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Abstract 

The present work aims are to study the dry sliding wear behavior of WC-12 wt.%Co 

materials, with or without addition of Cr3C2/VC grain growth inhibitors, and to sinter 

them by two different consolidation techniques: conventional sintering and spark 

plasma sintering (SPS). The dry sliding wear tests were performed on a tribometer 

with a ball-on-disc configuration using a WC-Co ball as a counterpart material with a 

normal contact load of 60 N, a sliding distance of 10000 m and a sliding speed of 0.1 

m/s. The influence of the grain growth inhibitors and the consolidation techniques in 

sintered samples were related to the friction coefficient, wear rates and wear pattern 

damage. Samples sintered by non-conventional technique (SPS) show the best wear 

resistance and lower friction coefficient. The addition of inhibitors reduces the wear 
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rates in materials consolidated by both techniques. The differences in the wear 

damage are related to microstructural parameters, mechanical properties and wear 

rates. 

 

Keywords: Sliding wear; Hardness; Cermets; Cutting tools 

 

1. Introduction 

WC-Co cemented carbides, where Co is a binder phase, have long been used as 

cutting tools [1,2], rock drill tips [3], dies [4] and wear resistant parts. This is due to 

the combination of mechanical properties (toughness and hardness) and excellent 

wear resistance behavior. In recent years, the ultrafine and nanometric WC-Co 

cemented carbides have received increasing attentions because of the special 

demands on the excellent performance of materials in the electronic and automotive 

industries [5].  

 

Manufacturing WC-Co cemented carbides with fine grain sizes, in the nanometre 

scale, is a good method to improve their wear properties [6]. The wear resistance of 

WC-Co materials is related to their chemical composition and microstructure. This 

property generally increases with the reduction of cobalt content and with the 

reduction of the WC grain size [7,8]. In order to obtain the ultrafine- and 

nanostructure WC-Co bulk materials, several sintering methods such as conventional 

liquid phase sintering [9,10], hot isostatic pressing (HIP) [11], and non-conventional 

processes; microwave sintering [12] and spark plasma sintering (SPS) [13-18], have 

been developed. In particular, the SPS technique has attracted considerable 

attention due to a rapid heating and high applied pressures, which allows sintering 
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samples in a shorter time and refines microstructures in comparison with others 

sintering processes [7,13-18]. 

 

One of the keys to control the grain growth in ultrafine WC-Co composites is the 

suitable selection of the additives as WC grain growth inhibitors [17-19]. On the one 

hand, Sun et al. [17] evaluated the effect of different amounts of ceria nano-particles 

in WC-Co composites by SPS. They demonstrated that the trace nano-ceria addition 

effectively suppressed the abnormal grain growth of WC, leading to the uniform and 

fine microstructures. On the other hand, Bonache et al. [18] studied that the 

vanadium carbide (VC) and chromium carbide (Cr3C2) are effective grain growth 

inhibitors due to their high solubility and mobility in cobalt phase at low temperatures. 

 

The wear behavior of cemented carbides sintered by different consolidation 

processes has been evaluated in dissimilar laboratory conditions and tribosystem 

configurations. However, the literature reports a few studies in which ultrafine or 

nanosized WC-Co bulk materials obtained by SPS are evaluated in dry sliding wear 

regarding to other consolidated techniques [16]. Picas et al. examined the efficiency 

of three different consolidations processes in terms of the tribological behavior. They 

found that the SPS bulk samples showed similar tribological properties to HVOF 

(High velocity oxy-fuel spray forming) coating samples, and these have better wear 

resistance than LENS (laser engineered net shaping) coating samples under the 

same sliding conditions. They concluded that the good performance of SPS bulk 

samples is attributed to its homogenous microstructure and greater micro-hardness 

values. Therefore, it is interesting to investigate the tribological behavior of 

nanostructured WC-Co obtained by the SPS technique in comparison with other 

consolidation processes. 



  4

 

In this work, the tribological response of WC-12 wt.%Co cemented carbides obtained 

by a nanopowder mixture with the addition of Cr3C2 and VC, and sintered by two 

different techniques; conventional sintering and spark plasma sintering have been 

studied. The influence of the grain growth inhibitors and both consolidation 

techniques were investigated and compared. The differences in the friction coefficient 

and sliding wear behavior are related to microstructural parameters and mechanical 

properties. 

