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ABSTRACT

In this paper a computational study was carried out in order to investigate the influence of the use of
elliptical orifices on the inner nozzle flow and cavitation development. With this aim, a large
number of injection conditions have been simulated and analysed for 5 different nozzles: four
nozzles with different elliptical orifices and one standard nozzle with circular orifices. The four
elliptical nozzles differ from each other in the orientation of the major axis (vertical or horizontal)
and in the eccentricity value, but keeping the same outlet section in all cases. The comparison has
been made in terms of mass flow, momentum flux and other important non-dimensional parameters
which help to describe the behaviour of the inner nozzle flow: discharge coefficient (Cy), area
coefficient (C,) and velocity coefficient (C,). The simulations have been done with a code able to
simulate the flow under either cavitating or non-cavitating conditions. This code has been
previously validated using experimental measurements over the standard nozzle with circular
orifices. The main results of the investigation have shown how the different geometries modify the
critical cavitation conditions as well as the discharge coefficient and the effective velocity. In
particular, elliptical geometries with vertically oriented major axis are less prone to cavitate and
have a lower discharge coefficient, whereas elliptical geometries with horizontally oriented major

axis are more prone to cavitate and show a higher discharge coefficient.
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m, mass flow

P orifice wetted perimeter

p  pressure

Pp discharge back pressure

P; injection pressure

Psat Vaporisation pressure
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t time
u velocity
i averaged velocity
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GREEK SYMBOLS:
AP pressure drop, 4P=P; -Py
¥ fluid compressibility

?  liquid compressibility



¥, vapour compressibility

y  vapour mass fraction

p o fluid viscosity

K liquid viscosity

My  vapour viscosity

p  fluid density

p1 liquid density

pisat l1quid density at saturation

p°  liquid density at a given temperature condition
pusat Vapour density at saturation

pv  Vvapour density

1. INTRODUCTION

With further demands in the future to reduce the emission levels for diesel engines, after treatment
devices like particulate traps and selective catalytic reduction seem inevitable. Even though those
devices will be necessary, it is important to keep the raw emissions low in order to minimize the
cost and the complexity of the devices. The main emissions of diesel engines are particulates and
nitrogen oxides. The characteristics of the diesel engine tend to trade off these emissions, so that
one emission is increased when the other one is reduced. Finding a technical solution that reduces

both kind of emissions (or at least reduces one while the second remains unchanged over most of



the engine operating range) is of great interest. One of the most important processes controlling the
combustion efficiency and therefore the emissions formation is the air-fuel mixing process. It is
well known that the time for the combustion Kinetics is fast compared to the time of mixing ([1]).
The mixing process is therefore controlling the combustion. Once the fuel is injected into the
combustion chamber, the fuel mixes with air and vaporizes. The air-fuel mixing process depends on
spray characteristics, which in turn depend on the injection pressure and the dimensions and

geometry of the nozzle orifice among other factors ([2][3][4][5][6]).

Some investigations in the literature have shown that air entrainment of jets injected into gas is
considerably increased if elliptic orifices are used instead of circular orifices ([7][8]). In other
studies where liquid fuel was injected into gas trough elliptical nozzles researchers have shown that
the spray cone angle in the minor axis plane is higher than the spray cone angle in the major axis
plane, indicating that air entrainment is enhanced ([9]). The same behaviour has been shown in
more recent research; for example in Lee et al. [10] who compared an elliptical geometry nozzle
hole with a conventional cylindrical one. From the main results of their study, it was shown that the
spray tip penetration became shorter and the spray cone angle became wider with the elliptical
geometry due to the fast break up of the fuel liquid column. Hong et al. [11] also studied the effect
of elliptical nozzles on the spray characteristics and they observed a larger spray angle in the

elliptical nozzle than in the circular nozzles.

Since improved air entrainment could have positive effects on the emissions of NOx and
particulates, Matsson et al. [12] performed an investigation on the influence of non-circular orifice
geometries. The tests were made using a passenger car diesel engine and a single cylinder engine
with optical access. The results showed a reduction in NOx for the nozzle with elliptical orifices in
comparison with the reference circular nozzle. Nevertheless, the use of elliptical nozzles did not

affect on soot particulates.



Although there are a lot of referenced works in the literature, most of them, with exception of Hong
et al. [11], aim at analysing the influence of the use of elliptical nozzles on the spray and
combustion process, but treating the nozzle itself as a black box, thus without investigating which
are the changes in the flow pattern inside the nozzle that promote the improvement of the air-fuel
mixing process through the increment of the spray cone angle. Only Hong et al. [11] have tried to
link the internal nozzle flow characteristics in terms of cavitation appearance and intensity to the
shape of the spray when comparing circular and elliptical nozzle holes. With this aim, they used
non-conventional transparent acrylic symmetric models for visualization purposes. The cross-
sectional areas of circular and elliptical nozzles were the same and based on a 3mm diameter
circular nozzle, therefore quite far from being representative values for standard nozzle hole
diameters in Diesel injectors (0.1-0.2 mm). The authors reported a lower discharge coefficient for
the elliptical nozzles and a lower discharge coefficient than that of the circular nozzle at the same

Reynolds number.

