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Abstract

This paper presents a new method for the resolution of elliptic and parabolic

equations in circular domains. It can be trivially extended to cylindrical

domains. The algorithm uses a mixed Fourier-Compact Finite Difference

method. The main advantage of the method is achieved by a new concept

of mesh. The topology of the new grid keeps constant the aspect ratio of

the cells, avoiding the typical clustering for radial structured meshes at the

center. The reduction of the number of nodes has as a consequence the

reduction in memory consumption. In the case of fluid mechanics problems,

this technique also increases the time step for a constant Courant number.

Several examples are given in the paper which show the potential of the

method.
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1. Introduction

The resolution of non-linear parabolic and elliptic equations in circular

domains is of great interest for several branches of knowledge. In particular,

the understanding of the kinematics and the dynamics of turbulent flows in

pipes remains one of the challenges for the next decade. As an example, 50%

of the energy losses in large pipes are originated in the first millimeters from

the wall [1, 2, 3]. Spectral or spectral-like methods are frequently chosen to

solve these sort of problems, due to both their great precision and their high

ratio of mesh size to computational cost. These methods, when applied on

circular domains, are usually formulated in polar coordinates, with the main

advantage that the boundary conditions can be imposed in a straightforward

manner. Nevertheless, there are two particularities to be dealt with. On one

hand, the origin is a pole and it needs a special treatment, which usually

involves the use of artificial boundary conditions. On the other hand, for

structured radial grids there is a mesh size reduction at the center. For

instance, when dealing with turbulent flows in pipes, the smaller structures,

which define the mesh structure, are close to the wall, whereas the larger ones

are at the centerline of the pipe, thus giving rise to an unnecessary increase in

memory requirements. Additionally, the Courant-Friedrichs-Lewy condition

(CFL from now on) would impose a very short time step.

The problem at the origin has been addressed in different ways. Chen

et al. [4] used spectral collocation methods in order to increase the order

of the equation. Li et al. [5] simulated the Navier-Stokes equations with

three Chebycheff-Fourier spectral collocation methods. Pure spectral meth-

ods have been also proposed, as the Fourier-Legendre discretization used by
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Z. Qiu et al. [6], and the Fourier-generic orthogonal polynomials used by

Matsushima and Marcus [7]. A coordinate system transformation is another

possible technique. Heinrichs [8] used conformal mapping to transform a

Cartesian coordinate system into a polar system, and a similar approach was

proposed by Hansen et al. [9]. The transformation was applied to the nodes

closest to the center, and the components, already in Cartesian form, were

then averaged, giving as a result the value of the pole.

The accumulation of grid points at the center of the domain can also

be compensated. Kwan [10] proposed a spectral-Galerkin method with a

quadratic transform in the radial direction to improve the clustering at the

center. Akselvoll and Moin [11] solved the Navier-Stokes equations by di-

viding the circular domain into two separate regions, the core and the outer

region, respectively. At the core region some of the terms were treated explic-

itly, whereas at the outer region all the terms were solved implicitly. They

also used different time schemes for each region to improve the performance

without affecting the accuracy.

An additional possibility is the use of a Fourier-Compact Finite Difference

(CFD) discretization developed by Lee [12], as that proposed by Lai [13], who

imposed symmetry and antisymmetry conditions at the center (asymptotic

behavior) applied on phantom points for odd and even values of each wave

number.

In the present paper a new algorithm is presented. It uses a sixth-order

CFD method in the radial direction, and spectral Fourier decomposition

in the azimuthal one. When applied to an elliptic equation, the algorithm

produces a set of one-dimensional radial equations. Each equation set is
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represented by a compact sixth-order finite difference discretization. As a

consequence, the error is bounded by the maximum wave number, and by

the radial spacing. The aim of this work is to optimize the CFD-Fourier

refinement to solve the system as accurately as possible, minimizing the com-

putational resources required. This objective is achieved by the creation of

a structured radial mesh with thresholded aspect-ratio and compatible with

the Fourier decomposition in the azimuthal coordinate. The main charac-

teristic of the grid is the reduction of the number of computed wave lengths

for the internal radii, so that the memory storage is greatly reduced and the

computational time is decreased by some orders of magnitude.