 

2. Experimental procedure 

2.1. Materials and sintering conditions 

In this work, a WC-12 wt.%Co nanometric mixture with a WC grain size of 40-80 nm, 

manufactured by Inframat Advanced Materials, was used as raw material. The 

amounts of 1 wt.%Cr3C2, 1 wt.%VC, and a mixture of 0.5 wt.%VC+0.5 wt.%Cr3C2 

were added to the raw powder, which were used as WC grain growth inhibitors. 

Designation and compositions of the final powder mixtures are shown in Table 1.  

 

Table 1. Designation and composition of powder mixtures. 

Sintering 

technique 
Designation Starting mixture 

Additives (wt.%) 

Cr3C2 VC 

Conventional 

sintering 

N WC-12wt.% Co 0 0 

NCr WC-12wt.% Co 1 0 

NCrV WC-12wt.% Co 0.5 0.5 

NV WC-12wt.% Co 0 1 

Spark plasma 

sintering 

N-SPS WC-12wt.% Co 0 0 

NCr-SPS WC-12wt.% Co 1 0 
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NCrV-SPS WC-12wt.% Co 0.5 0.5 

NV-SPS WC-12wt.% Co 0 1 

 

The particle size of these inhibitors carbides was around 0.5-1.0 µm. The milling 

conditions, processing and sinterability parameters have been reported elsewhere 

[18,20]. 

 

Two different methods were used to sinter these mixtures: conventional sintering 

(CS) and spark plasma sintering (SPS). 

Conventional sintering conditions: Green compacts were prepared by uniaxial 

pressing at 200 MPa into a steel matrix with an inner diameter of 15 mm. The 

samples were consolidated at 1400 ºC for 30 min under vacuum with a heating rate 

of 10 ºC/min (Carbolite furnace). 

Spark plasma sintering conditions: The powder samples were placed into a graphite 

die with an inner diameter of 20 mm and cold uniaxially pressed at 30 MPa. The 

samples were subsequently introduced in a spark plasma sintering apparatus HP D 

25/1 (FCT Systeme, Germany) and sintered at 1100 ºC for 5 min under vacuum with 

an applied pressure of 80 MPa and a heating rate of 100 ºC/min. 

 

2.2. Characterization 

The consolidated materials densities (relative density) were measured following the 

Archimedes’ method with ethanol immersion, according to ISO 3369 standard [21]. 

The microstructures of the sintered materials were observed on the polished cross-

sectioned surfaces by field emission scanning electron microscopy (FESEM, Hitachi 

S4100, SCSIE of the University of Valencia). The WC grain size was determined with 

the lineal intercept method according to standard ASTM E112 [22]. Vickers hardness 
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measurements were carried out by applying a load of 30 Kgf according to standard 

ASTM E92-72 [23]. 

 

2.3. Sliding wear test 

Wear tests were carried out under dry sliding conditions using a tribometer pin-on-

disc (ball-on-disc configuration) manufactured by MICROTEST MT2/60/SCM/T, 

according to ASTM wear testing standard G99-03 [24]. A ball of WC-6 wt.%Co 

cemented carbide produced by FRITSCH (Germany) with a hardness of 1480 HV30 

and 5 mm radius was used as countermaterial. The tests were performed with the 

following parameters: contact load of 60 N, sliding speed of 0.1 m/s, a sliding 

distance of 10000 m, and a wear track radius of 3 mm. All tests were conducted in 

controlled conditions (23 ± 2 ºC of temperature and 60 ± 2% of relative humidity). In 

order to obtain a representative value of each response parameters, a series of three 

tests were carried out for each material. Wear tracks were analyzed by FESEM and 

energy-dispersive X-ray analysis (EDX).  

 

Sample surface was polished down to 1 µm and cleaned before the wear test. The 

wear mass loss was obtained by weighing the samples before and after the test. 

Wear volume loss, Vwear, was determined from the measured mass loss of the 

samples divided by the density of each one. The wear rate, Kv, was calculated 

according to the Lancaster´s equation [25]:  

wear
v

N

Vk
F S

=
×  

 

Where, Vwear is the mass lost, FN is the contact load in N and, S is the sliding distance 

in m. 
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segregations and lack of wettability [18]. The finest microstructure is observed in all 

materials sintered by SPS, even in the absence of inhibitors (Fig. 1c). The addition of 

inhibitors with the combination of the optimal sintering conditions in the SPS 

technique resulted in an effective method to obtain near-nanometric cemented 

carbides with an average grain size of 150 nm (Fig. 1d). The contiguity of the 

carbides network is greater in the SPS samples, which is caused by Co segregations 

that lead a high contact degree between WC grains. Samples sintered by CS shown 

a lower contiguity of WC grains, which indicate that there is a relatively 

homogeneous distribution of the Co binder phase in the WC-Co material. 