The aim of the present paper has been to evaluate the potential of using non-conventional elliptical
nozzle holes by means of CFD (computational fluid dynamics) calculations, comparing the results
of four different elliptical nozzles with a base standard circular nozzle hole. The comparison has
been made in terms of mass flow, momentum flux and other important non-dimensional parameters
which are important features describing the behaviour of the inner nozzle flow: discharge
coefficient (Cy), area coefficient (C,) and velocity coefficient (C,). Furthermore, the fact that non-
convergent holes are used makes the nozzles prone to cavitate ([13]).Thus, critical conditions for

cavitation inception, its development and morphology have also been studied and analysed.

The final objective is to identify a connection between the different expected flow pattern in
elliptical nozzles and the different spray cone angle behaviour confirmed in the experiments

referenced above. If we consider two different nozzles, the former with elliptical orifices and the



latter with circular orifices, since the elliptical orifice has a bigger perimeter for the same cross-
sectional area, atomization due to air-fuel interaction is supposed to be enhanced, which is in
agreement with the experimental results. Nevertheless, there should also be other reasons as far as
flow characteristics are concerned: differences in flow regime, cavitation inception and
development, effective injection velocity, etc. The present paper will be focused on this kind of

differences.

For that purpose, a Homogeneous Equilibrium Model able to model the cavitation phenomenon was
used. The code is implemented in the version 1.5 of OpenFOAMR [14]. This code has been
extensively validated with mass flow measurements, momentum flux measurements and injection
velocity at the nozzle exit. The validation was done over one of the nozzles used in the present
investigation: the standard nozzle with circular orifices. The results obtained from simulations and
their comparison with the experimental data showed that the model is able to predict the behaviour

of the fluid in both cavitating and non-cavitating conditions with high level of confidence.

As far as the structure of the paper is concerned, it has been divided in 6 sections. First of all, in
section 2, a description of the CFD approach is made, where the equations governing the model and
how they are solved are explained in detail. Following, the geometry characteristics of the five
nozzles, the injection conditions (injection pressure and backpressure) and fluid properties used for
the simulations are described in section 3 where a validation of the cavitation model is also shown.
In section 4, results of mass flow, momentum flux and flow coefficients are presented and analysed
for all the nozzles. A special attention is paid to cavitation inception conditions and morphology in
the different nozzles tested. The influence of cavitation on the flow parameters is widely analysed
and discussed in this section. Due to the high volume of results and comparisons, a synthesis is
presented in section 5, mainly focusing on the mixing process. Finally, the main conclusions of the

investigation are drawn in section 6.



2. DESCRIPTION OF THE CFD APPROACH

2.1 Cavitation modelling.

As explained in [15] three approaches are mainly considered for modelling cavitation: Interface
tracking methods, two-fluid flow models and continuum nozzle flow models or homogeneous
equilibrium models (HEM models). In the case we are dealing with, the use of a HEM with a
barotropic equation of state seems to be the most suitable method due to the high pressures and
velocities that occur within diesel injectors. The code assumes that both liquid and vapour phases

are completely mixed in each cell and the compressibility of both phases is taken into account.

In the code implemented in OpenFOAM, a barotropic equation that relates pressure and density
derivatives is used as a closure of the Navier-Stokes equations, where YV is the fluid compressibility,

defined as the inverse of the squared speed of sound:

ap(t, p(%,1)) _y 1)
ap . B
ol ®)
c

The amount of vapour in the fluid is calculated with the void fraction y, where the extreme
conditions y = 0 and y =1 indicate that only one phase is presented in the fluid: y = 0 for non-

cavitating conditions (only liquid phase); y = 1 for fully cavitating conditions (only vapour phase).

_ . P — Pisat (3)
Yy = max | min| —————,1,0
pv,sat - pl,sat

The compressibility of the mixture is calculated from ¥, and ¥, (vapour and liquid compressibility,

respectively) using a linear model. Although more accurate and complicated models can be found in



the literature (Chung [16] and Wallis [17]), the linear model has been chosen due to its convergence

and stability.
Y =y¥ +(1-p)¥, 4)

In the case where there is only vapour or liquid, the following linear equation of state can be

derived from equation (1) if the speed of sound is considered constant:

Py = TP

pr=p +¥p

The linear model has also been used to calculate the density and the viscosity of the mixture.

p=A-Y)pl+¥ p ()

=yl + (1 -y, (6)

The iteration process to numerically solve the fluid behaviour starts with the continuity equation (7)

to get a provisional density.

ap (7)

% +V-(pu) =0
According to previous studies performed by the authors [15], the divergence term V - (pu)is
discretized in the space by using a Gauss upwind scheme to improve the stability, whereas an
implicit discretisation in time is used for the density in the divergence term. With respect to the

partial derivative over time, an Euler scheme is used for time discretisation. When the provisional

density is computed, preliminary values for y and ¥ are determined using equations (3) and (4).

The next step is the calculation of a predictor for the velocity from the momentum conservation



equation (equation (8)). The same procedure as before is followed: an Euler scheme for the partial

derivatives over time and a Gauss upwind scheme for the divergence terms.

d(pti)
ot

(8)

+V-(pi-8) =—-Vp+V-(ui+vu))

Then the continuity equation (equation (7)) is modified with the equation of state (equation (5)) and

the following equation is solved by an iterative PISO algorithm:

d(¥p)
ot

. 9 ow B 9)
- (pl + (qjl - lpv)psat) a - psat% +V- (pu) =0

When the continuity convergence has been reached, the variables p, y and ¥ are updated using the

equations (5), (4) and (3), and the PISO algorithm is started again until convergence.

