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Abstract: Optical vortex beams, generated by Diffractive Optical
Elements (DOEs), are capable of creating optical traps dher anulti-
functional micromanipulators for very specific tasks in tiécroscopic
scale. Using the Fibonacci sequence, we have discovered &analy of
DOEs that inherently behave as bifocal vortex lenses, arefevtihe ratio
of the two focal distances approaches the golden mean. Tutirdive
optical properties of these Fibonacci vortex lenses aresraxgntally
demonstrated. We believe that the versatility and potestialability of
these lenses may allow for new applications in micro and photnics.

© 2013 Optical Society of America

OCIS codes:(050.1940) Diffraction, (050.1970) Diffractive Optic€50.4865) Optical Vor-
tices.

References and links

1.
2.

3.
. J. A. Davis, S. P. Sigarlaki, J. M. Craven, and M. L. Calueourier series analysis of fractal lenses: theory and

10.
11.
12.
13.
14.

15.
16.

A. Sakdinawat and Y. Liu, “Soft-x-ray microscopy usingrapzone plates,” Opt. LetB82, 2635-2637 (2007).
A. A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwingk Garet, J.-L. Coutaz, and M. Sypek,
“Diffractive paper lens for terahertz optics,” Opt. L3, 4320-4322 (2012).

G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractakzolates,” Opt. Lett28, 971-973 (2003).

experiments with a liquid-crystal display,” Appl. O@t5, 1187 (2006).

. W. D. Furlan, G. Saavedra, and J. A. Monsoriu, “White-lighaging with fractal zone plates,” Opt. Le82,

2109-2111 (2007).

. F. S. Roux, “Distribution of angular momentum and vortex nhoipgy in optical beams,” Opt. Commu242,

45-55 (2004).

. G. Gbur and T. D. Visser, “Phase singularities and coteerenrtices in linear optical systems,” Opt. Commun.

259, 428-435 (2006).

. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsz@imiop, “Optical application and measurement of

torque on microparticles of isotropic nonabsorbing matgriahys. Rev. A68, 033802 (2003).

. K. Ladavac and D. G. Grier, “Microoptomechanical pumpsmasded and driven by holographic optical vortex

arrays,” Opt. Expres$2, 1144 (2004)http://www.opticsexpress.org/abstract.cfm?URI=0e61Pt44

W. M. Lee, X.-C. Yuan, and W. C. Cheong, “Optical vortexatreshaping by use of highly efficient irregular
spiral phase plates for optical micromanipulation,” Opt.tL29, 1796 (2004).

S. H. Tao, X.-C. Yuan, J. Lin, and R. E. Burge, “Sequendeaised optical vortices generated by a spiral fractal
zone plate,” Appl. Phys. Let89, 031105 (2006).

W. D. Furlan, F. Giranez, A. Calatayud, and J. A. Monsoriu, “Devils vortex-kes5 Opt. Expresd7, 21891
(2009),http://www.opticsexpress.org/abstract.cfm?URI=0e24721891

J. A. Monsoriu, A. Calatayud, L. Rém, W. D. Furlan, G. Saavedra, and P. Aesir‘Zone plates generated with
the Fibonacci sequence,” Proceedings of EOS Topical Meeting on Diffractive Optiys, 151-152 (2010).

J. A. Monsoriu, A. Calatayud, L. Rém, W. D. Furlan, G. Saavedra, and P. Agslf Bifocal Fibonacci diffractive
lenses,” IEEE Photon. J. (to be published), DOI: 10.11090P.2013.2248707.

E. Macé, “Exploiting aperiodic designs in nanophotonic devicBgp. Prog. Physrz5, 1-42 (2012).

Y. Sah and G. Ranganath, “Optical diffraction in some Ré#mei structures,” Opt. Commuh14, 18-24 (1995).




17. N. Gao, Y. Zhang, and C. Xie, “Circular Fibonacci grasfigAppl. Opt.50, G142-G148 (2011).

18. H. T. Dai, V. J. Liu, and X. W. Sun, “The focusing propertf/tbe spiral Fibonacci zone plate,” i@ptical
Components and Materials >S. Jiang, M. J. F. Digonnet, and J. C. Dries, eds., Proc. 828, 82570T1
(2012).