The paper is organized as follows. Section 2 is devoted to explain the

numerical method and the meshing techniques. The mesh is described in

section 3 and some illustrative examples are given in section 4. Finally, in

section 5 the main conclusions of the work are pointed out.

2. Numerical method

2.1. The non-linear elliptic equation

The general two-dimensional non-linear partial differential equation con-

sidered in this work is

∂t~u+N (~u)− 1

β
L (~u) = ~S, (1)

solved in a circular domain of coordinates r and φ. In equation (1) L and N

stand for the linear and the non-linear term, respectively, while ~S is a source

term that may depend on t, r and θ. β is a positive constant whose finality

is to weight the diffusion speed. The smaller it is, the faster is the diffusion.
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In the case of the Navier-Stokes equations for incompressible flows, it is the

Reynolds number. As an example, which will be discussed later on, for the

classical heat equation N(~u) = 0, L(~u) = ∇2~u and β is the inverse of the

thermal diffusivity, α = 1/β. This equation is solved in a circular domain

with unit radius, so the polar coordinate system (r, θ) is the most appropriate

one. The domain is then delimited to Ω : [0, 1]× [0, 2π).

It is also worth mentioning that in the case of the Navier-Stokes equations,

if the domain is periodic along the pipe length the use of a Fourier spectral

method reduces the problem to the solution of a (probably large) set of

problems like (1).

2.2. General aspects

The Runge-Kutta methods [14] are the time schemes most widely used

for fluid dynamics computations. This is due to its high accuracy even when

relatively long time steps are used. However, for the sake of simplicity, an

Euler implicit method has been chosen here, being straightforward the gen-

eralization to more complicated schemes. While in the azimuthal coordinate

an obvious choice is the use of a Fourier decomposition method, in the radial

direction a CFD scheme [12] has been used, due to its flexibility in choosing

the points and to its spectral-like resolution.

2.3. Space discretization: CFD - Fourier

Applying a Fourier spectral expansion along θ, a set of one-dimensional

ordinary differential equations is obtained. Let n be the number of points

in the azimuthal coordinate. This also is the number of Fourier modes. The

equation for each wavenumber κ is
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∂t~̂uκ +Nκ

(
~̂uκ

)
− 1

β
Lκ

(
~̂uκ

)
=

~̂
Sκ, (2)

where the ̂ symbol means that the variable is expressed in the wavenumber

domain. Both the linear and the non-linear operators depend on the wave

number; however, a part of L remains constant. Then, it is convenient to

split L into this constant term LC and the κ-dependent one Lκ
r , as

Lκ = LC + Lκ
r (3)

For example, in the case of the heat equation the operator L is given by

L =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
. (4)

After the transformation from polar coordinates to the phase space L be-

comes,

L =
1

r

∂

∂r

(
r
∂

∂r

)
− κ2

r2
, (5)

and thus

LC =
1

r

∂

∂r

(
r
∂

∂r

)
and Lκ

r = −κ2

r2
. (6)

Applying the temporal discretization, (explicit for the non-linear part, so

that any iterative process may be skipped) equation (2) becomes

~̂u
n+1

κ − ~̂u
n

κ

∆t
+Nκ

(
~̂u
n

κ

)
− 1

β
[LC + Lκ

r ]
(
~̂u
n+1

κ

)
=

~̂
Sκ. (7)

After the discretization in the r direction, equation (4) can be written as

[
− 1

β
(LC + Lκ

r ) +
1

∆t
[I]

]
~̂
U

n+1

κ =
1

∆t
[I]

