite 

increase when the CRT was increased from 2 to 3 days (from 256 mg·l
-1

 to 508 mg·l
-1

 for the 

continuous illuminated bottles). Such an increment, however, could not be seen when the CRT 

increased from 3 to 4 days. Biomass production was possibly hampered by cellular self-

shading and low light availability. 

It was observed that the wastewater N:P ratio was higher than the ratio consumed by 

microalgae (7.7 vs 6). The highest daily nutrient removal per liter of treated wastewater was, 

as expected, obtained in the case of 4 d CRT (figures II.4 and II.5). Maximum eliminations 

were observed in the continuous illuminated reactors (79% of incoming NH4-N and 96% of 

incoming PO4-P). However, the increase in nutrient removal efficiency was higher in the step 

from 2 to 3 d CRT than in the step from 3 to 4 d CRT. It should also be noted that, when daily 

nutrient removal was calculated per liter of reactor, the best performance corresponded to the 

reactors where CRT was 2 d (11.7 mg NH4-N·d
-1

 and 1.9 mg PO4-P·d
-1

) (figure II.6). It was 

observed from the obtained data that 24 h illumination did not present twice as much nutrient 

removal, but did help achieving very low phosphate levels (figure II.7). These are valuable 

results to take into account when designing a wastewater treatment system, since a 
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compromise has to be found among the quality of the water achieved, the needed reactor 

volume and the illumination costs. Similarly, a modification in one working parameter can be 

compensated with a change in another factor.  

 

Figure II.4: Ammonium removal per liter of wastewater in the 

semicontinuous reactors for the tested CRT and concentration of 

nutrients achieved in the cultures. 

 

Figure II.5: Phosphate removal per liter of wastewater in the 

semicontinuous reactors for the tested CRT and concentration of 

nutrients achieved in the cultures. 
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Figure II.6: Ammonium and phosphate removal (per liter of reactor) in 

the semicontinuous reactors for the tested CRT. 

 

            % NH4-N eliminated       %PO4-P eliminated 

2d 

 

3d 

 

4d 

 

     12:12          24:0             12:12          24:0
 

Figure II.7: Summary of the results in terms of percentage nutrient elimination 
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Chapter III 

 

Microalgae cultivation in wastewater: nutrient removal 

from an anaerobic membrane bioreactor effluent 

 

Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J. (2012) Microalgae 

cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. 

Bioresource Technology 126, 247-253 

 

 

Abstract 

This study investigated the removal of nitrogen and phosphorus from the effluent of a 

submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale 

photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period 

of 40 days.  Solids retention time was 2 days and a stable pH value in the system was 

maintained by adding CO2. Nitrogen and phosphorus concentrations in the SAnMBR effluent 

fluctuated according to the operating performance of the bioreactor and the properties of its 

actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable 

growth medium for microalgae (mean biomass productivity was 234 mg·l
-1

·d
-1

), achieving a 

nutrient removal efficiency of 67.2% for ammonium (NH4-N) and 97.8% for phosphate (PO4- 

P). When conditions were optimum, excellent water quality with very low ammonium and 

phosphate concentrations was obtained.  
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1. Introduction 

Urban and industrial wastewater must be treated before being discharged into the environment 

in order to prevent undesirable effects such as pollution and eutrophication. Anaerobic 

treatments have several advantages over more traditional aerobic systems i.e. they consume 

less energy and produce less sludge whilst generating biomethane (Ho and Sung, 2010). The 

combination of anaerobic wastewater treatment with membrane technology gave rise to 

anaerobic membrane bioreactors, the main advantage of which is the possibility of separating 

solids retention time (SRT) from hydraulic retention time (HRT), whilst reducing the footprint 

and achieving high quality effluent in terms of suspended solids.  

Pilot-scale submerged anaerobic membrane bioreactors (submerged AnMBR or SAnMBR) 

have been evaluated with promising COD removal rates (Giménez et al., 2011), but discharge 

into the aquatic environment or water reuse is not possible without further nitrogen and 

phosphorus removal (Stuckey, 2012). There is a clear need for research on post-treatments 

which allow the extended and full-scale use of AnMBR for domestic wastewater treatment 

(Smith et al., 2012). Possible traditional treatments such as biological nitrification-

denitrification process or enhanced biological phosphorus removal are energy-intense. Partial 

nitritation/nitrification with Anammox bacteria has lately received increasing attention. 

However, there is still little literature available for low strength wastewaters, and we have not 

found any author describing AnMBR effluent treatment with Anammox bacteria. The present 

study is a novel approach to AnMBR effluent post-treatment using microalgae for nutrient 

removal and biomass generation. The generated biomass allows nutrient recovery and presents 

an added value for various industrial applications or energy recovery, as it is presented in this 

section. 

The use of microalgae in wastewater treatment was first proposed by Oswald and Gotaas 

(1957) and has received much attention in recent decades (Olguín et al., 2003a, Rawat et al., 

2010). Microalgae are photosynthetic microorganisms which use energy from the sun to grow, 

consuming inorganic nutrients and CO2. They accumulate organic matter in the form of 

proteins, lipids, carbohydrates, hydrocarbons and other small molecules and pigments. 

Microalgal biomass has been studied and used for human and animal nutrition and for 
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producing substances such as fatty acids, β-carotene, astaxanthin and phycocyanin (Pulz and 

Gross, 2004).  

In recent decades, however, microalgae have been in the spotlight because of their potential 

use in producing renewable biofuel, mainly biodiesel, via the transesterification of 

intracellular accumulated oils. Due to their rapid growth and ability to accumulate oil in 

concentrations of up to 50% of their dry weight, together with the possibility of year-round 

production, microalgae can enable higher oil yield than existing oilseed crops (Schenk et al., 

2008). As reported elsewhere, the residual biomass can still be used for energy recovery via 

thermochemical conversion (gasification, liquefaction, pyrolysis, combustion) or biochemical 

conversion (anaerobic digestion for biomethane production, fermentation for bioethanol 

production). For a wider review of this topic see Brenan and Owende (2010).  

But despite all the technical and biotechnological advances in this field, the start-up and 

operating costs of algal biofuel production systems are still too high. It was estimated that the 

costs of algal biodiesel production must be reduced to one tenth if it is to be competitive 

(Chisti, 2008).  

As previously stated, microalgae have been used around the world for wastewater treatment in 

stabilization ponds or high-rate algal ponds (HRAP). However, these technologies have been 

used mainly in small communities, partly due to their big spatial footprint. According to Park 

et al. (2011), the use of HRAPs in wastewater treatment to produce algal biomass has been 

given little consideration. However, many authors have recently drawn attention again to the 

potential of combining wastewater nutrient removal and biofuel production, as reviewed by 

Pittman et al. (2011). With this combination, the nutrients needed for microalgal growth are 

obtained from wastewater, eliminating the need for clean water and the addition of nutrients, 

thus reducing production costs. Furthermore, nutrients are not only removed from the 

wastewater, but can also be captured and returned to the terrestrial environment as agricultural 

fertilizer. Another advantage of using microalgae to treat wastewater is their photosynthetic 

CO2 fixation, which contributes to mitigating greenhouse gases. The use of flue gas has also 

been reported (Van den Ende et al., 2012).  

Microalgal cultures have been used successfully to treat artificial and real wastewater (Ruiz-

Marín et al., 2010) and to eliminate nutrients from samples taken at different points in a 
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wastewater treatment plant, e.g. after primary settling, or after an activated sludge process, or 

after an A2O system or oxidation ditch (Yang et al., 2011), as well as in tertiary treatment 

(Wang et al., 2009). Others, e.g. Li et al (2011), also used centrate for microalgal growth. The 

satisfactory percentages of nutrients removed in some cases confirm the possibility of 

combining wastewater treatment with microalgal biomass formation. However, to our 

knowledge, no previous study of microalgae cultivation for nutrient removal in SAnMBR 

effluent has been reported. Information obtained from a long term assay on nutrient removal 

using real wastewater is scarce. In our study, nutrients are removed in an 8l reactor and under 

semi-continuous culture conditions. Additionally, the culture is subject to fluctuations of 

actual wastewater.  

Regarding microalgal species, most studies maintain monocultures in order to compare 

different microorganisms in their ability to eliminate nutrient or generate specific compounds, 

but the literature is scant on consortia of microorganisms and their performance. This study 

aims at providing a proof of concept that a mixed polyculture of autochthonous species is able 

to grow and can be effective in removing nutrients from the studied wastewater, in an 

approach which considers that strain selection will happen naturally and the culture will thus 

evolve with changing conditions. To our opinion, this characteristic in the proposed system 

confers it great robustness and is realistic for industrial application of wastewater treatment. 

2. Materials and methods 

2.1. Experimental setup and operation 

2.1.1. Submerged anaerobic membrane bioreactor plant 

A flow diagram of the SAnMBR pilot plant is shown in Figure III.1. The pilot plant influent 

was sourced downstream from the pre-treatment units belonging to the “Cuenca del Carraixet” 

WWTP (an actual, full-scale wastewater treatment plant in Valencia, Spain) which included 

coarse screening, degritting and grease removal. The pre-treated wastewater then underwent 

fine screening (RF) before being pumped into an equalization tank (ET) and then fed into the 

jacketed anaerobic reactor (AnR, 1300 l) where the temperature was kept above 20º C. 
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Figure III.1: Flow diagram of the SAnMBR pilot plant. Nomenclature: RF: rotofilter; 

ET: equalisation tank; AnR: anaerobic reactor; MT: membrane tanks; DV: 

degasification vessel; CIP: clean-in-place; P: pump; and B: blower (Robles 2013). 

The anaerobic sludge was circulated between the anaerobic reactor and two 800 l membrane 

tanks (MT1 and MT2, 600 l working volume). Each membrane tank had a 30 m
2
 ultrafiltration 

membrane module (PURON® Koch Membrane Systems, 0.05 µm pore size). HRT was 13.3 h 

and SRT was 30 days for the first 3 weeks of the experiment and then increased to 40 days. 

Further details of the characteristics and operation of the SAnMBR can be found in a previous 

study (Giménez et al, 2011). The SAnMBR effluent was collected from the permeate tank 

(CIP) and taken to the laboratory each day to feed the algae culture in the lab-scale 

photobioreactor (PBR).  

2.1.2. Lab-scale photobioreactor  

The PBR consisted of a cylindrical, transparent methacrylate tank (20 cm internal diameter) 

with a total and working volume of 10 and 8 l respectively (Figure III.2). The PBR was sealed 

and the algae culture was mixed by recycling the headspace gas at a flow rate of 0.8 – 1.0 

l·min
-1

 through four fine bubble diffusers mounted at the bottom. Pure CO2 (99.9%) from a 
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pressurized cylinder at 1.5-2 bar pressure was injected into the gas flow in order to maintain a 

pH of 7.2 ± 0.3 in the PBR. A solenoid valve in synch with the pH measurements obtained by 

the data acquisition program opened for 3 seconds every 2 minutes whenever the pH exceeded 

the set point value of 7.2. This system enables mixing without using a magnetic stirrer or 

mechanical agitator, optimizes CO2 consumption and, at the same time, helps control the pH 

in the reactor to prevent undesirable phenomena such as phosphate precipitation and ammonia 

stripping. The seal was however not hermetic. Extreme overpressure is thus avoided and 

oxygen levels kept close to saturation levels.  

 

Figure III.2: Lab-scale cylindrical photobioreactor. CO2 is automatically 

injected into the headspace gas recirculation system for pH control. 

Every six hours, one liter of algae culture was taken from the PBR and replaced with the same 

volume of SAnMBR effluent using two different peristaltic pumps controlled by a personal 

computer. This corresponds to solids and hydraulic retention times of 2 d. Two arrays of 5 

vertical fluorescent lamps (Sylvania Grolux, 18 W) 30 cm apart continuously illuminated 

opposite sides of the PBR. Photosynthetically active radiation (PAR) was measured in the 

bottom, middle and top sections of the illuminated surface of the PBR tank (HOBO ® Smart 

Sensor, s-lia-m003) resulting in values of 159 ± 39, 209 ± 43 and 143 ± 30 E m
-2

 s
-1

 

respectively. During the experiment no temperature control was employed, resulting in 

temperatures ranging from 28 to 32 ºC. 
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2.2. Microorganisms 

The microalgae used as inoculum were isolated from the walls of the secondary clarifier in the 

Carraixet WWTP and kept in 250 ml, 1 l and 2 l bottles in the laboratory under semi-

continuous feeding conditions with the same effluent used in this study and with continuous 

illumination varying between 114 and 198 E·m
-2

·s
-1

. Microalgae from the chlorococcales 

order of the Chlorophyceae class were identified as the main group present, together with 

cyanobacteria. 

2.3. Sampling, monitoring and analysis  

In our study, nutrient removal by algae culture was evaluated by the daily measurement of 

inorganic nitrogen and phosphate levels in the influent (SAnMBR effluent) and in the soluble 

fraction taken from the PBR. The soluble fraction of the culture was obtained by membrane 

filtration with 0.45 mm pore size glass fiber filters (Millipore). Ammonium (NH4-N), nitrite 

(NO2-N), nitrate (NO3-N) and phosphate (PO4- P) levels were determined by applying 

Standard Methods (APHA, 2005) (4500-NH3-G, 4500-NO2-B, 4500-NO3-H, 4500-P-F 

respectively) in a Smartchem 200 automatic analyzer (Westco Scientific Instruments, 

Westco).  

Total nitrogen and total phosphorus in the algae culture were measured in duplicate at least 

three times a week using standard kits (Merck, Darmstadt, Germany, 100613) to measure 

nitrogen and the acid peroxodisulphate digestion method to measure phosphorus (APHA, 

2005). The nitrogen content of the algae biomass was calculated as the difference between 

total nitrogen and soluble nitrogen. Likewise, the phosphorus content of the particulate 

fraction was calculated as the difference between total phosphorus and phosphate 

concentration of the soluble fraction. Total and volatile suspended solids (TSS and VSS) were 

determined every day as described in Standard Methods (APHA, 2005). Samples were taken 

in duplicate. Chemical oxygen demand was determined from duplicate samples and according 

to Standard Methods (APHA, 2005).  

To determine the chlorophyll content, 50 ml of culture were filtered using 0.45 m pore size 

Whatman® cellulose filters which were then frozen at -20 ºC for 24 hours. Chlorophyll was 
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extracted from the algae biomass that accumulated on the filter using 20 ml of a 90% acetone-

water solution whilst kept in the dark at 4 ºC for at least 24 hours. The extracted chlorophyll 

and the filters were then centrifuged for 5 minutes at 3000 g (Eppendorf 5804 centrifuge) and 

absorbance at 630, 646, 664 and 750 nm was measured by a UV-VIS spectrophotometer 

(Merck Spectroquant® Pharo 300). The concentrations of chlorophyll a and b were calculated 

by the trichromatic method using the equations of Jeffrey and Humphrey (APHA, 2005). 

Samples were taken in duplicate.  

The epifluorescence microscopic count method was used to analyze phytoplankton 

communities. Samples in a 250-ml glass bottle were fixed adding glutaraldehyde until a final 

concentration of 2% was attained. They were filtered with 0.2 µm membranes (Millipore 

GTTP) and the filters were washed with distilled water to eliminate the retained salt and then 

dehydrated with successive 50%, 80%, 90% and 99% ethanol washes. Each dried filter was 

placed onto a drop of immersion oil in the center of a slide and two more drops were added on 

the upper side of the filter. Finally, a cover glass was placed on top of the filter (Fournier, 

1978). Phytoplankton counts were performed by epifluorescence microscopy with a Leica 

DM2500, using the 100×-oil immersion objective. A minimum of 300 cells was counted and 

at least 100 cells of the most abundant species or genera were counted with an error of less 

than 20% (Lund et al., 1958). All reported results were obtained from the previous analyses 

conducted in duplicate.  

The physical and chemical parameters of the algae culture such as conductivity, redox 

potential, temperature, pH and dissolved oxygen were monitored online in the PBR and 

logged in a PC using data acquisition software. For conductivity, redox and pH, the signals 

from the corresponding electrodes were processed by a multiparametric analyzer (CONSORT 

C832, Belgium), whilst temperature and dissolved oxygen were measured using a Cellox 325 

electrode (WTW, Germany) connected to an oximeter (Oxi 320, SET WTW, Germany).  
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3. Results and discussion 

3.1. SAnMBR effluent. Nitrogen and phosphorus removal 

The variation in NH4-N and PO4-P content during the experiment is depicted in figures III.3 

and III.4, which also show the levels of these nutrients in the influent to be treated (SAnMBR 

effluent). Variations in the ammonium and phosphate contents of the PBR influent depend on 

the operating behavior of the SAnMBR and the properties of its actual wastewater load. 

Neither nutrient addition nor dilution of the effluent took place. The microalgae in the reactor 

were thus fed exclusively with the SAnMBR effluent, which supplied them with all the 

dissolved inorganic nutrients they required for growth. Because microalgae need 

micronutrients other than ammonium and phosphate, e.g. silica, calcium, magnesium, cobalt, 

potassium, zinc, iron, manganese, sulfur and copper, it can be assumed that these are 

contained in the SAnMBR effluent, as is usually the case when wastewater is used for algal 

growth (Christenson and Sims, 2011).  

Microalgae grow by using inorganic carbon obtained via photosynthetic CO2 fixation. The 

bicarbonate-carbonate buffer system (CO2-H2CO3-HCO3
-
-CO3

2-
) in the culture media can 

provide CO2 for photosynthesis through the following reactions:  

2HCO3
-
 ↔ CO3

2-
 + H2O + CO2 

HCO3
-
↔ CO2 + OH

-
  

CO3
2-

 + H2O ↔ CO2 + 2OH
-
  

(III.1) 

(III.2) 

(III.3) 

Microalgae, on the other hand, release CO2 through respiration. Dark respiration, however, 

usually accounts for less than 10% of total photosynthetic production so its impact is small. 

Adding carbon dioxide directly to the reactor is, therefore, the best and most convenient way 

to control pH, while providing a source of inorganic carbon needed for microalgal growth at 

the same time (Grobbelaar, 2004). Different concentrations of carbon dioxide are often added 

to the reactor by an aeration system (see Ugwu et al., 2008 for review of this topic).  
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The CO2 content of water depends on the thermodynamics and mass transfer phenomena. 

Inefficient transfer across the gas-liquid interface causes high levels of CO2 in the gas phase, 

resulting in a loss of CO2 if the gas is released into the atmosphere. The system used in this 

study was designed to optimize carbon dioxide consumption by recirculating the headspace 

gas while keeping the pH of the culture at a set value of 7.2. Hence, the composition of the gas 

phase used to mix the culture and supply carbon depended on the interaction of a) CO2 

consumption; b) microalgal respiration; c) the buffer system in the liquid phase, which 

depends on alkalinity; d) the mass transfer between the gas and liquid phases; and e) the 

external CO2 added when the pH of the culture (liquid phase) deviated from 7.2.  

A working pH of 7.2 was deemed suitable for microalgal growth because the optimal pH 

levels reported for algal growth are in the 7 – 9 range. On the other hand, one of the main aims 

of this study was to remove nutrients by assimilation into biomass, avoiding other forms of 

nutrient removal such as the chemical precipitation of phosphates or ammonia stripping in the 

gas phase. Both phenomena are enhanced by raising the pH. As reported by Carlsson et al. 

(1997), the situation for calcium phosphate precipitation is critical when –log ([Ca]·[P]) 

approaches 5.4 if the pH is 7. In our case, with mean calcium concentrations of 130 mg·l
-1

, 

precipitation was avoided when the phosphorus content remained beneath 37 mg·l
-1

, which 

was always achieved. According to De Bashan and De Bashan (2004), struvite (ammonium-

magnesium-phosphate) precipitation also takes place when pH is above 7.5.  

As regards ammonia stripping, it is known that the ammonium-ammonia equilibrium is highly 

influenced by pH, such that a pH higher than 9 shifts the equilibrium enough to facilitate 

ammonia stripping, whereas with a pH of 7, NH4-N is by far the most dominant form of 

ammonia nitrogen. The loss of ammonia into the atmosphere became the major mechanism 

explaining nitrogen removal in cultures where pH was not controlled and therefore it rose as 

photosynthetic activity increased (Olguín, 2003b). Therefore, keeping the pH at 7.2 ensured 

that the nitrogen and phosphorus elimination in the proposed system was due mainly to 

biomass growth. The headspace gas recirculating system optimized CO2 consumption in 

comparison with the same system without recirculation (data not shown). 
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Figure III.3: Soluble nitrogen evolution in the influent (actual SAnMBR effluent) and in 

the 8 l photobioreactor. 

