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Abstract

In this paper we study the problem of locating a new station on an existing
rail corridor and a new junction on an existing road network, and connecting
them with a new road segment under a budget constraint. We consider three
objective functions and the corresponding optimization problems, which are
modeled by means of mixed integer non-linear programs. For small instances,
the models can be solved directly by a standard solver. For large instances, an
enumerative algorithm based on a discretization of the problem is proposed.
Computational experiments show that the latter approach yields high quality
solutions within short computing times.

Keywords: Station location, road-rail network design, infrastructure
planning, non-linear programming.

1. Introduction

Railway systems offer many advantages with respect to other transporta-
tion modes. Among others they provide safety, speed, stable travel times,
and non-dependency on petrol. For these and other reasons, large invest-
ments have recently been devoted to the construction or improvement of
railway networks. When designing such networks it is not sufficient to take
connectivity and efficiency issues into account, but one must also consider
competition and interconnectivity with other transportation modes.

Preprint submitted to TRB May 6, 2014



1.1. Laiterature review

The literature of optimal location of stations on a railway network dates
back to the beginning of the 20" century (see Vuchic and Newell [16] for a
review). The problems considered in the early papers dealt with the determi-
nation of the optimal interstation spacing by minimizing the total travel time
of the passengers commuting to the city center along a railway line. Several
papers have since been devoted to this problem, and a variety of criteria have
been considered.

Starting with passenger travel time criteria, we mention Vuchic and Newell
[16], who examine the problem of determining a number of stations and the
interstations spacings to minimize the total travel time. The model is lim-
ited to the people commuting to the central part of the city and takes into
account several realistic aspects such as access speed, dwell times, kinemat-
ics of trains, modal competition and passenger population along the line.
These authors solved the problem through a set of second order difference
equations.

A related criterion is the maximization of travel time reduction when in-
troducing new stations. This problem was shown to be NP-hard by Hamacher
et al. [4] when the travel time includes both accessing and in-vehicle time.
A similar problem regarding a high-speed line was treated by Repolho et al.
[10]. These authors present a mixed-integer program which is applied to
the location of stations on several corridors of a planned high-speed line in
Portugal, which competes with other transportation modes.

The minimization of the additional travel time induced by the stops of
the trains at the new stations while covering all the demand sites has been
studied by Schébel [11] and Schobel et al. [13] in the context of urban public
transport. The problem was proven to be NP-hard. The same problem has
been studied in Carrizosa et al. [1], but considering this time the kinematics
of the trains between stops.

Since constructing stations is costly and such decisions are strategic due
to their permanent character, one of the most commonly used criteria in real
situations is to maximize coverage. This problem was studied in a paper by
Laporte et al. [7] where stations for a rapid transit line with lower and upper
bounds on the interstations spacings are located on a predefined alignment.
To solve this problem for a finite candidate set, the authors made use of a
graph representation and applied a longest path algorithm. The continuous

version of this problem, where the number of new stations is fixed, was
shown to be NP-hard by Kranakis et al. [6]. Schébel [12] considered the
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biciteria problem of maximizing coverage while minimizing the number of
new stations. This problem was solved in quadratic time for the particular
case of a polygonal line with an additional assumption.

The maximization of ridership, which is a more realistic criterion, was
introduced by Vuchic [14] and further studied by Laporte et al. [8]. The
context of the problem dealt with by Vuchic is similar to that of Vuchic
and Newell [16], while in Laporte et al. [8] a bounded-length line and their
stations are simultaneously located. Korner et al. [5] used the same criterion
for the location of two new stations on segments and on tree-like networks in a
mixed planar network environment. The authors have provided a polynomial
time algorithm. Gross et al. [3] have dealt with the maximum accessibility
problem where a fixed number of stations is to be located and the sum of
distances to demand points is to be minimized. The problem was shown to be
NP-hard for two different environments: in a plane and on a street network.
Finally, the problem of minimizing the cost of constructing the new stations
or the simpler one of minimizing the number of stations, while covering all
sites was proved to be NP-hard by Hamacher et al. [4].

1.2. Linking stations to the road network

Building train stations relatively far from city centers and linking these
stations to the road network is becoming a trend in certain high-speed rail-
way networks for several reasons. At a macroscopic engineering level, the
main reason for constructing intermediate stations away from city centers is
because this allows high-speed lines to have a smoother shape, also allow-
ing higher speed between the end cities of the line (these end cities usually
provide a larger traffic than intermediate stations). Cost minimization is a
common reason since avoiding city centers often means building fewer sta-
tions, and bringing railway lines into city centers tends to be expensive.
Another reason is political: when two nearby cities want a railway station,
it is often politically expedient to build one half-way between them in order
to avoid favoring one city at the expense of the other. As case in point, 30%
of the stations of the Spanish high-speed railway network are now located
outside cities. As an example, the Camp de Tarragona station on the Madrid-
Barcelona line lies 12 km from Tarragona, the nearest large city with more
than 100000 inhabitants, (see Figure 1). In such cases it becomes desirable
or even necessary to build new links between the road network and the out-
of-town station. Another example is the case of new stations in commuter
systems. Line 5 of the commuter system of Seville (Spain) was established
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Camp de Tarragona
Madrid i ll Barcelona

[ ]
Tarragona

Figure 1: The Madrid-Barcelona line (solid line). The Camp de Tarragona station is 12
km away from the nearest large city, Tarragona. A road link (dotted line) joins these two
points.

by partially using a regional railway. One of the stations of this line is the
Valencina-Santiponce station which needed a new link to be connected with
the road connecting both towns.

Some of the earlier station location models (see for instance Hamacher
et al. [4], Laporte et al. [7], Schobel [12]) did not take into account competi-
tion with other transportation modes, whereas some others did, like Vuchic
[14] and more recently Repolho et al. [10]. Kérner et al. [5] introduced and
solved a station-location problem consisting of locating two stations on an
existing tree-like railway network. The problem presented in this paper also
considers static modal competition but differs from that introduced in Korner
et al. [5] because we allow connections with any point of the road network,
not just with a node.

The remainder of the paper is structured as follows. In Section 2 we in-
troduce the input data for our problem. Section 3 details the variables and
constraints needed to build the presented mixed integer non-linear program-
ming models. In Section 4, an iterative process to solve the model in Section
3 and a heuristic procedure are introduced, which are tested and compared
with each other in Section 5 via a computational experience. In Section 6
we illustrate our procedures on a realistic instance. Conclusions follow in
Section 7.

2. Formal description of the problem

Our problem takes as input data a road-rail connected network composed
of both road and rail links, as well as cities, train stations and junctions.
Formally, we consider an undirected road-rail network G = (RUT, EgrU Er),



where R U T is the node set and Er U Er is the edge set. The set R is a
set of cities and junctions without a train station, 7" is the set of cities and
junctions with a train station, E'g is the set of road links joining the nodes of
R among themselves or one node of R with one node of T', and Er is the set
of rail links joining the nodes of 7. As an example consider Figure 2, where
the set R is represented by circles, the set T is represented by squares, the
edges of Er are represented by dotted lines, and the edges in Er by solid
lines.

...’...
't'........}:..........::.
il .ﬁ... i. .-

Figure 2: Input data to the problem. A set of cities (filled circles) and a set of train
stations (filled squares) are joined by rail tracks (solid edges). Cities are linked among
themselves and with the stations by means of road links (dotted edges).

The aim is to build a new station on the rail network and a new junction
on the road network, and to build a road link between the new stations and
the new junctions, as shown in Figure 3. To illustrate the problem, consider

L] ° .’. . L]
't'........}:..........::.
.... .... .... . ° ./ p. .... ....
i e s

Figure 3: A possible solution to the problem depicted in Figure 2. The empty square
represents the new station and the empty circle represents the new junction to be connected
with the new station, by means of a new road link represented by dashed lines.

the following example.

Example 2.1. There are three cities n',n% n?, a rail line between cities n

and n?, and a road network made up of edges (n*,n?) and (n*,n3). All these
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elements form a road-rail network (see Figure 4a). The aim is to build a
station at node n* on the rail line between cities n* and n®, a junction n®
on the road network, and a link between this junction and the new station
so that a certain objective function is optimized and a budget constraint is
satisfied. One possible solution to this example is shown in Figure 4b.

a) Existing network. b) Network with an added road-rail link.

Figure 4: Figure 4a shows the existing road-rail network. In Figure 4b, the new station is
located at n*, the new junction is located at n® on the road edge (n?,n?), and the dashed
edge represents the new road edge between the new station and the new junction. Note
that (n!,n?) is the only edge remaining from the original network in Figure 4a, the other
five are new (they are obtained after adding the new station and the junction).