2.2 Turbulence modelling

The turbulence is modelled using a RANS (Reynolds-averaged Navier-Stokes) method. A RNG k-¢

model [18] is used for the present work.
The selection of this model is based on three different reasons:
From the theoretical point of view:

e This model is supposed to provide improved predictions compared to the standard k- in the
case of simulations of flows with high streamline curvature and zones with flow detachment.

These are both typical characteristics of multi-hole nozzles.

e The way it models the effective viscosity makes it possible to better handle low-Reynolds-
number flows and near-wall flows. In the case of Diesel nozzles wall effects are extremely

important because of the small dimensions of the orifices diameter. As far as the Reynolds



number is concerned, it depends on the injection conditions and, as it can be seen in section
4.3, it can vary from relatively low values, about 5000 (at 30 MPa of injection pressure), to
high values about 25000 (at 160 MPa of injection pressure). Therefore, since a wide range
of variation of Reynolds number is expected, RNG k-¢ is expected to be a more suitable
turbulence model than standard k-¢ due to its better adaptability to Reynolds number

variations.

e From a practical point of view, when comparing computational results with experiments for
validation purposes the RNG k-¢ model provides the results which are closer to the

experimental ones.

3. NUMERICAL SIMULATIONS DESCRIPTION

3.1 Nozzles geometry and calculation set-up

The computational study was performed over five six-hole microsac nozzles: four of them with a
non-conventional (elliptical) orifice shape and one with a standard circular orifice shape. In Figure
1, the different topologies of tested nozzles are depicted. Because of nozzle geometry and in order
to speed up the calculations, the domain has been reduced to (1/6) i.e. 60° of the total nozzle. The
geometries represent full needle lift conditions (i.e. 250 um). As it can be seen from that Figure,
apart from the standard nozzle (so-called circular in the Figure), there are four elliptical nozzles.
Nozzles so-called Elip-H1 and Elip-H2 have the major axis of the ellipse horizontally oriented and
differ from each other in the eccentricity value. Nozzles so-called Elip-V1 and Elip-V2 have the

major axis vertically oriented and also differ in their eccentricity value.

Table 1 describes the geometrical parameters of all nozzles according to the nomenclature used in



Figure 2. In the Table, the eccentricity, e, evaluates the difference between the elliptical cross

section and a circular section. It is defined as:

e=+1—-(b/a)? (10)

where a and b are the major and minor axis of the ellipse, respectively. For a circular section, the
eccentricity is equal to zero. For an elliptical section, the closer the eccentricity is to 1, the higher
the level of deformation (a and b take very different values). In our case, Elip-H1 and Elip-V1
nozzles have the same eccentricity value (0.734) with a relative low level of deformation with
regards to the circular one, whereas Elip-H2 and Elip-V2 nozzles show a higher degree of
eccentricity (0.866) and therefore higher level of deformation when compared to the circular one.
To isolate the influence of the eccentricity and orifice shape, the cross sectional area is the same in

all cases and equivalent to the area of a circular section of diameter equal to 170 pum.
The perimeter is calculated using the equation (11).
P=4-a-E(e) (11)

Where E (e)is a function that depends on eccentricity and is defined as:
E(e) = V1= eZsin? 6 do (12)

This parameter is useful when plotting the flow parameters as a function of the Reynolds number,

which in turns depends on the wet perimeter.

As far as the other geometrical parameters are concerned, such as the rounding radius (r), orifice

length (L) and nozzle angle (&), the same and quite standard values have been chosen for all cases

([191[20D).

For the investigation, the geometries have been discretised in hexahedral cells keeping a quite



uniform structured grid with a small transition zone just before the orifice inlet. A detail of the mesh
is given in Figure 4. Sensitivity studies of the mesh performed in previous studies ([20]) made it
possible to choose the most appropriate mesh refinements for the RANS calculations. As a result of
those studies, it was established that the cell size in the hole should vary from around 7 um in the
orifice core to a minimum value of 1.15 um in the near-wall region. For the rest of the cells in the

nozzle, the cell size is fixed to 22.5 um. With this cell size, the final mesh has around 240,000 cells.

As an indicator of the mesh quality, the mean and maximum values for the dimensionless distance,
y+, were evaluated in the whole domain and for every nozzle. A distinction has been made between
the orifice (where cavitation appears and most severe gradients of pressure and velocity are
expected) and the rest of the geometry because of the different refinement requirements. The
maximum and mean values of y+ in the orifice’s wall are 5 and 1, respectively, whereas the same
values for the rest of the walls are 15 and 5 as can be seen in Figure 5 where the mean y+ values is
depicted for all the nozzles. This result belongs to an operating point of 160 MPa of injection
pressure and 3MPa of discharge pressure, and, therefore, it has been calculated under the most

severe pressure drop conditions among the total simulated points.

The grid infrastructure of the Spanish National Grid Initiative (es-NGI) [21] was used to perform
some of the computation of the simulations. This grid infrastructure is part of the European Grid
Initiative [22] that provides a stable Grid infrastructure for e-Science at European level. The es-NGl
is composed of 15 sites with more than 12,000 CPUs and 300 TB of storage space. The
calculations for this problem used above 42,000 CPU hours. Furthermore, the supercomputer Tirant
at the University of Valencia (Spain) [23] was also used to perform a vast number of simulations(in
particular those simulating high backpressures). In this case the calculations used above 15,000

CPU hours. More details about the grid application are given in [21][22].