 

Figure III.4: Soluble phosphorus evolution in the influent (actual SAnMBR effluent) and 

in the 8 l photobioreactor. 
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Incoming ammonium during the monitored period oscillated between 42.6 and 81.4 NH4-N·l
-

1
. The average was 59.3 mg NH4-N·l

-1
. The proposed microalgal system for nutrient removal 

was influenced by these variations (figure III.3). The levels of ammonium in the reactor are 

highest when levels are highest in the influent, sometimes with 1 or 2 days’ delay. Hence, at 

the end of week 1 the ammonia level in the reactor rose following the tendency of the influent, 

and remained at around 20 mg NH4-N·l
-1

 during week 2. It is remarkable that, in periods with 

no peaks in the incoming concentration, such as weeks 4 and 5, when the ammonia content of 

the influent remained at around 50 mg NH4-N·l
-1

, the quality of the effluent was excellent: 

ammonium levels were very low. Towards the end of the study the NH4-N concentration rose 

due to an increase in the SAnMBR effluent. No nitrite or nitrate was detected in the SAnMBR 

effluent. 

Elimination was calculated in terms of total inorganic nitrogen, i.e. not taking into account the 

amount of NH4-N which was transformed into NO3-N or NO2-N in the reactor. On average, in 

the given conditions of illumination and temperature, the system studied was able to eliminate 

daily 38.9 ± 10 mg of soluble N in the treated water, which corresponds to a daily removal per 

reactor volume of 19.5 ± 5 mg·l
-1

·d
-1

. This is more than or in the same range as other studies 

(e.g. Kim et al. (2010) reported 20-40 mg N·l
-1

·d
-1

 eliminated in a flat panel reactor where the 

microalga Synechocystis was supplied with 90 mg N·l
-1

·d
-1

, Yuan et al. (2011) reported 

Spirulina platensis growth in an airlift photobioreactor eliminating 10-22 mg N·l
-1

·d
-1 

and 

Park et al. (2010) reported 5-6 mg N·l
-1

·d
-1

 removal by Scenedesmus from a filtered and 

autoclaved anaerobic digestion effluent obtained from a piggery farm). 

Levels of nitrification (transformation of ammonium into nitrite and nitrate) were very low (on 

average 13.4% of incoming ammonium), except at the end of week 3 and week 4, when non-

ammonium nitrogen in the soluble part of the reactor effluent peaked at 22.7 mg N·l
-1

, i.e. 

more than 30% of incoming ammonium. Nitrification is carried out in two steps by nitrifying 

bacteria, which are also autotrophic microorganisms to be expected in a mixed culture system 

like the one under study here. Ammonia-oxidizing bacteria (AOB) transform ammonium into 

nitrite, and nitrite-oxidizing bacteria (NOB) carry out the second step by oxidizing nitrite into 

nitrate. Although their growth velocities are not always higher than microalgae (Jimenez 

Douglas (2010) reported a maximum growth velocity of 0.88 d
-1

 and 0.42 d
-1

, respectively), 
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thin biofilms in the walls of the reactor and other elements could have temporarily been a 

niche for the development of these microorganisms, preventing them from being washed away 

and allowing nitrite and nitrate to accumulate in the reactor. The previous accumulation of 

ammonium in the reactor (during week 2) also provided them, presumably, with the nutrients 

needed for growth.  

In week 5, the levels of ammonium in the reactor fell to undetectable values when taken for 

microalgal growth. This correlates well with the increase in TSS in week 5, after the previous 

sharp decrease (figure III.5). In that week the microalgae presumably outcompeted the 

autotrophic bacteria, which were removed at the same time by the manual cleaning of the 

reactor walls. AOB and NOB, together with nitrite and nitrate, were gradually washed out of 

the reactor by daily purging.  

 

Figure III.5: TSS (mg·l
-1

) in the 8 l photobioreactor and biomass chl a+b content 

(mg·g
-1

)  

It can be concluded from this section that, when the anaerobic membrane bioreactor was 

operated steadily with effluent concentrations of around 50 mg NH4-N·l
-1

, the removal rate of 

inorganic nitrogen was very satisfactory. In the conditions of light and temperature used in the 

study and when the incoming ammonia level is higher, it remains in the culture and might be 

used by autotrophic bacteria that coexist in the reactor with the microalgae.  
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As regards phosphorus elimination, a satisfactory 97.8 ± 3.9% of the incoming phosphate was 

eliminated, resulting in very high quality treated effluent. This means a daily average 

elimination of 7.3 ± 1.6 mg PO4-P·l
-1

 in the treated water and a daily removal per reactor 

volume of 3.7 ± 0.8 mg·l
-1

·d
-1

. Figure III.4 shows that, despite the incoming phosphate content 

varying from 5.1 to 10.5 mg PO4-P·l
-1

, the soluble part of the microalgal system effluent had a 

mean phosphate concentration of 0.1 mg PO4-P·l
-1

·d
-1

 and a maximum of 0.2 mg PO4-P·l
-1

. 

Hence, the phosphate eliminated is very nearly equal to the amount of phosphate found in the 

SAnMBR effluent. This suggests that phosphate is, in this case, the limiting nutrient. This is 

also pointed out by the fact that the mass N:P ratio in wastewater (8 ± 1.2 on average) is 

higher than the N:P ratio the microalgae need for their growth (an average of 5.4 ± 1.2 

eliminated during this study).  

However, the fact that the phosphate content is still detectable suggests that the system has 

another limitation, probably light intensity. It is hypothesized that a higher light intensity 

would increase biomass production in as much as phosphorus is still available for growth. 

Previously cited studies in this section report similar values for phosphate elimination. In 

Yuan et al. (2011) between 1.4 and 3 mg PO4-P·l
-1

 were eliminated and Kim et al. (2010) 

report between 2.4 and 3.9 mg PO4-P·l
-1

. 

Soluble COD content in the photobioreactor was monitored after week 3 and displayed an 

average value of 51 mg COD·l
-1

. Previous experiments (unpublished data) show that this COD 

corresponds mainly to non-biodegradable soluble organic matter which is present in the 

SAnMBR effluent. 

3.2. Biomass production and biomass N and P content 

The evolution of algal biomass, measured using TSS (mg·l
-1

), and its chlorophyll content 

(mg·g TSS
-1

) is shown in figure III.5. The maximum biomass level was 595 mg·l
-1

, and the 

average over the entire period, 467 ± 65 mg·l
-1

. Mean chlorophyll content ranged from 20.5 to 

48.2 mg·g
-1

 in the biomass (2 – 4.8% dw), which is in keeping with other studies (Cheirsilp 

and Torpee, 2012). Self shadowing increases with higher TSS in the culture and the 

chlorophyll content of the microalgae increases in order to increase light harvesting.  
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Because of the high nitrogen content of chlorophyll, there is a relationship between soluble 

nitrogen elimination (shown in figure III.6, corrected for nitrite and nitrate) and the 

chlorophyll content of the culture (expressed in mg chl a+b per liter of culture). It is therefore 

expected that a higher biomass concentration with limited available light would increase the 

chlorophyll content of the culture and thus improve the nitrogen elimination. The increase in 

the consumed N:P ratio would be of interest in the case of this specific SAnMBR effluent to 

be treated and future research should aim to increase the biomass concentration. 

The biomass production rate (BPR) and the specific growth rate (µ) were calculated by 

equations III.4 and III.5 below, respectively: 

    
   

 
               

  
         
     

       

(III.4) 

 

(III.5) 

where X (mg·l
-1

) is the biomass concentration, Q (l·d
-1

) is the flow rate in semi-continuous 

operation, V (l) is the reactor volume and t (d) is time. Results showed an average biomass 

production of 234 ± 32 mg·l
-1

·d
-1

 and an average daily specific growth rate of 0.66 ± 0.15 d
-1

, 

which is similar to those previously reported (Kim et al., 2010, Ras et al., 2011, Ketheesan and 

Nirmalakhandan, 2012). 

 

Figure III.6: Relation between eliminated nitrogen and reactor 

chlorophyll content (mg chl a+b·l
-1

) 
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Microalgae cell counts, together with the distribution of Chlorophyceae, diatoms and 

Cyanobacteria, are shown in table III.1. The mixed culture originally rich in Cyanobacteria 

developed during cultivation time into a polyculture in which Chlorophyceae were the 

dominant class. The diatoms content was low throughout the studied period.  

Table III.1. Cell counts and microalgae classification during the experiment 

 

Chlorophyceae Diatoms Cyanobacteria 

Culture 

time (d) 

Total 

cell count 

Cell 

count 
% 

Cell 

count 
% 

Cell 

count 
% 

3 4.40 ·10
9
 1.48 ·10

8
 3.35% - - 4.26 ·10

9
 96.65% 

10 6.72 ·10
9
 4.33 ·10

9
 64.36% 1.72 ·10

7
 0.26% 2.38 ·10

9
 35.38% 

24 3.98 ·10
9
 2.62 ·10

9
 65.71% 1.24 ·10

8
 3.12% 1.24 ·10

9
 31.18% 

40 2.56 ·10
9
 1.85 ·10

9
 72.13% 3.82 ·10

6
 0.15% 7.11 ·10

8
 27.72% 

 

As reported elsewhere, different species of microalgae have diverse nutrient affinities and are 

influenced differently by environmental conditions. The advantage of maintaining a system 

containing different microalgal species is that a polyculture is able to adjust to varying 

conditions such as nutrient concentration or temperature. Moreover, although pH and light 

intensity were kept stable in this experiment, process control is more difficult or more 

expensive on a larger scale or in outdoor cultures. Variable conditions in such cases would 

demonstrate the robustness of polycultures. Further research should aim at understanding 

species distribution and evolution for better operation and control. 

The P and N contents of the biomass were calculated as a % of dry weight as follows: 

   
                      

           
 

 

   
                      

           
 

 

(III.6) 

 
(III.7) 
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The average biomass compositions thus obtained were 7.72 ± 1.51% N and 1.44 ± 0.16% P, 

which revealed the average mass N:P ratio in the microalgae to be 5.36, which tallies well 

with the eliminated N:P ratio presented in section 3.1, i.e. 5.4 ± 1.2. With this biomass average 

composition, the nitrogen and phosphorus assimilated into the biomass during the studied 

period account for 92% and 91% of the eliminated nitrogen and phosphorus, respectively. 

Also reported in section 3.1, the mass N:P ratio in the influent ranged from 5.3 to 10.3, being 

8 on average . Hence the SAnMBR effluent has a nitrogen surplus: it is phosphorus deficient 

and therefore eliminates this nutrient to a greater extent. 

3.3. Biomass separation and future perspectives 

The biomass generated enables the nutrients that have been removed from the wastewater to 

be recycled. Another separation step is needed to extract the microalgae from the culture 

medium and provide an effluent free of solids. Studies of membrane systems for microalgal 

biomass separation have been conducted (Rossignol et al., 1999, Zhang et al., 2010), but not 

very extensively. Further research will focus on microalgal biomass separation with 

membrane systems, assuming that separating solids retention time from hydraulic retention 

time will enable the proposed system to be optimized. The algal biomass thus obtained and 

separated from the culture could then be recycled at the anaerobic stage and used to increase 

the production of biogas. At the same time, it is of great importance to scale up the system to 

pilot plant scale and study it under outdoor conditions in order to develop a suitable 

technology for real scale urban wastewater treatment using the proposed mixed microalgal 

culture.  

4. Conclusions 

This study determines that it is feasible to use a mixed microalgal culture system for nutrient 

removal from AnMBR effluents, which could be a first step into spreading their use for 

domestic wastewater treatment. High nutrient removal rates were maintained whilst operating 

semi-continuously for 40 days, resulting in a microalgal treatment effluent whose water 

quality was very good. The combined system proposed, i.e. anaerobic treatment followed by 

microalgal polyculture, thereby eliminates organic matter from real urban wastewater whilst 
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generating biogas, and the remaining ammonium and phosphate are recovered by 

transformation into microalgal biomass, achieving excellent water quality. 
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Chapter IV 

 

Mixed microalgae culture for ammonium removal in the 

absence of phosphorus: Effect of phosphorus 

supplementation and process modeling 

 

Ruiz-Martinez, A., Serralta, J., Pachés, M., Seco, A., Ferrer, J. (2014) Mixed microalgae 

culture for ammonium removal in the absence of phosphorus: Effect of phosphorus 

supplementation and process modeling. Process Biochemistry 49, 2249-2257. 

 

Abstract 

Microalgal growth and ammonium removal in a P-free medium have been studied in two 

batch photobioreactors seeded with a mixed microalgal culture and operated for 46 days. A 

significant amount of ammonium (106 mg NH4-N·l
-1

) was removed in a P-free medium, 

showing that microalgal growth and phosphorus uptake are independent processes. The 

ammonium removal rate decreased during the experiment, partly due to a decrease in the 

cellular phosphorus content. After a single phosphate addition in the medium of one of the 

reactors, intracellular phosphorus content of the corresponding microalgal culture rapidly 

increased, and so did the ammonium removal rate. These results show how the amount of 

phosphorus internally stored affects the ammonium removal rate. A mathematical model was 

proposed to reproduce these observations. The kinetic expression for microalgae growth 

includes a Monod term and a Hill’s function to represent the effect of ammonium and stored 

polyphosphate concentrations, respectively. The proposed model accurately reproduced the 

experimental data (r = 0.952, P-value < 0.01). 
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1. Introduction 

Interest on microalgae has increased during the last decades as they constitute a promising 

alternative for obtaining value-added products and biofuels such as biodiesel, biohydrogen 

biogas or biocrude. Moreover, microalgal systems for wastewater treatment have long been 

proposed and studied (Singh et al., 2012). These systems range from open-pond cultures to 

closed photobioreactors (Christenson and Sims, 2011) and focus primarily on the removal of 

inorganic nutrients such as ammonium, nitrate and phosphate.  

Several studies have proved the suitability of microalgal cultures for nutrient removal in 

diverse wastewaters. These studies, which showed different degrees of nutrient removal 

efficiencies, generally agree that the most important advantages of microalgae utilization for 

this purpose are CO2 abatement and the possibility of reusing biomass as fertilizer or as 

renewable source of energy (Aravantinou et al., 2013, Arbib et al., 2014) On the other hand, 

the process spares the otherwise necessary cost of nutrients for algae cultivation. Currently, a 

rather extended opinion in the scientific community is that the production of algae-based 

biofuels, at least in the short-term, is neither economically nor energetically feasible without 

simultaneous wastewater treatment (Pittman et al, 2011) 

Phosphorus is an essential component of microalgae. According to the Redfield ratio 

(Redfield, 1958), it constitutes 0.87% of its dry weight. Phosphorus is present in basic cell 

constituents such as phospholipids, nucleic acids or nucleotides. It can also be accumulated to 

higher levels inside the microalgal cells, where inorganic polyphosphate serves as reservoir.  

As reviewed by Powell et al. 2009, there are two mechanisms involved in this accumulation: 

over-compensation, which occurs after re-exposure to phosphorus following a starvation 

phase, and luxury uptake, where microalgae accumulate much more phosphorus than it is 

needed for their survival without previous exposure to P-poor medium.  

Different studies, which aimed at defining the polyphosphate accumulation and phosphate 

uptake dynamics, have shown a relationship between phosphorus stress in the medium and 

low polyphosphate content in the cells, together with recovery of polyphosphate levels after 

addition of phosphorus (Jansson, 1993, Nishikawa et al., 2006). It is also known that 

starvation enhances the phosphate uptake rate. The effect of P-starvation on ammonium 
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uptake rate is, however, less known. Previous studies did not focus on the influence that 

polyphosphate content exerts on the nitrogen uptake velocity, as these studies were not 

undertaken with a wastewater treatment approach. 

In the wastewater treatment field mathematical models are useful tools for process design, 

WWTP scale-up or upgrade, or water quality prediction. Up to now, microalgal growth 

modelling has been tackled with a diversity of approaches. There are various examples of 

different complexity-level models which determine phytoplankton evolution in the ecosystems 

(Geider et al., 1997, Geider et al., 1998, Reichert et al., 2000), content and evolution of 

intracellular components of interest such as lipids or sugars (Mairet et al., 2011), specific 

metabolism of single species (Kliphuis et al., 2011), microalgal production inside 

photobioreactors (Fernández et al., 2012) or others. 

The present work was designed to study the ammonium removal process in a phosphate-free 

medium and the relationship between the microalgal intracellular phosphorus content and the 

ammonium removal rate, with a view to designing suitable strategies for wastewater 

treatment. Therefore it is also the aim of this work to define a kinetic expression for 

microalgae growth considering the effect of ammonium concentration in the medium and the 

amount of internally stored polyphosphate on the rate of this process. To this aim, a 

mathematical model considering microalgae growth and death was proposed and model 

parameters were obtained by minimizing differences between experimental data and model 

predictions. This model should be useful for prediction of ammonium removal rates in 

wastewater treatment systems. 

A microalgal culture was fed only with ammonium in a lab-scale photobioreactor (PBR) and 

afterwards separated into two identical PBRs. Phosphate was supplied only to one of them. 

Nutrient uptake kinetics of the two PBRs were studied, as well as biomass composition (%N 

and %P). Microalgae production-in terms of chemical oxygen demand and suspended solids-

was assessed. The experimental data obtained was successfully reproduced by the proposed 

model. This model can be useful for designing strategies and predicting the behavior of 

wastewater treatment systems where nutrient removal is achieved by microalgal growth. 
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2. Materials and methods 

2.1. Experimental setup  

Three identical PBRs were used in this study (initial reactor, Nitrogen Only Reactor and 

Nitrogen and Phosphorus Reactor, as it will be explained in section 2.2). Each PBR consisted 

of a cylindrical, transparent methacrylate tank (20 cm internal diameter) with a total volume of 

10 liters (see figure IV.1a). The PBRs were closed and the algae culture was mixed by 

recycling the headspace gas through four fine bubble diffusers mounted at the bottom. Both 

PBRs were equipped with electronic sensors in order to obtain online measurements of 

conductivity, oxidation reduction potential, temperature, pH and dissolved oxygen. The probes 

were connected to a multiparametric analyzer (CONSORT C832, Belgium) and an oximeter 

(Oxi 320, SET WTW, Germany), respectively. These devices were in turn connected to a PC 

for data monitoring and storage. Data sampling was conducted every 60 s.   

 

Figure IV.1: a) Experimental setup; b) illumination and measuring point. 

pH in the PBRs was maintained around 7.5 to avoid undesirable processes such as phosphate 

precipitation and free ammonia stripping. Pure CO2 (99.9%) from a pressurized cylinder was 

injected into the gas flow whenever pH exceeded the setpoint of 7.5. Recycling gas from the 
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headspace contributes to minimize the CO2 requirements for pH control. Since the reactors 

were closed CO2 stripping was also minimized but since they were not hermetically sealed 

extreme overpressure and overaccumulation of oxygen were avoided.  

Four arrays of 3 vertical fluorescent lamps (Sylvania Grolux, 18 W) 10 cm apart from each 

other continuously illuminated each PBR from a minimum distance of 10 cm. 

Photosynthetically active radiation (PAR) of 153 ± 16 E·m
-2

·s
-1

was measured at the surface 

of the reactors as the arrow in figure IV.1b indicates. The PBRs were placed inside a climatic 

chamber with air temperature control set to 20 ºC. Due to the constant illumination the 

temperature in the culture resulted in 25.5 ºC. 

A phosphate-free medium, adapted from Li et al. (2011) was used in this study, one liter of 

which was composed of 115 g (NH4)2SO4, 150 mg CaCO3, 400 mg CaCl2·H2O, 400 mg 

Na2SeO3·5H2O, 350 mg MgSO4·7H2O, 54 mg (NH4)6Mo7O2·4H2O, 30 mg ZnCl2, 30 mg 

HBO3, 30 mg NiCl2·6H2O, 18 mg CuCl2·2H2O, 12 mg K2SO4, 1.2 mg FeCl3·4H2O, 1.2 mg 

CoCl2·6H2O, 0.6 mg EDTA, 0.3 mg MnCl2·4H2O.  

