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Abstract

There are many approaches addressing the problem of optimal energy management in hybrid
electric vehicles; however, most of them optimise the control strategy for particular driving cy-
cles. This paper takes into account that the driving cycle is not a priori known to obtain a
near-optimal solution. The proposed method is based on analysing the power demands in a given
receding horizon to estimate future driving conditions and minimise the fuel consumption while
cancelling the expected battery energy consumption after a defined time horizon. Simulations
show that the proposed method allows charge sustainability providing near-optimal results.
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1. Introduction

The performance of hybrid electric vehicles (HEV) is determined to a great extent by the con-
trol strategy, and then HEV control has been widely studied during last years as can be checked in
Sciarreta and Guzzella (2007) and references within. Most of those works address it through the
optimal control theory, searching for the control policy that provides the minimum fuel consump-
tion while satisfying other energetic constraints. Dynamic Programming (DP) (Mosbech, 1980;
Sundström et al., 2010), Pontryagin Minimum Principle (PMP) (Serrao et al., 2011; Ambühl
et al., 2010; Chasse and Sciarretta, 2011) or Model Predictive Control (MPC) (Borhan et al.,
2009; Kermani et al., 2012) techniques have been applied to the Energy Management Problem
of HEVs, hereinafter EMP. Ad hoc methods such as the Equivalent Consumption Minimization
Strategy (ECMS) (Paganelli et al., 2001) have been developed to address the EMP, demonstrating
similar performance to the methods purely derived from the optimal control theory. In any case,
as far as the application of optimal control techniques requires information on the future driving
conditions it is necessary to include in the control strategy some kind of driving cycle prediction
if those techniques are intended to be applied online.

Vehicles are highly dynamic systems and their power demands depend on many factors (driver
style, road, traffic, weather, passengers agenda,...). There are two main sort of methods to esti-
mate future driving demands: those based on external sensors such as Global Position System
(GPS) or Intelligent Transportation System (ITS)(Gong et al., 2011) and those based on past in-
formation to predict future driving conditions in a stochastic fashion. Amongst this second kind
of methods, some authors propose to estimate future power demands with a Markov chain which
provides the probability of a set of discrete power demands depending on its current value. Once
the future power demands are estimated, the problem can be solved by MPC (Ripaccioli et al.,
2010) or by stochastic DP (Liu and Peng, 2008). This paper introduces a control strategy based
on the ECMS formulation with a probabilistic estimation of future driving conditions.

According to the previous ideas, the paper is presented as follows: Section 2 contains the de-
scription of the case study. For the sake of simplicity, a series HEV is presented as an example
to apply the proposed strategy. Nevertheless, the method can be easily adapted to address other
powertrain architectures. Section 3 is devoted to the problem formulation. Then, in Section 4
the proposed strategy for the energy management of HEVs is introduced and formal and applied
aspects regarding the prediction of the vehicle operating conditions and driving pattern identi-
fication are addressed. Section 5 evaluates the presented method by means of an application
example in which its performance is compared with the optimal solution of the problem. Fi-
nally, the extension of the proposed method for parallel HEVs is presented in the Appendix. The
obtained results show that the proposed strategy is able to provide robust solution to the EMP
without information about the driving cycle to be optimised.

2. Case Study

The main objective of the paper is to introduce a new method to estimate future driving con-
ditions that allows applying the ECMS strategy to solve the EMP. In particular, the present paper
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Table 1: Description of the main vehicle features

Vehicle mass 2000 kg
Engine power 75 kW

Generator power 60 kW
Motor power 150 kW
Battery power 160 kW

Battery energy capacity 6.38 MJ (1.77 kWh)

addresses the EMP in a series HEV as a demonstrative example to show the potential of the pro-
posed optimization method. It should be noted that the method is general and can be also applied
to parallel HEVs as shown in the Appendix. The main characteristics of the selected powertrain
are summarised in table 1 while figure 1 shows the powertrain architecture and the sign criteria
employed.
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Figure 1: System layout, nomenclature and sign criteria for series hybrid architecture

Due to the lack of a proper experimental facility, the present study has been made by mod-
elling. Paticularlly, the approach proposed by Rizzoni et al. (1999) has been used. With this
approach, the power demands in powertrain elements are progressively calculated from the ve-
hicle velocity by means of energy balances done with inverted physical causality. Then, the
vehicle is assumed to follow a series of steady states in which the power in the vehicle elements
is calculated from the vehicle speed, acceleration and the road grade. In addition, for any pow-
ertrain element, its efficiency is mapped with rotational speed and torque, while maximum and
minimum torques are defined as functions of the speed.