3.2 Boundary conditions and fluid properties

The importance of choosing an appropriate set-up for the boundary conditions in order to ensure the
convergence and the accuracy of the simulations is well-known. In our case, as depicted in Figure 3,
a fixed pressure condition has been used at the inlet, where the injection pressure is set, whereas a
mean pressure condition has been established for the outlet (backpressure). The mean pressure
condition keeps the mean desirable value, allowing zones with very low pressures as a result of the
presence of vapour in the flow. This boundary avoids the imposition of a rigorous pressure outlet
that could affect the vapour structures developed as a consequence of the cavitation phenomenon. A
non-slip condition for the velocity has been used at the walls. Finally, symmetry conditions have

been employed at the symmetry surfaces.

In order to extensively characterize and compare all nozzles in both cavitating and non-cavitating
conditions, two representative injection pressures of real engine running conditions have been
considered: 160 MPa and 30 MPa. As far as the backpressure is concerned, 7 different values have
been simulated for the case of 30 MPa and 17 different values for the case of 160 MPa. All the
pressure conditions simulated can be seen in Table 2. The aforementioned simulations pursued a
double goal: on one hand, to characterize and compare all nozzles in a wide range of Reynolds
number and so, from a smaller to a higher degree of turbulence; on the other hand, to capture the
injection conditions at which cavitation starts (critical cavitation conditions). Those conditions are
expected to be different for each nozzle, and therefore the flow parameters describing the nature of

the flow could behave in a different manner depending on the geometry.

With respect to the fluid properties introduced in the calculations, the density and viscosity values

were taken from a commercial diesel fuel (Repsol CEC RF-06-99) at 25°C. The liquid



compressibility was calculated from speed of sound measurements in diesel fuel and the vapour

properties have been obtained from a similar fuel from Karrholm et al. in [24].

3.3 Cavitation model validation.

As stated in the introduction, the code has been extensively validated using experimental
measurements of a standard nozzle with circular orifices. For that nozzle, mass flow measurements
and momentum flux measurements were carried out. It is important to remark that momentum flux,
apart from being one of the most important parameters that control the air-fuel mixing process in
the spray ([25][26]), provide, in combination with mass flow measurements, important information

such as effective injection velocity or effective injection section.

In Figure 6, a comparison between experiments and simulations in terms of mass flow rate,
momentum flux and effective velocity is shown for a nozzle with six cylindrical orifices with a

diameter of 170 pm.

The mass flow rate tests were performed with an Injection Rate Discharge Curve Indicator
commercial System, whose measuring principle is the Bosch method. Four different backpressures

were used (3, 5, 7 and 9 MPa), keeping the injection pressure constant at 160 MPa.

The averaged values of the mass flow profiles during the time in which the needle is fully open are
plotted in the upper part of Figure 6 (represented with triangles) together with the numerical
simulations results for the needle lift 250 um (represented with rhombus). These values have been
represented as a function of the squared root of the pressure drop, being the pressure drop the
difference between the injection pressure and the backpressure. The fact that the mass flow is
constant for all the pressure conditions indicates that the nozzle is cavitating ([15][19][27][28]). The

errors between the experimental and numerical results displayed above each couple of symbols are



always between 2 and 5% approximately, which means a high degree of agreement with

experimental data.

Momentum flux can be measured in a test rig based on a pressurized chamber with a calibrated
piezo-electric sensor. This sensor measures the force of the spray injected, which is equivalent to
the spray momentum flux ([29]). The experimental results of the momentum flux tests are
represented with triangles against CFD results in the bottom part of Figure 6 on the left. As can be
seen, the deviation between the experimental values and momentum flux results predicted by the
code at full needle lift for all the validated pressure conditions is less than 2%, showing the great

ability of the code to reproduce the behaviour of the flow.

Finally, dividing the momentum flux by the mass flow rate, the effective injection velocity at the
nozzle outlet is obtained. The results of the effective velocity obtained experimentally against CFD

results can be seen in the bottom part of Figure 6 on the right.

For all the points simulated, the code underestimates the effective velocity with a maximum
deviation of 5%. Taking into account the mass flow, momentum flux and effective velocity

validation, the code allows to accurately predict the flow features with high level of confidence.

Details of the validation and the explanation of the experimental measurements and the

experimental facilities they come from are given in [15] and [19].

4. COMPUTATIONAL RESULTS.

4.1 Mass flow analysis and cavitation inception detection.

Figure 7 shows the mass flow results for both injection pressures. Each point corresponds to a

different backpressure. Although slight differences can be observed between the nozzles because of



the wide range of variation of the mass flow with the backpressure, the Elip-H2 nozzle presents the
highest mass flow for all injection conditions in general terms, whereas the Elip-V1 nozzle has the
lowest mass flow. These differences will be better observed and analysed when comparing the

results in terms of dimensionless parameters (values comprised between 0 and 1).