~̂
U

n

κ −Nκ(
~̂
U

n

κ) +
~̂
Sκ. (8)
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Here,
~̂
Uκ is an array whose components are Ûκ,i = ûκ(ri) and [I] is the

identity matrix. The source term
~̂
Sκ is tn and tn+1 dependent. The key point

of CFD techniques is that it is possible to find two matrices [A] and [B] such

that

− 1

β
[B]LC(

~̂
Uκ) = [A]

~̂
Uκ, (9)

where [A] and [B] are κ-independent. Now, multiplying (8) by [B] and

making use of (9) one gets

[
[A] + [B]

(
1

∆t
[I] + Diag

(
κ2

βr2

))]
~̂
U

n+1

κ = [B]

(
1

∆t
[I]

~̂
U

n

κ −Nκ(
~̂
U

n

κ) +
~̂
Sκ

)
(10)

Where Diag(v) is an operator that puts the vector v on the main diagonal

of an identity matrix. Thus a possible large amount of small systems as (10)

need to be solved. This can be efficiently implemented in parallel computers.

2.4. Compact sixth-order scheme

In the rest of the paper the operator L will be the Laplacian as it is the

most usual one. Then, the implicit linear part to be replaced by the CFD

coefficient matrices is

Lκ(u) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

∆t
− κ2

r2

)
u. (11)

Since neither ∆t nor κ are constant along the calculation, this operator

is split into two parts LC and Lκ
r as
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LC =

(
∂2

∂r2
+

1

r

∂

∂r

)
Lκ

r =

(
1

∆t
− κ2

r2

)
.

The CFD coefficient matrices do not depend neither on ∆t nor on κ, and

thus they are calculated only once. In order to calculate [A] and [B], both

LC(u) and u are expanded in Taylor series,

LCj(u, rj) =
∞∑
d=0

wd(rj)
∂du(rj)

∂rd
, (12a)

uj(ri) =
∞∑

m=0

∆rmj−i

m!

∂mu(ri)

∂rm
. (12b)

where wd represents the coefficient of the d-th derivate and ∆rj−i replaces

rj − ri. Here i goes from 1 to N − 1 (the last point is known) and j indicates

the position in the stencil. Upon substitution of (12b) into (12a) one gets

the equation for LC as

LCj(uri) =
∞∑

m=0

∆rmj−i

m!

O∑
d=0

wd(ri)
∂d+mu(ri)

∂rd+m
, (13)

In order to obtain the banded matrices [A] and [B], equations (12b) and (13)

are substituted into (9). The order of the approximation is fixed by the total

number of points in the stencil chosen. Eight points are needed (the order

plus two), distributed between [A] and [B]. In this case, five points were used

for the operator and three points for u, so that [A] is pentadiagonal and [B]

tridiagonal. Let αij be the components of [A] and βij the components of [B].

Normalizing βii = 1, from equations (6), (9b) and (10) one gets
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i+2∑
j=i−2

αij

(
d∑

m=0

wm(rj)
∆rd−m

j−i

(d−m)!

)
−

i+1∑
j=i−1

βij

∆rdj−i

d!
= 0. (14)

As it has been said before, the i index goes from 0 to N − 1, leading

to one equation for each point (although several points are mixed in each

equation). The index j moves in the stencil (and thus in the same row of

the matrices). As [A] has a five-point centered stencil, the nodes index j

goes from i − 2 to i + 2. The case of [B] is similar but with a three-point

stencil. These equations are imposed until the desired approximation order

is achieved. As a consequence, a truncation error appears in equation (9),

which is now written as

− 1

β
[B]LC

~̂
Uκ = [A]

~̂
Uκ + ε, (15)

where ε = O (h6). In this last expression h is defined as the r increment

between two contiguous nodes.