 

Density, mean WC grain size and hardness values of consolidated materials are 

presented in Table 2. It should be noted that all reported data are the average of five 

measurements.  

 

Table 2. Density, grain size and hardness of the materials consolidated by 

conventional and spark plasma sintering. 

Materials 

Bulk 

density 

(g/cm3) 

Relative 

density 

(%) 

Mean WC  

grain size 

(µm) 

Vickers 

Hardness 

HV30 (Kgf/mm2) 

N 14.31 99.5 ± 0.1 0.747 ± 0.038    1503 ± 15 

NCr 14.09 99.1 ± 0.1 0.398 ± 0.022 1668 ± 16 

NCrV 14.02 98.8 ± 0.1 0.233 ± 0.046 1822 ± 15 

NV 13.98 98.7 ± 0.1 0.178 ± 0.013 1944 ± 14 

N-SPS 14.37 99.9 ± 0.1 0.216 ± 0.021 1847 ± 17 

NCr-SPS 14.19 99.8 ± 0.1 0.207 ± 0.011 1872 ± 17 

NCrV-SPS 14.07 99.2 ± 0.1 0.190 ± 0.021 1923 ± 19 
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NV-SPS 13.85 98.9 ± 0.1 0.154 ± 0.014 1998 ± 24 

 

All density values show densifications above 98% of theoretical density. It is 

important to note that, to achieve this high density by SPS it has only been necessary 

1100 ºC and 5 min of holding time, whereas by CS 1400 ºC and 30 min of holding 

time conditions are required. The economic and energetic costs as well as the grain 

growth inhibition are significantly better by non-conventional technique. 

The hardness values of the SPS sintered samples are higher than those of CS 

samples. The hardness increases with the reduction of WC grain size, which allow to 

achieve full densification. The addition of inhibitors improves the hardness in both 

consolidation techniques due to its effectiveness in controlling the WC grain growth 

during the sintering process. 

 

3.2. Friction coefficient 

The friction coefficient (μ) is the ratio between friction force and the imposed normal 

force. The friction force was continuously measured during the test by a load cell with 

a piezoelectric transducer over the loading arm. The evolution of friction coefficients 

has usually two different regions called non-steady or running-in state and steady 

state [26]. The evolution of friction coefficients for 10000 m of sliding distance of all 

materials tested is presented in Fig. 2.  

 



 

Fig. 2. 

 

In gener

strongly 

techniqu

The fric

distribute

group; N

In the fi

distance

which c

presence

friction c

justified 

the frict

ploughin

contribut

during th

Friction co

ral, a first 

influenced

ues. 

ction coeffi

ed in two d

NV. 

irst group, 

e. This beha

constitute t

e in the con

coefficient d

with the m

tion coeffic

ng and de

tion to frict

he test in N

oefficient ev

observation

d by inhib

cient beha

ifferent gro

the runnin

avior is det

he tribopa

ntact zone.

decreases s

ulti-asperity

cient values

ebris ploug

ion coeffici

N, NCr and

volution with

by: CS (a)

n shows th

bitor additio

avior in ma

ups, the firs

ng-in state 

ermined by

ir, causing

 As sliding 

showing alm

y contact th

s are due

ghing. The

ent. The flu

d NCrV ma

10

h sliding dis

) and SPS 

hat the beh

ons, espec

aterials sin

st group; (N

is extende

y an abrupt

g an increa

continues, 

most a con

heory expos

e to three 

e first one

uctuations o

aterials are 

stance for m

(b). 

havior of th

cially VC, 

ntered by 

N, NCr and 

ed until aro

t removal o

ase in plo

a steady s

nstant value

sed by Zha

componen

, adhesion

observed in

probably d

materials co

he friction c

and the c

CS (Fig. 

NCrV) and

ound 800 

f fragments

ughing an

state is reac

e. This beh

ang et al. [2

nts, adhesi

n, provides

n the frictio

due to a lo

onsolidated

coefficient 

consolidatio

2a) can b

d, the secon

m of slidin

s of materia

d third-bod

ched and th

avior can b

27,28]. Thu

on, asperi

s the lowe

on coefficie

ow frequenc

 

 

is 

on 

be 

nd 

ng 

al, 

dy 

he 

be 

s, 

ty 

er 

nt 

cy 



  11

vibration that occurs in the tribometer and/or to a rupture/regeneration phenomena of 

the tribological layer of the wear debris. 