19. J. Swartzlander, “Peering into darkness with a vortetiapfilter,” Opt. Lett.26, 497 (2001).

20. J. E. Curtis and D. G. Grier, “Structure of optical voe8¢ Phys. Rev. LetB0, 133901 (2003).

21. A. Calatayud, W. D. Furlan, and J. A. Monsoriu, “Experitageneration and characterization of devils vortex-
lenses,” Appl. Phys. B06, 915-919 (2012).

1. Introduction

In photonics technology, Diffrative Optical Elements (D€)Bave found a large number of new
aplications in many different areas, covering the wholetetenagnetic spectrum from X-ray
Microscopy [1], to THz Imaging [2]. Difractive lenses such@nventional Fresnel zone plates,
are essential in many focusing and image forming systemthbythave inherent limitations.
Fractal zone plates are a new type of multifocal diffractemses that have been proposed to
overcome some of these limitations, mainly under polyctatierillumination [3, 4]. In fact, it
was shown that these lenses, generated with the fractabCsetthave an improved behavior,
especially under wide band illumination [5].

DOEs have been also designed to generate optical vortigggeaDvortices are high value
optical traps because in addition to trap microparticley thre capable to set these particles
into rotation due to its inherent orbital angular moment B, These special optical beams
have been used, for exemple, as actuators and testers ionmgichanical systems [8]. Arrays
of optical vortices have shown the ability to assemble amgednesoscopic optical pumps in
microfluidic systems [9].

Among the several methods that have been proposed for bptidces generation, spiral
phase plates [10] stands out, mainly because they provigredriergy efficiency. Spiral phase
plates have been recently combined with Fractal Zone Plateoduce a sequence of focused
optical vortices along the propagation direction [11, 12].

In this work we present the Fibonacci Vortex Lenses (FVLS)jolw are able to generate
simultaneously two optical vortices along the axial conadé whose diametres are related
by the golden mean. These new type of DOEs are constructad the Fibonacci sequence
[13, 14] along the squared radial coordinate. This sequéasebeen also employed in the
development of different photonic devices [15], such astilaykers and linear gratings [16],
circular gratings [17], spiral zone plates [18].

2. Fibonacci vortex lenses design

A FVL is defined as a pure phase diffractive element whose epldéstribution is given by
®ry({,60) = modby [Pa(6) + Pj({)]. It combines the azimuthal phase variation that charac-
erizes a vortex lens, i.&, = mby, wheremis a non zero integer called the topological charge
[18] and 6y is the azimuthal angle about the optical axis at the pupiig@lavith the radial phase
distribution that is generated through the Fibonacci secgn the following way:

Starting with two elements (seedB) = 0 and F, = 1, the Fibonacci numbers;; =
{0,1,1,2,3, 5,8,13,21,...}, are obtained by the sequential application of the follguiule:
Fi+1=Fj+Fj_1, (j =0,1,2,...). The golden mean, or golden ratio, is defined as the limit of
the ratio of two consecutive Fibonacci humbers:

6 = lim Fy/Fj1 = (1+ \/E) /2. @

Based on the Fibonacci numbers, a binary aperiodic Fibaésagtience can also be gener-
ated with two seed elements, as for exemfle= {A} andSy = {B}. Then, next order of the
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Fig. 1. Bottom: Phase distributions of FVLs based on the Fibonacci seq$g, with
different topological charges. Top: The equivalent periodic lensisthe same number of
zones.