The problem will be modeled by means of the following notation:

e We are given two train stations 7' = {n',n*} C R2 a set of cities
and junctions R = {n? ..,n* !} C R? one rail link joining the two
stations in 7" (set Er), and a set of road links joining elements of R
or one element of 7" with one element of R (set Er). We assume that
all road and rail edges are linear. Let G = (RUT, Ex U Er) be the
resulting undirected road-rail network. In the example of Figure 4a,
R={n*},T = {n',n?}, Er = {(n',n?), (n?* n*)}, Er = {(n',n?®)}. For
the sake of simplicity, we identify the nodes of R UT by their indices
whenever this creates no confusion, and we denote the edge connecting
n® and n’ by (7, 7) although their elements are not ordered. We assume
that n! is located at (0,0) and n* is located at (b,0), b > 0. Let (n%, nd)
be the coordinates of node n® € RUT.

e In order to compute traffic flows, we will need the set of (directed) arcs
associated with the edges in Fr and Er. Let A(ER) and A(E7) denote

6



these arc sets. Note that Fr = {(i,7) € A(ERg) :i < j}, Er ={(i,j) €
A(Er) : 1 < j}. In the rest of the paper we will use the same notation,
so if E is a set of (undirected) edges, we let A(E) denote its associated
set of (directed) arcs.

e With each arc (i, j) € A(Er)UA(Er) we associate a travel time ¢;;. We
assume that the travel time on an arc is proportional to its Euclidean
length. We also assume that the train is faster than the road mode.
That is, if d;; denotes the Euclidean length of arc (4, j), then t;; = a;d;;
if (Z,j) € A(ER) and tij = Oégdij if (Z,j) € A(ET), with a1 > oy > 0.
The reader may note that when adding a new junction on the road
network the number of interactions among cars flowing in different
directions goes up, which increases the probability of congestion. In
order to take into account this extra congestion in the road network, we
will consider that if the new station is linked with road edge (7, j) € Fg,
then t;; = ad;; + v, where 1 > 0 is a congestion parameter.

e We are given a set of origin/destination (O/D) pairs W C (RUT) x
(RUT). For each (p,q) € W, g,, denotes the number of potential trips
of this O/D pair, and ufc]OAD denotes the traveling time using the road
network only.

e We assume that if passengers travel from n' to n* (or from n* to n')
using the train during their trip, they will incur a stop time [ at the
new station.

e The construction costs of the new station and of the new junction are
assumed to be equal to ¢; and cs, respectively. The construction cost
of the road edge linking the new station and the junction is assumed to
be equal to 7 times its Euclidean length. A construction budget equal
to Chax 18 available.

The problem consists of choosing a location for the new station x on Er at
node k + 1, a location for a new junction y on E at node k + 2, and building
a road segment linking nodes k£ 4+ 1 and k£ + 2, so that a certain objective
function is optimized, without violating the budget constraint.

Note that if the new junction y is located on edge (i*, j*) € Eg, the road-
rail network then has two new nodes (the new station k + 1 and the new
junction k + 2), two new rail edges ((1,k + 1), (k,k + 1)) instead of (1, k),



two new road edges (i*, k + 2), (5%, k + 2) instead of (*,j*), and another
new road edge which is the connection between the new station and the new
junction (k + 1,k + 2). Thus, the set of edges in the new road-rail network,
denoted by E« j«), is

The new road-rail network we will work with is therefore
(RUT U{n"" n* 2} Ege o).

For example, in Figure 4b, road edge (2, 3) does not exist and is replaced with
(2,5) and (3,5); rail edge (1,3) does not exist and is replaced with (1,4) and
(3,4); and there is also a new road edge (4,5). Therefore, the new node set
is RUT U{n* n°}, and the new edge set is

E(2,3) = {(17 2)’ (17 4)’ (27 5)’ (37 4)’ (37 5)’ (47 5)}

The reader may note that both the locations of the two new nodes and the
lengths of the five new edges are variables.

3. Mathematical models

In this section we will model our problem assuming the new junction
is located on a predefined road link by means of mixed integer non-linear
programming (MINLP) formulations. We will consider three different ob-
jectives, namely minimizing the total travel time, maximizing the number
of travelers who will use the rail corridor (ridership), and maximizing the
number of users who are positively affected by the construction of the new
station (winners). We will therefore end up with three different mathematical
programming models, one for each objective. Note that although the second
and third objectives are different, they both maximize functions estimating
the expected number of passenger trips (not necessarily leading to the same
solutions). According to Vuchic [15] (page 186), maximizing passenger at-
traction is the most appropriate objective to consider when planning transit
systems.



3.1. Variables

Assuming that the new junction is to be located on edge (i*,5*) € Fg,
we first have to update t;«;» = a;d;«;« +1 so that the extra congestion due to
the inclusion of the new junction and link to the road network is considered
in the model. In order to build the mathematical programming program, we
need the following variables:

1.

7.

x1 € [0,b] is the first coordinate of the location of the new station,
located between the two already existing stations located in (0,0) and
(b,0). Actually, in realistic settings the domain of this variable is re-
duced in order to avoid locating the new station too close to the existing
ones. Moreover, there are possibly forbidden regions for locating the
stations (for example tunnels). Note that here we assume that the rail
corridor is a straight line segment.

A € [0, 1] determines the convex combination of the endnodes of edge
(1*,7%) € Egr where the new junction on the road network is to be
located. Note that here we assume that the road network is composed
of straight edges.

The variables y; and ys denote the first and second coordinates of the
location of the new junction that will be linked with the new station.
The continuous variables d;; define the travel times of the new arcs.
The binary variable f/ indicates whether or not O/D pair (p,q) € W
uses arc (i, j) € A(E- ;).

. The binary variable v,, indicates whether or not O/D pair (p, ¢) incurs

a stop time at the new station.
Uy, is the travel time associated with O/D pair (p, q).

Some of these variables are now explicitly defined:

Pq

yi = Anj + (1= A)nf
Y2 = Ank + (1= Mnj,
Oiv kb2 = (L — A)tinjn, Ojx o = Ajrje,
51,k+1 = QaT1, 5k,k+1 = 062(5 - xl),

Oks1k42 = Q1 \/(1131 —y1)2+ (0 —y2)?,
0ij = 0ji, V (i,7) € A(E(-j+) \ ER) 11> ],

= Z i fh + Z 0ij fij + Bupg, ¥ (p,q) € W.

(6,5) EA(ER\(*,5%)) (1,5)€A(E % j%)\ER)



Note that the definition of w,, contains the quadratic terms {;; Z-q which

can easily be linearized. Unfortunately, the non-linearity in the definition of
Ok+1 k+2 cannot be removed, which makes our model non-linear.

3.2. The constraints

The following constraints are common to all three models:

c1+ ¢y + T\/(l’l - y1)2 + (O - y2)2 S Cmaz (1)
Y. =0 (paew (2)

i:(4,p) EA(E (3 j+))

Yoo =1 (g eWw (3)

7 (P:J)EA(E (i j*))

> =1 g eWw (4)

Z‘Z(i,q)EA(E(i*’j*))

oo =0, (pgEeW (5)

3:(@:9)EA(E* j+))

> i — > =0, (p,q) €W, re (RUT)\ {p,q}

i:(6,r) EA(E (= j*)) J:(r, ) EA(E i+ %))
(6)
ﬁﬂ + flfgrl,k + flf,%wrl + flfil,k —1< vy, (pg) EW (7)
x1 € 10,b], A € [0,1], ;"}q,qu € {0,1}. (8)

Constraint (1) ensures that the cost of building the new station ¢; plus the
cost of building the new junction ¢y plus the cost of building the new road
link does not exceed the available budget. Constraints (2) to (6) are flow
conservation constraints on the f variables. Note that, even if more than
one of the binary f variables can take the value 1, these constraints ensure
that f = 1 if and only if arc (4, j) belongs to the path used by O/D pair
(p,q). Constraints (7) imply that v,, = 1 if two rail arcs are used by the
O/D pair (p,q), meaning that this O/D pair will incur a stop time at the
new station nf+1,

3.3. Objectives

The three considered objectives can be formulated as follows:
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1. Minimizing the total travel time of the road-rail network:

minimize zppr = Z pglpgs 9)
(p.g)eW

Minimizing (9) subject to constraints (1) to (7) yields model TTT (j« =
(locating station-junction on (i*, j*) minimizing the total travel time).
2. Maximizing ridership, i.e., the number of travelers who will use the rail
corridor. This number will be estimated by a logit function, that is, we
assume that the proportion of travelers in (p,q) who will use the rail

corridor is given by

1
ROAD _ _
w(um qu) 1+ ’}/16772(U§QOAD7UP‘1) )

where 71,72 > 0 are two parameters to be calibrated depending on the

instance. Note that, if ufc]OAD — Uy, is sufficiently large, then w(ufijOAD —
Upq) tends to one. Conversely, if uf?4P —,, is sufficiently small, then

Y(ufO4P —u,,) tends to zero. The reader may note that ¢ is monotone

increasing. Therefore, in this case the objective is

1
1+ 716772(u§qOAD*”pq) ’

(10)

maximize zrip = Z Ipq
()W
Unfortunately, this function is neither convex nor concave, which makes
the problem difficult to solve. Maximizing (10) subject to constraints
(1) to (7) yields model RID;- ;«) (locating station-junction on (i*, j*)
maximizing ridership).