2.2. Operation 

A microalgal culture (7 l) was maintained for 19 days in ammonium-rich and phosphate-free 

medium in a lab-scale PBR as described in section 2.1, called initial reactor. Ammonium in 

the form of (NH4)2SO4 was manually added at the beginning of the experiment and when its 

concentration dropped below 4 mg NH4-N·l
-1

 (day 7). On day 19, when ammonium 

concentration had reached again 4 mg NH4-N·l
-1

, the 7 l culture was split into two PBRs, with 

a working volume of 3.5 l each. These two PBRs will henceforth be called NOR (Nitrogen 

Only Reactor) and N&PR (Nitrogen and Phosphorus Reactor) and were not carried out in 

duplicate.  

Immediately after the splitting, ammonium in the form of (NH4)2SO4 was added into NOR, 

reaching a concentration of 28.4 mg NH4-N·l
-1

, and phosphate in the form of KH2PO4 was 

added into N&PR, reaching a concentration of 11.7 mg PO4-P·l
-1

. From then on, both reactors 

were operated for 27 days. Ammonium was added again in both reactors when its 

concentration dropped below 4 mg NH4-N·l
-1

 (day 29 in NOR and days 20, 22 and 29 in 

N&PR). 
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2.3. Microorganisms 

The initial reactor was seeded with microalgae isolated from the walls of the secondary 

clarifier in the “Cuenca del Carraixet” WWTP (Valencia, Spain) and maintained in the 

laboratory under semi-continuous feeding conditions with a cellular retention time of 4 days 

and continuous illumination varying between 114 and 198 E·m
-2

·s
-1

. The effluent of a 

submerged anaerobic membrane bioreactor (SAnMBR, described in Giménez et al., 2011) was 

used as growth medium. This effluent displays a variable N/P ratio and has been proved to 

sustain algal growth (Ruiz-Martinez et al., 2012 (Chapter III)). Microalgae from the 

Chlorococcum genus together with Cyanobacteria (Spirulina sp. and Pseudoanabaena sp.) 

were identified as the main groups present.  

2.4. Analytical Methods 

Nutrient removal was evaluated by regular measurements of inorganic nitrogen and 

phosphorus levels in the samples taken from the PBRs. Ammonium (NH4-N), nitrite (NO2-N), 

nitrate (NO3-N) and phosphate (PO4-P) were determined according to Standard Methods 

(APHA, 2005) (4500-NH3-G, 4500-NO2-B, 4500-NO3-H and 4500-P-F, respectively) in a 

Smartchem 200 automatic analyzer (Westco Scientific Instruments, Westco).  

Total nitrogen in the algae culture was measured using standard kits (Merck, Darmstadt, 

Germany, 100613). The acid peroxodisulphate digestion method (APHA, 2005) was used for 

total phosphorus (TP) measurements. The nitrogen content of the algae biomass was 

calculated as the difference between total nitrogen and soluble nitrogen. Likewise, the 

phosphorus content of the algae biomass (total suspended phosphorus, TSP) was calculated as 

the difference between total phosphorus and orthophosphate concentration. Total and volatile 

suspended solids (TSS and VSS), as well as chemical oxygen demand (COD) were 

determined according to Standard Methods (APHA, 2005). 

All reported results were obtained from the previous analyses conducted in duplicate, except 

for TSS and VSS where single analysis were made.  
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3. Results and discussion 

3.1. Nutrient removal 

The composition of the biomass in the initial reactor (7 l PBR) after inoculation is included in 

table IV.1. According to Reynolds (2006), a phosphorus concentration in the biomass greater 

than 3% suggests that phosphate luxury uptake has taken place. Therefore, the studied 

microalgal biomass had stored, before the beginning of this experiment (during the cultivation 

under semi-continuous mode), more phosphate than needed for growth. 

Table IV.1: Biomass evolution in the reactors and calculated yields 

Time (d) 
TSS

a
 

(mg·l
-1

) 

VSS
a
 

(mg·l
-1

) 

Susp 

COD
b
 

(mg·l
-1

) 

Biomass 

N content 

(g N·gVSS
-1

) 

Biomass 

P content 

(gP·gVSS
-1

) 

Yield 

coefficient 

YN-VSS 

(gVSS·gN
-1

) 

Yield 

coefficient 

YN-COD 

(gCOD·gN
-1

) 

0 380 340 517 11.8% 3.7% -- -- 

19 (initial) 882 817 1176 12.0% 1.6% 8.2 11.3 

46 (NOR) 1330 1224 1880 10.8% 0.8% 8.8 12.8 

46 (N&PR) 1583 1460 2320 10.6% 1.7% 8.7 13.9 

Mean analytical error: 
a
 50 mg·l

-1
; 

b
 70 mg·l

-1
; 

Figures IV.2a and IV.2b show the ammonium and phosphate evolution in the NOR and 

N&PR, respectively. The experiment started in the 7 l initial reactor with biomass inoculation 

and ammonium addition. The initial VSS and ammonium concentrations were 340 mg VSS·l
-1

 

and 32 mg NH4-N·l
-1

, respectively. Ammonium was added again after 7 days because its 

concentration was below 4 mg NH4-N·l
-1

. During this first period, which is common in both 

graphs, phosphate concentration in the medium was zero (figure IV.2). However, the 

microalgal biomass removed a total of 58 mg NH4-N·l
-1

. 
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Figure IV.2: Ammonium and phosphate evolution in a) NOR and b) N&PR during the whole 

experiment.  
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VSS as well as suspended COD concentrations clearly increased in both reactors due to 

microalgae growth (table IV.1). This increase was greater in N&PR since the amount of 

ammonium and phosphate taken up was higher.  

The biomass P content visibly decreased in the initial reactor and in the NOR, since the 

microalgae growth took place using the internally stored polyphosphate. In the N&PR the 

biomass P content sharply increased on day 19 (to a maximum of 2.8%) due to phosphorus 

addition and immediate uptake. It decreased from then on for the rest of the experiment. 

Yield coefficients were calculated as the ratio between the amounts of biomass generated, 

measured as VSS and COD, and the ammonium removed. VSS yield coefficients are similar 

in the NOR, N&PR and in the initial reactor, whereas the N&PR shows a slightly higher COD 

yield coefficient. It is hypothesized that this difference could be attributed to the amount of 

phosphate taken up in N&PR: growth in NOR took place without phosphate addition, like in 

the initial reactor, while in N&PR phosphate was available and taken up by microalgae. 

However, analytical error of the performed measurements (VSS and COD) hinders a clear 

conclusion on the subject. Biomass N content obtained in the present work is in accordance 

with the general Redfield formulation of 9.20 % (0.092 g N·g
-1

). 

3.1.1. Nitrogen Only Reactor 

As shown in figure IV.2a, microalgal ammonium uptake took place during all the experiment 

(46 days in total) in the NOR, without any external phosphate addition. This fact demonstrates 

that ammonium and phosphorus uptake from the medium are two independent processes-in 

the sense that one can occur without the other-, and clearly demonstrates that this microalgal 

culture presents a great capacity for removing a high amount of ammonium in the absence of 

phosphate in the medium. In this reactor a total of 106 mg NH4-N·l
-1

 was removed without 

phosphate in the culture medium. 

After each ammonium addition its uptake took place at a constant rate until ammonium 

concentration decreased to values around 10-13 mg NH4-N·l
-1

 (in figure IV.2a. filled lines 

turn into dashed lines). The ammonium uptake rate significantly decreased when ammonium 

concentrations were below this threshold. This low ammonium affinity observed in these 

experiments should be taken into account in the design of PBRs for wastewater treatment 
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since large tank volumes or high hydraulic retention times will be required to obtain very low 

ammonium concentrations. An exception to this was the last slope, when the constant rate was 

not maintained below 20 mg NH4-N·l
-1

. This exception will be discussed later in this section. 

In the NOR, the ammonium uptake rate decreased with time throughout the experiment, likely 

due to a decrease in the internally stored polyphosphate. The selfshading effect of the culture 

also exerted its influence: biomass growth during the experiment led to a decrease in the 

available light for microalgae even when the incident light remained constant. The calculated 

ammonium removal rates (slopes shown in figure IV.2a) decreased from 0.209 mg N·l
-1

·h
-1 

at 

the beginning of the experiment to 0.09 mg N·l
-1

·h
-1 

at the end of the experiment. The specific 

removal rate (mg N·mg VSS
-1

·h
-1

) (table IV.2) decreased during all the experiment.  

As no phosphate was added at any time in the NOR, the P required for biomass growth could 

only be taken from their internal P pool, which microalgae had accumulated during the 

previous phase of cultivation under semicontinuous conditions. This internal polyphosphate 

consumption during the experiment led to a decrease in the biomass P content, which reached 

0.8% (0.008 g P·g VSS
-1

) at the end of the experiment (at day 46, see table IV.1), when 

ammonium removal was taking place at a very slow rate. These results suggest the existence 

of a relationship between the P content of the cells and the ammonium removal rate.  

The final biomass P content is a very small value compared to the initial biomass composition 

(indicated in table IV.1). It is, according to Reynolds (2006), still higher than the minimum 

amount of internal phosphorus for cell survival (between 0.2 – 0.4% in dry weight). In fact, 

Markou (2012) has shown a minimum phosphorus content after starvation phase of 0.185 % 

(0.00185 g P·g
-1

). However, approaching these minimum values of intracellular P content 

makes ammonium uptake rate decrease.  

Around day 35 of the experiment, biomass in the NOR reached what seems quite a critical P 

content. The ammonium uptake rate decreased to very slow values although ammonium 

concentration was still 20 mg NH4-N·l
-1

. At the same time, as table IV.1 shows, suspended 

solids significantly increased along the experiment. Mutual shading of the microalgae 

attenuates light in the PBR and microalgal growth was therefore also slowed down for this 

reason.  
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Table IV.2: Calculated net and specific ammonium removal rate after each ammonium addition 

in each reactor, together with biomass P content at those moments (beginning of slope) 

Reactor 
Slope 

number 

Removal rate 

(mg N·l
-1

·h
-1

) 

Slope 

error 

Specific removal rate 

(mg N·mg VSS
-1

·h
-1

) 

Biomass P 

content 

(g P·g VSS
-1

) 

initial 

1 0.209 0.018 6.15·10
-4

 3.7% 

2 0.121 0.002 2.11·10
-4

 2.2% 

NOR 

3 0.152 0.001 1.86·10
-4

 1.6% 

4 0.090 0.009 8.79·10
-5

 1.0% 

N&PR 

3 0.514 0.051 6.07·10
-4

 2.6% 

4 0.247 0.004 2.41·10
-4

 2.0% 

5 0.176 0.014 1.41·10
-4

 1.5% 

 

3.1.2. Nitrogen and Phosphorus Reactor 

Phosphate was added to N&PR on day 19 and reached a concentration of 11.7 mg PO4-P·l
-1

. 

Phosphate removal started immediately and its removal rate was 2 mg PO4-P·l
-1

·h
-1

 until 

phosphate concentration was nearly zero. This removal rate was very high, considering that 

while the added phosphate was consumed, only 2.1 mg NH4-N were taken up by the 

microalgae. The resulting N:P uptake ratio of 0.18 is very low, which is due to the phosphorus 

starvation condition of the biomass. The majority of literature values on microalgal phosphate 

uptake rate under balanced conditions are well below the presented value: Aravantinou et al. 

(2013) reported, for Chlorococcum, a value of 0.0475 mg PO4-P ·l·h
-1

 and Aslan and Kapdan 

(2006) reported a value of 0.083 mg PO4-P ·l·h
-1

 for Chlorella sp. Ramos Tercero et al. (2014) 
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reported for Chlorella protothecoides a closer value to the one presented in this work of 1.3 

mg PO4-P·l
-1

·h
-1

. 

N&PR was spiked with ammonium for a third, fourth and fifth time (figure IV.2b). As 

previously observed in the NOR, the ammonium uptake rates kept constant after the 

ammonium additions but decreased when ammonium concentration in the medium reached 

values below 10-13 mg NH4-N·l
-1

. The value obtained for the ammonium removal rate after 

phosphate addition in the N&PR showed a significant increase, due to a fast increase in 

intracellular phosphorus concentration. Ammonium removal rate decreased along the rest of 

the experiment, as in NOR, due to an increase of selfshading and a decrease in phosphorus 

content. At the end of the experiment, ammonium concentrations reached lower values in 

N&PR than in NOR, and still maintained a faster decreasing trend. At this point, P content of 

the biomass had reached 0.017 g P·g VSS
-1

, which is higher than the biomass P content 

reached in NOR (0.008 g P·g VSS
-1

).  

These results suggest that ammonium removal rate depends on the amount of phosphorus 

stored in microalgae. Other authors modelled phytoplankton colimitation by nitrogen and 

phosphorus (Bougaran et al., 2010) assuming that the maximum potential for N uptake takes 

place at high concentrations of intracellular phosphorus, which is in accordance with the 

experimental results obtained now in this work.  

The specific ammonium uptake rates (with respect to VSS) obtained in the N&PR and the 

associated biomass P content are shown in table IV.2, demonstrating how intracellular 

polyphosphate content exerted a drastic and positive influence in the specific ammonium 

removal rate: it decreased for the first 2 injections into initial reactor, continued decreasing 

after the N injections into NOR and increased in N&PR after P addition, catching up with the 

initial value of 6·10
-4

 mg N·mg VSS
-1

· h
-1

.  The addition of phosphorus in the medium was the 

only difference between reactors. 

The data shown in table IV.2 demonstrates therefore a high sensitivity of the specific 

ammonium removal rate to microalgal P content: the higher the biomass P content the higher 

the specific ammonium removal rate. However, the relationship between these variables is far 

from linear: a sharp increase is observed in the specific ammonium removal rate when 

biomass P content lies between 2.2 and 2.6%. After phosphate addition, the specific 
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ammonium removal rate rose from 2.11·10
-4

 for a P content of 2.2% to 6.07·10
-4

 mg N·mg 

VSS
-1

· h
-1

 for a P content of 2.6%. When biomass P content decreased down to 2.0% due to 

microalgae growth without phosphate addition the specific ammonium removal rate decreased 

to a value close to that previously observed.  

On the other hand, the selfshading effect due to biomass growth is evidenced by the fact that 

almost no difference is observed between the ammonium uptake in the initial reactor 

(6.15·10
-4

 mg N·mg VSS
-1

· h
-1

) and the “recovered” uptake rate in N&PR (6.07·10
-4

 mg 

N·mg VSS
-1

·h
-1

) while biomass has quite a different P content (3.7% and 2.6% P, 

respectively) and thus a faster ammonium uptake rate would be expected in N&PR if 

intracellular content was to be the only influencing factor. 

Comparison between the performances of both reactors shows that, for this microalgal culture, 

below the threshold of around 2.2 – 2.6% of internal phosphorus the nitrogen uptake rate 

decreases considerably and around 1% the microalgal culture is unsuitable for ammonium 

removal applications due to the slow rate obtained. It has been demonstrated that under 

phosphorus limitation the nitrogen uptake process takes place at much slower rates. The 

obtained data also suggest that selfshading influences growth and nutrient uptake rates. 

Therefore, these two factors (available light and available intracellular phosphorus content) 

will be taken into account in the modelling step. 

The present work has confirmed, for this microalgal culture, two main consequences of 

phosphate addition to a P-starving culture: 

-Phosphorus supplementation to the medium increases the ammonium removal rate by 

increasing the amount of polyphosphate the biomass is able to accumulate. 

-The added phosphate is removed at a fast rate due to the prior starving conditions. This could 

be useful in the development of different strategies for wastewater nutrient removal and also 

shows that biomass growth can still take place with low amounts of phosphorus, as already 

reported by Wu et al. (2013a). These authors proposed a P-starvation cultivation mode to 

minimize phosphorus resource consumption. A low biomass P content might not be a 

drawback in some cases, as for instance within a biorefinery concept, where ammonium 

removal rates are of no concern, or substances of interest are not fertilizers. 
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3.1.3. Biological nutrient removal 

All conclusions drawn from this study are based on the assumption that ammonium and 

phosphate removal are solely due to microalgal uptake, as the pH control assures that neither 

free ammonia stripping nor inorganic salts precipitation takes place. Further indication that no 

inorganic precipitation occurred is the fact that the VSS percentage was always higher than 

92% of TSS.  

The algal culture studied was mainly composed of three species: Chlorococcum sp., Spirulina 

sp. and Pseudoanabena sp. A pure culture has not been used in this study as the aim of this 

work is to analyze the behavior of the culture which evolved from feeding a PBR with the 

effluent of a SAnMBR (Ruiz-Martinez et al., 2012 (Chapter III)). The results obtained might 

be applied to those cultures with similar species composition, since the results obtained in a 

microalgal culture composed of close-phylogenetic species with similar nutrient requirements 

and similar growth conditions might reveal comparable absorption patterns. However, culture 

from different microalgae clade might show different growth and ammonium removal rates. 

On the other hand, the low nitrite and nitrate concentrations measured during all the 

experiment (highest measured values were 2.2 mg NO2-N·l
-1

 and 1.7 mg NO3-N ·l
-1

) indicate 

no bacterial nitrification/denitrification activity took place. Constant soluble COD levels 

(stable around 134 mg COD·l
-1

) support this hypothesis.   

3.2. Mathematical model 

3.2.1. Proposed model 

A mathematical model focused on the kinetics of microalgal ammonium uptake was proposed 

with the aim of representing the ammonium removal process observed in the PBRs. The main 

characteristics of the proposed model are:  

-Microalgal ammonium uptake rate does not depend on phosphate concentration in the 

medium, since ammonium uptake still takes place in a phosphate depleted medium. The rate 

of this process depends on the amount of phosphate stored. The Hill function is proposed to 

simulate the influence of internal phosphorus concentration on ammonium removal rate since 

a sharp increase was observed when biomass P content exceeded 2.2%.  
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-Microalgal ammonium uptake rate depends on ammonium concentration. The Monod 

kinetics is used to simulate this dependency.  

-Biomass is assumed to have a constant composition, excluding the polyphosphate internally 

stored, which is itself a separate component in the model. 

-Phosphate uptake and thus intracellular phosphate accumulation is not considered in the 

model since this process was not experimentally studied (took place only once when P was 

supplemented) and thus experimental data is insufficient for obtaining the corresponding 

kinetic constants. It is considered that the amount of phosphate removed from the medium 

becomes intracellular polyphosphate. As previously explained, chemical precipitation is 

avoided with pH control. 

-Microalgal death is modelled using a first order kinetics: death rate depends on microalgal 

concentration. Microalgal death produces inert particulate organic material, with the same N 

and P composition as the active biomass. No solubilization processes are considered. The 

polyphosphate of the dead cells is considered to stay unavailable for further microalgal 

growth. 

-The light influence on the microalgal growth is modelled using the Steele function (IV.1), as 

suggested by Reichert et al. (2001) or Wu et al. (2013b). A weighted average light intensity, 

which takes into account the reactor’s geometry and the self-shading factor of the microalgae, 

is used. It is calculated dividing the reactor into discrete concentric sections and applying 

Lambert-Beer’s Law (IV.2) for calculating a uniform light for each section.  











ii k

I

k

I
1·exp           (IV.1) 

                           (IV.2) 

Where I is light intensity (µE·m
-2

·s
-1

), ki is the optimal light intensity (µE·m
-2

·s
-1

), a is the 

microalgal self-shading factor (m
2
·g TSS

-1
), and z (m) is the distance from the surface of the 

reactor.  

The components considered in the model are: 
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lgAX  , microalgal biomass, expressed in mg COD·l
-1

, excluding internally accumulated 

polyphosphate. 

PPX , intracellular stored polyphosphate, expressed in mg P·l
-1

. It is not included in the mass of

lgAX . 

DebX , inert particulate organic material, expressed in mg COD·l
-1

. Generated in the death 

process of microalgae, this component accumulated in the reactor during the experiment. 

4NHS , ammonium concentration in the medium, expressed in mg NH4-N·l
-1

. 

