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Abstract

This paper deals with nonnegativity of matrices and their group or Drazin
inverses. Firstly, the nonnegativity of a square matrix A, its group inverse
A# and its group projector AA# is used to define different sets for which
relationships and characterizations are given. Next, an extension of the pre-
vious results for index greater than 1 is presented covering all the situations.
Similar sets are introduced and studied for Drazin inverses and Drazin pro-
jectors considering the core-nilpotent decomposition. In addition, the above
results are applied to study the {l}-Drazin periodic matrices for l ≥ 1.
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1. Introduction

Different aspects of the nonnegativity of generalized inverses have been
studied in the literature during the last years. A classical result of Berman
and Plemmons gives necessary and sufficient conditions for a square matrix
to be group monotone. These matrices have nonnegative group inverse and
their characterization involves the positive orthant and the null space of the
matrix. A similar result is valid for Drazin monotone matrices [2].

In the seventies, Flor presented some special results for nonnegativity
of idempotent matrices [6]. Later, using these results, Jain, Goel, Kwak,
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and Tynan obtained some characterizations for nonnegative matrices having
nonnegative group inverse, nonnegative Drazin inverse or nonnegative group
projector [9, 10, 11]. Some of these results have been applied to characterize
Am = A with m > 2 for a nonnegative matrix A [10]. Other application of
these results can be seen in [8] where the nonnegativity of a singular control
system has been studied. Moreover, some more results are presented for
idempotent matrices in [5].

The main aim of this paper is to cover different situations not considered
up to now in the literature. For that, we consider the nonnegativity of a
square matrix A, its group inverse A# and its group projector AA#. Specif-
ically, we combine these conditions to obtain different sets and characterize
them. Moreover, in a more general way, all these results are extended for
matrices having index greater than 1.

We call index of A ∈ Rn×n to the smallest nonnegative integer k such
that Ak and Ak+1 have the same rank and it is denoted by k = ind(A). For
a given matrix A ∈ Rn×n of index k, a matrix AD ∈ Rn×n is called its Drazin
inverse if the properties ADAAD = AD, AAD = ADA, and Ak+1AD = Ak

hold. When this matrix exists, it is unique [1, 4]. In the important special
case k = 1, this matrix is called group inverse of A and denoted by A#. It is
well-known that AAD is a projector on the range of Ak along the null space
of Ak. In order to distinguish this projector among others defined by using
other generalized inverses, we will call Drazin projector to AAD or group
projector in the case k = 1.

We will stand A ≥ O for a matrix A with nonnegative entries, A � O

when there is some negative entry, AT for the transpose of A, and I for the
identity matrix of adequate size. We will also need the notion of {l}-Drazin
periodic matrices. These matrices are square and satisfy that AD = Al−1

where l ∈ {2, 3, . . . } [3].
The main goal of this paper is to give a characterization of square ma-

trices A satisfying different conditions. In Section 2 we introduce the sets
covering all the possibilities where the group or Drazin inverses are involved
and some first relationships are presented. The sets are defined by the fol-
lowing inequalities: (i) A# ≥ O, (ii) AA# ≥ O, (iii) A ≥ O and A# ≥ O, (iv)
A ≥ O and AA# ≥ O, (v) A# ≥ O and AA# ≥ O; and the corresponding
for the Drazin inverse. Section 3 is devoted to characterize all the aforemen-
tioned sets corresponding to index 1 matrices. Next, in Section 4 the case of
index greater than 1 is analyzed extending the results obtained for index 1.
In addition, further results are presented in Section 5 in order to characterize
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{l}-Drazin periodic matrices.

2. Preliminaries

In this section we introduce different sets using group or Drazin inverses
of a matrix. These sets will be studied in detail in the following sections. We
start with the sets related to the group inverse.

The set of nonnegative idempotent matrices is defined as

PI = {A ∈ Rn×n : A ≥ O, A2 = A}

and it considers a special case of matrices of index 1.
Group monotone matrices are considered in the following set:

PG = {A ∈ Rn×n : A# ≥ O}

and by adding nonnegativity on the matrix A we have nonnegative group
monotone matrices:

PPG = {A ∈ Rn×n : A ≥ O, A# ≥ O}.