In the case of series HEVs, since the engine and the generator are rigidly connected, they can
be modelled with a single map. Moreover, since the set engine-generator is mechanically decou-
pled from the vehicle, engine torque and speed can be chosen to maximise its efficiency for any
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power demand. Hence the set engine-generator is modelled as a simple curve efficiency versus
electrical power in the generator, or accordingly fuel consumption versus electrical power in the
generator. Regarding batteries, dynamic models are used in order to represent the variations in
the battery efficiency with its demanded power and its energy content. The most simple dynamic
model of a battery is a zero order equivalent circuit in which:

Pel (t) = Pb (t, Eb (t)) − I2
b (t) R (Eb (t)) = Ib (t) V0 (Eb (t)) − I2

b (t) R (Eb (t)) (1)

where Pel is the electrical power delivered (or absorbed) by the battery, Pb is the variation in
the energy level in the battery (Eb), Ib is the current demand in the battery and its open circuit
voltage and equivalent resistance, V0 and R, are a tabulated function of Eb.

In order to assess the potential of the proposed strategy at real driving conditions, experimen-
tal data was collected during a test campaign of three weeks in which every car trip of a non
professional driver was recorded. It should be underlined that the routes recorded were those
usually driven by the considered driver. Measurements were done in Valencia during October
2011 with a light duty vehicle. No precipitations were observed during the test campaign, the
average ambient temperature was 17.4◦C. The driver covered a total distance of 557 km in both
urban and extra-urban conditions with an average velocity of 33.6 km/h.

During tests, a GPS was used and the Engine Control Unit (ECU) readings were accessed by
means of a On-Board Diagnosis (OBD) communication system to measure vehicle velocity and
engine parameters, mainly speed and estimated torque. The operating points in the engine map
for urban and extra-urban cycles are represented in the upper part of figure 2 with a colorscale
of probability (Pr(Pe)) that range from light grey (low probability) to black (high probability).
Engine speed and torque values allow to estimate power requirements during the driving cycle.
Then, the lower part of figure 2 shows the fit of engine power demands during different driving
tests to normal distributions. The selection of normal distribution has been done arbitrarily in
order to be easily observable in figures. Nevertheless, the presented method is completely general
and can be applied independently of the probability distribution of the driving conditions. In any
case, in figure 2 urban cycles are clearly distinguished from extra-urban cycles due to their lower
mean driving power. Therefore, in the present paper only two kinds of driving modes have
been considered, namely urban and extra-urban driving cycles. It should be noted that those two
distributions describe the driving patterns of the driver in the present study, and that depending
on the particular conditions of each driver, the obtained distributions may be grouped in more
than two clusters, depending on vehicle location or other variables (time, weather,...).

Since the vehicle employed to obtain the driving cycles has a conventional engine-based pow-
ertrain, its OBD communication system provides the estimated torque of the engine but does not
supply the braking power. The proposed strategy requires an estimation of the power require-
ments including braking power, then a backwards vehicle model has been used to calculate the
power demands (Preq) from vehicle speed, inertial, rolling and aerodynamic parameters. The
power distributions (Pr(Preq)) obtained with the model are shown in figure 3. It can be observed
that according to the engine power values obtained, extra-urban driving cycles show a higher
mean requested power. The control strategy presented in Section 4 will be based on the supposi-
tion that the vehicle will be driven according to those distributions.

The performance of the proposed method has been evaluated in real driving conditions by
means of its application to the cycle shown in figure 4, which comprises both urban and extra-
urban driving conditions. As shown in figure 4 there are four segments easily identified in the
trip. Urban driving from the cycle start to 1500 seconds approximately, then highway driving
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Figure 4: Driving cycle to evaluate the performance of the proposed strategy

until 2500 seconds, then the vehicle turns and runs another stretch with highway driving and
finally urban driving until the starting point.