The kinetic equations proposed for microalgal growth (IV.3) and death (IV.4) are: 










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I

SK

S
Xr
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lg 1·1·exp···                    (IV.3) 

lg· AXbr                         (IV.4) 

The time evolution of all the components can be obtained from the following differential 

equations: 
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Where  iPAlg (g P·g COD
-1

) is the phosphorus content of the microalgal structure 

(constitutional P in XAlg), iNAlg (g N·g COD
-1

) is the nitrogen content of the microalgal 

structure, µ is the maximal growth rate (h
-1

), KS represents the halfsaturation constant for 

ammonium (mg N·l
-1

), kXPP represents the ratio XPP/XAlg that leads to a 50% reduction of the 

maximal growth rate (g P·g COD
-1

),  n is a constant from the Hill function, and b is the 

microalgae death rate (h
-1

). 

3.2.2. Model calibration 

Model parameters were determined using the Solver program in Microsoft ® Excel software 

2007 for minimizing the residual sum of squared errors between the two sets of experimental 

data (ammonium concentrations in N&PR and NOR) and the model predictions. 

Initial microalgae, debris, and polyphosphate concentrations are required in order to solve the 

differential equations. These values can be estimated from suspended COD and TSP 

measurements (IV.9 and IV.10) jointly with the steady-state debris balance (IV.11) applied to 

the reactor where the microalgae were cultivated in semicontinuous mode. 

                                      (IV.9) 

                                      (IV.10) 

                               (IV.11) 

where   is the cellular retention time in the semicontinuous reactor where the microalgae used 

for inoculum were cultivated. 

The corresponding boundary conditions were set in the solution procedure every time a 

reactor was spiked with ammonium. Polyphosphate concentration in N&PR was increased 

according to the observed phosphate decrease during the following 7 hours after the phosphate 

addition. The initial values for the model parameters were selected based on previous 

experience and on literature. All concentrations were calculated with a time step of 5 minutes. 

       was established at the initial nitrogen biomass composition of 9% g N·g COD
-1

 and for 

       a value of 0.1% g P·g COD
-1

 was chosen, which is necessarily below the phosphorus 
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total composition of 0.5% g P·g COD
-1

 at the end of the experiment and accounts only for 

structural phosphorus and not polyphosphate. Figures IV.3a and IV.3b show the model 

predictions for ammonium concentration and the experimental values along the experiment for 

NOR and N&PR, respectively. The obtained parameters, shown in table IV.3, accurately 

reproduce the experimental data in both reactors, as shown in figure IV.4, where predicted 

values are plotted against their analytical values with a Pearson correlation coefficient of r
 
= 

0.952 (P-value < 0.01, statistical analysis carried out using SPSS 16.1).  

Table IV.3: Obtained parameters 

Parameter Units 
Obtained 

value 

  h
-1

 0.042 

   mg N·l
-1

 12 

  - 1.35 

     mg P·mg COD
-1

 0.027 

             200 

b h
-1

 0.0005 

a m
2
·g TSS

-1
 0.03 

For further model validation, a set of data from a shorter but analogous experiment was used. 

The experiment consisted of an identical reactor where the same procedure as in N&PR was 

followed, with the difference that phosphate was added to the medium after 7 days and the 

experiment was stopped after 18 days. Moreover, phosphorus was added at a higher 

concentration of 37 mg P·l
-1

 (figure IV.5). Biomass, ammonium and phosphate were 

characterized as described in section 2.4 in this work. The parameters shown in table IV.3 

were introduced in the model to obtain the corresponding predicted values, which are shown 

in figure IV.5, and also plotted versus their analytical values in figure VI.4. The obtained 
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accuracy (r
 
= 0.97, P-value < 0.01) confirms the suitability of the model and the determined 

parameters.  

 

Figure IV.3: Time evolution of ammonium concentration in a) NOR and 

b) N&PR, along with model predictions. 

One of the most important effects of the higher concentration of added phosphate was that 

XPP/XAlg ratio reached a maximum of 4% mg P·mg TSS
-1

. The simulation shows that from 

day 12 of the experiment biomass P content stayed stable around 3% mg P·mg TSS
-1

, since 

ammonium was not available for growth. The high internal phosphorus concentration 
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achieved might be the reason why remaining phosphate in the medium was not taken up by 

the microalgae during this period, as can be seen in figure IV.5. 

 
Figure IV.4: Predicted values plotted against their corresponding analytical 

values. Empty dots correspond to this experiment for model calibration and 

full dots correspond to data from previous experiment for model validation. 

 

Figure IV.5: Time evolution of ammonium and phosphate concentrations 

in the model validation dataset, along with model predictions.  

The values obtained for   and    are comparable to those obtained by Bougaran et al. (2010). 

These authors fit ammonium uptake by Scenedesmus sp. LX1 using a Monod equation and 
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obtained values between 0.005 – 0.025 h
-1

 for   and 4.5 – 13.3 mg N·l
-1 

for   . The obtained 

value for kXPP is in complete accordance with the observations made. Literature ki values vary 

in a wide range between 20 and 500 W·m
-2

 (Broekhuizen et al., 2012 and Reichert et al., 2001, 

respectively), in which our 200 µmol·m
2
·s

-1
 would be included. The selfshading factor, a, also 

varies in a wide range in literature. Similar values to ours are used in Quinn et al. (2011) and 

Ketheesan and Nirmalakhandan (2013). The value obtained in this study for microalgae death 

rate (b = 0.002 h
-1

) compares with literature values ranging from 0.0008 h
-1

 Barbosa et al. 

(2004) to 0.0058 h
-1

 Centeno da Rosa et al. (2011). 

Table IV.4: Measured COD values. Predicted total COD, XAlg and XDeb values 

Time (d) 

Measured 

Susp COD 

(mg·l
-1

) 

Predicted 

Susp COD 

(mg·l
-1

) 

XAlg  

(g COD·l
-1

) 

XDeb 

(g COD·l
-1

) 

0 517 517 434 83 

19  

(initial reactor) 

1176 1132 535 596 

46 (NOR) 1880 1554 357 1196 

46 (N&PR) 2320 1624 412 1212 

Measured and predicted COD values are shown in table IV.4, together with predicted XAlg and 

XDeb. The predictions of the COD values for initial reactor are in very good accordance with 

measured values. For NOR and N&PR the model underestimates COD. Because of the higher 

mean analytical error in COD measurements, the model has been calibrated to minimize the 

error in the response for ammonium concentration. The parameters obtained are those which 

allow the best prediction of ammonium concentration and not of suspended COD values. On 

the other hand, the assumption of a constant microalgal N composition (set to its initial 

measured value of 9%) is a simplification of reality. With a different and/or varying 

microalgal N content, predicted COD values would have been certainly different. Including a 
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variable microalgae N content according to factors such as N stress, etc., might be the way for 

improving a model of this kind. This was, however, out of the scope of this paper. 

4. Conclusions 

Microalgal growth and ammonium removal in the absence of phosphorus were studied in two 

mixed cultures of autochthonous microalgae. The results showed that microalgal growth and 

phosphorus uptake are independent processes. It was also proved that ammonium removal rate 

depends on the amount of phosphorus internally stored. The proposed microalgal growth 

model, which includes a Monod term for the effect of ammonium concentration, the Hill 

function for the effect of the stored polyphosphate concentration and the Steele function for 

light influence, accurately reproduced the experimental data. Further research should make 

use of these results for the development of nutrient removal strategies using microalgal 

cultures.  
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Abstract 

The present work determines the effect of phosphorus content on phosphate uptake rate in a 

mixed culture of Chlorophyceae in which the genus Scenedesmus dominates. Phosphate 

uptake rate was determined in eighteen laboratory batch experiments, with samples taken from 

a progressively more P-starved culture in which a minimum P content of 0.11% (w/w) was 

achieved. The results obtained showed that the higher the internal biomass P content, the 

lower the phosphate removal rate. The highest specific phosphate removal rate was 6.5 mg 

PO4-P·g TSS
-1

·h
-1

. Microalgae with a P content around 1% (w/w) attained 10% of this highest 

removal rate, whereas those with a P content of 0.6% (w/w) presented 50% of the maximum 

removal rate. Different kinetic expressions were used to reproduce the experimental data. Best 

simulation results for the phosphate uptake process were obtained combining the Steele 

equation and the Hill function to represent the effect of light and intracellular phosphorus 

content, respectively. 
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1. Introduction 

Large amounts of phosphate are one of the causes of eutrophication in aquatic environments, 

together with other inorganic nutrients like ammonium, nitrite or nitrate. Several treatments 

for phosphate removal from wastewater can be applied, such as chemical precipitation or 

biological phosphorus removal by means of polyphosphate accumulating organisms and other 

bacteria present in activated sludge systems. However, in the last decades, the use of 

microalgae for inorganic pollutant removal has raised increasing attention. 

Microalgae are photosynthetic microorganisms which use light energy and CO2 for growth, 

and whose ability to remove inorganic nutrients from different wastewaters has been widely 

reported (De Alva et al., 2013, Gentili, 2014, Ruiz-Marin et al., 2010, Samorí et al., 2013, Van 

den Ende et al., 2014). On the other hand, microalgae are a renewable energy source, since 

they can be transformed into biogas, biodiesel, biocrude, biohydrogen and others (Razzak et 

al., 2013). Additionally, the recovery of inorganic nutrients from wastewaters in an organic 

form converts microalgae also into valuable fertilizers. The combination of these advantages 

makes microalgae an attractive option for wastewater treatment. 

Phosphorus is an essential component in microalgae: according to the Redfield ratio it 

represents the 0.87% of its dry weight (Redfield, 1958). However, in practice, microalgal P 

content varies, due to diverse mechanisms of adaptation to the medium. Reynolds (2006) 

estimated the minimum phosphorus cell quota to be around 0.2 – 0.4% of ash-free biomass, 

although some species show a minimum value which is an order of magnitude smaller. In fact, 

Wu et al. (2013) determined a minimal P content or subsistence quota of 0.016% by fitting 

real data to a growth model for Scenedesmus sp. LX1.  

Minimal intracellular phosphorus concentrations are achieved when microalgae grow under P-

starving conditions, as in the work by Markou (2012), who measured a minimum of 0.185%. 

On the other hand, when luxury phosphorus uptake takes place, microalgal P content can raise 

up to values like 3.85% as measured by Powell et al. (2009). The main phosphorus storage 

bodies in microalgae are polyphosphates, which are unbranched chains of PO4
-
 groups linked 

together by oxygen bridges. The amount of polyphosphate present in the cells depends on 
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different factors, such as the available phosphate in the medium, light or temperature (Powell 

et al., 2008).  

In the wastewater treatment field, mathematical models constitute useful tools for process and 

equipment design, WWTP construction and upgrade or water quality prediction. It is thus 

essential to have available models that describe in quantitative terms the observed microalgal 

behavior in the context of nutrient removal. 

Most models found in literature for phosphate uptake from the medium use Michaelis-Menten 

kinetics (equation V.1):  

     

  
  

     

  
 
   

 
    

       
          (V.1) 

where      (mg PO4-P·l
-1

) represents phosphate concentration in the medium and    (mg PO4-

P·l
-1

) is the halfsaturation constant for phosphate uptake. However, this model cannot 

reproduce the observed phenomenon of enhanced phosphate uptake rate due to internal 

phosphorus deficiency. Michaelis-Menten uptake kinetics is often combined with Droop 

equation for growth rate (Bougaran et al., 2010, Kwon et al., 2013): 

          
    

 
           (V.2) 

Where      (d
-1

) is the maximum specific growth rate, q (mg P·g TSS
-1

) is the internal 

microalgae P content (quota) and       (mg P·g TSS
-1

) is the minimum internal nutrient quota 

for microalgal growth. 

However, in these models the internal cell quota does not affect phosphate uptake rate. Some 

authors have developed model extensions to take into account the influence of internal 

phosphorus content in the maximum phosphate uptake rate: 

Klausmeier and Litchman (2004) defined the maximum phosphate uptake rate as a function of 

the cells internal P quota with the following term (V.3): 
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Where kinh (mg P·mg TSS
-1

) and c (dimensionless) are parameters to model the uptake 

inhibition.  

Bougaran et al. (2010) used equation V.4 for modeling the down-regulation in the uptake rate 

of an external nutrient by its own internal quota:  

     

  
  

     

  
 
   

 
      

         
          (V.4) 

where qmax (mg P·mg TSS
-1

) represents the hypothetical maximum value for P quota.  

Other authors have proposed more complex models for phosphate assimilation: John and 

Flynn (2000) included 3 phosphorus pools within the cell, and Yao et al. (2011) took into 

account surface adsorption and desorption, together with the P-pool size and P stress level. 

The measurements needed for the calibration of these models are also of increased 

complexity. 

It is the aim of this work to study the influence of the intracellular P content on the phosphate 

uptake rate from the medium and to evaluate different kinetic expressions to find the best one 

for predicting phosphate removal rates at different biomass compositions.  

To this aim, algae adapted to grow in P-sufficient medium were progressively deprived from 

phosphorus, so that the cells P content gradually decreased. Different samples from the 

resulting culture were used to seed 18 different batch experiments where phosphate was added 

and its removal rate was measured. Equations found in literature were used to fit the obtained 

data with moderately good results. A new expression was developed which improved for the 

present culture of Scenedesmus sp. the accuracy of model predictions. Light influence was 

also taken into account in all cases.  

2. Materials and methods 

2.1. Microorganisms 

Microalgae were isolated from the walls of the secondary clarifier in the “Cuenca del 

Carraixet” WWTP (Valencia, Spain) and maintained in a 7 l laboratory semicontinuous 

reactor using the effluent of a submerged anaerobic membrane bioreactor (SAnMBR, 
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described in Giménez et al., 2011) as growth medium. This effluent displays a variable N:P 

ratio and has proved to sustain algal growth (Ruiz-Martinez et al., 2012 (Chapter III)). The 

biomass in the laboratory reactor formed a stable ecosystem where the dominant microalgae 

belonged to the Chloroccocal order, of which > 99% to the Scenedesmus genus.  

2.2. Experimental setup and operation 

2.2.1. Semicontinuous reactor 

The 7 l laboratory reactor consisted of a cylindrical methacrylate tank, which was kept at a 

constant temperature of 28 ºC and under continuous illumination of 156 ± 17 µE·m
-2

·s
-1

. pH 

was regulated at 7.5 with pure CO2 injections (for a more detailed reactor description see 

Ruiz-Martinez et al., 2014 (Chapter IV)). Cellular retention time was 4 days. During the study, 

an artificial P-free medium was used for microalgae growth instead of the one described in 

section 2.1, which had been previously used for culture maintenance. Thus, the internal 

microalgae P content started to decrease, since the culture was not supplied with any 

phosphorus during the whole study, which lasted 45 days. One liter of the artificial medium 

was composed of 135 mg (NH4)2SO4, 150 mg CaCO3, 400 mg CaCl2·H2O, 400 mg 

Na2SeO3·5H2O, 350 mg MgSO4·7H2O, 54 mg (NH4)6Mo7O2·4H2O, 30 mg ZnCl2, 30 mg 

HBO3, 30 mg NiCl2·6H2O, 18 mg CuCl2·2H2O, 12 mg K2SO4, 1.2 mg FeCl3·4H2O, 1.2 mg 

CoCl2·6H2O, 0.6 mg EDTA and 0.3 mg MnCl2·4H2O.  

2.2.2.  Batch reactor 

The batch experiments were carried out in a 2 l cylindrical glass reactor equipped with 

electronic sensors in order to obtain on-line temperature and pH measurements. The reactors 

were placed inside a climatic chamber with air temperature control set to 20 ºC. Due to the 

constant illumination the temperature reached 28 ºC. The probes were connected to a 

multiparametric analyzer (CONSORT C832, Belgium), which was in turn connected to a PC 

for data monitoring and storage. Data sampling was conducted every 60 s. A fine bubble 

diffuser was mounted at the bottom of each reactor in order to mix the algal culture by 

injecting compressed air. Eight vertical fluorescent lamps (Sylvania Grolux, 18 W) 
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continuously illuminated the reactor from a distance of 8 cm from all sides. Photosynthetically 

active radiation (PAR) of 180 ± 21 E·m
-2

·s
-1 

was measured at the reactor surface.  

2.3. Batch experiments 

Different samples taken from the semicontinuous reactor were used to seed 18 batch 

experiments along the experimental period of 45 days. Each batch experiment started with the 

transfer of 1.9 l of the culture from the semicontinuous reactor into the batch reactor. 

Phosphate in the form of KH2PO4
 
was then supplied, and phosphate concentration in the 

medium was regularly measured in order to determine its uptake rate. Additionally, nitrite, 

nitrate and ammonium concentrations were also determined, as well as total suspended solids 

(TSS), volatile suspended solids (VSS) and total phosphorus concentration. The batch 

experiments lasted between 4 and 26 hours, according to the observed phosphate uptake rate. 

To avoid phosphate precipitation and free ammonia stripping, pH value in all the experiments 

was maintained around 7.5 by pure (99.9%) CO2 injection from a pressurized cylinder. 

2.4. Analytical Methods 

Nutrient removal was evaluated by measuring inorganic nitrogen and phosphate levels in the 

samples taken from the reactors. Ammonium (NH4-N), nitrite (NO2-N), nitrate (NO3-N) and 

phosphate (PO4-P) were determined according to Standard Methods (APHA, 2005) (4500-

NH3-G, 4500-NO2-B, 4500-NO3-H, and 4500-P-F respectively) in a Smartchem 200 

automatic analyzer (Westco Scientific Instruments, Westco).  

The acid peroxodisulphate digestion method (APHA, 2005) was used for total phosphorus 

(TP) measurements. The phosphorus in the algae biomass (total suspended phosphorus, TSP) 

was calculated as the difference between total phosphorus and orthophosphate concentration. 

TSS and VSS were determined according to Standard Methods (APHA, 2005). All reported 

results were obtained from the previous analyses conducted in duplicate. 
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3. Results and discussion 

3.1. Biological phosphate removal 

The pH control system was activated in all the experiments immediately after seeding, which 

means that CO2 was automatically injected whenever pH value exceeded 7.5. This pH control 

assured that neither free ammonia stripping nor inorganic salts precipitation took place. Thus, 

all conclusions drawn from this study are based on the assumption that ammonium and 

phosphate removal are solely due to biological uptake.  

Phosphate was added into each batch culture after seeding, and the first sample was taken after 

mixing (ca. 20 s). Initial phosphate values reached 18 ± 1.3 mg PO4-P·l
-1

 in all cases. Table 

V.1 shows the initial biomass P content and TSS concentration for each batch experiment.  

The initial biomass P content in the batch experiments show a general decreasing trend since 

the microalgae used in each experiment were taken from the culture in the semicontinuous 

reactor, fed with a P-free medium (table V.1). The study was prolonged until the analytical 

value for biomass P content went below 0.2%, as this is, according to Reynolds 2006, a 

general minimum P content value for cell survival. The lowest P content that the microalgae in 

the culture finally reached was 0.11%. The polyphosphate concentration in the microalgae at 

this stage was assumed to be almost nonexistent, and P content was assumed to be almost 

completely structural phosphorus.  

The initial total suspended solids in the last six batch experiments is clearly higher than in the 

others (table V.1), due to a period of 10 days (between batch experiments number 12 and 13) 

when no purge was extracted from the reactor. This procedure caused an increase in the TSS 

of the culture, which allowed the study of the phosphate uptake rate over a wider range of 

initial biomass concentration. Data from a wider range of TSS was used to take into account 

the selfshading effect of the microalgae in the kinetic expression proposed. Variable TSS 

concentration makes the available light for photosynthesis variable even at constant external 

illumination rates. 
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Table V.1: Initial %P for each batch, together with the measured initial 

biomass concentration 

Batch 

experiment 

number 

Day of 

experiment 

Initial %P (mg 

P·mg TSS
-1

) 

Initial TSS 

(mg TSS·l
-1

) 

1 1 1.47% 486 

2 2 1.25% 421 

3 3 1.04% 360 

4 7 0.90% 358 

5 8 0.95% 414 

6 9 1.29% 357 

7 11 0.36% 285 

8 14 0.51% 264 

9 15 0.53% 262 

10 17 0.76% 398 

11 18 0.53% 321 

12 19 0.26% 229 

13 29 0.49% 552 

14 30 0.57% 424 

15 34 0.30% 552 

16 35 0.26% 500 

17 41 0.18% 655 

18 45 0.11% 566 
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Figure V.1 shows the phosphate concentration evolution in the medium for the 18 batch 

experiments. It can be observed that phosphate concentrations can be fitted to a straight line in 

all cases, being the slope of this line the phosphate removal rate (mg PO4-P·l
-1

·h
-1

). It can be 

observed, for all batch experiments, that during the first hours after phosphate addition its 

uptake rate is constant.  