Aside from the differences found between nozzles, a similar behaviour for all nozzles can be

observed for both injection pressures: the mass flow increases linearly with the square root of the

pressure differential@/ﬂ) until a point where it stabilizes. At this point, a flow choking occurs,
which is equivalent to saying that it remains unchanged whichever the backpressure. Pressure
conditions needed to reach this situation are called critical cavitation conditions (CCC). The
detection of the beginning of mass flow choking is often used to experimentally detect cavitation in
real nozzles ([13][15][19][30][31][32]). The critical cavitation conditions depend on the geometry
([19][30][31][32]). The critical cavitation conditions are given in Table 3: for each injection
pressure, the backpressure needed to induce the nozzle to cavitate is provided. The higher the
backpressure needed, the more prone the nozzle is to cavitate. Regarding the results for 30 MPa of
injection pressure, the cavitation inception for Elip-H2 nozzle takes place when the backpressure
decreases until 7.21 MPa (more prone to cavitate), whereas for Elip-V1 nozzle backpressure needs
to be decreased to 7.01 MPa. If nozzles are arranged in terms of tendency to cavitation we find:
Elip-H2, circular, Elip-H1, Elip-V2 and Elip-V1 (with small differences between the circular and
horizontal elliptical nozzles). As far as the results for the injection pressure of 160 MPa are
concerned, the same order is obtained, except for Elip-H2 and circular nozzles, which in this case,
interchange their position at high Reynolds number with respect to the order established for low
injection pressure conditions. Again, there are small differences between circular and horizontal

elliptical nozzles.

As a first important result, it can be established that, as far as cavitation inception is concerned,



major axis horizontally-oriented elliptical nozzles are more prone to cavitate than major axis
vertically-oriented elliptical nozzles. In addition, the cavitation tendency found in the former is

similar to circular nozzles.

This behaviour is related to the deflection the flow experiences when it enters the orifice through
the upper corner as seen from the needle seat. In the case of major axis vertically-oriented elliptical
nozzles, the entry of the flow to the orifice, which preferably takes place through its upper part, is
facilitated. Thus, they are less prone to cavitate than the other cases. Considering only the major
axis vertically-oriented elliptical nozzles, that proneness is higher the larger the eccentricity is (Elip-
V2 is more prone to cavitate than Elip-V1). In the case of the major axis horizontally-oriented
elliptical nozzles, the deflection of the streamlines in the upper corner of the orifice inlet is more
important than that of the vertically-oriented ones. Thus, this kind of nozzle is more prone to
cavitate. In addition, as it happened with the vertically-oriented nozzles, the higher the eccentricity

is, the higher the proneness to cavitate (Elip-H2 is more prone to cavitate than Elip-H1).

Consequences of this behaviour will be analyzed in the following sections.

4.2 Comparison in terms of Momentum flux and effective velocity.

In Figure 8, momentum flux for both injection pressures and all backpressures is depicted against
the square root of pressure drop for all nozzles. As can be seen for all nozzles, momentum flux
increases with the squared root of pressure drop, /P; — P,. However, unlike the mass flow results,
momentum flux does not suffer any collapse with cavitation development [29]. As in the case of
mass flow, although there are small differences between nozzles, the Elip-H2 nozzle has the highest

momentum flux in general terms, whereas the Elip-V1 nozzle presents the lowest.



With mass flow and momentum flux data, the effective injection velocity can be calculated by
dividing the momentum flux by the mass flow. This effective velocity is plotted as a function of the

pressure drop in Figure 9.

In the Figures it is easy to appreciate an increase in the slope of the curve when cavitating
conditions are reached. For instance, in the case of 30 MPa, according to Table 3, the backpressure

for reaching cavitating conditions is around 7.01-7.21 MPa depending on the nozzle geometry. Thus

the value of VAP ~4.8 MPa. For higher values ofv/AP, the nozzles cavitate and the change in the
slope means that the increment in effective velocity is higher than it would be expected if only the
increment of pressure drop was considered. This behaviour is one of the most important
consequences of cavitation and is due to the viscosity reduction in the zone occupied by the vapour
phase along the orifice wall, which in turn reduces the friction losses in the channel. This finding is
experimentally and numerically analyzed in [15]. If the nozzles are compared in terms of effective
velocity, higher injection velocities are achieved specially in cavitating conditions for nozzle Elip-

H2, following nozzles Elip-H1 and circular, and finally Elip-V2 and Elip-V1.
4.3 Flow coefficients comparison.

Flow coefficients are useful to analyze the behaviour of the flow. Flow coefficients can be
represented against the Reynolds number or a cavitation number if this phenomenon is susceptible

to occur, as is the case in the tested nozzles.

Figure 10 displays the discharge coefficient, velocity coefficient and area coefficient for all nozzles
versus the Reynolds number. Results for the injection pressure of 30 MPa and 160 MPa are
depicted on the left and on the right of the Figure, respectively. The Reynolds number has been
calculated using equation (13), which depends on hydraulic diameter, Dy, the previously analysed

effective velocity, uex and the kinematic viscosity, v. Hydraulic diameter is evaluated using



equation (14):

Re = 2etl (13)
4 A

where the values of wetted perimeter have been calculated and are given in Table 1.

Obviously, the hydraulic diameter matches the geometrical diameter for the circular nozzle, but it
has been evaluated for the different elliptical nozzles. As equation (14) reflects, for the same
conditions of injection pressure and backpressure, the variation in the wetted perimeter amongst the
nozzles induces variations on the hydraulic diameter up to a 6% from Elip-V2 and Elip-H2 nozzles
when compared to Elip-V1 and Elip-H1; and up to a 9% if the former is compared to the circular
one. As a consequence, these differences will be transmitted to the Reynolds number for a given
condition of injection pressure and backpressure. This fact will have repercussions on the hydraulic

behaviour of the nozzles, as it will be analyzed in short.

Both at low and high injection pressures, in the flow coefficients graphs (recall Figure 10) two
different zones can clearly be distinguished: a zone corresponding to non-cavitating conditions (low
or medium Reynolds number) and a zone corresponding to cavitating conditions (high Reynolds

number).

Attending to the results, the following considerations can be made regarding the three flow

coefficients, depending on whether the nozzle is in cavitating or non-cavitating conditions.