sequence is obtained simply as the concatenation of the tewiopis onesSj; 1 = {S;Sj_1}
for j > 1. ThereforeS = {AB}, S = {ABA}, & = {ABAAB}, S = {ABAABABA, etc. Note
that, in each sequence, two succesive “B” are separatedtigreone or two “A’, and that
the total number of elements of the ordesequence &1, which results from the sum of
Fj elements “A’, plusFj_; elements “B”. Each of these sequences can be used to define the
binary generating function for the radial phase distrimutof the FVL. For our purpose, the
generating functiong;({), is defined in the domaif0, 1], and this interval is partitioned in
Fj+1 sub-intervals of lengtld = 1/F; 1. Then, the value that the functish;({) takes at the
K" sub-interval will be 0 o if the value of thek!" element of the§; sequenceSj, is “A’

or “B”, respectively. Next, from a particular generatingqnéion @;(¢), the radial part of the
transmitance of the corresponding binary pure-phase F\dbiained a|({) = exp[i®;({)],
after performing the following coordinate transformatign= (r/a)z, beingr the radial coor-
dinate of the lens, anaits maximum value. Typical examples of FVLs are shown in Eigzor
comparison, a conventional vortex lenses based on Fresnelgates are represented in the
same figure. The corresponding Fresnel zone plates can beleoed periodic structures along
the square radial coordinafehaving the same number of elemerits, 1, with periodp = 2d,
but where the position of some zones with different phase ha&en interchanged. Moreover,
taking into account that Fibonacci sequences are aperibdtowith two inconmmensurable
periods [15], is easy to show that, according to our nomémaain a FL these periods are
related to the period of the equivalent zone plate thropgk:= 1/Fj_1 ~ 0.5(¢ +1)p ; and
p2 =1/Fj = 0.5¢ p. Thus, a FL can be understood as two Fresnel zone platemieer

3. Focusing properties

To study the focusing properties of FVLs we have computedrtlagliance provided by the
transmitance of this lens({, 6y) = q({) explim&], when it is illuminated by a plane wave of
wavelengthA . Within the Fresnel approximation the irradiance funci®given by:

2

1 r2m
I(u,v,e):uz/O/0 t(Z,Bo)exp(—i2nuZ)exp[i4nule/zcos(9—90)}dZdBo . @




d1poLIdg

OEE T —

1008U0qL]

Normalized transversal coordinate: v

8 14 20 26 8 14 20 26 8 14 20 26
Normalized axial coordinate: u

Fig. 2. Evolution of the transverse irradiance Srbased FVLs with different topological
charges and their periodic equivalent lenses.

whereu = a?/2A zis the normalized axial coordinate ane- r/a is the normalized transverse
coordinate. Replacing {, 6p) and taking into account that

/Oznexp(imeo) exp[i47‘ruv(l/2 cos(6 — 60)} d6 = 2nexp{im (6 + g)] Im (4nuv(l/2) ,

3)
Eq. (2) is reduced to
2
I (u,v) = 4m2u? ,

[ @) exp(-i2mug) an (4mng ) 0g @

beingJm() the Bessel function of the first kind of order

By using Eq. (4) we have computed the irradiances providethbylenses shown in Fig.
1. The integrals were numerically evaluated applying thre@8on’s rule using a step length
1/2000. The result is shown in Fig. 2. It can be seen that FVLslywe a twin foci whose
positions are given by the Fibonacci numbers. In this cas&sfFVLs, the first focus is located
atu; = 13=F;_1 =1/p; and the other one ab = 21=F; = 1/p,. Thus, the ratio of the focal
distances satisfies,/u; ~ ¢. Note also that, for non-null values of the topological ¢jear
each focus is a vortex, thus, in general, a pair of doughrajpesth foci is generated by a FVL.
Comparing the diffraction patterns provided by FVLs witlfelient topological charges it can
be verified that the diameter of the doughnuts increasestivittiopological charge as those
produced by conventional vortex lenses [19, 20].