3. Problem Formulation

According to previous section, this paper examines the EMP in a series HEV, i.e. find the
control law u (t) over a defined driving run with duration t f − t0 that minimises the cost:

J =

∫ t f

t0
P f (u (t) , t) dt (2)

where P f is the fuel power consumed and u is the power supplied by the engine. According to
the model described in section 2 the only state of the system is the energy stored in the battery
(Eb), whose dynamic equation is:

Ėb = −Pb (3)

where Pb is the battery power (which is considered positive when the battery is being discharged
and negative when the battery is being charged according to the sign criteria provided in figure
1). The problem is constrained since the total power provided by the powertrain must be equal
to the mechanical power required by the vehicle. The formulation of this constraint depends on
the powertrain layout. As shown in figure 1, in the series architecture the vehicle wheels are
exclusively driven by an electric motor (or a set of electric motors), hence:

Preq (t) = Pm,1 (t) (4)

Limits related to speed and power ranges in powertrain elements should be also included in
the minimisation problem as additional constraints:

Pm,i,min
(
wm,i

)
≤ Pm,i (u (t)) ≤ Pm,i,max

(
wm,i

)
(5)

0 ≤ Pice (u (t)) ≤ Pice,max (u (t) ,we) (6)

Pb,min (Eb (t)) ≤ Pb (u (t) , Eb (t)) ≤ Pb,max (Eb (t)) (7)
6



where w represents rotational speed, subscript m, i represents the ith electrical motor, subscript
ice refers to the internal combustion engine and subscript b refers to battery, whose efficiency
depends on its energy level.

To conclude with the mathematical formulation of the EMP, an additional constraint on the
energy level in the battery at the end of the trip may be applied. If no constraints were applied to
the final state of charge of the battery the fuel consumption would be minimised by depleting the
battery, and then limiting potential fuel savings in the future. Therefore, as opposed to Plug-in
Hybrid Electric Vehicles (PHEV), which are able to recharge their batteries from the grid, the net
battery energy consumption at the end of a trip should be roughly zero in a standard HEV, which
means that ultimately all the energy consumed by the vehicle should come from the fuel. In this
sense, the condition of charge-sustainability is usually addressed by a hard constraint, imposing
the integral of the battery power to be zero over the driving cycle (Serrao et al., 2011), following:∫ t f

t0
Pb (u (t) , Eb (t) , t) dt = 0 (8)

Nevertheless, posing a hard constraint on the battery energy level at the end of the trip is a
simplification that may be too restrictive to some studies, since the integral of battery power
ought to be roughly zero over the life of the vehicle, but not necessarily during a particular
driving cycle. To avoid this constraint, some authors propose to introduce in the cost function the
deviation in the battery energy level (or most commonly battery state of charge) from its initial
conditions (Liu and Peng, 2008), which results in a feedback control law.

In this paper, the charge sustainability condition will be assured by applying the control policy
which makes the net battery energy consumption to be zero as times tends to infinity. The method
is detailed in Section 4.

The EMP in HEVs represented in equations (2) to (7) has been successfully addressed in a
number of papers by means of the application of optimal control theory (Sciarreta and Guzzella,
2007). One of the most widely employed approaches is the ECMS, originally proposed by Pa-
ganelli et al. (2001) which is aimed to replace the integral problem presented in equation (2) with
a set of problems to be solved at each instant. In fact, neglecting system constraints and dynam-
ics, the EMP described by equations (2) and (8) is converted into a static optimisation problem
that can be addressed by the method of Lagrange multiplier:

f = P f + sPb (9)

where the parameter s, traditionally defined as an equivalent factor between fuel and battery
energy sources, is in reality a Lagrange multilplier that should be chosen to fulfill the constraint
on the integral of the battery power at the end of the cycle (8).