2.5. Boundary conditions

Two locations must be taken into account during the construction of the

CFD matrices: the center of the domain and the wall. The center has a

pole, which is a critical situation in computation. This problem is solved by

calculating a few nodes around the center and using phantom points in order

to simulate symmetric and antisymmetric boundary conditions [13]. Due to

the periodicity of f , f(r, θ) = f(−r, θ + π), and thus

∞∑
κ=−∞

f̂κ(r) exp (iκθ) =
∞∑

κ=−∞

f̂κ(−r) exp (iκ(θ + π)) . (16)
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A small manipulation on the right hand side of this expression leads to

∞∑
κ=−∞

f̂κ(r) exp (iκθ) =
∞∑

κ=−∞

(−1)κf̂κ(−r) exp (iκθ) . (17)

Therefore, f̂ is symmetric for odd wave numbers and antisymmetric for

even wave numbers:

f̂κ(r) = (−1)κf̂κ(−r) ∀κ ∈ N. (18)

In order to keep the same order of approximation at the center, the two

first nodes are affected by phantom points; denoting these with an asterisk,

one has

3∑
j=1

α1j

(
d∑

m=0

wm(rj)
∆rd−m

j−1

(d−m)!

)
−

2∑
j=1

β1j

∆rdj−1

d!
+ · · ·

· · ·
2∑

j=1

α∗
1j (−1)κ

(
d∑

m=0

wm(rj)
∆rd−m

j∗−1

(d−m)!

)
− β∗

11

(2r1)
d

d!
= 0, (19a)

4∑
j=1

α2j

(
d∑

m=0

wm(rj)
∆rd−m

j−2

(d−m)!

)
−

3∑
j=1

β2j

∆rdj−2

d!
+ · · ·

· · ·α∗
21 (−1)κ

(
d∑

m=0

wm(r1)
(2r1)

d−m

(d−m)!

)
= 0. (19b)

Regarding the adjacent point to the boundary (i = N − 1), some mod-

ifications needs to be done. In order to retain the same error close to the

boundary, this point needs a not-centered stencil, with just one point at its

right (the one at the wall) and three at its left.
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i+1∑
j=i−3

αij

(
d∑

m=0

wm(rj)
∆rd−m

j−i

(d−m)!

)
−

i+1∑
j=i−1

βij

∆rdj−i

d!
= 0. (20)

This last issue introduces a value outside of the five diagonals of [A].

As [B] has a three point stencil, this problem does not appear on it. This

anomalous position has to be taken into account when the system of equations

is solved. However, it does not increase the complexity of the algorithm.

2.6. CFL condition

The computational cost can be reduced through the use of a sparse mesh,

but then the time step is also indirectly increased. The convergence of the

algorithm implies a threshold for the CFL number which in turn imposes a

maximum value for the time step. The CFL number is defined as

CFL = π∆t
u

∆r
= π∆t

[( ū

∆r

)2
+
( v̄

r∆θ

)2]1/2
max

. (21)

where ū and v̄ are the main values in each cell (see Fig. 1):

ūn+1/2

∆r
=

unrn + un+1rn+1

(rn+1)2 − (rn)2
,

v̄n+1/2

r∆θ
=

vn+1 + vn

∆θ (rn+1 + rn)
. (22)

Assume that ū ∼ v̄. For radial structured meshes (“full meshes” from

now), CFL(r1) ∼ CFL(1)/r1, whereas for constant-sized meshes (“sparse

meshes”) CFL(r1) ∼ CFL(1). Thus, for the same threshold, ∆t for the

sparse mesh is 1/r1 times ∆t for the full mesh. Therefore, with the sparse

mesh the number of nodes can be reduced and the time step increased.
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u

v

rD
q

Dr

Figure 1: Set of parameters used to obtain the time step for a fixed maximum CFL. Values

are averaged along the cell and applied at the center of mass.

3. Mesh

The aim of this paper is to improve the performance of CFD-Fourier by

using an optimized mesh. Currently, the use of full meshes for the solution of

polar and cylindrical problems is widely extended. In the following, the term

“full mesh” will refer to a grid which contains the full tensor product of the

discretized independent variables. Full meshes in polar coordinates produce

clustering around the center because the density of points is proportional to

the inverse of the radius. Here it is proposed that the cell aspect ratio is

adapted so that the CFL value is as close as possible to its threshold in the

whole domain. A good option is to combine several cells into a single one.