3. Maximizing the number of users who are positively affected by the
construction of the new station and the new road link (winners). An
O/D pair (p,q) is considered a winner if uy, < u*4P. To this end, we
define the following set of variables:

e s,, = 1 if the travel time for O/D pair (p,q) is shorter using the
rail corridor than using the road network only, and zero otherwise.

These binary variables were used in Laporte et al. [9] to estimate the
number of trips attracted by a rail network. The objective is modeled
as follows:
maximize zy iy 1= Z IpgSpq- (11)
(p.g)eW
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Note that in this case we have to add the following constraints in order
to ensure that variables s,, are zero whenever the travel times using
the rail corridor are greater than or equal to the travel times without
using this corridor:

Upg — uzquOAD +e < (1—=5y), (p,q) €W, (12)
where ¢ is a small positive number ensuring that if u,, = uﬁqOAD then
Spg = 0. Maximizing (11) subject to (12) and constraints (1) to (7)
yields model WIN ;- j«y (locating station-junction on (¢*, j*) maximiz-
ing the number of winners).

4. Algorithms

We now present two algorithms for the problem. The first one makes
use of a MINLP solver (Section 4.1). Since the problem is non-linear and
non-convex, global optimality is not guaranteed. The second one (Section
4.2) uses a discretization strategy which is exact if the feasible solution set
is discrete.

4.1. Mathematical programming-based algorithm

Once we have defined the MINLP models that optimally locate a new
station on the rail corridor and a junction on a given edge (i*, j*) € Eg, it
is easy to allow the junction to be located on any edge in Eg (or a subset
of it). To this end, we only have to solve the previous models for each such
edge. A pseudocode of the algorithm to minimize the total travel time (called
TTT, locating station-junction minimizing the total travel time) is given in
Algorithm 1. The algorithms used to maximize ridership or maximize number
of winners are analogous.

4.2. Enumerative algorithm

In this section we propose an iterative process based on an enumeration
of the feasible locations for both the new station and the new junction, which
will be tested one at a time. Let Z and g be the (known) locations of the new
station and the junction. In this case, the computation of any of the three
objectives (zrrr, zZrrp, 2win) is straightforward since it reduces to comput-
ing shortest paths between O/D pairs in the resulting road-rail network. We
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Data: A road-rail network with two train stations.
Set 2jpp =00 ;
for (i,j) € Er do
Set tij = Oéldij + w
Solve TT'T'(; jy by means of a MINLP solver.
Let (47 y(@7) be the resulting optimal locations for the new
station and the new junction, and let zprr (i, j) be the total travel
time of the corresponding network;
if ZTTT(Z.aj) < Z;’TT then
‘ (:E*> y*) = (x(i7j)> y(id))? Z;’TT - ZTTT(i>j)
end
Set tij = Oéldij.
end
Result: Locations for the new station and the junction, (z*,y*),
yielding a locally minimal total travel time 27.,.

Algorithm 1: Local optimal algorithm for the location of a new station on
the rail corridor and a junction on the road network minimizing the total
travel time.

now detail the enumerative algorithm to solve the station-junction location
problem minimizing the total travel time. The enumerative algorithms for
the other two objectives are analogous.

Denote by F* the discrete set of possible locations for the new station,
and by FY(i,j) the set of possible locations for the new junction on edge
(1,7) € Eg. For (z,9) € F* x FY(i, j), let zrrr(Z,y) be the total travel time
of the network after adding a new station at Z, a new junction at ¢, and a
road edge between the two. A pseudocode of the enumerative algorithm when
the objective is to minimize the total travel time is provided in Algorithm 2.

5. Computational results

All computational experiments were run on a desktop PC, 3.20 GHz pro-
cessor, 4MB of RAM Memory, on Windows 7 64 bits, and the software was

GAMS 22.9. The MINLP solver was LINDOglobal which, in all instances,
would stop processing when the relative gap was lower than 5%. We be-
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Data: A road-rail network with two train stations.
Set 2jpp = 00;
for (i,j) € Er do
Set tij = Oéldij + w
Set ZTTT(’i,j) = 0
for feasible T € F* and y € FY(i,j) do
Compute zrpr(Z,y) of the corresponding network;
if ZTTT(fE', g) < ZTTT(iyj) then
| @, §%9) = (2,9), 2rrr (i, §) = 2rrr(7,7)
end
end
lf ZTTT(Z.aj
| @.7)
end
Set tij = Oéldij.
end
Result: Locations for the new station and the new junction (z*,3*)
yielding a total travel time equal to 27..

) < 24 then
= (209, 409)), 2 = 2ppp(4, 7)

Algorithm 2: Enumerative algorithm for the station-junction location
problem minimizing the total travel time.

gin in Section 5.1 by showing how the random instances were generated.
We then provide in Section 5.2 a comparison between the three mathemat-
ical programming based algorithms presented. We conclude in Section 5.3
by comparing the performance of the mathematical programming algorithm
minimizing the total travel time with that of the enumerative algorithm min-
imizing the same objective.

5.1. Instance generation

We have randomly generated a number instances for four different con-
figurations. In each configuration, the existing road-rail network consists of
k nodes, k = 3,...,6. The train stations are T = {n' = (0,0),n* = (2,0)},
and the only rail edge is By = {(n',n")}. If U(ay,as) denotes a uniform
distribution on the interval [aq, as] C R, the location of the nodes in R and
the configuration of the road network Eg are:

e Configuration 1 (k= 3): R={n? = (U(0.5,1.5),1)}, Eg = {(1,2),
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(2,3)}.

e Configuration 2 (k =4): R = {n? = (U(0.5,1.5),1),n3 = (U(0.5,1.5),
_1)}7 Er = {(1’ 2)7 (1’ 3)7 (2’ 4)7 (3’ 4)}

e Configuration 3 (k =5): R = {n* = (U(0.25,0.75),1),n3 = (U(0.5,1.5),
—1), n* = U(1.25,1.75), 1)}, Er = {(1,2),(1,3),(2,4),(3,5), (4,5)}.

e Configuration 4 (k = 6): R = {n? = (U(0.25,0.75),1),n% =
(U(0.25,0.75), —1), n* = (U(1.25,1.75), 1), n° = (U(1.25, 1.75),
-} Er={(1,2),(1,3),(2,4),(3,5),(4,6), (5,6)}.

Graphical descriptions of these configurations can be seen in Figure 5.

n
2, Rl
n! e W3 ! .: l nt
.‘;,LS
a) First configuration. b) Second configuration.
n’ @eee@n’ n’ @ e @n’
n' ..- n® nlm S
9,3 13 W oo o 15

d) Third configuration. ) Fourth configuration.

Figure 5: Possible instances for each of the four configurations used in the experiments.

In the four cases, W = Er U Ep. For each (p,q) € W, the expected flow
Jpq 1s randomly generated from a gravitational model:

W, W
Ipq = %a (13)

rq
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where w, ~ U(5,15) is a uniform random variable simulating the node’s
population and d,, is the Euclidean distance between n” and n?. We also
impose z; € [0.5,1.5] in order to avoid locating the new station too close
to the existing ones. The travel times on road edges were set equal to their
Euclidean lengths (i.e, oy = 1), and the travel times on rail edges were set
equal to ay = 0.25 times their Euclidean lengths. We assumed ¢; = 1.5, ¢, =
0.5, and ¢;; = d;j. The maximum budget was limited to Cpax = 2.8.