It should be noted that just as the rest of optimal control approaches, the ECMS requires a
priori knowledge of the entire driving cycle, at the case at hand to choose a suitable value for
parameter s that sustains the battery charge. In this sense, s is usually obtained by means of
shooting methods to reach the desired final energy level in the battery (Serrao et al., 2011) or
by the analysis of the DP solution (Guardiola et al., 2012). The impact of driving style, road
profile or traffic conditions on vehicle fuel consumption and optimal control has been addressed
in literature, for example in Wang and Lukic (2011) and references within. Therefore, despite
optimising the s parameter for a specific driving cycle, its application to other conditions usually
leads to suboptimal solutions even compromising the charge sustainability. Note that high values
of the parameter s will shift the minimum to the thermal solution, while low s parameters will
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promote the electrical solution, as can be deduced from equation (9). Since perfect knowledge of
future driving conditions can be rarely assumed, with exception of emission test cycles, Musardo
et al. (2005) introduced the Adaptive ECMS (A-ECMS) proposing an on-the-fly algorithm for
the estimation of parameter s.

In order to obtain information about future driving conditions two kind of methods are usually
employed. The first kind of methods is based on the use of GPS and ITS techniques to obtain
information about the road conditions, trip distance or traffic (Bin et al., 2009). Methods of the
second kind rely on the statistical analysis of previous driving patterns to predict future driving
conditions. Regarding this second type of methods some authors, Gong et al. (2011) propose to
characterise driving patterns with mean values and standard deviations of performance indexes
such as velocity, acceleration or power amongst others. The Markov chain modelling approach
is another statistic method to generate future velocity or power demand profiles based on his-
torical driving conditions (Gong et al., 2010) in order to use DP (Liu and Peng, 2008) or MPC
techniques (Johannesson et al., 2007; Ripaccioli et al., 2010) to solve the optimisation problem
with a deterministic vehicle model but a stochastic driving cycle .

In the same line than previous works, this paper proposes to employ past driving information
to estimate the proper value for the s parameter that minimises the fuel consumption keeping the
battery level within a certain interval when applying the ECMS formulation to a HEV operating
in an unknown driving cycle.

4. Proposed strategy

The basic idea underlying the proposed method is to estimate future driving power require-
ments (Preq) in a stochastic fashion and then apply the s parameter which balances the expected
battery energy consumption over an infinite time horizon. Then, the value of s to be applied at
each instant is found by solving the following equation recurrently:

s = arg min
s

{(
∆Eb − E

{
∆Eb

(
Preq, Eb, s

)})2
}

(10)

where ∆Eb refers to battery energy consumption that leads to the battery to the desired final state.
In this sense, if battery sustainability is pursued, the term ∆Eb will be equal to the difference
between the initial and the current energy level in the battery. Meanwhile, E {∆Eb} denotes the
expected battery energy consumption over an infinite horizon.

Note that the battery energy consumption depends not only on the power required by the
vehicle and the system state Eb, but also on the s parameter, which will determine the battery
power consumption at each instant in order to minimise cost. Discretizing the set of possible
power demands in n values equally spaced, the probability of any power demand (Preq, j) can be
obtained from figure 3 if the driving conditions (urban or extra-urban) are known. Then, for a
given value of s, the expectation of the battery energy consumption is calculated in a discrete
approach as:

E {∆Eb} =

n∑
j=1

Pr
(
Preq, j

)
lim

N→∞

 N∑
k=1

γkPb

(
Preq, j, Eb, s

)
∆t (k)

 (11)
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where ∆t (k) refers to the time increment at the kth step, Pr
(
Preq, j

)
is the probability of a given

power requirement Preq, j according to the corresponding histogram in figure 3 and γ < 1 is a
discounting factor to assure the convergence of the infinite sum.

If the battery works in a narrow enough range, the effect of the battery energy level on the
battery power may be neglected, then Pb = Pb

(
Preq, s

)
. In addition, if constant time steps are

considered, equation (11) is simplified to:

E {∆Eb} =

n∑
j=1

Pr
(
Preq, j

)
Pb

(
Preq, j, s

)
∆t lim

N→∞

 N∑
k=1

γk


 (12)

or similarly:

E {∆Eb} = β

n∑
j=1

Pr
(
Preq, j

)
Pb

(
Preq, j, s

)
(13)

where 1 ≤ β < ∞ is defined as a time horizon:

β = lim
N→∞

 N∑
k=1

γk

 ∆t (14)

In the previous expressions, the battery power for a any of the discretized values of Preq, j and
s is calculated at each time step by minimising equation (9). Then the difference between the
current and the objective energy level (∆Eb) is used to choose the value of s which cancels the
argument in equation (10) over the time horizon defined by β.