Furthermore, in order to have a coherent mesh and good behavior of Fast
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Fourier Transform (FFT) operations, the number of nodes in a single radius

is taken to be the product of the initial number of nodes at the first radius

times a power of two (Fig. 2).

Figure 2: Sparse mesh (left) vs. full mesh (right). Number of nodes reduction can be

easily appreciated.

Two different meshes will be studied. On one hand, the r-equidistant

mesh. This mesh presents equal properties along the r direction, reason why

it will be used in the control set of numerical experiments. On the other

hand, a mesh optimized for turbulence studies will be considered. This mesh

was created following the methodology proposed by Hoyas and Jiménez [15],

adjusting the size of the cell to the most relevant local physical scale. These

meshes are compared in Fig. 3.

3.1. Algorithm for the sparse mesh

A new algorithm was developed whose basic idea is to create the mesh for

a prescribed aspect ratio. Since in this case the objective was to minimize
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Figure 3: (Left) r-equidistant sparse mesh. (Right) Sparse mesh optimized for turbulence

studies at Reτ = 180

the aspect ratio, the maximum aspect ratio was fixed to
√
2. The four steps

of the algorithm are:

1. The number of divisions along the perimeter is calculated from the

prescribed maximum mesh size. As an extra condition, the number of

divisions is set to a power of two so that the performance of the FFT

operations is improved.

2. The divisions along the r direction are generated, taking into account

the aspect ratio criterion at the wall and the desired mesh size evolution

along the radius. At this point the user must choose the r-distribution

to be used, bearing in mind that the optimal mesh for the solution

of the Helmholtz equation has a discretization along the r direction

different from that of a mesh optimized for turbulence studies.

3. By setting the separation between two neighboring circles, the number

of azimuthal divisions for each radius is calculated for a fixed aspect

ratio. As in the case of the perimeter, the number of points in each

single circle is set to a power of two.

4. The number of divisions at some distances from the wall are corrected
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for consistency with the boundary conditions. At the center, if the

first discretized r values are far away from the pole, increasing the

number of azimuthal divisions contributes to minimize the error at

those points, whereas for the nodes closest to the wall the solver needs

at least six points (five plus the boundary) to be able to operate, so

that the number of divisions along the last six circles has to be the

same.

4. Numerical test problems

Three different cases will be analyzed to test the schemes: Laplace equa-

tion, Heat Transfer equation and Convective-diffusive equation. The refer-

ence to calculate the error will be an analytical solution of these equations,

imposing a solution and calculating the source term analytically.

4.1. Laplace equation

First, the order of convergence must be checked. The equation to solve

is given by

(
1

r

∂

∂r
+

∂2

∂r2
+

1

r2
∂2

∂θ2

)
φ = 0. (23)

The error introduced by our method is dominated by the truncation error

studied in section 2.4. A benchmark was designed to study the behavior of

the error when solving equation (23) for both the r-equidistant mesh and the

turbulence-optimized mesh. Sparse and full meshes, for two wave numbers in

the azimuthal direction, κ=10 and κ=30, where employed. Different number

of nodes along the perimeter were used: 64, 128, 256, 512, 1024, 2048, 4096,

8192 and 16384. In Fig. 4 the error dependency for κ = 10, 30, defined as
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ε = ‖u(ri, θj)− Ui,j‖∞ , (24)

is shown.

10
0

10
−4

10
−8

10
−12

10
−16

2
6

2
8

2
10

2
12

2
14

M

ǫ ǫ = AM
b

κ A b

10 2.7E+11 -6.5

30 2.9E+07 -6.5

10
0

10
−4

10
−8

10
−12

10
−16

2
6

2
8

2
10

2
12

2
14

M

ǫ ǫ = AM
b

κ A b

10 1.3E+8 -5.2

10 9.9E-2 -2.2

30 3.5E+5 -5.6

30 1.9E-4 -2.2

Figure 4: Error vs. number of nodes along the perimeter M for κ = 10 (white squares) and

κ = 30 (black squares). Equidistant mesh (left), and turbulence-optimized mesh (right)

The theoretical error is given by ε = AM b, where h should be 6 in our case.