5.2. Comparison between mathematical programming based algorithms

We have performed initial comparisons between the mathematical pro-
gramming based algorithms corresponding with the three objectives pre-
sented: locating station-junction minimizing the total travel time (TTT), lo-
cating station-junction maximizing the ridership (RID), and locating station-
junction maximizing the number of winners (WIN). To this end, we have
solved a set of 20 randomly generated instances. For each configuration
in Section 5.1, five instances were generated by using different seeds in the
pseudo-random number generator. Because the aim of these experiments is
to show that one of these three models outperforms the other two, the logit
parameters (needed to calculate the ridership) were set to 41 = 72 = 1 with-
out previous calibration. Table 1 summarizes the results, complete results
are shown in the Appendix, Table 5.

zrrr  ZriD  AwiIN  Seconds

TTT 748 309 285 236.0
RID 751 308 248 1162.2
WIN 838 289 333 1275.2

Table 1: Average value for each objective and CPU time (columns) obtained by the
MINLP-based algorithms (rows).

From Table 1, we can draw the following conclusions:

e The total travel time (column zprr) yielded by model TTT is on av-
erage better than that obtained by the other two models. Only in one
instance was the total travel time yielded by this model improved by
that yielded by model RID (due to the non-guarantee of global opti-
mality or to the 5% maximum gap allowed).
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e The ridership (column zg;p) yielded by model TTT is on average better
than the ridership yielded by the other two models and, in all instances
but one, model TTT produced the maximum ridership. Note that,
although model RID was created specially for maximizing ridership,
model TTT obtains higher average ridership. This is due to the fact
that model RID incorporates the logit function, which is non-convex,
and therefore model RID is more complex than model TTT. Besides,
the algorithms for the non-linear programs only guarantee local opti-
mality.

e The number of winners (column zy;y) yielded by model WIN is on
average better than that yielded by the other two models.

e The CPU times (column Seconds) are significantly lower for model
TTT than for the other two models (four to five times less).

We therefore decided to pursue our experiments using model TTT only
since it is computationally simpler than the other models and yields satisfac-
tory results for all three objectives. Nevertheless, all three models become
intractable for large instances.

5.83. Comparison between the mathematical programming based algorithm and
the enumerative algorithm

For the experiments described in this section we randomly generated 50
instances for each of the four configurations proposed. Each of these 200
instances was solved by means of the following algorithms:

e The MINLP-based algorithm minimizing the total travel time (Algo-
rithm 1) by means of LINDOglobal, allowing a maximum 5% GAP.

e The enumerative algorithm presented in Algorithm 2 assuming the po-
tential locations for the new station are from (0.5,0) to (1.5,0) with
step size p, and the potential locations for the new junction are be-
tween the end nodes of the edge in Er with the same step size, for
p = 0.1,0.05,0.025. In our instances, assuming that the two existing
stations are located 200 km away from each other (one length unit
equals 100 km), these steps mean that potential locations for the new
station are 20, 10, and 5 km far from each other. The same could be
stated for the new junction. This algorithm is called ENUM,. For each
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feasible pair of locations for the new station and the link on the road
network, the total travel time of the corresponding network (zrrr(Z, 9))
was calculated using Dijkstra’s algorithm Dijkstra [2].

The Appendix shows the results obtained for the four configurations
tested (Tables 6 to 9). The column headings are:

e Seed is the seed used by GAMS to pseudo-randomly generate the loca-
tions of the nodes in R, and the weight given to any such node which
was used to estimate the flows between O/D pairs by means of the
gravitational model (see Equation (13)).

e zrprp represents the total travel time obtained in the solution of each
of the four algorithms tested (Algorithm 1, and Algorithm 2 with step
sizes 0.1, 0.05 and 0.025, respectively).

e Sec represents the computational time in seconds needed to obtain the
solution by each of the four algorithms tested.

e %gap represents, for each of the three enumerative algorithms tested,
the percent relative difference in total travel time between the solution
obtained by the corresponding enumerative algorithm and the solu-
tion obtained by the MINLP-based algorithm, computed through the
following formula:

ZTTT(ENUM) - ZTTT(MINLP)
ZTTT(MINLP) ’
where zprp(MINLP) and zprp(ENUM) are the total travel time of

the road-rail network yielded by the MINLP-based algorithm and the
enumerative algorithm, respectively.

%gap = 100

Table 2 summarizes the results presented in the Appendix. From these re-
sults, we draw the following conclusions:

e The enumerative algorithms (Algorithm 2) with any of the three tested
step sizes produced better average total travel times than the MINLP-
based approach (Algorithm 1).

e The average CPU time in seconds is clearly shorter for the enumerative
algorithm than for the mathematical programming based algorithm. As
expected, shorter step sizes in the enumerative algorithm increase the
CPU time (since more evaluations need to be done).
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Algomthm MINLP ENUM01 ENUM005 ENUM0025

Avg. TTT 77.21 76.36 76.25 76.21
Avg. CPU time (sec.) 149.20 0.20 0.74 3.01
Avg. %gap - —0.5 —0.68 —0.75

Table 2: Average results when comparing the MINLP-based algorithm and the enumera-
tive algorithms.

e The average %gap shows that the enumerative algorithms with a step
size equal to 0.1 is on average 0.5 % better than the MINLP-based algo-
rithm. When the step size decreases to 0.05 the enumerative algorithm
produces solutions on average 0.68% better than the MINLP-based
enumerative procedure. When the step size decreases to 0.025 the enu-
merative algorithm is on average 0.75 % better than the MINLP-based
algorithm.

From these results we first remark that computational times are much
shorter for the enumerative algorithms than for the MINLP-based algorithm
and, within the enumerative algorithms, reducing the step size significantly
increases computational times. We have also noted that the quality of the
solution given by the enumerative algorithms in terms of total travel time is
basically the same for the three step sizes tested. When compared with the
MINLP-based algorithm, the enumerative algorithm yields better solutions
on average.

6. Case study

We now present the results obtained on a realistic instance: the high
speed corridor between Madrid and Valladolid (Spain), which has 179.3 km
of length. Originally, this corridor linked Madrid with Valladolid without
any intermediate stop. In 2008, a new station was added close to the city
of Segovia. We will see in this section that our algorithms suggest a similar
location for the new station.

For this case study, we have considered cities that are close to the original
high-speed track and have a significant potential demand. There are many
small towns which, although they are close enough to the railway line, do
not have a large enough population. Data about the cities considered such as
a numeric identifier, population, and geodesic coordinates, can be found in
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Table 3. The last two columns are the coordinates obtained after rotations
and translations over the original ones so that Madrid is located at (0,0) and
Valladolid is located at (179.3,0). Other geometric operations to rectify the
high-speed line were also performed. A graphical description of our input
data after such geometric operations is given in Figure 6.

City Id  Population Latitude Longitude X y
Madrid 1 5098322* 40.42 —3.70 0.0 0.0
Valladolid 2 309714 41.66 —4.73 179.3 0.0
Colmenar Viejo 3 46955 40.66 —3.77 25.5 5.8
Collado Villalba - Galapagar 4 95207 40.63 —4.01 40.0 29.3
Segovia 5 54309 40.95 —4.12 75.5 —2.1
Laguna de Duero 6 22590 41.58 —4.72 1729 -1.0
Miraflores de la Sierra 7 5907 40.81 —3.77 38.8 —4.7
Garcillan 8 477 40.98 —4.27 92.9 1.4
Santa Maria la Real de Nieva 9 993 41.07 —4.40 106.1 1.3
Olmedo 10 3776 41.29 —4.68 144.9 -0.3
Matapozuelos 11 1032 41.41 —4.79 163.4 —0.0
Cuéllar 12 9861 41.40 —4.31 1285 —174

Table 3: Cities considered in the case study. *The population of Madrid includes its
metropolitan area.
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Figure 6: Case study network. A high speed train corridor between cities 1 and 2, rep-
resented by a solid line. Ten other cities considered, represented by empty dots. Dotted
lines represent the road network.

Data about travel times using the road network were obtained using
Google maps, and data about travel times using the train network were
obtained from the operator’s website, www.renfe.com. In order to keep a
minimum interstation space, we assume that the new station should be lo-
cated at least 30 km away from the nearest station. We have considered
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the tunnels along this corridor, which means that a new station cannot be
located between km 30 and km 66 either. We also obtained data about pas-
senger flows between stations directly from the operator, but we were asked
to treat them confidentially and therefore these are not provided here. Pas-
senger flows using the road network were estimated using the gravity model
presented in Section 5.3.