In order to reduce the computation cost, the optimal s parameter (s) can be calculated for
different battery energy levels and then mapped as function of the energy stored in the battery, or
more conveniently as a function of the battery state of energy, hereinafter S oE, which is defined
as:

S oE =
Eb

Eb,max
(15)

where Eb and Eb,max are the current and the maximum energy stored in the battery respectively.
Note that the hypothesis of negligible effect of the battery energy level on the battery power (i.e.
Eb does not affect to the relation between Pel and Pb) is fundamental to allow the simplification
of equation (14), and then the mapping of s.

An example of those kind of maps is shown in figure 5, where the s-S oE map is calculated
in order to keep the state of the battery around 0.6 with the power distributions shown in figure
3. As expected, s(S oE) is a monotonic curve with lower values of s when increasing S oE. It
can be observed how a time horizon β of 1 second implies an abrupt step in s when the energy
state of the battery passes through the reference level 0.6 since the control system should reach
the desired energy level within a short time frame. As the horizon (β) increases the slope of the
curve becomes smoother.

It should be noted that the s(S oE) curves shown in Figure 5 are similar to those proposed by
Serrao et al. (2011) to correct excessive excursions in the S oE. The linear evolution in the opti-
mal s parameter for a given time horizon in a wide range of S oE is also in line with the proposal
of some authors (e.g. Tulpule et al. (2009)) of correcting the value of the s parameter with a
proportional feedback based on the difference between the desired and current S oE. The contri-
bution of the present paper with regards to both cited approaches is that, the curves presented in
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figure 5 are derived from the statistical analysis of the driving conditions, rather than applying an
heuristic rule. Hence the present paper introduces a physically based and intuitive framework for
calibrating the EMS, providing an optimal s(S oE) curve for a given driving power distribution
and control horizon β.

Figure 5 also shows the differences between the s parameters to be applied in urban and extra-
urban driving conditions, pointing out the impact of the driving conditions on the optimal solution
of the EMP. In this sense, two different approaches are proposed to deal with the changes in
the driving patterns, namely, a clustering approach which considers different power histograms
modeling different driving styles and an adaptive approach aimed to modify a single histogram
to model the current driving style.

4.1. Clustering approach

For the sake of simplicity, only the two histograms shown in figure 2 are to be considered in this
section, while the proposed method can be easily extended to take into account a larger number
of driving styles. For the case at hand, since parameter s is mapped in figure 5 for both urban
and extra-urban conditions, it is necessary to identify the driving conditions in order to apply the
proper map. Vehicle location, if GPS is available, can be a suitable method to identify if urban
or extra-urban s̄ tables should be applied. However, simple change detection algorithms as those
proposed in Basseville and Nikiforov (1993) can be used to detect changes in the driving pattern.
The method adopted in the present paper is based on assuming that the probability function
before and after the change is known. In this sense, the probability functions shown in figure
2 are supposed to be the only two possible driving patterns. Then, considering the sequence of
vehicle power requirements as a sequence of independent random variables with a probability
density Prurb

(
Preq

)
or Pre−urb

(
Preq

)
, the problem lies in detecting the time in which the vehicle

power demands pass from one distribution to another. To reach this goal the log-likelihood ratio
10



is defined by:

l
(
Preq

)
= log

Pre−urb

(
Preq

)
Prurb

(
Preq

) (16)

where for a given power demand Preq, the terms Prurb

(
Preq

)
and Pre−urb

(
Preq

)
represent the

probability of that power demand in the urban and extra-urban distributions.
If Prurb

(
Preq

)
< Pre−urb

(
Preq

)
then the vehicle is more likely to be at extra-urban conditions

and the ratio of probabilities is larger than one, so the log-likelihood ratio (l) is positive, and vice
versa. Accordingly, the proposed detection algorithm consists in given a sampling window with
fixed size κ, decide at each time step (k) if Preq follows the urban or the extra-urban probability
function by means of the evaluation of the parameter:

L (k) =

k∑
i=k−κ

log
Pre−urb

(
Preq (i)

)
Prurb

(
Preq (i)

) (17)

Then the decision rule is given by:

Pr
(
Preq

)
= Pre−urb

(
Preq

)
i f L > 0

Pr
(
Preq

)
= Prurb

(
Preq

)
i f L ≤ 0

(18)

4.2. Adaptive approach
Another possibility to deal with changes in the driving style is to use an adaptive approach.

The main idea underlying this method is to update online the probability functions shown in
figure 3 by using the power demand provided by the vehicle model. The proposed method starts
with the definition of a window size (τ) and initial probability distributions for power demands.
Then, the power required in the current instant (i) can be obtained by applying the quasi-static
vehicle model. Each time step (one second in the present paper), the actual power demanded is
introduced in the database while the power demands in instant i − τ are removed. Finally, the
new probability distribution is calculated and s̄ can be obtained.

5. Results and Discussion

The performance of the proposed method has been evaluated in real driving conditions by
means of its application to the cycle shown in figure 4 with both clustering and adaptive ap-
proaches.

5.1. Clustering approach
Regarding the clustering approach, figure 6 shows the performance of the detection algorithm

with two different window sizes (κ). It can be observed that in both cases the algorithm is able
to predict the driving conditions with good accuracy. Nevertheless, low κ values give rise to
higher sensibilities, then allowing a faster detection of sudden changes in driving patterns, but
also increasing the probability of false alarms. For the next simulations, the κ parameter was
set to 250 seconds in order to provide a reasonable tradeoff between detection capabilities and
probability of false alarms.

Another tuning parameter of the method is the time horizon β. Figure 7 shows the fuel econ-
omy (km/kg of fuel) versus the final S oE, it can be observed that for this cycle, setting a time
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qualitatively the vehicle speed

horizon β=100 s provides the nearest results to DP. The S oE variations within the cycle show
that a wide range of values for β ranging from 50 to 200 seconds provide a suitable solution in
the S oE interval of [0.5, 0.7]. In any case, the optimal value of the time horizon should depend
on the prediction accuracy and also on the operating range of the battery: when only poor pre-
dictions of the power demands are available low values of parameter β should be used in order to
avoid excessive excursions of the S oE. This reasoning provides insights on the idea of mapping
the time horizon β with the S oE, i.e. associating low predicting horizons to S oEs far from the
reference in order to avoid charge depletion or overcharging. Admittedly, it would improve the
robustness of the solution at the cost of some optimality loss.

The particular solutions for the cases of β = 100s and β = 500s are presented in figure 8 where
the bottom plot shows the evolution of the S oE during the cycle. According to the values of s
shown in figure 5, simulations with low β values show strong variations in the s parameter from
one time step to another that allow the S oE to variate in a narrow range around the desired final
value.

The upper plot of figure 8 shows the evolution of the fuel consumption. Differences between
the signals are difficult to be appreciated due to two main reasons. On the one hand, similar
results are obtained within the range of β parameters tested. On the other hand, the fuel con-
sumption obtained shows a noisy behaviour due to the quasi-steady approach employed which
allows the cost function to reach similar values in separated points of the control space. This
involves that small variations in the required power lead to a switch between different control
inputs. Note that the real system will have some inertia, and sharp variations in the power split
are not possible. In order to avoid such behaviour the modification of the current control inputs
should be penalised.

Figure 8 also shows the optimal evolution in S oE calculated by means of DP considering an
effective S oE range of 0.2, i.e. S oE ranging from 0.5 to 0.7 during the trip. Of course, the
proposed method provides suboptimal solutions to the problem, however, it should be noted that
in the case of DP, the driving profile is a priori known and the final S oE is imposed.
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Figure 7: Fuel economy (km/kg of fuel) versus final S oE for different time horizons (β) from black (β=50 s) to light
grey (β=500 s). White dot shows the optimal results obtained with DP and arrows represent the range of variation of the
S oE during the test.
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Figure 8: Evolution of the fuel consumption (upper plot), s parameter (middle plot) and S oE (bottom plot) with β=100
s (dark grey) and β=500 s (light grey). The black line represents the optimal solution obtained with DP.
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Figure 9: Evolution of the probability matrix during the tested cycle and qualitative representation of the vehicle speed.
The colorscale represents the probability of a given required power at a given instant according to the probability matrix
adaption, ranging from low probability in white to high probability in dark grey. Right plots show the probability
distributions at the beginning (grey line) and the end of the trip (black line).