In the left part of Fig. 4, the error committed using the equidistant mesh

is shown. The slope of this error is even better than the imposed one. Due

to round-off error, occurring in very thin meshes, it is impossible to reduce

the error below 10−13. The situation is a little bit worse in the case of the

turbulence-optimized meshes, where two slopes are presented. The expected

tendency is achieved for meshes up to 210 points along the perimeter. After

that, due to unequal refinement along the r coordinate a reduced slope is

obtained. This can be seen in Fig. 5. The main cause is that when the mesh

is refined by a factor of 2 at the wall, at the center it is only reduced by a

factor of 1.3 for the thinnest cases. In fact, the slope of 2.2 corresponds with
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the theoretical expected behavior, as 1.36 ' 22.2. It should be remarked

that such a behavior of the error for the last mesh type arises in the case of

the Laplacian operator, but is not expected to appear when turbulent flows

are calculated.

0 0.25 0.5 0.75 1.0

-4

-6

-8

-10

-12
r

log
2
h Legend

N M h0 hw

128 20 5.125×10−2 4.651×10−2

256 34 3.139×10−2 2.376×10−2

512 52 2.181×10−2 1.204×10−2

1024 73 1.659×10−2 6.033×10−3

2048 96 1.333×10−2 3.065×10−3

4096 123 1.086×10−2 1.526×10−3

8192 156 8.813×10−3 7.581×10−4

16384 201 6.957×10−3 3.832×10−4

N :Divisions along the perimeter.

M :Divisions along the radius.

h0 :Mesh size at the middle.

hw :Mesh size at the wall.

Figure 5: Evolution of the mesh size ∆r along the radius. The mesh size at the middle,

h0, becomes much bigger then the size at the boundary, hw, when M is increased. The

value for h in the different equidistant meshes is marked by the triangles at the left of the

figure.

4.2. Heat conduction equation

As an algebraic solution of the convection-diffusion equation is not avail-

able for comparison with numerical results, in a first approach it was decided

to test the method in the Heat equation,

∂t~u−∆~u = ~0. (25)

The solution of this equation can be expressed as the product of two infinite

series:

17



ui =
∞∑

m=0

∞∑
κ=0

Aκ,m exp
(
−λ2

κ,mt
)
cos (κθ) Jκ (λκ,mr) + · · ·

∞∑
m=0

∞∑
κ=0

Bκ,m exp
(
−λ2

κ,mt
)
sin (κθ) Jκ (λκ,mr) , (26)

where the Jκ are Bessel functions and λκ,m is the m-th zero of the κ-

th Bessel function. Initial conditions are imposed by giving values to Aκ,m

and Bκ,m. In this way, by choosing m, the behavior of the error can be

studied separately for different wave numbers κ and, to some extent, the

gradients in the r direction. The method has been checked in several sparse

and full meshes. The Fig. 6 shows the relative error in the simulation of

many different initial conditions in a Turbulence optimized mesh. It is clear

that the error is affected essentially by the time step, as it could be expected

since the Euler implicit scheme has order one, and thus the error is directly

proportional to the time step. The ratio of the error to the time step has

unitary order. Same results where obtained for all meshes.

As not error dependence on sufficiently refined meshes was found, this

error has to come from the time step and the Euler method. Therefore, any

improvement in the error implies the use of higher-order time schemes.