Here we run the MINLP based approach minimizing total travel time
and the heuristic algorithm with step size of one km and the same objective.
A time limit of 30 minutes was set for every iteration of the MINLP-based
approach (that is, the MINLP solver had 30 minutes to find the best station-
connection pair assuming the connection point must be on a given road link).
The results obtained were rather similar for both methods, see Table 4. In
this table, and for each procedure, column “TTT” gives the total travel time
of the corresponding network. Column “Station” gives the first coordinate of
the location of the new station. Columns “Connection” give the coordinates
of the point in the road network that will be linked to the new station.
Finally, “Seconds” gives the CPU time in seconds needed by each procedure.

TTT Station Connection Seconds

Heuristic  27963495.69 75 75.65334116 —2.102538069 201.54
MINLP 28042844.56 74.7828814 75.54361877 —2.070662348 19244.40

Table 4: Solutions to the case study applying the heuristic procedure and the MINLP-
based approach.

Note that the solutions obtained using the two algorithms are rather
similar. The heuristic locates the new station at km 75 of the railway corridor,
and joins it with a point of the road network very close to Segovia. The
MINLP-based approach minimizing T'T'T locates the new station at km 74.78
and joins it directly with Segovia. Both solutions are rather close to the
current location of the Segovia-Guiomar station, built in 2008 and 4 km
away from Segovia.

It is also interesting to note that the total travel time of the new net-
work obtained using the heuristic procedure is slightly shorter than that
obtained by the MINLP-based approach. This may be due to the lack of
global optimality guarantee of MINLP solvers or to the imposed CPU time
limit. Regarding CPU times, we note that the heuristic needed two orders
of magnitude less CPU time than the MINLP-based approach.
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7. Conclusions

We have introduced, modeled, and solved the problem of locating a new
station on a rail corridor and a new junction on a road network, and of build-
ing a new road segment between the two, respecting a budget constraint.
The optimization was carried out under three different criteria: total travel
time, ridership, and number of benefited travelers. Preliminary experiments
showed that, in terms of computing times and of quality of solution, mini-
mizing the total travel time yields the best results.

Minimizing the total travel time also yields shorter computing times than
the models with the other two objectives. Nevertheless, the resulting MINLP-
based algorithm is too slow, even for small instances. We have therefore pro-
posed a faster enumerative algorithm. This algorithm is based on the evalu-
ation of a number of feasible solutions, and is exact when the sets of possible
locations for the new station and the connection with the road network are
both discrete. When such sets include a continuous range of locations, the
proposed enumerative algorithm discretizes the continuous sets and is only
approximate.

In order to test the quality of the solution returned by the enumerative
algorithm in the continuous case, we have performed some computational
experiments over a set of small instances randomly built over four different
configurations. We have observed that the quality of the solution returned
by the enumerative algorithms in terms of total travel time is slightly bet-
ter than the MINLP-based algorithm, whereas the computational times are
significantly lower.

We have also tested our procedures over a medium-size case study. For
this instance, both the MINLP-based algorithm and the heuristic algorithm
yield very similar solutions under a travel time minimization objective, whereas
computational times are two order of magnitude lower for the heuristic than
for the MINLP-based algorithm. It is also interesting to highlight that the
solutions yielded by these algorithms are very close to the location of the
current intermediate station, which was decided in 2008 independently of
this research.

Future research efforts on this topic will focus on solving the problem of
locating more than one station and more than one junction. Unfortunately
our mathematical programming approach cannot easily be extended to this
case. A major complication is that it would be necessary to consider all
possible intersections of the new road links, and the new links that such
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intersections would generate.
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ac

| TTT RID WIN

Conf. Seed ZTTT  ZRID RAWIN Sec ZrTT  ZRID RAWIN Sec ZTTT  RRID RAWIN Sec
1 1 16.93 8.91 8.36 1.39 16.93 8.91 8.36 3.71 20.84 8.10 15.08 4.89
1 2 18.15 9.61 16.34 1.19 18.15 9.61 16.34 3.69 23.29 8.51 16.34 5.16
1 3 25.56 14.21 23.45 1.85 25.62 14.20 14.15 3.47 | 34.57 12.28 23.45 5.10
1 41 27.14 15.12 25.02 1.32 2720 15.10 14.42 3.39 36.60 13.09 25.02 4.99
1 5 28.64 15.93 14.58 1.12 28.64 15.93 14.58 2.58 32.14 15.28 26.48 5.51
2 1 51.28 21.43 16.70 32.23 51.28 21.43 16.70 579.15 64.29 18.52 25.72 818.22
2 2 53.37 22.10 21.91 42.48 53.37 22.10 21.91 366.79 59.68 20.73 29.62 276.83
2 3 53.75 22.38 31.35 21.18 53.75 22.38 31.35 464.48 61.71 20.67 31.35 529.16
2 41 55.78 22.17 17.86 58.42 55.63 22.21 25.82 343.83 68.70 19.26 25.82 902.00
2 ) 56.23 21.99 12.76 33.59 56.29 21.98 18.52 340.22 61.23 20.92 26.26 1130.31
3 1 82.42 31.68 34.14 1097.11 82.65 31.62 20.99 3003.05 85.53 31.00 34.14 3069.73
3 2 93.50 37.26 25.23 1072.57 | 93.50 37.26 25.23 2008.37 | 98.06 36.26 38.56 2418.84
3 3 81.92 34.63 33.84 85.52 81.99 34.61 25.28 2011.34 | 93.53 32.01 33.84 1748.32
3 4| 9297 3941 22.74 87.85 92.97 39.41 22.74 2011.68 | 104.96 36.69 40.86 2225.02
3 5| 84.93 34.78 28.70 59.34 | 85.29 34.71 24.76 3003.79 | 93.33 32.93 33.90 2153.37
4 11]133.69 53.27 50.19 254.82 | 136.16 52.66 35.41 2015.16 | 147.63 50.05 50.19 2458.64
4 21 150.08 58.88 51.89 147.06 | 152.23 58.34 37.38 1026.72 | 172.47 53.65 51.89 1700.10
4 31117.64 46.34 40.33 332.16 | 117.64 46.34 40.33 2028.13 | 126.87 44.21 42.11 2485.53
4 4 1132.42 51.17 44.64 1130.09 | 132.42 51.17 44.64 2015.00 | 140.95 49.24 44.64 2372.91
4 5| 139.77 56.55 50.86  258.29 | 139.90 56.51 36.86 2010.03 | 148.79 54.54 50.86 1188.38
Average ‘ 74.81 30.89 28.54 235.98 ‘ 75.08 30.82 24.79 1162.23 ‘ 83.76 28.90 33.31 1275.15

Table 5: Comparison between the three MINLP-based algorithms. The first row denotes the model. The second row denotes
the configuration and seed of the instance, and (for each of the three models) we show the yielded total travel time, ridership,

number of winners, and CPU time required to compute the solution. The last row shows average results.



MINLP ENUMg.1 ENUMg.05 ENUMg.025
Seed | zrrT Sec | zrTT Sec %gap | zrrr Sec %gap | zrrr Sec Y%gap