4.3.1 Discharge coefficient

With regard to the discharge coefficient, which is representative of the global losses in the nozzle, it

shows a quite stable behaviour in the non-cavitating region, reaching maximum values of about



0.85 depending on the nozzle. The maximum value (which implies lower global losses) corresponds
to the Elip-H2 nozzle, whereas the lower value (higher level of losses) is found for the Elip-V1
nozzle. The rest of nozzles are found in between, with a similar behaviour both at low and high
pressure. The major axis horizontally-oriented elliptical nozzles exhibit a higher discharge
coefficient than the major axis vertically-oriented ones. The circular nozzle displays intermediate

values.

In the cavitating zone, due to the mass flow collapse, the discharge coefficient experiences an
abrupt drop. This drop starts at the point corresponding to the cavitation inception, characterized by
a critical Reynolds number related to the injection conditions displayed in Table 3. The lowest
critical Reynolds numbers at which cavitation starts are found for Elip-H2 and Elip-V2 nozzles,
whereas the highest values are given for the Elip-H1 and Elip-V1 nozzles. The circular nozzle
shows intermediate values, but closer to the Elip-H2 and Elip-V2 group. A lower critical Reynolds
number implies that the discharge coefficient fall due to cavitation begins at lower Reynolds
numbers for the corresponding nozzles. Thus, if the discharge coefficients are compared for a given
Reynolds number in cavitating conditions, the lowest values are obtained for Elip-H2 and Elip-V2
nozzles and the highest ones for Elip-H1 and Elip-V1 nozzles. This means that, if they are
compared for a certain Reynolds number (which implies different injection pressure and
backpressure conditions) high enough to bring all the nozzles to cavitating conditions, the cavitation

intensity is higher in the Elip-H2 nozzle, followed by Elip-V2, circular, Elip-V1 and finally Elip-H1.

This behaviour will have an impact on the effective area and effective velocity of injection, as it

will be seen next.

4.3.2 Area and velocity coefficients

As seen in Figure 10, the area coefficient takes values equal to one in non-cavitating conditions



([15][19]). Therefore, for these conditions, the velocity coefficient values equal the discharge
coefficient ones. As was the case for the discharge coefficient, the area coefficient falls drastically
once the cavitation phenomenon starts. The fact that the nozzles differ on the critical Reynolds
number from which this phenomenon starts to occur makes that, as it happened to the discharge
coefficient, for a given Reynolds number beyond the critical one, Elip-H2 and Elip-V2 nozzles
show a lower area coefficient. On the other hand, Elip-H1 and Elip-V1 exhibit a higher value of this
coefficient. As previously stated, this fact bears on the different intensity of the cavitation found if

the nozzles are compared for a given Reynolds number.

The velocity coefficient behaviour is in agreement with the results just analyzed. Its value equals
the discharge coefficient for non-cavitating conditions, since the area coefficient equals the unity. In
cavitating conditions, its increase is greater the higher the cavitation intensity is. Thus, for a given
Reynolds number, the highest values of the velocity coefficient are found for Elip-H2, Elip-V2 and
the circular nozzles, while the lower values are found for the elliptical nozzles of a lower

eccentricity Elip-H1 and Elip-V1.

The same results can be analyzed if the coefficients here studied are depicted against the cavitation

number.

There are several definitions for the cavitation number ([19][30][32]). One of them is the parameter
K, defined as a function of the injection pressure P;, the backpressure Py, and the vaporisation
pressure Pyap,as equation (15) states. Given that the fuel vaporisation pressure is much lower than

the injection pressure, it is usual to disregard the term Py, in the numerator.

Pi—Pyq
K== (15)

The way this parameter is defined, as the backpressure is reduced for a given pressure, the



denominator grows larger and the numerator remains constant. This means that, the greater the
pressure difference the nozzle is submitted to, the lower the value of K. The value of K related to
the critical cavitation conditions is named as the critical cavitation number, K. Attending to the
critical discharge conditions depicted in Table 3, the value of Kj; of the studied nozzles is found
among 1.1 and 1.2 depending on the nozzle and the injection pressure. If the backpressure is further
reduced once those conditions are reached, K takes lower values than the critical one, reaching K=
1 when the backpressure equals the unity, thus reaching the maximum intensity of cavitation for the

injection pressure level considered.

It is typical to represent the non-dimensional flow parameters as a function of the cavitation number
instead of the Reynolds number when the influence of the cavitation is treated ([28][29]
[30][31]132][33][34][35][36]). The flow coefficients are plotted against the square root of K in
Figure 11. Even though the differences found among the nozzles and the behaviours explained for
the different flow coefficients are essentially the same, a collapse of the operating points with a
strong linear behaviour is noticed in the cavitating zone. The linear behaviour of the discharge
coefficient with the square cavitation number K in cavitating conditions was first introduced by
Nurick [35] and has been contrasted in several experimental works ([28][29][30][31][34][35]). In
particular, all of them observed a linear behaviour when plotting the discharge coefficient of
cavitating nozzles against the cavitation number, K, in logarithmic scale. The slope of that line was
0.5. Although the logarithmic scale for K is preferable, the same result is obtained when plotting the
discharge coefficient against the square root of the cavitation number in a standard linear scale as in

the results presented here.

From this new representation it is deduced that the differences between nozzles in terms of K, even

when they exist, are less significant than those in terms of the Reynolds number.