 

In the second group (NV materials), the running-in state is extended to around 1200 

m of the sliding distance. This stage is characterized by a small and irregular 

increase of the friction coefficient. This increase is related to asperity ploughing of the 

hard NV material on the soft counterpart [29]. The irregularities in friction coefficient 

can be attributed to the small contribution of the wear debris, which can act like a 

third-body circulating at the contact surfaces, and probably is embedded in the ball 

surface. As sliding continues, a steady state is reached until the end of the test. This 

suggests that, an incipient formation of a wear debris layer and polishing of asperities 

constitute the principal causes for the friction coefficient behavior. 

 

The friction coefficient behavior of NV materials shows an intermediate step between 

materials consolidated by CS and SPS. This is probably related to the influence of 

hardness on the friction coefficients. Therefore, materials sintered by SPS show a 

similar and regular friction coefficient evolution (Fig. 2b). This can be attributed to the 

homogeneous microstructure reached using this fast-consolidation technique. The 

running-in state is characterized by a slight increment of the friction coefficient and is 

extended until around 1200 m. This behavior can be attributed to a gradual break 

down of asperities in the countermaterial surfaces, which is more pronounced at the 

ball surface due to its low hardness [30]. Thus, the formation of wear debris from the 

ball surface is inherent. This wear debris adheres to the countermaterial (ball) 

forming a bed of microdebris on its surface. In this point, the friction coefficient 

reaches a steady state behavior. This stage is characterized by a polishing effect of 
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asperities and with debris adhered to the ball surface, which provides a constant 

friction coefficient until the end of the test. 

 

Fig. 3 shows the average values of the friction coefficient for the evaluated materials. 

The standard deviation of all performed tests with the same tribopair and test 

conditions is less than 5% in all cases. Materials sintered by CS show higher friction 

coefficients in comparison with SPS materials. The generation of the WC fragments, 

which act like a third-body in the surface contact and the incidence of Co/Co 

adhesive mechanisms, contribute to the higher friction coefficient.  

 

 

Fig. 3. Average values of friction coefficient of the sintered materials. 

 

The friction coefficient value of the N mixture, sintered by CS, decreases an 11.8% 

when compared to the same material (N-SPS) consolidated by the SPS technique. 

This behavior is due to the finest microstructure, high hardness and contiguity 

obtained with SPS, which minimizes the formation of wear debris and adhesion of the 

binder phase. In this case, the adhesive component is less likely to occur and friction 
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is governed by the abrasive mechanism of finer wear debris from materials on the 

soft counterpart (ball) surface. 

 

On the other hand, addition of inhibitors to the mixtures allows a remarkable 

reduction in friction coefficients, especially VC. The friction coefficient decreases a 

22% between mixture (N) and the one with 1 wt.%VC (NV). However, in the same 

mixtures, sintered by SPS, the reduction is 13%. Therefore, This effect is more 

pronounced with materials sintered by CS. 

 

NV-SPS sample shows the lowest friction coefficient. This behavior can be explained 

in terms of tribological compatibility and adhesion, grain size and distribution of 

binder phase between WC grains [8,31-33]. Therefore, as grain size is reduced and 

the contiguity in WC carbides network is increased, the incidence of adhesive 

component of friction is reduced and the micro-abrasion mechanism over the contact 

surface becomes predominant [31,34]. 

 

3.3. Wear characteristics 

The wear mechanism and the associated volumetric wear rate, Kv, depend critically 

on the precise test conditions. In general, materials tested in this study showed 

excellent wear resistance to dry sliding. It can be seen in Fig. 4 that the wear rates of 

all cemented carbides are in the order of 10-7 mm3/N·m. 
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related to the hardness increment, i.e. between N and NV is 441 HV30 and between 

N-SPS and NV-SPS is 152 HV30. Consequently, the NV-SPS sample shows the 

lower wear rate, which is coincident with the lower friction coefficient value. It should 

be noted that the wear rates are obtained from the volumetric samples loss, and 

does not involve the wear of counterpart. In this case, the governing mechanism is 

polishing of asperities and microabrasion of samples surface. 

 

3.4. Wear surface analysis 

The materials consolidated by CS have a lower wear resistance in comparison with 

the materials consolidated by SPS. Therefore, significant differences might be 

expected in the wear track observations of materials consolidated by both 

techniques. 