16.93 1.40 | 17.08 0.05 0.87 | 16.86 0.15 —0.40 | 16.86 0.64 —0.43
18.27 1.31 | 18.41 0.04 0.77 | 18.18 0.15 —0.51 | 18.15 0.64 —0.67
25.62 1.26 | 25.81 0.05 0.74 | 25,58 0.17 —0.14 | 25.56 0.64 —0.22
27.20 1.28 | 27.38 0.04 0.66 | 27.29 0.15 0.35 | 27.14 0.64 —0.20
28.64 1.11 | 28.83 0.04 0.68 | 28.73 0.15 0.30 | 28.64 0.64 0.00
13.95 0.95 | 14.07 0.04 0.88 | 13.99 0.15 0.35 | 13.95 0.63 0.07
15.80 1.27 | 15.93 0.04 0.79 | 15.85 0.15 0.30 | 15.81 0.82 0.06
17.48 1.27 | 17.60 0.05 0.71 | 17.52 0.15 0.26 | 17.48 0.67 0.05
9 18.99 1.36 | 19.12 0.06 0.65 | 19.04 0.17 0.23 | 19.00 0.62 0.04
10 19.98 1.06 | 20.12 0.04 0.69 | 20.04 0.15 0.26 | 19.99 0.61 0.05
11 21.06 1.27 | 21.23 0.05 0.81 | 21.12 0.16 0.29 | 21.07 0.61 0.05
12 16.72 1.04 | 16.84 0.04 0.71 | 16.76 0.16 0.26 | 16.73  0.62 0.05
13 17.82  1.05 | 17.96 0.04 0.83 | 17.87 0.17 0.32 | 17.83 0.63 0.06
14 26.22 1.13 | 26.24 0.04 0.10 | 26.24 0.15 0.10 | 26.23 0.63 0.05
15 2771 1.16 | 2766 0.05 —-0.17 | 27.66 0.15 —0.17 | 27.66 0.64 —0.17
16 18.66 1.90 | 18.59 0.04 —0.33 | 1859 0.16 —0.33 | 1859 0.62 —0.33
17 20.30 1.38 | 20.24 0.04 —-0.29 | 20.24 0.15 —-0.29 | 20.24 0.62 —0.29
18 16.96 1.39 | 17.06 0.04 0.57 | 16.85 0.15 —0.64 | 16.83 0.62 —0.75
19 18.52 1.22 | 1845 0.04 -0.36 | 1841 0.17 —0.57 | 1840 0.62 —0.60
20 1990 1.87 | 19.84 0.04 -0.31 | 1982 0.15 —-0.38 | 19.82 0.61 —0.38
21 21.10 0.89 | 21.10 0.04 0.00 | 21.10 0.16 0.00 | 21.10 0.63 0.00
22 22,22 0.88 | 2225 0.05 0.14 | 2225 0.16 0.14 | 22.24 0.63 0.07
23 17.03 092 | 17.03 0.04 -0.01 | 17.03 0.15 —0.01 | 17.03 0.62 —0.01
24 18.30 0.88 | 18.48 0.04 1.02 | 18.30 0.16 0.00 | 18.30 0.63 0.00
25 26.76  1.02 | 26.82 0.04 0.21 | 26.76 0.16 0.01 | 26.76 0.62 0.01
26 18.17 1.38 | 18.18 0.04 0.06 | 18.17 0.17 0.00 | 18.17 0.63 0.00
27 19.98 146 | 19.98 0.04 0.00 | 19.98 0.15 0.00 | 19.98 0.62 0.00
28 21.65 1.41 | 21.65 0.05 0.02 | 21.65 0.16 0.02 | 21.65 0.62 0.00
29 17.43 111 | 1743 0.04 -0.02 | 1743 0.15 —-0.02 | 1743 0.63 —0.02
30 19.14 1.19 | 19.42 0.04 1.48 | 19.14 0.16 0.00 | 19.14 0.63 0.00
31 20.69 1.38 | 20.69 0.04 0.03 | 20.69 0.16 0.02 | 20.69 0.62 0.00
32 22.02  0.94 | 22.02 0.04 0.00 | 22.02 0.15 0.00 | 22.02 0.63 0.00
33 23.07 1.30 | 23.08 0.05 0.06 | 23.07 0.15 —0.01 | 23.07r 0.63 —0.01
34 23.97 1.67 | 24.02 0.04 0.21 | 2397 0.15 0.00 | 23.97 0.62 0.00
35 18.41 0.83 | 18.67 0.04 1.40 | 18.41 0.15 0.00 | 18.41 0.63 0.00
36 17.27  1.93 | 17.38 0.04 0.62 | 17.31 0.15 0.24 | 17.28 0.63 0.04
37 19.16  1.26 | 19.17 0.05 0.06 | 19.17 0.16 0.06 | 19.16 0.62 0.03
38 20.82  1.44 | 20.82 0.04 0.00 | 20.82 0.15 0.00 | 20.82 0.63 0.00
39 22.33 1.54 | 22.34 0.04 0.06 | 22.33 0.15 0.00 | 22.33 0.63 0.00
40 23.73 1.29 | 23.77 0.05 0.18 | 23.73 0.16 0.00 | 23.73 0.66 0.00
41 19.14 0.86 | 19.32 0.05 091 | 19.14 0.17 0.00 | 19.14 0.67 0.00
42 20.59 0.89 | 20.59 0.05 0.00 | 20.59 0.17 0.00 | 20.59 0.70 0.00
43 21.87 1.01 | 21.88 0.05 0.01 | 21.88 0.16 0.01 | 21.87 0.69 —0.01
44 23.00 1.20 | 23.03 0.05 0.13 | 23.03 0.16 0.13 | 23.01 0.68 0.03
45 24.28 1.18 | 24.06 0.05 —-0.89 | 2399 0.16 —1.17 | 23.99 0.66 —1.17
46 15.61 1.19 | 15.77 0.04 1.02 | 15.64 0.17 0.20 | 15.62 0.67 0.08
47 17.60 0.97 | 17.79 0.05 1.06 | 17.60 0.16 0.00 | 17.60 0.65 0.00
48 19.44 1.21 | 19.59 0.04 0.76 | 1941 0.16 —0.16 | 19.40 0.64 —0.22
49 21.11  1.26 | 21.24 0.05 0.63 | 21.18 0.16 0.34 | 21.05 0.63 —0.27
50 22.61 1.16 | 22.76 0.04 0.64 | 22.68 0.15 0.30 | 22,59 0.62 —0.09

0O ULk W=

Avg. | 2050 1.23 | 20.58 0.04  0.38 | 2050 0.16 —0.01 | 20.48 0.64 —0.10

Table 6: Results obtained for the instances corresponding with the first configuration.
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MINLP ENUMg 1 ENUMg.o5 ENUMg 025
Seed | zrrT Sec 2TTT Sec  %gap | zrrr Sec %gap | zrrT Sec Y%gap