4. Experimental results

For the experimental study of the properties of FVLs, we enpénted the experimental setup
shown in Fig 3. The proposed lenses were recorded on a Liquidtal in a Silicon SLM
(Holoeye PLUTO, 8-bit gray-level, pixel sizetBn and resolution equal to 19201080 pix-
els), calibrated for a2 phase shift ah = 633nm operating in phase-only modulation mode.
The procedure to compensate the wavefront distorsionedaws the lack of flatness of the
SLM and the other optical components was detailed elsewjBéjeln addition to the diffrac-
tive lenses, a linear phase carrier was modulated on the $ladid the noise originated by



=

Mz
1 \\\\\ )

Optical Fiber
He-Ne LASER
A

Exit pupil ﬂ
L3 Diffracted I.abVIEW
field

‘ / Microscope

ﬂCCD
5 lh -

D s '|' """"" - ’| ‘{ """"" e Motor

Fig. 3. Experimental setup used for studying the focusing propertiE¥Ios.

the specular reflection (zero order diffraction) and theefaited structure of the SLM (higher
diffraction orders). This linear phase is compensated Ibigdithe SLM and a pin-hole (PH)
is used to filter all diffraction orders except the first onbem at the L3 lens focal plane (exit
pupil) a rescaled image of the desired lens pupil is achiefambllimated beam (He-Ne Laser
A = 633nm) impinges onto the SLM and the diffracted field is cegrdiand registered with a
microscope (4x Zeiss Plan-Apochromat objective) attatcbedCCD camera (EO-1312M 1/2”
CCD Monochrome USB Camera, 8-bit gray-level, pixel pitchddd5um and 1280« 1024
pixels). The microscope and the CCD are mounted on a trémslstage (Thorlabs LTS 300,
Range: 300 mm andgam precision) along the optical axis.

The experimental and computed irradiances produced®yRvL with topological charge
m = 6 along the optical axis are shown in Fig. 4. Note that theexoflanes correspond to
f1= a2/2)\ F ~7.35cm andfy = a2/2/\ Fs =~ 4.55cm. As predicted by the theoretical analysis,
the axial localization of the focal rings depends on the Réuei numbers; andFj_1, and such
focal distances satisfy the following relationship/ f> = Fj /Fj_1 ~ ¢.

90
60 g3
~~
g 30 =
E 2.
= 30 g 1
N =1
g =
S 90
8
S 9%
= 60
wa
8 30 Z 0
2 8
§ 30 %'
= =3
-60
-90

5 6. 7 8
Axial Coordinate: z (cm)

Fig. 4. Experimental and computed transverse irradiance evolutiog &henoptical axis
provided by thesg FVL with m= 6 anda= 1.1 mm.
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Fig. 5. Experimental and numerical transverse irradiance at thé fitarges provided by

the g based on FVL withm = 6 anda = 1.1 mm. The intensity profiles along the white,
dotted lines are plotted (bottom) together with the numerical results for atsopa

Figure 5 shows the experimental and the numerically siradl&iansverse irradiance at the
focal planes for the same FVL. Interestingly, the diamefethe focal rings,A, which also
depends on the topological charge of the FVL, satisfies alaimile i.e.A;/Az ~ ¢ (see
Fig. 5). Thus, FVLs are capable of generating twin axialiceg with different, but perfectly
established, diameter of the central core.

5. Conclusions

Sumarizing, a new type of bifocal vortex lenses has beeodnted, whose design is based on
the Fiboonacci sequence. It was found that a FVL producesradptical vortices along the
axial coordinate. The positions of both foci depend on theitleommensurable periods of the
Fibonacci sequence in which the FVL is based on. The radiiege twin vortices increase with
the topological charge of the vortex lens, but always thatiorapproaches the golden mean.
The 3D distribution of the diffracted field provided by FVLashbeen tested experimentally
using a SLM. An excellent agreement between the experirhesgalts and the theoretical
predictions has been demonstrated.
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