4.4 Comparison in terms of cavitation morphology.

In order to compare the morphology of the cavitation phenomenon in the different nozzles, mean
images of the distribution of cavitation along the orifices of the different nozzles are displayed in
Figure 12. This figure shows the zone with vapour mass fraction (y) between 0.1 and 1, thus
representing the zone occupied by vapour. Results correspond to the injection pressure of 30 MPa
and three different backpressures (3 MPa, 5 MPa and 7 MPa). On the basis of Table 3, the last
backpressure (7 MPa) would be representative of the beginning of the mass flow collapse if the
differences from nozzle to nozzle were neglected. The backpressures of 5 and 3 MPa would be
representative of a higher grade of cavitation intensity. Having a look at the graphs corresponding to
Pp = 7 MPa, the morphology agrees with what was said in section 4.1 (Table 3). The intensity of
cavitation is greater in the Elip-H2 nozzle, followed by the circular one, Elip-H1, Elip-V2 and Elip-
V1. As it was established there, the differences the circular has with respect to the major axis
horizontally oriented elliptical nozzles are lower than those it has with respect to the major axis
vertically oriented ones. If the attention is drawn to the lower backpressures, which result on a
higher cavitation development, the differences at the morphology are reduced. However, a clear
difference between the major axis horizontally oriented elliptical nozzles and the vertically oriented
ones is noticed. In the former ones, the vapour zone appears closer to the wall, whereas the vapour
zone is more displaced towards the centre of the nozzle for the latter. This behaviour can be
observed more clearly in Figure 13, where the vapour mass fraction is depicted in the same
operating conditions as the Figure 12 but having a look only at the middle section of the nozzle. The
cavitation morphology for the circular nozzle is closer to the major axis horizontally oriented

elliptical nozzles.

This remark is also consistent with the effective velocity of injection results. Indeed, as it has been

stated previously, one of the consequences of the cavitation is the reduction of the wall friction and



an increase in the injection effective velocity. This behaviour will be more important if the vapour
zone is found along the orifice wall as it happens in the case of the major axis horizontally oriented
nozzles and in the circular one, where the vapour extends along the whole upper part of the orifice.
For these nozzles, the effective velocity is higher than that of the major axis vertically oriented ones

for given injection conditions, as it was established in Figure 9.

It must be noted that the calculations in this work have been performed in steady-state conditions,
even when the diesel injection process is, indeed, an unsteady phenomenon. However, the influence
of the needle lift on the injection process was already studied by the authors in [19]. It was found
that, for low needle lifts, cavitation appears in the area upstream the inlet hole section, where the
needle closes against the nozzle wall. It is not until the needle reaches medium-high needle lifts that
the vapour bubbles are displaced towards the nozzle orifice itself, showing a pattern similar to that
depicted in Figures 12 and 13. The inclusion of the transient stage in the calculations would mainly
affect the region upstream the orifice, which is the same for all the nozzles studied. Since this work
intends to compare the different elliptical geometries, the transient phase is not expected to add any

additional findings to the study.

5. SYNTHESIS OF RESULTS. MIXING PROCESS ANALYSIS.

5.1 Synthesis of results.

The peculiarities of the flow inside 5 nozzles (a circular section one and 4 elliptical ones) have been
studied along the preceding sections. The analysis has been focused on the study of the cavitation
phenomenon, its inception, morphology and its repercussion on the flow, condensing this last
information in the three non-dimensional parameters. Varied injection conditions have been

analyzed nevertheless in order to offer a global vision that includes both cavitating and non-



cavitating conditions.

The following partial results have been extracted from the analysis

5.1.1 Non-cavitating conditions.

For certain conditions of injection within the non-cavitating regime, the major axis horizontally
oriented elliptical nozzles have a higher discharge coefficient than the vertically oriented ones. In
either of them, the discharge coefficient is higher the greater the eccentricity. The values for the
circular nozzle are located in between both kinds of nozzles. This fact constitutes a first positive
point for the major axis horizontally oriented elliptical nozzles when compared to the conventional

ones, since it is significant of their lower level of losses.

5.1.2 Cavitating conditions.

The major axis horizontally oriented elliptical nozzles are more prone to cavitate. This proneness is
higher the larger the eccentricity, even though it is not greater than the one corresponding to the
standard circular nozzle. The major axis vertically oriented elliptical nozzles are the less prone to

cavitate.

With regard to the morphology, the vapour zone is more attached to the wall in the major axis
horizontally oriented elliptical nozzles, whereas it is more displaced towards the centre of the
orifice in the vertically oriented ones. The cavitation morphology for the circular nozzles is very
similar to the former ones. This morphology seems to be strongly related to what happens to one of
the most important parameters from the subsequent mixture formation phenomenon: the effective
velocity of injection. In fact, the nozzle with a greater effective velocity of injection is the major
axis horizontally oriented one with the higher eccentricity, followed closely by the other

horizontally oriented one and the circular. The vertically oriented ones show lower values of



effective velocity of injection. As previously stated, the explanation lies on the decrease in viscosity
in the near-wall zone, that leads to a more square velocity profile and hence a higher effective
velocity ([15]). Obviously, this effect is more noticeable in the major axis horizontally oriented

elliptical nozzles in agreement with the observed morphology.

5.2 Mixing process prediction.

As pointed out in the introduction, the elliptical nozzles are supposed to achieve a better
atomization by the mere fact of increasing the fuel-air interaction zone when the fuel is injected to
the combustion chamber. The perimeter of the orifice section supplied by Table 1 can provide a
qualitative idea of the differences that could be expected from this point of view. In fact, the
experimental results on the spray behaviour in this kind of nozzles point in that direction, as it has

been reflected in the introduction section at the beginning of this article.