Since the lowest phosphate concentration reached was 8 mg P·l
-1 

(at the end of batch 

experiment 17) it can be stated that phosphate removal rate is constant for phosphate values 

between 8 and 18 mg P·l
-1

. This fact indicates that, should a Michaelis-Menten kinetics be 

applied to model the influence of phosphate concentration in the medium on phosphate uptake 

rate, the halfsaturation constant used would be in any case well below 8 mg P·l
-1

. On the other 

hand, high phosphate concentration in the medium at the end of all batch experiments 

indicates that no phosphorus limitation occurred at any point of the experiment. 

The smallest phosphate uptake rates were measured in the first batch experiments, when 

microalgae P content presented the highest values (figure V.1). The majority of literature 

values on microalgal phosphate uptake rate under balanced conditions are similar or lower 

than the values obtained for these first experiments: Dickinson et al. (2013) reported a 

phosphate uptake rate of 0.104 mg PO4-P·l
-1

·h
-1 

for Scenedesmus sp., Aravantinou et al. 

(2013) reported for Chlorococcum a value of 0.0475 mg PO4-P·l
-1

·h
-1

, and Aslan and Kapdan 

(2006) reported a value of 0.083 mg PO4-P·l
-1

·h
-1

 for Chlorella sp.  

In contrast, phosphate uptake rates for the last batch experiments (with P-starved cells) reach 

much higher values than those observed in the first batch experiments, reaching a maximum 

of 2.9 mg·l
-1

·h
-1

. This value is not far from the one obtained in a previous work (Ruiz-

Martinez et al., 2014 (Chapter IV)), where a phosphate uptake rate of 2 mg PO4-P·l·h
-1 

was 

achieved. 

 

Figure V.1: a-h) Phosphate concentration in the 

medium during the batch experiments. Initial 

values can be fitted to a straight line in all 

cases, being the slope of this line the phosphate 

removal rate (mg PO4-P·l
-1

·h
-1

).        ► 
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Therefore, the general trend is to find higher phosphate removal rates in those cultures where 

microalgae have a smaller P content, although some exceptions can be found to this 

observation. Since these exceptions are due to the different TSS concentration in the batch 

cultures and its corresponding selfshading effect, phosphate uptake rates should be compared 

using specific values (mg PO4-P·g TSS
-1

·h
-1

). To this aim, in figure V.2, the phosphate 

specific uptake rate has been represented versus the biomass P content at the beginning of 

each batch experiment.  

 

Figure V.2: Specific phosphate uptake rate of the Scenedesmus 

sp. culture plotted against their intracellular P content. Empty 

dots correspond to the batch experiments with initial P content 

below 0.40%. Suspended solids in the batch reactors were 

higher at that point (last days of experiment). 

The lower specific removal rates were observed in those batch experiments in which biomass 

presented a higher P content (figure V.2). It can be appreciated that when the culture P content 

was above 1% (w/w), the specific phosphate removal rate was less than 10% of the maximum 

removal rate achieved. The region around 0.5% P content is the concentration at which 

phosphorus cellular content reduced phosphate uptake to half of its highest value. The batch 

experiments with initial P content below 0.40% (empty dots in the graph) are an exception to 

the general tendency of faster phosphate uptake rate with smaller biomass P content. These 

batch experiments are those carried out at higher initial TSS content. Thus, the light available 

for the microorganisms in these last experiments was smaller than in the other experiments 
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due to the markedly higher suspended solids concentration, which resulted in higher 

selfshading levels. Therefore, taking the light influence into account in the modeling process 

proves to be necessary. 

 This study shows an enhancement of phosphate uptake rate (regulated by light availability) 

with decreasing biomass P content through the successive batch experiments. Since the 

phosphate concentration in the medium was the same at the beginning of all batch 

experiments, this observation suggests that not only the external phosphate level, but also the 

internal biomass phosphorus concentration that the microalgae are able to achieve influences 

the phosphate uptake rate. Therefore, the biomass P content (relatively easily known by 

analyzing its composition) proves to be an important indicator of the possible nutrient uptake 

rate for a given species. 

3.2. Biomass production and composition 

Biomass yield on phosphorus (YP, mass of generated biomass divided over the mass of 

phosphorus taken up) varied along the batch experiments. The maximum YP value (120 mg 

TSS·mg PO4-P
-1

) was measured for the batch with the higher initial P content, and very low 

YP values (2-3 mg TSS·mg PO4-P
-1

) correspond to P-starved cells (figure V.3). Actually, these 

low values account only for the absorbed phosphate mass (mg PO4) and suggest no new 

biomass formation. Low biomass production in the cases of low initial P content is explained 

directly by the lack of this essential nutrient and also by the hindered N uptake: a smaller 

initial P content reduces the nitrogen uptake velocity (Ruiz-Martinez et al., 2014 (Chapter 

IV)), that being one of the causes for eventual lower biomass formation.  

The observations of this study suggest that, when the P-stress is relieved, the microalgae first 

take up high amounts of phosphate from the medium at an increased rate, which is higher the 

greater the P deficiency is. On the other hand, the slighter the P deficiency is, the higher the 

rate at which biomass is generated.  
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Figure V.3: Dependence between biomass yield on phosphorus and 

initial polyphosphate content of the cells. 

The highest value for final biomass P content was 2.33%, which indicates that the biomass 

capacity to take up phosphate from the medium is probably not exhausted at that point. As 

reviewed in section 1 of this chapter, compositions of up to 3.85% P have been reported 

before. Therefore, it could be assumed that (through a process of luxury uptake) in a longer 

batch, final P content and final biomass concentrations could reach higher values.  

3.3. Modeling the phosphate uptake process 

The aim of this section is to establish a mathematical expression for modeling the phosphate 

uptake process by microalgae. The structure of this expression will consist of a maximum 

phosphate uptake rate multiplied by different terms (equation V.5). Each of these terms 

includes the effect of a different factor in the phosphate uptake rate: A Monod term models the 

effect of phosphate concentration, the Steele function (Steele, 1977) was chosen to model the 

light influence and a term      will be established to model the influence of the intracellular P 

content of the microalgae: 

     

  
  

     

  
 
   

 
    

       
 
 

  
       

 

  
               (V.5) 
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where  ki (µE·m
-2

·s
-1

) is the optimal light intensity and I (µE·m
-2

·s
-1

) is a weighted average 

light intensity which takes into account the reactor’s geometry and the self-shading factor of 

the microalgae. I is calculated dividing the reactor into discrete concentric sections and 

applying Lambert-Beer’s Law (equation V.6) for calculating a uniform light for each section. 

                            (V.6) 

where I0 (µE·m
-2

·s
-1

) is the incident light intensity on the reactor surface, z (m) is the distance 

from the reactor surface, TSS are expressed in mg·TSS·l
-1

 and a (m
2
·g TSS

-1
) is the 

microalgal selfshading factor, for which a value of 0.0758 was used in this study, based on 

Ketheesan and Nirmalakhandan, 2004. 

Other factors which were constant during the experiments, such as ammonium concentration, 

temperature, salinity or pH of the medium, have not been taken into account in the kinetic 

expression. 

Since phosphate concentration in the medium was the same at the beginning of each batch 

experiment, the Monod phosphate term had a constant value. On the other hand, since initial 

phosphate concentration was high (18 mg PO4-P·l
-1

) compared with usual kS values found in 

literature for Scenedesmus sp. (0.037 – 0.124 mg P·l
-1

 in Reynolds, 2006, 0.0353 mg P·l
-1 

in 

Rouzic and Bertru, 1997), the Monod phosphate term did not have any regulating effect over 

the maximum uptake rate: its value was thus close to one in all cases. This term will be 

hereafter considered as constant, and included with  
     

  
 
   

into a single parameter KMax. 

Expression (V.5) then becomes: 

     

  
      

 

  
       

 

  
        (mg P·mg TSS

-1
·h

-1
)     (V.7) 

3.3.1. Intracellular P content 

The term      is meant to reproduce the effect of the biomass intracellular P content on the 

phosphate uptake rate. Initially, two expressions found in literature and presented in section 1 

of this chapter were used to reproduce the obtained data: that of Klausmeier and Litchman, 

2004 (equation V.3), and that of Bougaran et al., 2010 (equation V.4). The combination of 
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them with equation V.6 and V.7 gives the following two expressions for modeling the 

phosphate uptake rate (equations V.8 and V.9, respectively): 

     

  
 

                    

           
 
                

  
       

                

  
     (V.8) 

and 

     

  
      

      

         
 
                

  
       

                

  
      (V.9) 

Model parameters were determined using the Solver program in Microsoft ® Excel 2007 

software for minimizing the residual sum of squared errors between the experimental data and 

the model predictions. However, some restrictions had to be applied in parameters qmax and 

qmin due to their biological significance. The values obtained for model parameters are shown 

in table V.2. Figure V.4a shows predicted phosphate uptake rates using both expressions, 

represented against intracellular P content, together with the experimental values. 

Table V.2: Obtained parameters for equations V.8 and V.9 

Units 

(m
g
 P

·m
g
 T

S
S

-1
 ·h

-1
) 

( 
E

·m
-2

·s
-1

) 

 (
m

g
 P

·m
g
 T

S
S

-1
) 

(m
g
 P

·m
g
 T

S
S

-1
) 

(m
g
 P

·m
g
 T

S
S

-1
) 

 

Parameters Kmax ki qmax  qmin kinh c 

Eq. V.8 0.01 139.4 - 0.10% 0.36% 0.00264 

Eq. V.9 0.005 29.6 1.47% 0.10% - - 

Both model predictions are also represented in figure V.4b against the experimental values. 

Statistical analysis was carried out using SPSS 16.1, which showed, for equation V.8 a 

Pearson correlation coefficient of 0.929 (P-value < 0.01) and for equation V.9 a Pearson 

correlation coefficient of 0.581 (P-value < 0.05).  
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The phosphate uptake rate prediction is therefore acceptable using equation V.8 and quite poor 

using equation V.9. On the other hand, equation V.8 makes it necessary to calibrate 4 

parameters, one more than equation V.9.  

 

Figure V.4: a) Experimental values of phosphate uptake rate together with 

model predictions, using eq. V.8 (empty squares) and eq. V.9 (full squares); 

b) Parity chart for phosphate uptake rate: rates according to eq. V.8 (empty 

squares) and eq. V.9 (full squares) versus experimental values. 
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Based on these results, and on the observation of the data obtained as represented in figure 

V.2, where a fast change in phosphate uptake rate is observed around a certain biomass P 

content (0.4 – 0.6 %), the Hill equation was proposed for modeling the influence of 

intracellular stored phosphorus on the phosphate uptake rate. The resulting full equation that 

describes phosphate uptake from the medium is therefore: 

     

  
      

    
 

    
   

   
    
  

  
                

  
       

                

  
            (V.10) 

being XPP/XAlg the intracellular stored polyphosphate, expressed in g P·g TSS
-1

, kXPP (g P·g 

TSS
-1

) the ratio of XPP/XAlg that leads to a 50% reduction of the maximal uptake rate (50% 

effect concentration) and n the regulation coefficient or Hill number. The Hill equation is of a 

similar nature to the sigmoidal functions used by John and Flynn (2000) and Flynn (2005) to 

describe internal P pools dynamics or by Yao et al. (2011) to model phosphate uptake from 

the medium. Originally used in enzymology, the Hill allosteric regulation model has 

previously shown to successfully reproduce the influence of intracellular P content on the 

ammonium uptake rate (Ruiz-Martinez et al., 2014 (Chapter IV)). De la Hoz Siegler et al. 

(2011) studied its use for N uptake, in order to reproduce his observations of growth 

uncoupled from nitrogen uptake and the consequent accumulation of intracellular nitrogen 

compounds. The Hill equation showed the best fit among the studied models. However, they 

concluded that a simpler model like Michaelis-Menten should be chosen in exchange of a 

slightly worse fit. 

In this study, the intracellular stored polyphosphate was calculated as the difference between 

the total suspended phosphorus (measured) and the P content of the microalgal structure 

(constitutional or structural phosphorus, not polyphosphate), which was considered a constant 

of the model, iPAlg (g P·g TSS
-1

). For        a value of 0.1% (0.001 g P·g TSS
-1

) was set, which 

is below the phosphorus total composition at the end of the experiment (0.0011 g P·g TSS
-1

). 

It is assumed that at the final point there is nearly no polyphosphate in the cells.  

A local sensitivity analysis of equation V.10 was performed, setting the initial parameters 

values based on previous experience and literature. Sensitivity was calculated as described in 

Marsili-Libelli et al., 2001: 
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                   (V.11) 

Where SPj is the sensitivity of parameter Pj with respect to the state variable x, which was, in 

this case, the average calculated specific phosphate uptake rate. Pjnom is the parameter nominal 

value and xnom is the model response when the nominal parameters are used. The applied 

parameter variation (   ) to obtain the test values with which to calculate    was ±20% of 

Pjnom.  

The sensitivity analysis gives information about the impact of the parameters into the response 

of the model. The results indicate that the biggest influence is exerted by parameter KMax, 

followed by kXPP and ki. Hill number, n, bears the least significance. This result is however 

dependent on the initial value of kXPP, due to the shape of the Hill function when represented 

against XPP/XAlg for different kXPP values. This function takes values close to zero or close to 

one for most of the spectrum, and values between zero and one for a narrow range of XPP/XAlg. 

How abrupt that change is depends on Hill number, n, so it is logical that the influence of this 

parameter is only detected in a local sensitivity analysis when the initial values are close to the 

point where the change takes place. Therefore, if a sensitivity analysis was performed in 

specific points of the P content spectrum (for example, only the first batch experiments, or 

only the last batch experiments), the results might be different, since the sensitivity analysis 

was performed on the average phosphate uptake calculated for all batch experiments. 

The proposed model accurately reproduces the experimental data (figures V.5a and V.5b). 

Pearson correlation coefficient (P-value < 0.01) was 0.971. These results clearly improve 

those obtained with equation V.9. The advantages with respect to equation V.8 are two: a 

better fit and one parameter less which needs to be calibrated. 

Model parameters were determined using the Solver program in Microsoft ® Excel 2007 

software for minimizing the residual sum of squared errors between the experimental data and 

the model predictions. The best fit obtained for the parameters is shown in table V.3.  

Literature ki values vary in a wide range between 20 and 500 W·m
-2

 (Broekhuizen et al., 2012 

and Reichert et al., 2001, respectively), in which the value obtained in this study of 180 

µmol·m
2
·s

-1
 would be included. Regarding kXPP, 0.5% is the value for P content around which 

phosphate uptake rate is 50% of its maximum. The value obtained for maximum phosphate 
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uptake is 8 mg P·g TSS
-1

·h
-1

, which is also in agreement with the fact that the highest obtained 

value in the experiment was 6.90 mg P·g TSS
-1

·h
-1

, being the Monod and Hill terms for that 

batch experiment almost one and the light influence term 0.85.  

 

Figure V.5: a) calculated (equation V.10) and observed phosphate uptake 

rates plotted together vs initial %P content; b) calculated phosphate 

uptake rates (equation V.10) plotted vs observed phosphate uptake rates. 
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Table V.3: Parameter sensitivity for equation V.10 and best fit obtained. 

Parameter Sensitivity Best fit value 

     (mg P·h
-1

·mg TSS
-1

) 1 0.008 

kXPP (g P·g TSS
-1

) 0.733 0.51% 

ki (µE·m
-2

·s
-1

) 0.626 180 

n 0.006 3.2 

 

4. Conclusions 

A Scenedesmus sp. culture was progressively deprived from phosphorus and, as a 

consequence, phosphate uptake rate rose. Equations found in literature reproduce the obtained 

data moderately good. A new expression was proposed, which includes a Steele term for 

modeling the light influence and the Hill equation for modeling the influence of the biomass 

phosphorus content. The presented model improved the accuracy obtained and decreased the 

number of parameters needed. It can be used for phosphate removal rate prediction based on 

the microalgal composition, and thus it represents a useful tool for designing and simulating 

wastewater treatment systems using microalgal cultures. 
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Abstract 

The effect of temperature on microalgal ammonium uptake was investigated by carrying out 

four batch experiments in which a mixed culture of microalgae, composed mainly of 

Scenedesmus sp., was cultivated under different temperatures within the usual temperature 

working range in Mediterranean climate (15 – 34 ºC). Ammonium removal rates increased 

with temperature up to 26 ºC and stabilized thereafter. Ratkowsky and Cardinal Temperatures 

models successfully reproduced the experimental data. Optimum (31.3 ºC), minimum (8.8 ºC) 

and maximum (46.1 ºC) temperatures for ammonium removal by Scenedesmus sp. under the 

studied conditions were obtained as model parameters. These temperature-related parameters 

constitute very useful information for designing and operating wastewater treatment systems 

using these microalgae. 
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1. Introduction 

Interest in microalgae has risen in the last decades due to the combination of several factors, 

three of which are highlighted here for their somewhat bigger impact on research: a) 

microalgae can be used to obtain renewable fuels such as biodiesel, biohydrogen or biogas, 

therefore contributing to reduce fossil fuel consumption b) microalgae use CO2 for their 

growth, and therefore contribute to reduce greenhouse gas emissions and c) pollutants such as 

phosphate, nitrate and ammonium can be successfully removed from wastewaters by 

microalgae, since they grow on inorganic nutrients which they take from the medium. 

Several authors have indeed proved that the use of microalgae is a valid option for wastewater 

treatment, as reviewed by Wu et al. (2014). Many efforts have also been made to study their 

growth kinetics (Aslan and Kapdan, 2006, Ruiz et al., 2013, Wu et al., 2013), or to predict 

their production of biomass or substances of interest, such as lipids or sugars (Adesanya et al., 

2014, Tevatia et al., 2012). Temperature influence on microalgal growth has also been 

modeled in various ways. Béchet et al. (2013) and Ras et al. (2013) present reviews of this 

matter. The former recommends uncoupled models (those which do not account for 

interdependence of light and temperature) and the latter insists on the important effect that 

high temperatures and microalgal adaptation to environmental conditions have on the 

functioning of outdoor production systems. 

Essentially, the Arrhenius Law (equation VI.1) has been widely used for describing 

temperature influence on microalgal growth (for instance by Geider et al.,1998 or Ketheesan 

and Nirmalakhandan, 2013), although it was originally proposed for chemical reaction rates 

and it does not describe properly the negative effect of high temperature on microbial growth.  

            
                         (VI.1) 

where Tr (ºC) is the reference temperature and θ is the Arrhenius constant.  

Ratkowsky et al. (1983) were the first to model the microbial growth rate reduction observed 

at temperatures above an optimum value (equation VI.2).  

                                                   (VI.2) 
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where b and c are parameters with no biological meaning obtained by data fitting and Tmin and 

Tmax are the minimum and maximum temperatures, respectively, at which growth rate is zero. 

Otherwise, Bernard and Rémond (2012) used the so-called cardinal temperature model with 

inflexion (CTMI) (equation VI.3) to predict the effect of temperature on microalgal growth 

using parameters which all have a biological meaning: 

       
                 

 

                                                             
              (VI.3) 

Where Tmin (ºC) is the temperature below which the growth is assumed to be zero, Tmax (ºC) is 

the temperature above which there is no growth and at temperature Topt (ºC) maximal growth 

rate µmax (d
-1

) occurs. To our knowledge, this expression has been previously used for 

microalgal growth only by this author. 

The purpose of this study is to assess the direct influence of temperature on the ammonium 

uptake rate, due to the aforementioned interest on the microalgal ability to remove pollutants 

from wastewater, and to select a mathematical equation to model the observations. To this 

aim, four reactors seeded with a mixed culture of indigenous microalgae with clear 

predominance of Scenedesmus sp. were kept at different temperatures and the microalgal 

ammonium uptake rate was measured. The models previously detailed in this section were 

used to reproduce the observed data. Temperature-related parameters for ammonium removal 

could thus be obtained.  