5.2. Adaptive approach

Regarding the results with the adaptive approach, Figure 9 shows the evolution of the prob-
ability functions according to the exposed method. At the begining of the test a homogeneous
probability distribution has been considered, and the method is able to rapidly adapt the probabil-
ity distribution acording to the power requirements. It can be noticed that in extra-urban driving,
figure 9 shows how the distribution gets progressively sharper with a most probable power re-
quirement around 18kW, which is consistent with the histogram shown in figure 3. This is due to
the fact that the cycle only considers highway driving (with almost constant speed) in extra-urban
conditions. Then, as the vehicle returns to the urban environment, approximately at second 3800,
the most likely demanded power is progresively reduced to a similar level to that shown in figure
3 and the probability distribution curve becomes flatter due to the hetereogeneity in the operating
conditions that can be found in urban driving.

The impact of the time horizon (β) and the receding horizon (τ) on the strategy performance
can be observed in figure 10. As in the case of the clustering approach, reducing the time horizon
β involves a final S oE nearer to the desired value (0.6 in the present case study). Regarding the
effect of the windowsize (τ) used to calculate the probability distrubution of the required power,
it can be observed that for a narrow window (namely 100 seconds) the s parameter applied
involves a depletion in the S oE. This reduction in the final S oE increases with β. Also, for final
S oEs near the desired value increasing the τ up to 200 seconds involves an increase in the fuel
economy, nevertheless, larger receding horizons do not involve any advantage for this particular
cycle. It can be also noted that for higher values of τ the s parameters applied involve an increase
of the S oE at the end of the cycle. Despite the general conclusions on the time horizon β effect
on the strategy performance, it is not worth to draw conclusions about which is the best value of
τ to apply, since this result depends entirely on the duty cycle. In any case, as a rule of thumb,
the receding horizon should be large enough to capture the driving pattern in a general fashion.

In figure 11 the evolution in the fuel consumption, s parameter and S oE obtained in the best
14
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Figure 10: Fuel economy (km/kg of fuel) versus final S oE for different time horizons (β) from black (β=100 s) to light
grey (β=500 s). The marker size represents the receding horizon (τ) used to calculate the power probability distribution:
100 s for small markers, 200 s for medium markers and 300 s for big markers. White dot represents the optimal results
obtained with DP.

adaptive simulation (τ=300s and β=100s) is compared with that obtained with DP.
It can be observed that despite significant differences, the adaptive method is able to stay

close to DP without any information on the future driving cycle, nor on the vehicle location. In
addition, it should be noted that those results have been obtained starting from an homogeneous
distribution which is far from the real one. On the other hand, a significant drawback of the adap-
tive approach is that despite s-S oE curves can be calculated offline in the clustering approach,
as far as the probability functions are continuously modified due to the adaption, this method
requires online calculation of those curves. Note that while in equation 12, the term Pb

(
Preq, j, s

)
can be mapped, the term Pr

(
Preq, j

)
varies with time. Therefore, the clustering approach is less

computationally intensive, but has harder memory requirements. Regarding fuel consumption,
DP optimal solution showed a fuel economy of 22.3 km/kg of fuel, while the fuel economy ob-
tained with the best clustering and adaptive configurations was 22.2 km/kg of fuel in both cases.
Then both methods show a similar performance and provide solutions near the optimal without
a priori knowledge of the driving cycle. In this sense, the trade-off between computation cost an
memory will define the best solution to be implemented in a vehicle.

6. Conclusions

This paper has presented a new strategy for near-optimum power management in HEVs. The
well-known ECMS method is upgraded by means of a stochastic estimation of future driving
conditions based on past information of the vehicle power demands.