However, that improved atomization, that would imply a better mixing process, may be affected by
other flow parameters that can be influenced by the presence or absence of cavitation. Indeed, the
most important and influencing parameters in the mixture formation are the effective velocity of
injection and the spray spreading angle ([13][28]). The higher both parameters are, the lower the
mixing characteristic time and the mixing characteristic length ([13]), thus improving the mixture

and combustion process.

Throughout the study, it has been seen that the cavitation provokes a substantial increase on the
effective velocity of injection, and that the major axis horizontally oriented elliptical nozzle of
higher eccentricity (Elip-H2) is the one that attains a higher value of this parameter. On the other
hand, it is known from previous experimental studies that the cavitation produces a noticeable

increase of the spray spreading angle ([28][32][37][38][39]).

Attending to the injection effective velocity values and the cavitation susceptibility and its



consequences on the spray spreading angle, a qualitative order on the mixing process quality could
be established. Taking into account all the results, in general terms, everything seems to point to a
better mixing process for the major axis horizontally oriented elliptical nozzles and a worse process
for the vertically oriented ones. The quality of the mixing process for the circular nozzle would take
intermediate values. If it was intended to establish an order from higher to lower quality solely due
to the velocity and hypothetical angle it would be find that: Elip-H2 > Circular = Elip-H1 > Elip-
V2 > Elip-V1. Besides, the previously commented effect of the higher fuel-air interaction of the
elliptical nozzles over the circular ones would also have to be considered, since it could amplify the
differences among the major axis horizontally oriented elliptical nozzles over the circular ones and
reduce the differences or even swap the order of the major axis vertically oriented elliptical nozzles

when compared to the circular one.

The experimental results extracted from the literature suggest a better mixing process for the
elliptical nozzles when compared against the circular ones. In addition, the experimental results
found in the literature for elliptical nozzles mostly refer to major axis horizontally oriented nozzles.
The results obtained in this paper would therefore be in agreement with those existing in the

literature.

6. CONCLUSIONS

The main conclusions of this study are summarized in the following points:

e The major axis horizontally oriented elliptical nozzles have a higher discharge coefficient

than the vertically oriented ones. The circular nozzles adopt intermediate values.

e The proneness to cavitation is greater for the major axis horizontally oriented elliptical



nozzles, with a similar level to the circular nozzles. The major axis vertically oriented

elliptical nozzles are less prone to cavitate.

e The effective velocity of injection is higher for the major axis horizontally oriented elliptical
nozzles, closely followed by the circular ones. The major axis vertically oriented elliptical

nozzles are associated to the lowest values of this parameter.

e The cavitation morphology is similar for the major axis horizontally oriented elliptical
nozzles and the circular ones, observing vapour structures stuck to the upper wall of the
orifice. In the case of major axis vertically oriented elliptical nozzles, the cavitating

structures are driven towards the central zone.

e Bearing in mind the influencing parameters in the mixing process, a better quality is
presupposed for the major axis horizontally oriented nozzles whereas a worse quality is

expected for the vertically oriented ones.

e The aforementioned results agree with the experimental studies found in the literature.
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Table 1: Nozzle's geometrical characteristics.
Table 2: Inlet-Outlet pressure boundary conditions.

Table 3: Critical cavitation condition inception

Figure 1: Nozzle's geometrical parameters

Figure 2: Nozzle's geometry

Figure 3: Boundary conditions for numerical simulations.

Figure 4: Detail of the mesh used in simulations

Figure 5: Mean y + values within the whole computational domain for all simulated nozzles
Figure 6: Cavitation model validation for a cilindrical nozzle

Figure 7: Mass Flow for the injection pressures of 30 and 160 MPa
Figure 8: Momentum flux for the injection pressures of 30 and 160 MPa
Figure 9: Effective velocity for the injection pressures of 30 and 160 MPa
Figure 10: Flow coefficients against Re number

Figure 11: Flow coefficients against the square root of cavitation number

Figure 12: Vapour mass fraction contour for the injection pressure of 30MPa

Figure 13: Vapour mass fraction at the middle section of the nozzle for the injection pressure of 30
MPa
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Circular 85 85 0 534 | 2.270e-8 | 2.270e-11 30 1 72.5°
Elip-H1 103 70 0.734 | 548 | 2.265e-8 | 2.265e-11 30 1 72.5°
Elip-V1 103 70 0.734 | 548 | 2.265e-8 | 2.265e-11 30 1 72.5°
Elip-H2 120 60 0.866 | 581 | 2.262e-8 | 2.262e-11 30 1 72.5°
Elip-V2 120 60 0.866 | 581 | 2.262e-8 | 2.262e-11 30 1 72.5°

Table 1: Nozzle's geometrical characteristics.

Injection Pressure [MPa]

Backpressure [MPa]

30

3-5-7-9-10-15-20

160

3-5-7-9-10-20-30-40-50-60-70-80-90-100-110-120-130

Table 2: Inlet-Outlet pressure boundary conditions.

30 MPa 160 MPa
CIRCULAR 7.19 39.83
ELIP-H1 7.18 37.38
ELIP-V1 7.01 36.24
ELIP-H2 7.21 37.97
ELIP-V2 7.13 36.43

Table 3: Critical cavitation condition.