2. Materials and methods 

2.1. Microorganisms 

Microalgae were isolated from the walls of the secondary clarifier in the WWTP “Cuenca del 

Carraixet” (Valencia, Spain) and maintained in the laboratory in a 7 l semicontinuous reactor, 

using as growth medium the effluent of a pilot-scale submerged anaerobic membrane 

bioreactor (SAnMBR) which operates in the WWTP (Giménez et al., 2011). The SAnMBR 

treats a small fraction of the WWTP incoming wastewater, and therefore its effluent displays 

variable nutrient content of 30 – 50 mg NH4-N·l
-1 

and 4 – 7 mg PO4-P·l
-1

. This effluent had 
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previously proved to contain all necessary micronutrients to sustain algal growth (Ruiz-

Martinez et al., 2012 (Chapter III)). The biomass formed a stable ecosystem where the 

dominant microalgae belonged to the Chloroccocal order, of which > 99% to the Scenedesmus 

genus.  

2.2. Experimental setup and operation 

Four experiments were carried out in four cylindrical glass reactors with a total and working 

volume of 2 and 1.8 l, respectively. Around each reactor a coil of transparent silicon tube was 

installed for temperature control. Cooling/heating water temperatures were controlled by 

thermostatic baths (Lauda Alpha RA8). Reactors 1 to 4 were thus kept at 15 ºC, 18 ºC, 26 ºC 

and 34 ºC, respectively. Each reactor was equipped with electronic sensors in order to obtain 

on-line temperature and pH measurements. The probes were connected to a multiparametric 

analyzer (CONSORT C832, Belgium), which was in turn connected to a PC for data 

monitoring and storage. Data sampling was conducted every 60 s. A fine bubble diffuser was 

mounted at the bottom of each reactor in order to mix the algal culture by injecting 

compressed air. Pure (99.9%) CO2 from a pressurized cylinder was injected into the 

compressed air flow whenever pH rose above 7.5. This pH control avoided phosphate 

precipitation and free ammonia stripping. The reactors stood in two confronted lines of two 

reactors each. From the front of the first line and from the back of the last line, a total of eight 

vertical fluorescent lamps (Sylvania Grolux, 18 W) constantly illuminated the reactors (four 

lamps in the front and four lamps in the back). Photosynthetically active radiation (PAR) of 

180 ± 21 µE m
-2

 s
-1 

was measured at the center of the empty setup. 

At the beginning of the experiments, which were carried out in batch mode, 1300 ml of the 

SAnMBR effluent (containing 34 mg NH4-N·l
-1 

and 5.6 mg PO4-P·l
-1

) were transferred into 

each reactor. Phosphate (in the form of KH2PO4) and ammonium (in the form of (NH4)2SO4) 

were added to each reactor in order to reach the concentrations of 14 mg PO4-P·l
-1

 and 42 mg 

NH4-N·l
-1

, respectively. These values were considered high enough for avoiding N or P 

deficiency during the whole experiment. When the temperature setpoint was reached, 500 ml 

of biomass culture (taken from the semicontinuous reactor as explained in section 2.1) were 

added to each reactor. Total Suspended Solids (TSS) measured in this culture allowed us to 

calculate the initial biomass concentration resulting in each reactor, which was 115 mg TSS·l
-
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1
. The experiments lasted between 25 and 53 hours, during which ammonium and biomass 

concentrations were measured periodically. 

2.3. Analytical Methods 

Ammonium and phosphate were determined according to Standard Methods (APHA, 2005) 

(4500-NH3-G and 4500-P-F, respectively) in a Smartchem 200 automatic analyzer (Westco 

Scientific Instruments, Westco). TSS were determined at the beginning and the end of the 

experiment according to Standard Methods (APHA, 2005), and calculated during the batch 

experiments using the equation which describes their linear relationship with absorbance. 

Absorbance was measured at 750 nm by a UV-VIS spectrophotometer (Merck Spectroquant® 

Pharo 300). All reported results were obtained from the previous analyses conducted in 

duplicate. 

3. Results and Discussion 

3.1. Temperature influence on ammonium uptake 

Initial ammonium concentration was measured in each reactor immediately after microalgae 

addition, and periodically during the rest of the experiment. Time evolution of ammonium 

concentrations in the four reactors is shown in figure VI.1. It is hypothesized that initial 

ammonium concentrations are not identical in all experiments due to the time lapse (for 

temperature stabilization) between nutrient addition in the reactors and microalgae addition 

(when the pH control system was switched on). Ammonium concentrations always decreased 

at a constant rate in all the reactors: four straight lines can be observed in figure VI.1, one for 

each temperature tested. The slope of each line represents the ammonium removal rate of the 

corresponding reactor. The least-squares fitting method from Excel ® was applied to fit the 

obtained data and to calculate the slope of each trendline. 

rNH4-15ºC = 4.3 mg N·l
-1

·d
-1

     rNH4-18ºC = 6.7  mg N·l
-1

·d
-1

  

rNH4-26ºC = 15.7 mg N·l
-1

·d
-1

    rNH4-34ºC = 17 mg N·l
-1

·d
-1
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These values are in the same range or higher than those obtained by other authors. Park and 

Jin. (2010) reported an ammonium removal rate of 5 – 6 mg N·l
-1

·d
-1

 by Scenedesmus sp. from 

a piggery farm wastewater with no mention to temperature. Voltolina et al. (2005) reported an 

ammonium removal rate of 8 – 9 mg N·l
-1

·d
-1

 by Scenedesmus obliquus in artificial 

wastewater at 25.5 ºC, which is a smaller value than the one obtained in this study for a 

similar temperature. Also at 25 ºC, Kim et al. (2013) optimized nitrogen removal by 

Scenedesmus sp. by changing the wavelength of the used light, and reported a maximum 

removal rate of 15 mg N·l
-1

·d
-1

, which is similar to the value obtained in this study. 

 

Figure VI.1: Experimental data: Ammonium concentrations measured in each reactor during the 

experiment. 

Phosphate concentrations in the reactors were measured at the end of each experiment to rule 

out any possible effect of phosphorus limitation. Phosphorus limitation was discarded since 

phosphate levels in the reactors remained in all cases above 5 mg PO4-P·l
-1

. 

Regarding the variation of ammonium removal rates with temperature, a bell-shaped curved is 

expected for describing the relationship between microalgal activity and temperature, although 
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individual shapes are species dependent, and also influenced by environmental conditions 

(Ras et al., 2013). In this study, a fast (lineal) increase was observed for the first three 

temperatures evaluated: ammonium removal rate at 26 ºC was twice the value obtained at 18 

ºC.  In contrast, no substantial difference was observed between the values obtained at 26 ºC 

and at 34 ºC. 

It is undeniable that temperature is an operation parameter which, being on the one hand 

relatively easy to control, defines on the other hand the refrigerating or heating costs of the 

process, which might amount to a high fraction of the total costs and affect process 

sustainability. Taking the influence of temperature on ammonium removal rate into account 

can help optimizing the compromise between operation costs and removal efficiency. 

3.2. Mathematical models evaluation and calibration 

Using the Solver program in Microsoft ® Excel 2007 software for minimizing the residual 

sum of squared errors between the experimental data and the model predictions, experimental 

data were accurately reproduced with Ratkowsky’s expression (figure VI.2a), obtaining the 

following parameter values: 

b = 0.36  c = 0.04  Tmin = 7.1 ºC   Tmax = 47.4 ºC  

Statistical analysis was carried out using SPSS 16.1. Pearson correlation coefficient (P-value < 

0.01) was 0.998. 

The cardinal temperature model with inflexion (CTMI) adopted by Bernard and Rémond 

(2012) for microalgal growth could also accurately reproduce the experimental data of 

ammonium removal rates (figure VI.2b). Pearson coefficient (P-value < 0.01) was 0.997 and 

the following parameter values were obtained: 

rNH4max = 17.5 mg N·l
-1

·d
-1 

Tmin = 8.8 ºC  Tmax = 46.1 ºC  Topt = 31.3 ºC  

Maximum ammonium removal rate obtained is in agreement with our observations. Minimum 

and maximum temperatures are in accordance with the values obtained with Ratkowsky’s 

model, as well as optimum temperature. Although Ratkowsky’s model does not include a 
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model parameter representing the optimum temperature as such, it does predict an optimum 

temperature around 30 ºC (see figure VI.2a). 

 

Figure VI.2: Data fitted using a) Ratkowsky’s equation and b) the 

cardinal temperature model with inflexion. 

The shape of the removal rate curve versus temperature is in the case of the CTMI more 

asymmetrical, showing a faster decrease after the optimum temperature. The area under the 

curve is also smaller, since the minimum temperature is slightly higher than in the case of the 
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Ratkowsky’s equation, and the maximum temperature is slightly smaller. Nonetheless, the 

predictions obtained with both models are very similar, and both models accurately 

reproduced the experimental data. Under these circumstances, the CTMI expression was 

preferred for modeling the effect of the temperature on the ammonium removal rate of 

Scenedesmus sp. under the studied conditions, since the parameters have a biological 

significance whose meaning is straightforward to understand, thus making calibration easier 

(for instance the decision for the initial values of parameters). In contrast, parameters b and c 

in Ratkowsky’s model have no direct biological interpretation, being mathematical parameters 

defined in order to reproduce the experimental data. 

Hodaifa et al. (2010) reported an optimum temperature for Scenedesmus obliquus growth rate 

of 29.6 ºC, and Sánchez et al. (2008) reported, for Scenedesmus almeriensis, optimum growth 

temperatures of 30 – 35 ºC depending on light intensity and a maximum temperature of 48 ºC. 

These parameters are in agreement with the ones obtained in this study. 

4. Conclusions 

This work describes the effect of temperature on ammonium removal rate of the microalgae 

Scenedesmus sp. The cardinal temperature model used by Bernard and Rédmond (2012) for 

microalgal growth was successfully used to fit the data and to obtain theoretical minimum, 

maximum and optimum temperatures for ammonium removal by Scenedesmus sp. This 

information is very useful for the operation of microalgae based wastewater treatment 

systems, since removal rates are affected by temperature, which is an easy to control 

parameter while at the same time responsible for a percentage of the operation costs. 
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Abstract 

The ammonium removal rate of the microalga Scenedesmus sp. was studied under outdoor 

conditions. Microalgae were grown in a 500 l flat-plate photobioreactor and fed with the 

effluent of a Submerged Anaerobic Membrane Bioreactor (SAnNMR). Temperature ranged 

between 9.5 ºC and 32.5 ºC and maximum light intensity was 1860 µmol·m
-2

·s
-1

. A maximum 

specific ammonium removal rate of 3.71 mg NH4-N·g TSS
-1

·h
-1 

was measured (at 22.6 ºC and 

with a light intensity of 1734 µmol·m
-2

·s
-1

). A mathematical model considering the influence 

of ammonium concentration, light and temperature was validated. The model successfully 

reproduced the observed values of ammonium removal rate obtained and it is thus presented 

as a useful tool for plant operation. 
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1. Introduction 

Microalgae are photosynthetic microorganisms whose ability to eliminate inorganic nutrients 

from different kind of wastewaters is well known (Wu et al., 2014). Their application for such 

purposes has also the advantages of atmospheric CO2 fixation, less energy consumption than 

conventional wastewater treatment methods, and biomass generation, among others. 

Generated microalgal biomass can be used for biofuels obtention and as fertilizer (Brenan and 

Owende, 2010). 

Predicting the behavior of microalgal cultures is a very complex task, especially when the 

cultivation takes place outdoors, under changing environmental conditions of light and 

temperature. Nutrient levels are also variable in applications which use real wastewaters as 

growth medium. Changing conditions, together with the microalgal responses to these external 

conditions (such as selfshading, photoacclimation or changes in pigments, metabolites and 

reserve compounds) and with the physical characteristics of the photobioreactor system (such 

as geometry and agitation, which influence mass and heat transfer) should all be taken into 

account in order to obtain the best reproduction of the processes taking place in the microalgal 

culture. 

However, the higher the number of known phenomena taken into account, the higher the 

complexity of the models obtained. Thus, when a model is proposed in order to predict the 

microalgal behavior in a real wastewater treatment system, a compromise needs to be found 

between accuracy and ease of application and computation.  

The aim of this work was to propose and validate a mathematical model which accounts for 

the effect of ammonium concentration, light and temperature on the microalgal ammonium 

removal rate under full scale changing outdoor conditions. For this, the authors proposed a 

multiplicative combination of mathematical expressions which are able to accurately 

reproduce experimental data under stable laboratory conditions (Ruiz-Martinez et al., 2014; 

Ruiz-Martinez et al., 2015a; Ruiz-Martinez et al., 2015b). The suitability of these expressions 

to also reproduce the observed ammonium removal rates taking place in a bigger scale under 

outdoor conditions was therefore tested and validated, and the corresponding parameters were 

obtained. 
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2. Material and methods 

2.1. Microorganisms 

Microalgae were isolated from the walls of the secondary clarifier in the “Cuenca del 

Carraixet” WWTP (Valencia, Spain) and maintained in the laboratory in a 7 l semicontinuous 

reactor (for details see Ruiz-Martinez et al., 2014 (Chapter IV)), using as growth medium the 

effluent of a submerged anaerobic membrane bioreactor (SAnMBR) described in Giménez et 

al., 2011. The biomass formed a stable ecosystem where the dominant microalgae belonged to 

the Chloroccocal order, of which > 99% to the Scenedesmus genus. The photobioreactor 

(PBR) was seeded with this culture (10% of the PBR volume) and the effluent from the 

SAnMBR system (90% of the PBR volume). Microalgae were then allowed to grow in batch 

mode until a concentration of 600 mg TSS·l
-1

 was reached.  

2.2. Experimental setup and operation 

Microalgae cultivation was performed during 30 days in a 500 l flat-plate PBR made of 

transparent methacrylate and placed outdoors, in the “Cuenca del Carraixet” WWTP. Its 

dimensions were 125 x 200 x 25 cm (height x length x width). The 125 x 200 cm surface 

(perpendicular to the ground) was facing south in order to improve solar irradiance. The PBR 

was continuously stirred by air sparging, which allowed homogenization of the culture and 

prevented wall fouling. pH was controlled at 7.5 by adding pure (99.9%) CO2 through an 

automatic valve whenever the pH reached the maximum value established. 

The PBR was fed with the effluent from the existing SAnMBR system described in Gimémez 

et al. (2011). This SAnMBR system is fed with the pre-treated urban wastewater (screening, 

degritter, and grease removal) of the “Cuenca del Carraixet” WWTP. Influent nutrient load 

was therefore variable (46.9 ± 4.3 mg NH4-N·l
-1

 and 5.9 ± 1.3 mg PO4-P·l
-1

), depending on 

the influent to the WWTP and on the performance of the SAnMBR plant. Nitrite and nitrate 

concentration were negligible ( 0 mg·l
-1

), as expected from an anaerobic effluent.  

The SAnMBR effluent was fed daily to the PBR in a total of 5 to 10 deliveries (depending on 

the cellular retention time (CRT)), which were evenly distributed during the light hours. The 
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CRT at which the PBR was operated was varied during the operational period. It was 

established at 3 days during the first 5 days and at 5.5 days from day 6 until the end of the 

operational period. Temperature and solar irradiation varied freely at all times as a result of 

the changing environmental conditions. 

A group of on-line sensors submerged in the reactor constantly monitored the culture. They 

consisted of the following: one pH-temperature transmitter (HachLange pHD-S sc), one 

turbidity sensor to measure total suspended solids (TSS) (HachLange SOLITAX sc), one 

dissolved oxygen (DO) sensor (HachLange LDO) and one ammonium-nitrate (NH4-N and 

NO3-N) concentration sensor (HachLange AN-ISE sc). An irradiation sensor (HOBO® Smart 

Sensor, s-lia-m003), which measured only the photosynthetically active radiation (PAR), was 

located on the vertical surface of the PBR facing south. Data was continuously acquired and 

saved on a PC during the 30 days of operation, during which the PBR was fed around 200 

times. 

2.3. Analytical Methods 

Phosphate level in the PBR was determined weekly according to Standard Methods (APHA 

2005, 4500-P-F) in a Smartchem 200 automatic analyzer (Westco Scientific Instruments, 

Westco). Samples were analyzed in duplicate. 

3. Results and discussion 

3.1. Ammonium removal rates 

Figure VII.1 shows the evolution of light, temperature and ammonium concentration in the 

PBR on a sunny day when light intensity increased in the morning and decreased in the 

afternoon without important oscillations (dotted line). It was observed that temperature 

increase generally suffered a lag with respect to light intensity, so that maximum temperatures 

occurred during the last minutes of daylight (dashed line). Ammonium (filled line) started 

decreasing when light intensity increased (at sunrise), and continued to do so during the light 

hours, with the exceptions of the times when the SAnMBR effluent was added. At those 

points, ammonium concentration rapidly increased. Seven of these rapid increases can be seen 
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in figure VII.1. For each day of the experiment, a temperature-light-ammonium profile was 

obtained. Since the PBR was placed outside, these profiles were different for each day.  

 

Figure VII.1: Ammonium, temperature and light intensity during day 14 of the experiment. 

The data taken by the ammonium sensor revealed the decrease of ammonium to be linear 

between two consecutive feed deliveries. Ammonium decrease was due to microalgae activity, 

who took it up from the medium, provided the light intensity was high enough. Microalgal 

ammonium uptake rate after every SAnMBR effluent injection was thus calculated -using 

Microsoft ® Excel 2007- as a linear regression of the ammonium concentration values 

represented versus time. Data provided by the suspended solids sensor allowed calculating the 

specific ammonium uptake rate. PAR intensity and temperature were averaged (for each 

period of linear ammonium decrease between SAnMBR effluent additions) from the 

information recorded by the respective sensors. When the light oscillation was too abrupt data 

were discarded since an average value would not be representative. Thus, 183 sets of data 

were obtained, each of them consisting of four values: the measured specific ammonium 

removal rate immediately after the feed injection and the corresponding averaged ammonium 

concentration, temperature and light intensity to which the culture was subject during the 

period of linear ammonium decrease. 
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Maximum light intensity was 1860 µmol·m
-2

·s
-1

 and temperature ranged between 9.5 ºC and 

32.6 ºC. Suspended solids in the reactor were stable around 640 mg TSS·l
-1

 for the first 8 days 

and decreased afterwards to oscillate in the range of 320-480 mg TSS·l
-1

. Ammonium 

concentration ranged between 1.1 and 22.4 mg NH4-N·l
-1

. The changes in ammonium and 

biomass concentration were not only influenced by microalgal metabolism and environmental 

conditions, but also by pilot plant operation (mainly the modification in CRT). Phosphate 

levels in the PBR stayed relatively constant and above 1 mg PO4-P·l
-1

. 

 

Figure VII.2: Calculated ammonium removal rates distributed along a temperature axis. 

When the calculated ammonium removal rates are represented along a temperature axis, a 

bell-shaped distribution can be observed (figure VII.2). Since different removal rates were 

measured for the same temperature (data points situated vertically above each other along the 

whole temperature range), it is clear that other factors, such as light intensity and ammonium 

concentration, also affected the microalgal ammonium uptake rate. Maximum uptake rates 

increased with increasing temperature until reaching 22.6 ºC, where the highest removal rate 

of the whole experimental period was obtained. Maximum ammonium uptake rates for each 

temperature decreased thereafter. The high ammonium removal rates (between 2 and 3 mg 

NH4-N·g TSS
-1

·h
-1

) obtained at times when average temperature was around 10 ºC correspond 
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to high light average (> 1100 µmol·m
-2

·s
-1

). These are times around noon, when light intensity 

has increased rapidly and temperature is still low. 

The maximum ammonium uptake rate measured was 1.54 mg NH4-N·l
-1

·h
-1

, which is similar 

to the values reported by Wang and Lan (2011) (1.8 mg NH4-N·l
-1

·h
-1

 for Neochloris 

oleoabundans) or Ackerstrom et al. (2014) (1.37-1.7 mg NH4-N·l
-1

·h
-1 

for Chlorella sp.) and 

higher than the value reported by McGinn et al. (2012) (1 mg NH4-N·l
-1

·h
-1 

for Scenedesmus 

sp.). The corresponding maximum specific ammonium uptake rate was 3.71 mg NH4-N·gTSS
-

1
·h

-1
. This ammonium uptake rate corresponded to averaged ammonium concentration and 

light intensities of 7.7 mg NH4-N·l
-1 

and 1734 µmol·m
-2

·s
-1

, respectively. 