51.28 55.49 | 51.36 0.15 0.15 | 51.32 0.56 0.06 | 51.31 2.11 0.06
53.37 31.06 | 53.51 0.13 0.25 | 53.42 0.53 0.08 | 53.40 2.14 0.05
53.95 142.15 | 54.11 0.13 0.29 | 53.83 0.51 —0.22 | 53.74 2.07 —0.38
55.78 163.54 | 55.92 0.13 0.25 | 55.84 0.51 0.11 | 55.63 2.10 —-0.27
56.23 29.61 | 56.43 0.14 0.35 | 56.32 0.53 0.16 | 56.21 2.13 —0.03
42.07 56.65 | 42.10 0.14 0.06 | 42.10 0.52 0.06 | 42.10 2.09 0.06
45.01 52.96 | 45.05 0.14 0.10 | 45.05 0.53 0.10 | 45.02 2.10 0.02
47.33 25.02 | 47.35 0.14 0.04 | 4728 0.52 —0.09 | 47.28 2.08 —0.09
9 48.72 17.46 | 48.92 0.15 0.41 | 48.79 0.51 0.15 | 48.73 2.09 0.03
10 49.56 39.26 | 49.66 0.14 0.21 | 49.58 0.52 0.04 | 49.58 2.08 0.04
11 50.38 39.24 | 50.47 0.14 0.17 | 50.43 0.51 0.10 | 50.39  2.09 0.02
12 37.17 22.81 | 37.17 0.14 0.00 | 37.17 0.52 0.00 | 37.17 2.11 0.00
13 47.98 45.73 | 48.13 0.14 0.33 | 48.04 0.52 0.13 | 4799 212 0.03
14 49.77 39.97 | 49.85 0.14 0.16 | 49.85 0.52 0.16 | 49.79 2.08 0.04
15 51.92 56.78 | 51.92 0.14 0.00 | 51.92 0.52 0.00 | 51.92 2.09 0.00
16 42.42 26.59 | 42.48 0.14 0.13 | 42.48 0.52 0.13 | 42.45 2.08 0.07
17 60.29 11.12 | 60.62 0.14 0.54 | 60.41 0.52 0.19 | 60.31 2.08 0.03
18 46.28 13.38 | 46.50 0.13 0.48 | 46.36  0.52 0.19 | 46.29 2.10 0.03
19 48.37 17.34 | 48.44 0.14 0.15 | 48.44 0.52 0.15 | 48.38 2.09 0.02
20 62.29 13.13 | 62.29 0.13 0.00 | 62.29 0.51 0.00 | 62.29 2.11 0.00
21 64.11 23.63 | 64.24 0.13 0.20 | 64.15 0.54 0.07 | 64.12 2.10 0.01
22 65.50 20.91 | 65.53 0.15 0.05 | 65.53 0.55 0.05 | 65.53 2.16 0.05
23 48.91 42.02 | 4891 0.14 0.00 | 48.91 0.54 0.00 | 4891 2.16 0.00
24 51.23 41.49 | 51.44 0.14 0.41 | 51.29 0.54 0.12 | 51.25 2.14 0.04
25 53.37 26.95 | 53.55 0.15 0.35 | 53.44 0.57 0.14 | 53.38 2.10 0.03
26 43.88 22.00 | 44.05 0.14 0.39 | 43.96 0.51 0.18 | 43.89 2.10 0.03
27 57.42 9.49 | 57.71  0.14 0.50 | 57.53 0.52 0.19 | 57.44 2.09 0.03
28 59.67 8.96 | 59.95 0.14 0.48 | 59.78 0.54 0.18 | 59.68 2.15 0.03
29 45.60 8.66 | 45.79 0.14 0.41 | 45.66 0.52 0.15 | 45.61 2.10 0.02
30 48.09 24.52 | 48.14 0.13 0.10 | 48.09 0.52 0.00 | 48.09 2.10 0.00
31 49.65 23.66 | 49.68 0.14 0.08 | 49.65 0.52 0.01 | 49.65 2.11 0.01
32 50.38 36.25 | 50.45 0.14 0.13 | 50.45 0.52 0.13 | 50.39 2.11 0.02
33 62.43 25.29 | 62.49 0.14 0.09 | 62.49 0.53 0.09 | 62.45 2.12 0.02
34 63.16 26.74 | 63.36 0.14 0.32 | 63.25 0.53 0.15 | 63.17 2.11 0.02
35 47.52 39.30 | 47.70 0.14 0.38 | 47.58 0.52 0.13 | 47.53 2.08 0.02
36 40.30 33.52 | 40.30 0.14 0.01 | 40.30 0.51 0.01 | 40.30 2.08 0.01
37 42.21 22.69 | 42.23 0.13 0.04 | 42.23 0.52 0.04 | 42.23 2.09 0.04
38 43.48 22.96 | 43.51 0.14 0.06 | 43.51 0.52 0.06 | 43.49 2.12 0.01
39 44.20 9.57 | 44.24 0.14 0.09 | 44.19 0.53 —0.01 | 44.19 210 -0.01
40 55.55 15.41 | 55.69 0.14 0.26 | 55.58 0.53 0.05 | 55.58 2.12 0.05
41 58.73 13.58 | 59.00 0.13 0.47 | 58.82 0.54 0.16 | 58.74 2.12 0.02
42 61.37 9.77 | 61.60 0.14 0.37 | 61.49 0.52 0.18 | 61.39 2.11 0.03
43 63.40 8.95 | 63.55 0.14 0.23 | 63.53 0.53 0.21 | 63.43 2.09 0.04
44 64.32 15.11 | 64.57 0.14 0.39 | 64.46 0.52 0.22 | 64.34 2.09 0.04
45 64.35 23.21 | 64.55 0.13 0.32 | 64.50 0.52 0.25 | 64.38 2.11 0.05
46 37.93 44.92 | 38.05 0.14 0.31 | 37.98 0.52 0.11 | 37.94 2.09 0.02
47 51.81 49.06 | 51.93 0.14 0.24 | 51.87 0.51 0.11 | 51.70 2.10 —-0.21
48 54.33 26.47 | 54.53 0.14 0.37 | 54.39 0.53 0.11 | 54.35 2.30 0.03
49 56.60 29.19 | 56.61 0.14 0.02 | 56.61 0.51 0.02 | 56.61 2.10 0.02
50 58.44 32.14 | 58.47 0.14 0.05 | 58.47 0.54 0.05 | 58.36 2.16 —0.14

0O Utk WN

Avg. | 5216  32.71 | 52.28 0.14 022 | 5221 0.52 0.09 | 52.16 2.11 0.00

Table 7: Results obtained for the instances corresponding with the second configuration.
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MINLP ENUMo.1 ENUMo.05 ENUMo.025
Seed | zprr Sec 27T Sec  %gap 27T Sec  %gap | zrrT Sec  %gap
1 82.42  254.67 | 8241 026  0.00 | 8241 0.96  0.00 | 8241 3.71  0.00
2 93.68 173.856 | 93.61 0.25 —0.07 | 93.61 0.93 —007 | 9352 3.66 —0.17
3 85.99 245.037 | 8236 0.24 —4.22 | 81.92 089 —4.73 | 8192 3.67 —4.73
4 94.10 165.082 | 93.30 0.24 —0.85| 9284 089 —134| 9284 361 —134
5 87.78 281.076 | 8531 0.23 —2.82 | 8493 088 —3.25| 8493 364 —3.25
6 85.58 365.321 | 85.58 0.25  0.00 | 85.58 0.95  0.00 | 85.58 3.87  0.00
7 98.67 116537 | 98.75 0.26  0.08 | 98.68 0.93 001 | 98.68 3.84¢  0.01
8 | 108.67 121546 | 108.73 0.25  0.05 | 108.67 0.95  0.00 | 108.67 3.81  0.00
9 81.96 154.539 | 82.05 025  0.11 | 8205 093 011 | 8201 382  0.06
10 88.09 227.228 | 88.12 023  0.03 | 88.09 087 000 | 83.09 3.73  0.00
11 74.79  77.657 | 74.81 023  0.02 | 7481 087  0.02 | 7479 355  0.00
12 69.74  66.066 | 69.74 0.23 0.0l | 69.74 086 0.0l | 69.74 350  0.00
13 83.15  64.576 | 8344 023 035 | 8326 087 013 | 8317 353  0.02
14 74.03 93544 | 7428 023 034 | 7412 086  0.12 | 7405 347 = 0.02
15 8471  83.966 | 85.04 024 040 | 8494 085 027 | 8471 373  0.00
16 97.78  87.109 | 97.88 025  0.11 | 97.78 0.93 001 | 9778 3.66  0.01
17 92.57 74509 | 9287 025 032 | 9268 0.90  0.11 | 9259 3.65  0.02
18 89.67 1293.86 | 87.81 0.24 —207 | 8781 0.90 —207 | 87.81 3.62 —2.07
19 98.39 199.251 | 96.64 0.24 —179 | 96.53 0.88 —1.89 | 9648 3.62 —1.94
20 | 109.04 216.497 | 109.04 0.24  0.01 | 109.04 0.89  0.01 | 109.04 3.59  0.00
21 | 103.86 82.42 | 10444 0.24 056 | 103.87 0.87  0.01 | 103.86 3.58  0.00
22 91.57 85418 | 91.64 023  0.08 | 9157 087  0.00 | 9157 3.55  0.00
23 86.08  57.096 | 86.08 0.23 000 | 86.08 086  0.00 | 86.08 3.53  0.00
24 95.12  89.586 | 95.39 0.23  0.28 | 9521 0.86  0.10 | 9514 351  0.02
25 71.62 80517 | 71.84 022 030 | 7170 0.86  0.11 | 71.63 3.48  0.02
26 84.83 162.316 | 84.89 024  0.07 | 8483 0.93 000 | 8483 3.70  0.00
27 | 11856  95.685 | 11857 0.24  0.01 | 11857 0.91 001 | 11855 3.65  0.00
28 89.92 1064.16 | 90.11 0.24 021 | 90.04 091 013 | 89.94 3.66 0.2
29 87.94 321.837 | 86.31 024 —185| 8587 0.90 —2.36| 8586 3.65 —2.37
30 95.95 230.683 | 96.06 0.25  0.12 | 96.03 091 008 | 9596 3.66 0.1
31 85.90 141.186 | 85.87 0.23 —0.03 | 85.87 0.88 —0.03 | 85.87 3.67 —0.03
32 80.75 276.916 | 7874 0.24 —250 | 7874 0.88 —250 | 78.74 3.56 —2.50
33 87.34  57.817 | 87.89 024  0.63 | 87.36 088 002 | 87.34 358  0.00
34 98.36  70.351 | 9836 0.23  0.00 | 98.36 0.87 000 | 9835 3.51 —0.01
35 90.93  70.696 | 91.22 023 032 | 91.04 087 012 | 90.95 351  0.02
36 71.98 259.336 | 72.13 0.23 021 | 7199 092  0.00 | 7191 3.73 —0.11
37 83.16 127.972 | 8356 0.24 048 | 8318 091 002 | 8316 3.70  0.00
38 91.50 231.209 | 91.74 025  0.25 | 91.73 0.93 025 | 9150 3.72  0.00
39 82.08 209.866 | 80.13 0.24 —237 | 80.13 091 —237 | 8012 371 -2.38
40 94.78 207.172 | 9484 024  0.06 | 9484 092 006 | 9480 3.69  0.02
41 91.97 483.556 | 89.85 0.24 —2.30 | 89.67 091 —250 | 89.67 3.67 —2.50
42 | 10274 258571 | 102.75 0.24 001 | 102.75 0.89  0.01 | 102.74 3.65  0.00
43 | 11281  78.975 | 112.81 024  0.00 | 112.81 0.89  0.00 | 112.81 3.63  0.00
44 84.70 1077.52 | 8470 0.24  0.00 | 8470 0.89  0.00 | 8470 3.60  0.00
45 95.03 121.431 | 95.10 024  0.08 | 9510 0.88  0.08 | 95.05 3.59  0.02
46 90.06 260.171 | 90.11 0.25  0.05 | 90.06 0.95  0.00 | 90.06 3.93  0.00
47 | 102,95 1194.55 | 103.05 0.24  0.10 | 102.97 0.94  0.02 | 102.97 3.82  0.02
48 | 100.02 124.844 | 100.06 0.25  0.04 | 100.02 0.92  0.00 | 100.02 3.79  0.00
49 | 111.43 116.062 | 11145 0.25  0.02 | 111.43 093  0.00 | 111.43 3.75  0.00
50 | 100.46 249.531 | 100.90 0.26  0.43 | 100.51 0.94  0.05 | 10048 3.74  0.01
Avg. | 91.30  287.84 | 91.05 0.24 —0.29 | 90.93 090 —0.42 | 90.90 3.66 —0.46