 

Wear tracks FESEM micrographs of the CS materials are presented in Fig. 5. The 

worn surface shows different levels of damage, which are in accordance with the 

obtained wear rates. The wear track analysis revealed that the wear process of the 

WC-Co cemented carbides obtained by CS is controlled by abrasion, grain fracture, 

binder removal, adhesion, grain pull-out and tribofilm formation. 
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relative motion [31,35,36]. The WC phase undergoes fracture, which is attributed to 

the local contact load, exceeding the critical fracture limit of the WC phase [35,37]. 

Therefore, the wear debris products, i.e. micro-fragments of binder phase and WC 

grains are generated by abrasion and adhesion. The debris is entrapped and 

accumulates in depressions, holes and abrasion grooves on the surface and finally 

creates a new surface, which is gradually worn out. 

 

The addition of inhibitors to mixtures reduces the wear damage and this is confirmed 

with the wear tracks observation, which follows the same behavior of Fig. 4. Thus, it 

is obvious that in NCr sample (Fig. 5b), the wear track presents a damage state 

previous to N sample. The wear tracks show grooving from abrasion in the sliding 

direction and carbide fragmentation, and also some holes due to Co removal. In this 

case, the formation of a thinner wear debris layer regarding the N sample is evident. 

The wear track of NCrV sample (Fig. 5c) shows the appearance of a fine and 

heterogeneous wear debris layer, the grooves from abrasion are slighter and the 

holes from Co extrusion or WC grain pull-out are fewer than the previous ones. 

Finally, the best wear resistance in materials sintered by CS is presented by NV 

sample (Fig. 5d), which is related to its high hardness values due to its smaller grain 

size. The wear track shows slight Co removal, WC grains micro-fragmentation, 

ploughing from abrasion in the sliding direction and a little submicrometre wear 

debris adhered to the surface. 

 

Fig. 6a shows the wear layer of N sample, which contains a large amount of oxygen 

as observed in mapping of element distributions in Fig. 6b. It should be noted that the 

oxygen zone distribution coincides with the zones which have the most wear debris 

adhered. Fig. 6c shows the composition of a debris layer measured by EDX analysis 
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in the sliding movement, the Co binder phase extrusion and WC micro-fragmentation 

[36,38]. Moreover, a little wear debris due to WC micro-fragmentation remains over 

the surface or still inside the holes due to WC grain pull-out. A tribolayer of wear 

debris is clearly being created by this process. The addition of grain size inhibitors to 

mixtures reduces the wear damage as can be seen in Fig. 7c. The EDX analysis 

(Fig. 7d) shows absence of oxygen, which is in agreement with the low probability of 

a tribolayer formation. 

 

In addition, the magnified FESEM micrograph of the N-SPS wear track (Fig. 8) shows 

the WC grain fracture (complete circles), the discontinuous circle is Co binder phase 

removed, and low wear debris revealed as bright spots accumulated in the holes 

formed by material pull-out (square). 

 

 

Fig. 8. FESEM detail of the N-SPS sample. 
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4. Conclusions 

The friction and wear behavior of cemented carbides WC-Co with and without 

addition of grain growth inhibitors and fabricated by two sintering techniques, were 

evaluated using a ball-on-disk tribometer. The following conclusions were obtained: 

 

1. It has been found that there is a relevant reduction in friction coefficient when 

materials are sintered by SPS technique. The addition of inhibitors makes a notable 

contribution to the reduction of this parameter. 

2. It has been seen that there is a remarkable reduction in the wear rate when 

materials are sintered by SPS. The wear rate values are about twenty times lower in 

a mixture consolidated by SPS respect to materials sintering by CS. 

3. The good sliding wear resistance in SPS consolidated materials were attributed to 

the fine microstructure of the material. It has been proven that the presence of 

inhibitors improves the wear resistance in both consolidation techniques, especially 

with VC. However, this effect is more noticeable in materials sintered by CS, which 

was attributed to the important increase in hardness. 

4. The wear process in SPS materials is mainly controlled by ploughing for abrasion 

in the sliding movement, the Co binder phase extrusion and WC micro-fragmentation. 

Materials sintered by CS show the worst damage patterns and the coexistence of 

several wear mechanisms. 
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Highlights 
• An important reduction is observed on the friction coefficient in SPS materials. 

• The inhibitors have more influence in the friction coefficient of CS materials. 

• The SPS technique provides materials with an excellent sliding wear resistance.  

• The wear rates are about twenty times lower in SPS mixtures respect to CS 

materials. 

• The increments in dry sliding wear resistance with inhibitors have been proven. 

 
 