3.2. Model development 

A mathematical model was proposed to describe the influence of ammonium concentration, 

light and temperature on the ammonium removal rate observed in the PBR. Influence of 

intracellular phosphorus content was not taken into account, since the level of phosphate in the 

medium stayed above 1 mg PO4-P·l
-1

 during the whole duration of the study, and it was thus 

possible to assume that microalgae intracellular phosphorus concentration was relatively 

constant. This simplifies the effort and the time required to obtain the model input. 

As previously proposed and validated for a laboratory scale microalgae culture (Ruiz-

Martínez et al., 2014 (Chapter IV)), the influence of ammonium concentration in the medium 

was represented using Monod kinetics (eq. VII.1), light influence was modeled by Steele 

equation (eq. VII.2) and temperature was modeled using the Cardinal Temperatures Model 

with inflexion (eq. VII.3) proposed by Bernard and Rémond (2012) for microalgae and 

previously used by the authors for modeling a laboratory scale microalgal system (Ruiz-

Martinez et al., 2015b (Chapter VI)): 

    

       
                    (VII.1) 

 

  
       

 

  
                    (VII.2) 

                 
 

                                                             
              (VII.3) 
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where SNH4 (mg N·l
-1

) represents ammonium concentration in the medium and kS (mg N·l
-1

) is 

the semisaturation constant for ammonium. I (µE·m
-2

·s
-1

) is light intensity and ki (µE·m
-2

·s
-1

) 

is the optimal light intensity. Tmin (ºC) is the temperature below which the growth is assumed 

to be zero, Tmax (ºC) is the temperature above which there is no growth and at temperature Topt 

(ºC) maximal growth rate occurs. 

Thus, the expression used to predict microalgal specific ammonium removal rate was a 

combination of the above explained equations (eq. VII.4): 

            
    

       

 

  
      

 

  
 

                 
 

                                                             
  

          (VII.4) 

where rspNmax represents the maximum specific nitrogen uptake rate (mg N·h
-1

·mg TSS
-1

). I 

was calculated as an average light intensity, taking into account the reactor’s geometry and 

Lambert-Beer’s Law (eq. VII.5) for representing the selfshading effect of the biomass: 

                                    (VII.5) 

where I0 (µE·m
-2

·s
-1

) is incident light intensity, a (m
2
·gTSS

-1
) is the microalgal self-shading 

factor, and z (m) is the distance from the surface of the reactor. As in previous studies (Ruiz-

Martinez et al., 2015a (Chapter V)) a microalgal self-shading factor of 0.0758 m
2
·g TSS

-1
 was 

used. 

3.3. Model calibration 

The 183 sets of data obtained allowed calibration of the proposed model, using the Solver 

program in Microsoft ® Excel 2007 software for minimizing the residual sum of squared 

errors between the experimental data and the model predictions. The initial values for the 

model parameters were selected based on previous results (Ruiz-Martinez et al., 2014) and on 

the obtained experimental data (figure VII.2). The values obtained for the model parameters 

(Table VII.1) accurately reproduced the experimental data (figure VII.3). Statistical analysis 

was carried out using SPSS 16.1, which showed a Pearson correlation coefficient of 0.876 (P-

value < 0.01). 
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Table VII.1: parameters obtained during model calibration 

Parameter Units Obtained value 

rspNmax (mg N· g TSS
-1

·h
-1

) 4.7 

   mg N·l
-1

 2.5 

             477 

Tmin ºC 2 

Tmax ºC 32 

Topt ºC 20.5 

 

The obtained maximum specific ammonium removal rate, rspNmax= 4.7 mg N· g TSS
-1

·h
-1

, is in 

accordance with the maximum ammonium uptake rate measured in the experiment (25% 

higher). A value of 2.5 mg N· l
-1

 for parameter kS implies a high affinity of the microalgae for 

ammonium, which is reasonable for the given growth conditions.  ki presents a higher value 

than the parameters obtained in our previous laboratory scale studies (180 and 200 µE·m
2
·s

-1
 

according to Ruiz-Martinez et al., 2014 and Ruiz-Martinez et al., 2015b, respectively), 

possibly since in the outdoor pilot plant the microalgal culture is adapted to higher light 

intensities, and thus the optimal intensity for the present culture is higher than for the 

microalgae which have grown under lower light intensities in the laboratory experiments of 

the cited works. According to Richmond (1986), species cultivated under outdoor conditions 

should be able to tolerate light variations and should have a high light saturation constant. 

While the minimum temperature obtained in the present study is comparable to that one 

previously found in the laboratory (8.8 ºC in Ruiz-Martinez et al., 2015b (Chapter VI)), the 

optimum and maximum temperatures obtained in the present experiment are sensibly smaller. 

This discrepancy is possible due to the very different conditions in which microalgae are 

growing in the PBR outdoors and in the laboratory. Xin et al. (2011) actually reported an 
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optimal temperature of 20 ºC for Scenedesmus sp. biomass production, which is in agreement 

with the result obtained in this study. 

 

Figure VII.3: Parity plot comparing model predictions with observed ammonium 

uptake rates, using model parameters as indicated in table VII.1. 

It can therefore be assumed that the mathematical expressions which reproduce data obtained 

in the laboratory can also be combined and used to predict the behavior of microalgae 

cultivated under outdoor conditions, which constitutes a useful tool for plant design and 

operation. It has been proved that the model proposed is easy to implement, since calculations 

are not complex and model input can be continuously obtained with the sensors that monitor 

the basic culture parameters 

4. Conclusions 

The present work proposed a mathematical model which represents microalgal ammonium 

removal rate taking into account the ammonium concentration in the medium, light and 

temperature. Influences of these parameters were represented with functions which had 

previously been validated for laboratory scale cultures: a Monod kinetics term, the Steele 

function and the cardinal temperatures model, respectively. The combination of these terms 
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successfully reproduced the experimental data, therefore validating its suitability for use at full 

scale and under changing outdoor conditions as well. However, since the microalgal culture 

was adapted to different conditions, different model parameters were obtained. 
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Abstract 

The behavior of three different microalgal cultures, when exposed for a long period (> 48 h) to 

dark conditions, was studied with a methodology based on respirometry. The cultures were 

transferred to darkness and the oxygen evolution in the reactors was monitored after 

successive air injections. Several sequential oxygen uptake rates were thus calculated and a 

respiration constant, assuming a first order decay of a fraction of the biomass, was obtained by 

calibration. Initial specific oxygen uptake rates were in the range of 0.9-5.1 mg O2·g TSS
-1

·h
-1

 

and dark respiration constants in the range of 0.005-0.018 h
-1

. 
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1. Introduction 

Interest in microalgae has risen in the last decade due to the potential these microorganisms 

have on fighting climate change (Kumar et al., 2011), producing renewable biofuels (Parmar 

et al., 2011) and removing pollutants from wastewater (Rawat and Kumar, 2010).  

Predicting the behavior of microalgal cultures is a very complex task, especially when outdoor 

conditions (variable light and temperature) and operational conditions (light attenuation, 

photobioreactor dimensions, hydrodynamics, etc.) should be taken into account. However, the 

wider the knowledge about microalgal behavior and the ability to predict it, the easier it will 

be to optimize their cultivation and to fully develop their potential.  

Different approaches have been taken to model algal growth. Many models were developed in 

order to represent the behavior of microalgae in rivers and lakes (Buzzelli et al., 2014; 

Reichert et al., 2001; Muylaert et al., 2005). Other models have been developed in order to 

predict metabolites production (lipids, carbohydrates, substances of interest, etc.) (Adesanya et 

al., 2014; Mairet et al., 2011; Packer et al., 2011). Some authors have also taken into account 

physical phenomena such as variable light and temperature, mixing, or gas transfer. (García-

Camacho et al., 2012; Pegallapati and Nirmalakhandan, 2012; Vunjak-Novakovic et al., 

2005). 

When microalgae are cultivated in closed photobioreactors, microalgal biomass density 

increases and, due to selfshading, a fraction of the culture cannot receive the amount of light 

required for photosynthesis. This fact makes it necessary to take respiration losses into 

account, since they will be the dominant metabolic activity in the dark regions. This will also 

be the case for the whole culture during dark periods (nights) and inside dark plant elements. 

In these cases, microalgal growth in the reactor will cease and therefore biomass loss will take 

place. Under optimal conditions, respiration rates are about 20-30 % of growth rates, but the 

ratio of respiration to growth increases under suboptimal conditions (Geider and Osborne, 

1989). Several authors report respiration losses of 2-10% of biomass in outdoor cultivation 

systems (Kethesaan and Nirmalakhandan, 2013), although losses of up to 35% of the biomass 

have been reported during nighttime (Vonshak, 1987, for Spirulina). 



Nutrient removal from an anaerobic membrane bioreactor effluent using microalgae. Study and modeling of the process 

 

144 
 

When modeling microalgal growth there is usually a hidden term in the “net” growth rate 

which accounts for some dark respiration losses. Indeed, a fraction of respiration losses is 

proportional to microalgal growth. This fraction corresponds to the cost of biosynthesis: ion 

uptake, transformation of ions into intermediates, synthesis of cell structural and functional 

metabolites, etc. The other term which contributes to respiration losses is the maintenance 

metabolic costs (also called basal respiration: motility, volume regulation, turnover of 

macromolecules). These costs are, by definition, independent of growth and proportional to 

biomass (Geider et al., 1998). 

Knowing the rate of microalgal respiration in the dark is important for microalgal growth 

modeling under outdoor conditions, since biomass production and net carbon balance are 

affected by day/night cycles and by the volume fraction of the photoreactors which is in the 

dark (Bernard, 2011). This affects the economic and environmental balance of the system. 

Moreover, gaining knowledge on the behavior of microalgae under prolonged exposure to 

dark will help designing other wastewater treatment systems with opaque modules such as 

those for microalgae storage, filtration, etc. 

The aim of this work was to study the behavior of different microalgal cultures during 

prolonged exposure to darkness (>48 h). To our knowledge, no such long exposures have been 

previously studied. Based on dissolved oxygen measurements (respirometry), a methodology 

was developed to obtain the associated respiration rate. A comparison of the behavior of the 

cultures and a possible explanation for the differences among them is also given 

2. Materials and methods 

2.1. Microorganisms 

Three different types of microalgae cultures were studied. Microalgae had previously been 

isolated from the walls of the secondary clarifier in the “Cuenca del Carraixet” WWTP 

(Valencia, Spain) and maintained as a mixed autochthonous culture in the laboratory in 7 l 

semicontinuous reactors (for a more detailed explanation of the reactors setup see Ruiz-

Martinez et al., 2014 (Chapter IV)). The effluent of a submerged anaerobic membrane 

bioreactor (SAnMBR, described in Giménez et al., 2011) was used as growth medium.  
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The cultures used in the experiments were the following: 

- Dark kept culture (DC): this culture was stored in a dark fridge (8 ºC) for 15 days 

previous to the respirometric study. The culture was allowed to increase temperature 

until reaching 20ºC during 12 hours prior to the respirometry. It consisted of a mixed 

culture of microalgae dominated by the class Chlorophyceae. 

- Nutrient limited culture (LC): this culture was the accumulated purge of a 

semicontinuous reactor kept under laboratory conditions as explained above. The 

purge was accumulated in a translucent container with no agitation nor CO2 addition. 

pH did not increase higher than 8. The respirometric study started 48 h after nutrient 

depletion, a total of 96 h after being purged from the reactor. The microalgae present 

were Chlorophyceae, of which >99% from the Chlorococcales order. 

- Replete culture (RC): this culture was directly taken from a running semicontinuous 

reactor and placed under dark conditions immediately. The microalgae present were 

Chlorophyceae, of which >90% from the Chlorococcales order. 

2.2. Experimental setup and operation 

The experiments were carried out in three photobioreactors (PBRs). Each PBR consisted of a 

cylindrical, transparent methacrylate tank (20 cm internal diameter) with total and working 

volumes of 10 and 7 l, respectively. The PBRs were (not hermetically) sealed and they were 

kept in the dark in a climatic chamber with a temperature set point of 20 ºC. A pH probe 

connected to a multiparametric analyzer (CONSORT C832, Belgium) recorded the pH in the 

reactors, which ranged in all cases between 7 and 8.4.  

Under the above mentioned conditions photosynthesis could not take place and only 

respiration (oxygen consumption for maintenance) occurred. Dissolved oxygen concentration 

(DO) was measured using a Cellox 325 electrode (WTW, Germany) connected to an oximeter 

(Oxi 320, SET WTW, Germany). The measured dissolved oxygen values were logged in a PC 

using data acquisition software. Ambient air was injected at a flow rate of 0.8 – 1.0 l·min
-1

 

through four fine bubble diffusers mounted at the bottom whenever DO concentration was 

below 1 mg O2·l
-1

 until it reached again a concentration of 6 mg O2·l
-1

. The experiments were 
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programmed to last 50 h. However, in view of the results (see section 3) in the case of LC it 

was prolonged until 200 h and in the case of RC until 600 h. 

2.3. Analytical  methods 

Ammonium and phosphate were determined according to Standard Methods (APHA, 2005) 

(4500-NH3-G and 4500-P-F, respectively) in a Smartchem 200 automatic analyzer (Westco 

Scientific Instruments, Westco). Total suspended solids (TSS) were determined according to 

Standard Methods (APHA, 2005). All analyses were conducted in duplicate. 

3. Results and discussion 

3.1. Dissolved Oxygen Measurements and Respiration Rates 

The time evolution of dissolved oxygen concentrations was obtained for the three experiments 

(figures VIII.1a, b and c). Due to microalgal consumption in the dark, oxygen concentration 

decreased linearly after each air addition until it reached 1 mg O2·l
-1

 and the aeration was 

switched on again. Successive Oxygen Uptake Rates (OUR, mg O2·l
-1

·h
-1

) were calculated as 

linear regressions (R
2
 > 0.95 for all) of these decreasing stretches (figure VIII.1a). Due to the 

aeration, the DO concentration increased up to 6 mg O2·l
-1

, and then the blower was switched 

off. A significant decrease was observed in most cases immediately afterwards (first 10 

minutes). This corresponded to the re-establishing of the equilibrium and had been previously 

observed in blank reactors with only tap water (data not shown).  

Successive OURs became smaller with time, which means that endogenous respiration 

declined in all cases. This showed that, due to the adverse environmental conditions (darkness, 

absence of nutrients) and the consumption of microalgal reserves, the metabolic activity 

decreased. The calculated OURs (mg O2·l
-1

·h
-1

) during each experiment are represented in 

figure VIII.2 versus time. It can be appreciated that the OUR values did not decrease linearly 

with time. Instead, they decreased exponentially, approaching a stable value in the long term 

(hence the prolonged experiment time for LC and RC). 

Figure VIII.1: Dissolved Oxygen concentration during 

the experiments. DC (a), LC (b) and RC (c).        ► 
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Figure VIII.2: OURs (mg O2·l
-1

·h
-1

) measured over time in DC, LC and RC systems 

At the beginning of the experiments, the OURs were 0.75 mg O2·l
-1

·h
-1

for DC and RC, and 1 

mg O2·l
-1

·h
-1

 for LC. These values are however not directly comparable, due to the different 

TSS in the cultures. For comparison, TSS were measured in each reactor at t = 0 of each 

experiment, allowing the calculation of the specific respiration rate. Results are shown in table 

VIII.1: specific respiration rate was highest for LC and similar values were obtained for DC 

and RC. 

Table VIII.1: Initial specific respiration rates and obtained respiration constants for 

the three cultures 

 

Dark 

Culture 

Limited 

Culture 

Replete 

culture 

Initial TSS (mg TSS·l
-1

) 588 206 833 

Initial dark respiration rate 

(mg O2·g TSS
-1

·h
-1

) 

1.3 5.1 0.9 

kr (h
-1

) 0.018 0.014 0.005 
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Respiration rates depend on the physiological state of the culture (growth state, age of the 

culture) and environmental conditions (nutrients, cell content, light intensity, temperature) 

(Geider, 1989). For instance, Grobbelaar and Soeder (1985) reported lower respiration rates 

after growth at optimal temperature than at other temperatures, and after growth under weaker 

illumination than under stronger irradiations. Ogbonna and Tanaka (1996) also found that 

microalgae with higher cell carbohydrate content showed higher biomass loss during the 

night. 

The values obtained in this study are in accordance with the range obtained by Grobbelar and 

Soeder (1985). The lowest value corresponded to RC, the replete or “healthiest” culture, 

whereas the highest value corresponded to LC, the culture which was subject to nutrient stress 

and higher light (lower biomass concentration and therefore less selfshading results in higher 

light). A similar value was obtained for DC, the culture which, although it had been exposed 

to very dim light, was in the worst state regarding nutrient levels at the beginning of the 

respirometry.  

Oxygen consumption of the microalgal cultures during the first hours after dark exposure (for 

instance, 12 hours of darkness in outdoor nights) can be estimated from the results of this 

study. Assuming that there is no microalgal growth during a long dark period, the COD 

balance indicates that the oxygen consumption rate is equal to the biomass COD loss. 

Therefore, the culture RC would present the smaller night COD loss: 11 mg COD·g TSS
-1

, the 

culture DC would present a loss of 16 mg COD·g TSS
-1

, and cultures under nutrient limiting 

conditions would loose around 61 mg COD·g TSS
-1

, which could represent between 3 and 4% 

of the biomass. 

The resistance stage in which the culture entered allowed the microalgae to keep their 

photosynthetic capacity until the end of the respirometric experiment: a rapid increase in 

dissolved oxygen was observed when the light was switched on at the end of the three 

experiments (data not shown). This described survival strategy is in accordance with previous 

observations (Myers and Cramer, 1947; Geider et al., 1998) although not such long exposures 

to dark had been reported up to date.  
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3.2. Data fit and calibration 

During endogenous respiration, microalgae catabolize accumulated metabolites, usually 

carbohydrates (Geider and Osborne, 1989, Ogbonna and Tanaka, 1996). Due to the observed 

OURs (figure VIII.2), and in agreement with literature (Buehner et al., 2009), in this study an 

exponential decay of biomass was assumed: 

  

  
                         (VIII.1) 

where x represents the biomass, expressed in mg COD·l
-1

 and kr (h
-1

) is the respiration 

constant.  

And since biomass decay equals the oxygen consumption rate: 

  

  
       

   

  
                  (VIII.2) 

The combination and integration of equations VIII.1 and VIII.2 renders:  

           
 
   
  
 
 

 
   
  
 
 

                  (VIII.3) 

which enabled the reproduction of the obtained data (figures VIII.3a, b and c) and determine 

with a good fit (R
2 

> 0.9 in all cases) the respiration constant kr for each culture (table VIII.1). 

An ANOVA analysis (carried out using SPSS 16.1) of the three sets of data represented in 

figures VIII.3a, b and c confirmed the difference (P-value < 0.05) among the cultures. 

The obtained kr values were, as expected, different for each culture. Other authors have 

determined smaller (0.006 h
-1

 for Nannochloropsis by Hueseman et al., 2013, 0.0004 h
-1

 for 

Chlorella by Decostere et al., 2013), similar (0.015 h
-1

 for Nannochloropsis and Scenedesmus 

by Pegallapati and Nirmalakhandan, 2012) and higher (Sciandra, 1985 obtained a range of 

0.006 – 0.03 h
-1

 for Phaeodactylum) respiration constants. 
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Fig VIII.3: Data fit to equation VIII.3 for DC (a), LC (b) and RC (c). 
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A higher respiration rate (DC) means a faster decrease in the OUR values consecutively 

measured, and a lower respiration rate achieved after a set amount of time. A smaller 

respiration rate (RC) means a more stable value of the consecutive OURs measured, which 

become smaller with time but at a much slower speed.  

4. Conclusions 

In this study specific dark respiration rates were obtained for three different microalgal 

cultures by measuring dissolved oxygen evolution after being transferred to darkness. The 

smallest specific respiration rate (0.9 mg O2·g TSS
-1

·h
-1

) was obtained for a fresh and nutrient 

replete Chlorophyceae culture, whereas the highest specific respiration rate (5.1 mg O2·g TSS
-

1
·h

-1
) corresponded to a nutrient limited culture previously grown under continuous 

illumination. The methodology used proved useful for the calibration of an exponential decay 

equation and obtention of the respiration constants for each case, which ranged from 0.005 h
-1

 

to 0.018 h
-1

. The accuracy of current basic models which otherwise do not take respiration into 

account could be improved by including this decay equation and determining the 

corresponding respiration constant. 
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Summary and general discussion 

Anaerobic membrane bioreactors present a number of advantages when compared with 

aerobic treatments, such as less sludge production, lower energy demand and biogas 

generation. A pilot-scale AnMBR treating municipal wastewater has been evaluated with 

promising COD removal rates, but ammonium and phosphate are still present in the effluent at 

concentrations unsuitable for discharge. In this thesis the removal of these inorganic nutrients 

by means of microalgae cultivation was studied.  