Table 8: Results obtained for the instances corresponding with the third configuration.
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MINLP ENUMo 1 ENUMo.o05 ENUMo.o25
Seed | zprr Sec 27T Sec  %gap 27T Sec  %gap | zrrT Sec  %gap
1 137.98  246.75 | 133.68 0.39 —3.12 | 133.68 1.42 —3.12 | 133.68 5.73 —3.12
2 | 154.33 12882 | 150.08 0.38 —2.75 | 150.08 1.39 —2.75 | 150.08 554 —2.75
3 | 12115 24758 | 117.65 0.40 —2.89 | 117.65 145 —2.89 | 117.64 5.93 —2.90
4 | 136.32 24546 | 132.87 0.37 —2.54 | 13242 142 —2.86 | 13242 572 —2.86
5 | 144.09  245.89 | 139.77 0.39 —3.00 | 139.77 1.37 —3.00 | 139.77 5.61 —3.00
6 | 140.75 2394.20 | 140.93 0.42  0.13 | 140.78 154  0.02 | 140.78 6.27  0.02
7 | 161.05 2160.76 | 161.07 0.42  0.02 | 161.05 1.52  0.00 | 161.05 6.14  0.00
8 | 175.27 1647.11 | 17529 0.39  0.01 | 175.28 146  0.00 | 175.27 596  0.00
9 | 111.04 44747 | 111.05 0.40  0.01 | 111.05 142  0.01 | 111.04 580  0.00
10 | 124.79 45.68 | 12249 0.36 —1.84 | 122.34 129 —1.96 | 122.28 5.24 —2.01
11 | 130.46 28.80 | 128.57 0.34 —1.45 | 12843 125 —1.56 | 128.37 507 —1.60
12 | 126.15 1029.91 | 123.13 0.38 —2.39 | 123.05 1.34 —245 | 123.05 5.39 —2.45
13 | 141.13 36.04 | 138.07 0.37 —2.17 | 137.89 129 —2.30 | 137.73 527 —2.41
14 | 136.36 13255 | 132.81 0.37 —2.60 | 132.81 1.34 —2.60 | 132.80 5.52 —2.60
15 | 127.59  127.06 | 124.08 0.36 —2.75 | 123.64 1.31 —3.10 | 123.64 5.38 —3.10
16 | 147.13 24586 | 141.93 0.38 —3.53 | 141.93 1.38 —3.53 | 141.92 5.62 —3.54
17 | 148.39  129.29 | 14528 0.37 —2.10 | 144.72 1.36 —2.47 | 14471 549 —2.48
18 | 146.94  256.02 | 143.41 039 —241 | 143.19 1.41 —255 | 143.01 575 —2.68
19 | 161.58 15.31 | 157.81 0.38 —2.34 | 157.59 1.38 —2.47 | 157.47 5.64 —2.54
20 | 177.51 10.43 | 174.17 0.36  —1.88 | 173.95 1.33 —2.01 | 173.85 5.43 —2.06
21 | 139.66 881 | 137.55 0.35 —1.51 | 137.39 1.30 —1.63 | 137.33 534 —1.67
22 | 128.74 8.70 | 126.93 0.36 —1.40 | 126.76 1.28 —1.54 | 126.70 5.16 —1.59
23 | 150.94  127.52 | 144.92 0.37 —3.99 | 144.92 133 —3.99 | 14492 546 —3.99
24 | 158.12  128.33 | 155.15 0.36 —1.88 | 15470 1.31 —2.16 | 154.64 534 —2.20
25 | 128.86  132.99 | 125.25 0.37 —2.80 | 125.23 1.37 —2.82 | 125.23 5.61 —2.82
26 | 149.90  248.81 | 144.95 0.40 —3.30 | 144.93 146 —3.32 | 14493 5.85 —3.32
27 | 166.63  246.10 | 162.21 0.37 —2.65 | 161.58 143 —3.03 | 161.58 571 —3.03
28 | 126.33  130.36 | 124.13  0.39 —1.75 | 123.99 1.38 —1.85 | 123.88 556 —1.95
29 | 149.39  129.59 | 143.91 0.39 —3.67 | 143.91 143 —3.67 | 143.91 583 —3.67
30 | 158.83 13248 | 155.68 0.40 —1.99 | 15550 1.40 —2.10 | 15541 5.83 —2.16
31 | 148.55 10.85 | 145.94 0.37 —1.76 | 145.77 1.36 —1.87 | 145.70 5.60 —1.91
32 | 134.01 844 | 131.78 0.37 —1.66 | 131.59 1.33 —1.81 | 131.52 540 —1.86
33 | 125.07 10.98 | 122.33 0.36  —2.20 | 122.16 1.28 —2.33 | 122.08 5.25 —2.39
34 | 141.51 870 | 138.79 0.38 —1.92 | 138.62 1.27 —2.04 | 13854 5.19 —2.10
35 | 160.18  127.29 | 155.86 0.37 —2.70 | 155.14 1.32 —3.14 | 155.14 541 —3.14
36 | 129.85  261.07 | 126.16 0.41 —2.84 | 126.14 150 —2.86 | 126.14 6.08 —2.86
37 | 148.04  251.41 | 143.89 0.40 —2.80 | 143.89 153 —2.80 | 143.88 5.90 —2.81
38 | 160.84 19.52 | 156.56 0.39 —2.66 | 156.56 1.41 —2.66 | 156.56 5.76 —2.67
39 | 123.86 19.66 | 121.13 040 —2.21 | 120.97 1.40 —2.33 | 120.89 5.61 —2.40
40 | 137.16 11.51 | 133.60 0.37 —2.60 | 133.60 1.36 —2.60 | 133.50 5.51 —2.68
41 | 12432 137.95 | 121.32 041 —242 | 12095 140 —2.71 | 12095 578 —2.71
42 | 165.28 13.14 | 161.31 0.38 —2.40 | 161.31 1.39 —2.40 | 161.31 5.61 —2.40
43 | 181.30 10.86 | 177.33  0.39 —2.19 | 177.33 1.34 —2.19 | 177.33 548 —2.19
44 | 11550  127.64 | 11238 0.38 —2.71 | 11238 1.31 —2.71 | 11238 537 —2.71
45 | 133.05  127.98 | 129.97 0.37 —2.32 | 129.97 1.27 —2.32 | 129.97 5.22 —2.32
46 | 166.92  483.60 | 161.08 0.42 —3.50 | 161.08 1.54 —3.50 | 161.00 6.28 —3.55
47 | 150.83  482.38 | 146.59 0.43 —2.81 | 146.02 1.54 —3.19 | 146.02 6.30 —3.19
48 | 165.07  252.01 | 159.93 0.42 —3.11 | 159.93 1.53 —3.11 | 159.92 6.24 —3.12
49 | 18234 13241 | 177.81 040 —2.49 | 177.23 149 —2.80 | 177.22 6.11 —2.81
50 | 141.80  138.69 | 138.17 0.41 —2.56 | 137.71 1.53 —2.89 | 137.70 6.20 —2.89
Avg. | 144.86  275.02 | 141.54 0.38 —2.29 | 141.37 1.39 —2.40 | 141.34 565 —2.42

Table 9: Results obtained for the instances corresponding with the fourth configuration.
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