4.3. A non-linear equation

Once the good behavior of the solver was demonstrated, the final equation

to be tested is

∂t~u− 1

β
∆~u+ α

~∇ · (~u⊗ ~u) +
v

r

 −v

u

 = ~S. (27)
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Figure 6: Color online. Relative error in the computation of several random initial con-

ditions. Time interval is π times the characteristic time 1/λ2
min. The area indicates the

different errors obtained and the middle line is the mean value. Time step is a factor of

the lowest characteristic time λ−2
max

This equation can be extended by including explicitly the non-linear

terms. The solution for general cases cannot be checked, but it is still possible

to check the error if a simple source term is imposed:

∂u

∂t
− 1

β

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
+

∂u2

∂r
+

u2

r
+

1

r

∂uv

∂θ
− v2

r
= Su, (28a)

∂v

∂t
− 1

β

(
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2

)
+

∂uv

∂r
+

1

r

∂v2

∂θ
+ 2

uv

r
= Sv. (28b)

A benchmark case was designed in order to analyze and understand the

increase in the performance of the solver. The value of β was set to 2.5,

with a CFL fixed to 0.3 and no source term. As an initial condition, white

noise was imposed from κ = 0 to κ = 16 for the angular direction, and it
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was multiplied by r2 for odd values of κ and by r3 for even values of κ in

order to simulate the initial condition in the r direction consistently with the

symmetry and antisymmetry conditions (see equation (18)). The boundary

condition was fixed to 0. Sixty-five simulations were performed for meshes

with 64, 128, 256, 512 and 1024 divisions along the perimeter, and a single

simulation for a mesh with 2048 divisions, due to its long computation time.

The algorithm used was the same for both the full and the sparse meshes.

The difference between the solutions obtained with both meshes is negligible

and thus it is not shown here.
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Figure 7: Results of the numerical experiment (time in seconds and mesh size normalized

by the radius). Trend lines for full mesh (FM) and sparse mesh (SM) are shown. Left:

total number of nodes vs. time; right: mesh size vs. time.

In Fig. 7 the dependence of the computation time with the total number

of nodes N and the mesh size h is shown.

With the exception of the highest values of h, the results from this nu-

merical experiment are clearly indicative of the improvement achieved in the
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performance of the algorithm. In the case of the very coarse grid, the number

of nodes is not enough to see the advantages of the new methodology (first

points of Fig. 7). This is a consequence of the extra computational work

needed for initialization, for instance, to create the FFT planning. In other

words, the initialization takes more time than the solver. Because of that,

only the thinnest meshes has been taken into account for the conclusions. It

is also worthy to note that in the log-log plots of Fig. 7, it can be seen that

the improvement in computation time increases exponentially. In order to

quantify the effect observed, one may simply divide the “sparse mesh” result

by the “full mesh” results, assuming the same h; this gives

tSM
tFM

= 34.901h1.61. (29)

This means that, for the same global accuracy (same h), if the mesh size

is reduced by a half, then the time ratio is increased by a factor of around 3.

5. Conclusions

A new algorithm has been applied to the solution of equations with dif-

ferent elliptic operators, mainly obtained from the discretization of parabolic

equations. The results of the benchmark cases considered show that the

global error is controlled by the mesh size and the approximation order of

the Compact Finite Difference scheme, and that the distribution of the nodes

along the r direction affects the local error. In order to optimize the mesh,

the order of the time scheme has to be sufficiently high so as to produce

errors with the same order of magnitude as the error arising from the space
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discretization, and with the time step as close as possible to the threshold

given by the convergence criterion.

As a result, the use of a sparse mesh with time-dependent non-linear

solvers in polar or cylindrical coordinates has beneficial effects on computa-

tion time without penalties in the global error. The grid refinement along

the radius produces 2n nodes, an optimal distribution for Fourier methods.

Furthermore, the CFL condition becomes far less restrictive than for the full

mesh, as a result from the larger spacing between neighboring points, espe-

cially at the central nodes. This effect is magnified when the transport term

is much larger than the diffusion term.

The CFL condition, which restricts the time step due to convergence cri-

terion, relieves the time step restriction for sparse meshes. As a second con-

sequence, the memory consumption is reduced by a half as a result of leaving

out unnecessary nodes. Therefore, problems with a prohibitive consump-

tion of resources can be addressed thanks to the great reduction achieved in

the number of iterations (longer time steps) and to the halving of memory

requirements.
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