First of all, microalgae were isolated from a local wastewater treatment plant and a 

polyculture was established under laboratory conditions. The ability of an autochthonous 

microalgae consortium to grow on the AnMBR effluent was thus demonstrated. The 

effluent was not diluted, supplemented nor sterilized. The nutrient levels of the growth 

medium were therefore oscillating daily, depending on the pilot plant performance. The most 

abundant groups present in the autochthonous polyculture were Chlorophyceae and 

Cyanobacteria.  

Chapters II and III represent the proof of concept that this mixed culture is capable of 

satisfactory nutrient removal from the SAnMBR effluent: 

In Chapter II, a semi-batch cultivation mode was maintained, testing cellular retention times 

from 2 to 4 days. Maximum ammonium and phosphate removal rates in the wastewater were 

obtained with a CRT of 4 d (46 mg NH4-N·l
-1

·d
-1

 and 7.4 mg PO4-P·l
-1

·d
-1

), whereas the 

highest eliminations per reactor volume were achieved under a CRT of 2 d. Continuous light 

and light-dark cycles were applied, showing that the continuously illuminated cultures were 

able to achieve very low nutrient levels, and that deprivation of light had stronger 

influence on biomass growth than on nutrient removal. The results obtained in this first 

study suggest that further analysis is necessary to determine the optimal combination of CRT 

and light cycles in each case, since several factors such as wastewater flow, water quality, 

biomass generation and reactor or illumination costs must be taken into consideration.  

In Chapter III, the stability of the proposed system for nutrient removal of the SAnMBR 

effluent was further tested: a semicontinuous reactor for microalgal culture was set up and 
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operated for 42 days. A CRT of 2d and continuous illumination were chosen in order to 

optimize reactor volume and biomass production, respectively. Ammonium and phosphate 

levels in the culture fluctuated, as expected, according to the wastewater load entering the 

reactor, while on average 39 mg NH4-N·l
-1

·d
-1

 and 7.3 mg PO4-P·l
-1

·d
-1 

were removed. 

These removal rates were higher than those previously obtained in Chapter II under the same 

CRT and light conditions, probably due to improvements in reactor operation and control and 

because of the adjustment of the biomass population to the medium. It was demonstrated that 

excellent water quality can be obtained with a stable system load. Results also showed that 

phosphorus is the limiting nutrient in the anaerobic effluent to be treated, since it was 

almost completely removed. 

Along the first experiments conducted, a clear decrease in Cyanobacteria was observed while 

the Chlorophyceae cell count increased by an order of magnitude. This consistently repeated 

thereafter, and thus the naturally obtained polyculture evolved into cultures where the 

species Scenedesmus sp. or Chlorococcum sp. clearly dominated, possibly depending on the 

specific culture conditions, which were, in the laboratory, different from their natural habitat. 

These prevalent strains were able to proliferate more efficiently in the culture, the composition 

of which therefore naturally changed towards a monoculture (see Appendix). In other words: 

the wastewater effluent to be treated was used to feed a mixed microalgal culture and by doing 

so the strain composition of the culture adjusted to the new conditions. This adjustment 

gave the security that the species finally present were the best performers, in the given 

conditions, amongst the different species originally present. This mechanism confers great 

robustness to the system proposed and makes its industrial application for wastewater 

treatment a realistic option. It is indeed known that native strains from local environments 

perform better outdoors than selected strains from culture collections (Challagulla et al., 

2015), and a naturally occurring strain selection points at the best candidates on each occasion. 

Since phosphorus had demonstrated to be the limiting nutrient in the anaerobic effluent, two 

experiments were designed to study the influence of prolonged phosphorus limitation in the 

culture. These studies confirmed the influence of intracellular phosphorus content both in 

ammonium and phosphate removal. They are presented in Chapters IV and V.  
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Chapter IV demonstrated that ammonium and phosphate uptake are two independent 

processes, since ammonium removal still took place in a P-free medium. However, P-

starving progressively decelerated ammonium uptake (from 0.6 to 0.09 mg N·mg VSS
-1

·h
-

1
). Analogously, an increase in the intracellular P content of the biomass, through P 

supplementation in the medium, enhanced the ammonium removal rate and brought it to initial 

values. The nitrogen uptake rate in the studied Chlorococcum sp. culture decreased 

considerably below the threshold of around 2.2 – 2.6 % (w/w) of internal phosphorus, whereas 

around a content of 1% (w/w) the microalgal culture was unsuitable for ammonium removal 

applications due to the slow rate obtained. The internal state of the microalgae with regard to 

phosphorus content was therefore established as an important parameter to determine 

ammonium removal. A mathematical model based on the Hill function was proposed to 

reproduce this influence. The model, which also contemplated the effect of light and of 

ammonium concentration, was calibrated and validated. 

The influence of light was demonstrated to be an important addition to the proposed model, 

even under the studied conditions of constant artificial illumination. The reason for this lies in 

the selfshading effect of the biomass. In every culture, the effective light intensity inside the 

reactor (and away from its surface) decreases exponentially due to light attenuation and 

according to the Lambert-Beer law. If biomass concentration increases, the light attenuation 

effect becomes stronger, and this in turn makes microalgal growth decrease. Constant 

illumination does not mean, therefore, constant effective light at the disposal of the 

microorganisms, nor constant growth, even if every other environmental condition remains 

unchanged. For that reason, light influence on microalgal growth needs to be taken into 

account (for which the Steele function was proposed in chapters IV, V and VII of this thesis), 

whereas available light intensity needs to be calculated considering the microalgal biomass 

concentration (making use of the Lambert-Beer law).  

Chapter V determined the effect of phosphorus cellular content on the phosphate uptake rate, 

confirming that a P-starved culture takes up phosphate faster than a P-replete one. A 

minimum P content of 0.11% (w/w) was achieved, and the highest specific phosphate removal 

rate measured was 6.5 mg PO4-P·g TSS
-1

·h
-1

. Microalgae with a cellular P content of 0.6% 

(w/w) presented 50% of the maximum removal rate. The lowest phosphate uptake rate 

measured was 0.28 mg PO4-P·g TSS
-1

·h
-1

, although it was noteworthy that values of 
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microalgal phosphate removal rates found in literature were in the same range (Dickinson et 

al., 2013, Aravantinou et al., 2013). This might be because studies of phosphate elimination 

with microalgae are normally done under nutrient sufficient conditions and not under P-

limited conditions. Obtained experimental data were best reproduced by a combination of the 

Steele equation (to represent the effect of light) and the Hill function (to represent the 

influence of intracellular phosphorus). The model was again calibrated and the corresponding 

parameters for Scenedesmus sp. obtained.  

Further research related to cellular P content should aim at understanding how P starving 

affects cell composition, since measured P content has proved to –under certain 

circumstances– become very low, while still a minimum amount of phosphorus is known to be 

vital for some components of the microalgal cells (such as ATP, DNA or NADPH). 

Theoretical calculations of minimum cellular P requirements for such components could be 

then connected and compared to measured values in practice, which would help understanding 

the microalgal metabolism under P starving conditions. 

After light, temperature is the most important factor for microalgae culturing. Since the 

Steele equation had already been successfully used to reproduce light influence on the 

microalgal ammonium and phosphate removal rates (Chapters IV and V), an experiment was 

designed in order to determine the temperature influence and to select an equation which 

accurately describes it. This experiment is presented in Chapter VI. The Ratkowsky equation 

and the Cardinal Temperatures Model were able to successfully reproduce the experimental 

data, including the ammonium uptake rate decrease at temperatures higher than the optimum 

temperature. Since exceeding maximum temperatures could result in the total loss of the 

culture, this information is of vital importance for outdoor cultivation of microalgae –where 

there is often no strict temperature control. Both models rendered similar maximum, optimum 

and minimum temperatures for a Scenedesmus sp. culture (46 ºC, 31 ºC and 9 ºC, 

respectively). The Cardinal Temperatures Model was preferred since its use is more intuitive, 

given the biological significance of all its parameters. This model was applied in the work 

presented in Chapter VII. 

Given that the final purpose of this thesis is the treatment of an existing wastewater from an 

existing anaerobic MBR, scaling up the proposed cultivation system implies not only 
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increasing the reactor volume but also working under varying outdoor conditions. The 

evolution of a microalgal culture under changing light intensities and temperatures increases 

in complexity, and therefore the control of a photobioreactor under such circumstances. Still, 

in Chapter VII the equations previously selected for reproducing light and temperature 

influence on ammonium removal under constant light and temperature were tested. A 

Scenedesmus sp. culture was grown in a 500 l flat-plate photobioreactor placed outdoors, 

situated downstream of the SAnMBR pilot plant and fed with its effluent in a semicontinuous 

mode. Ammonium removal rate was monitored for 30 days, and measured ammonium 

removal rates were sensibly higher than those observed under laboratory conditions. The 

suggested model (a multiplicative model composed of Steele, CTM and Monod equations) 

was able to reproduce the experimental data, although the accuracy decreased when compared 

to the results obtained previously in the laboratory. Taking into account the simplifications 

assumed and the ease of its application (only ammonium concentration, light intensity and 

temperature need to be measured), a slight accuracy loss can be considered an acceptable 

compromise. It can therefore be concluded that the proposed model is suitable for predicting 

ammonium removal rates under outdoor conditions.  

The experiment presented in Chapter VII also demonstrated that re-calibration of the model 

is necessary before it can be used under different environmental conditions, and/or for 

different microalgae species or consortia, since some parameters obtained in Chapter VII 

differed from those previously obtained in Chapters IV, V and VI. Those parameters were the 

optimal light intensity and minimum, optimum and maximum temperatures. Optimal light 

intensity was –not surprisingly– higher for the microalgae cultivated outdoors, since the 

culture was in that case subject to higher light intensities. Minimum, maximum and optimum 

temperatures were higher for the culture grown under laboratory conditions (Chapter VI), 

possibly since the Scenedesmus sp. strains for which higher temperatures are more favorable 

to growth survived and dominated the culture in that case. Since the usual temperatures 

outdoors were lower (Chapter VII), it is assumed that the Scenedesmus sp. strains for which 

lower temperatures are more favorable to growth dominated, in that case, after some 

cultivating time. This connects with the previously discussed theory that strain composition 

adjustment renders a culture of best performers. The ammonium semisaturation constant was 
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smaller in the culture grown under outdoor conditions, showing that the affinity of those 

microalgae for ammonium was higher.  

Light intensity in outdoor experiments was higher than the intensity provided by artificial 

illumination in the laboratory. Therefore, higher ammonium removal rates were observed and 

higher biomass concentrations, at least during daytime, could be attained. In this case, a larger 

fraction of the photobioreactor could become a dark area, where respiration losses are more 

significant than photosynthesis. Regardless of this, a culture grown under outdoor conditions 

is subjected to day/night cycles, and therefore a non-trivial biomass loss takes place during 

nighttime. For these reasons, a study was conducted to calculate the microalgal (dark) 

respiration constant by means of a methodology based on respirometry. A first order decay 

of a fraction of the biomass was assumed, and different respiration constants were obtained for 

different cultures. The results of this study –which allow calculations of biomass loss in dark 

areas of the reactor, in dark equipment units and during nighttime–, are shown in Chapter 

VIII. The study of a basic selection of processes taking place in microalgal cultivation for 

nutrient removal was thus completed. 

The research conducted in this thesis validates the theory that a wild microalgal culture is 

able to grow in an anaerobic effluent containing mainly ammonium and phosphate. The 

growth is maintained based solely on this effluent, while removal of an important fraction of 

the nutrients takes place. Natural adjustment of the strains that compose the total population 

takes place, and the mixed culture becomes practically a monoculture of the best suited 

species for enduring the prevailing conditions. The system is a promising and robust option 

for wastewater treatment, since excellent water quality has been obtained under laboratory 

conditions. However, future research should still aim at achieving lower nitrogen and 

phosphorus concentrations, so that legal discharge limits are fully met. A successful scale-up 

is predicted, since no dilution nor sterilization seem to be needed for the endurance of the 

culture. Problems with invading species are not expected, given that the culture is the result of 

the combination of autochthonous microalgae present in the environment with the waste 

effluent used as growth medium. On the other hand, PBRs like the one presented in Chapter 

VII can be installed in parallel configuration, although important factors have to be taken into 

consideration, such as available light regime, seasonal variations and space use. 
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On the other hand, this thesis presents valid equations for reproduction of the observed 

phenomena. The influence of internal parameters (intracellular P content) and external 

conditions (light and temperature) on phosphate and ammonium removal can be predicted 

using the developed models. This facilitates the mathematical simulation of the system, so that 

future research can be conducted in the direction of developing new strategies for optimizing 

nutrient removal and biomass production. 

Some possible strategies include, for instance, phosphate addition for improving ammonium 

removal rates when intracellular phosphate content is too low. Phosphate can be obtained from 

other points of the WWTP, such as the centrate from sludge digestion (after nitrogen recovery, 

which could take place via ammonia stripping), thus avoiding the need of artificial fertilizers. 

Whether this is a viable option or not, can be elucidated with help of the work here presented. 

Artificial illumination could also be considered under certain circumstances and in spite of 

the related cost. For this, a cost-productivity balance can be made with help from the models 

developed and experience acquired. In the same sense, artificial shading of the culture to 

prevent cell damage during specific parts of the day when light intensity is too high would be 

a strategy evaluated by modeling results.  

In order to test any possible strategy, the combination of all equations developed in this thesis 

in a general model, and the implementation of this model in a simulation program would be a 

major progress. Future research should include a photobioreactor unit –where the processes 

here described are represented– in the simulation program DESASS (Design and Simulation 

of Activated Sludge Systems). Recalibration of the general model, if necessary, and its 

validation with real data from outdoor operation would confer significant value to the 

simulation tool.  

On the other hand, separation of the cellular and hydraulic retention times is also 

considered essential for increasing the biomass concentration in the photobioreactor and the 

treatment capacity of the system. For this, a microfiltration membrane unit has been installed 

in the microalgal cultivation pilot plant described in Chapter VII, which in turn provides a 

high quality effluent (free of particles). Future research in this area will determine the best 

practice regarding retention times and filtration operation, in order to obtain, with an optimal 

energetic consumption, a treated effluent which can be discharged in the environment.  
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Future works could also be developed in the field of model-based bioprocess control, which 

is currently a research field with great potential. Indeed, a proper instrumentation and control 

system is required for pilot plant operation. In some cases it is possible to apply modeling 

techniques to the information provided by the installed sensors in order to develop a control 

system.  

Lastly, it is of outmost importance to find the best application for the generated microalgal 

biomass in order to recover nutrients and energy. The necessary experiments need to be 

carried out in order to evaluate the potential of the microalgal biomass as fertilizer and for 

biogas generation. The proposed energy recovery system is anaerobic digestion, which would 

take place after microalgal concentration and render a nutrient-rich digestate which can be 

used as fertilizer. Future efforts will be directed to the successful and complete integration 

of the SAnMBR, the microalgal PBR and the microalgal anaerobic digester for an effective 

COD and nutrients removal of urban wastewater and maximum biogas generation. Further use 

of the proposed system for other wastewater streams in different WWTP will also be 

possible, the final goal being the technology transfer so that it can be applied in a full scale 

WWTP. 
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The aim of this thesis was to study the nutrient recovery process from an anaerobic membrane 

bioreactor effluent by using a microalgal culture and to obtain the main kinetic expressions 

governing the process. From the work presented, the following conclusions can be drawn: 

Microalgae cultivation in the effluent of an anaerobic membrane bioreactor 

1. A mixed culture of autochthonous microalgae were isolated from the environment and 

successfully cultivated using as growth medium the effluent of an anaerobic membrane 

bioreactor, without dilution nor sterilization. 

2. The microalgal culture performed satisfactory nutrient removal in both batch and 

semicontinuous systems, demonstrating that, under the appropriate circumstances, an 

excellent water quality can be obtained. 

3. It was demonstrated that the combination of a SAnMBR for organic matter removal 

with a microalgal culture for nutrient removal is an effective option for urban 

wastewater treatment. 

4. The originally mixed culture, composed mainly of Cyanobacteria and Chlorophyceae, 

naturally evolved into a monoculture of Scenedesmus sp. when cultivated in the 

anaerobic effluent. In a P deficient medium, the culture was dominated by microalgae 

from the Chlorococcum genus.  

5. The wastewater N:P ratio was higher than the ratio consumed by microalgae. 

Therefore, phosphorus showed to be the limiting nutrient in the cultures. 

Ammonium removal in the absence of phosphorus. Effect of phosphorus 

supplementation and process modeling 

6. Ammonium removal took place in a P-free medium, thus demonstrating that 

ammonium removal is a process independent from phosphate uptake. 

7. Ammonium removal rate became slower with smaller microalgal cellular phosphorus, 

and recovered to initial values after phosphate addition to the medium and its rapid 

uptake. 

8. The influence of internal phosphorus content in the microalgal ammonium uptake rate 

can be successfully modeled with the Hill function. The Hill function was combined 

with a Monod function to reproduce the effect of ammonium concentration in the 
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medium and the Steele function to represent the influence of light. The corresponding 

parameters were obtained by model calibration. 

Effect of intracellular P content on phosphate removal and process 

modeling. 

9. Phosphate uptake rates increase with decreasing intracellular phosphorus content of the 

biomass.  

10. The effect of internal phosphorus content on the phosphate uptake rate can be 

successfully modeled with the Hill function. The Hill function was combined with a 

Steele function to represent the influence of light. The corresponding parameters were 

obtained by model calibration. 

Effect of temperature on ammonium removal. 

11. The effect of temperature on the ammonium removal rate by Scenedesmus sp. can be 

successfully reproduced both by the Cardinal Temperature Model and Ratkowsky 

equation.  

12. The optimum temperature under laboratory conditions, obtained by calibration, was 31 

ºC. Minimum and maximum temperatures were 9 and 46 ºC, respectively. 

Modeling light and temperature influence on ammonium removal under 

outdoor conditions 

13. The equations used to reproduce the light and temperature influence on ammonium 

removal under constant laboratory conditions (Steele and Cardinal Temperature 

models) are also suitable for modeling an outdoor culture grown under changing 

conditions, albeit in a less accurate manner. 

14. Since a microalgal culture grown under outdoor conditions is adapted to different 

conditions than in the laboratory, different model parameters are obtained during 

model calibration. This is especially true for the optimum, minimum and maximum 

temperatures (lower) and the optimal light intensity (higher). 
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Prolonged dark exposure. Respiration rate modeling 

15. A respiration constant from an exponential decay equation, which is useful for biomass 

loss prediction, can be calculated with the methodology proposed. This methodology is 

based on successive oxygen uptake rate measurements. 
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Appendix 

 

Diagram of culture chronology 
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The following simplified flow diagram (figure A.1) reflects the overall history of the 

autochthonous microalgal cultures used in this thesis: from isolation from the environment 

into laboratory first experiments (Chapters II and III) and subsequent cultivation in auxiliary 

8L cylindrical PBRs. The needed volumes of microalgal culture were taken from these 

auxiliary PBRs and studied in the different setups corresponding to Chapters IV to VIII.  

Conditions in the auxiliary PBRs were: 

pH = 7.5  T = 25-28ºC I = 150-200 µE·m
-2

·s
-1

 TRC = 2 – 4 d 

Identification of microalgae communities was carried out based on their morphology (cell 

shapes, flagella or other cell extensions, size and shape of the chloroplasts and their red or 

orange autofluorescence) (Tomas, 1997), which was analyzed using optical microscopy (Leica 

DM2500) in all cases and cryo-scanning electron microscopy (SEM) in Chapter IV.   

References 

Tomas, C.R. (1997) Identifying marine phytoplankton. Academic Press, San Diego.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A.1: Diagram of culture chronology      ► 
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