The proposed method is based on estimating future probability distribution of power demands
from past power requirements and obtain the s parameter which holds the expected the battery
energy level in a defined value after a given horizon. In fact, one of the contributions of the paper
is the introduction of a control strategy for HEVs able to keep the battery sustainability avoiding
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Figure 11: Evolution of the fuel consumption (upper plot), s parameter (middle plot) and S oE (bottom plot) with the
adaptive method with β=100 s and τ=300 s (grey line). Black line represents the optimal state of energy and fuel
consumption evolution according to the DP solution.
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excesive excursions in the S oE without the application of correction coefficients heuristically
derived. Accordingly, for any driving power distribution and control horizon (β), the proposed
strategy allows to derive the optimal s(S oE) curve. In this sense, a contribution of the present
paper is to provide a physically based framework to calibrate other EMS as those consisting of
compensations of the s parameter depending on the S oE deviation from its desired value.

In order to deal with abrupt changes in the driving conditions or driving style, two approaches
have been presented:

• The clustering approach which is based on identifying the current driving pattern by using
the log-likelihood ratio (or information on the vehicle location) and then apply the corre-
sponding probability distribution of power demands amongst a set of possible distributions.
In this paper two driving patterns, namely urban and extra-urban, have been considered,
however, the method can be extended to consider a larger set of driving patterns.

• The adaptive method in which a single probability function is continuously modified in
order to represent the driving conditions obtained during a given receding horizon.

The application of the method with both clustering or adaptive approaches to real world driving
conditions show that it is able to provide near-optimal results without any information of future
driving conditions.
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Appendix A. Extension of the proposed method for parallel HEV architectures

Consider a parallel HEV in which a conventional engine transmission powertrain is assisted
by an electrical motor/generator supplied by a battery, so the engine and the motor can drive the
vehicle individually or simultaneously. Since the engine is mechanically coupled to the wheels,
the vehicle speed and the gear ratio force the engine to operate at a defined speed at each instant.
Then, while for a given power demand series HEVs allow to choose the engine speed which
leads to the lower fuel consumption, in parallel HEVs the engine speed is imposed by the vehicle
operating conditions.

The main implication of this difference in powertrain topology on the generalisation of the
proposed method to parallel HEVs is that the probability densities of the combinations between
engine speed and torque demands (Pr(ne,Te)) shown in the upper plot of figure 2 should be
considered instead of the simpler histograms of figure 3. In this sense, for the particular case of a
parallel HEV, equation (10) becomes dependent on engine speed (ne) and demanded torque (Te),
and reads:

s = arg min
s

{(
∆Eb − E {∆Eb (ne,Te, Eb, s)}

)2
}

(A.1)

where discretizing the set of possible engine speeds and torque demands in nn and nT values
respectively, the expected battery energy consumption (∆Eb) after a given time horizon (β) can
be obtained as:

E {∆Eb} = β

nn∑
i=1

nT∑
j=1

Pr
(
ne,i,Te, j

)
Pb

(
ne,i,Te, j, s

)
(A.2)

Note that the effect of Eb on Pb has been neglected, which is a suitable approach if the S oE
varies in a narrow range. As an example, figure A.12 shows the evolution of the fuel consump-
tion, s parameter and S oE for both the s-ECMS strategy and the DP solution. It is shown that
with time horizons of the same order than those used in the series HEV, the proposed control
method is able to sustain the battery state of energy in the case of the parallel architecture, in this
case with a penalty in fuel consumption of 3.5%.

It should be noted that the fuel penalty obtained for the HEV configuration (0.5%) has been
increased to 3.5% when applying the method to a parallel HEV. The reason for this behaviour is
related to the HEV architecture itself, since the engine is completely decoupled from the wheels
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Figure A.12: Evolution of the fuel consumption (upper plot), s parameter (middle plot) and S oE (bottom plot) for a
parallel HEV during an arbitrary driving cycle with the proposed adaptive method and β=100 s (black line). The dotted
line represents the optimal state of energy and fuel consumption evolution according to the DP solution.
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in the series HEV, it can work in a narrow area near its sweet-spot, and then differences in fuel
consumption between strategies with the same final S oE are small, and the EMP is reduced to
find a charge sustaining strategy. In the case of the parallel HEV the operating range of the engine
is extended, then differences in fuel consumption between strategies are amplified.
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