On the other hand, when group projectors are involved, we have nonneg-
ative matrices with nonnegative group projector:

PPGP = {A ∈ Rn×n : A ≥ O, AA# ≥ O}

and matrices with nonnegative group projector

PGP = {A ∈ Rn×n : AA# ≥ O}

when nonnegativity of A is removed.
Note that these sets cover all the possibilities combining A ≥ O, A# ≥ O,

and AA# ≥ O. In fact, it is not necessary to consider the sets {A ∈ Rn×n :
ind(A) = 1, A ≥ O} and {A ∈ Rn×n : A# ≥ O, AA# ≥ O} because there are
two bijective correspondences between each one of them and PG and PPGP,
respectively. The functions

φ : {A ∈ Rn×n : ind(A) = 1, A ≥ O} → PG

and
ϕ : {A ∈ Rn×n : A# ≥ O, AA# ≥ O} → PPGP
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given by φ(A) = A# and ϕ(A) = A# define the mentioned correspondences.
Is is clear that φ and ϕ are well-defined and it can be shown that they are
bijections because the group inverse property (A#)# = A holds.

In a similar way, taking into account that the Drazin inverse extends the
concept of the group inverse, we can define several sets by using this gen-
eralized inverse. In this case we also consider different situations depending
on the nonnegativity of the own matrix, of its Drazin inverse or even of its
Drazin projector.

Drazin monotone matrices are considered in the following set:

PD = {A ∈ Rn×n : AD ≥ O}

and by adding nonnegativity of the matrix A we have nonnegative Drazin
monotone matrices

PPD = {A ∈ Rn×n : A ≥ O, AD ≥ O}.

On the other hand, when Drazin projectors are involved, we have nonnegative
matrices with nonnegative Drazin projector:

PPDP = {A ∈ Rn×n : A ≥ O, AAD ≥ O},

matrices with only nonnegative Drazin projector:

PDP = {A ∈ Rn×n : AAD ≥ O},

and Drazin monotone matrices with nonnegative Drazin projector

PDPDP = {A ∈ Rn×n : AD ≥ O, AAD ≥ O}

when AD ≥ O is added.
Note that in this case the same bijections as before can not be estab-

lished because, in general, (AD)D 6= A. Moreover, other relationships can be
considered between these sets.

Lemma 2.1. The sets defined before satisfy the following relations:

(a) PI ⊂ PPG.

(b) PPG ⊂ PPGP ⊂ PGP.

(c) PPG ⊂ PG.
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(d) PPG = PPGP ∩ PG.

(e) PPD ⊂ PD.

(f) PPD ⊂ PPDP ⊂ PDP.

(g) PPD = PPDP ∩ PD.

(h) PPD ⊂ PDPDP.

(i) PDPDP = PDP ∩ PD.

In general, all the inclusions are strict.

Proof. The condition A2 = A implies that A3 = A and then A = A# ≥ O

for a nonnegative matrix A. So, PI is included in PPG. Moreover, the
inclusion is strict because the nonnegative matrix

A =





0 1 0
1 0 0
0 0 0





satisfies that A = A# ≥ O but A2 6= A. So, item (a) has been shown.
All the remaining inclusions and equalities can be easily seen. Then,

we focus on showing that the inclusions are strict. For that, we give the
corresponding counterexamples.

First, we start showing that PPG ⊂ PPGP. The nonnegative matrix

A =





1 1 0
0 1 0
0 0 0





satisfies that

A# =





1 −1 0
0 1 0
0 0 0



 � O and AA# =





1 0 0
0 1 0
0 0 0



 ≥ O.

Next, we prove that PPGP ⊂ PGP and PPG ⊂ PG because the matrix

A =





1 −1 0
0 1 0
1 0 0




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is not nonnegative with

A# =





1 1 0
0 1 0
1 2 0



 ≥ O and AA# =





1 0 0
0 1 0
1 1 0



 ≥ O.

Then, items (b) and (c) have been proved.
Now, PPD ⊂ PD, PPDP ⊂ PDP, and PPD ⊂ PDPDP because the

matrix

A =













1 −1 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0













is not nonnegative and its index equals 3. Moreover,

AD =













1 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













≥ O and AAD =













1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













≥ O.

Finally, we treat the case PPD ⊂ PPDP. The matrix

A =













1 1 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0













is nonnegative and its index equals 3. Moreover,

AD =













1 −1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













� O and AAD =













1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













≥ O.

So, items (e), (f), and (h) have been proved. This ends the proof. �

The relations established in Lemma 2.1 are shown in Figure 1.
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Figure 1: Inclusion relationships between different sets.

3. Characterization of the sets whose matrices have index 1

In this section we study the sets defined in the previous section involving
matrices of index 1. So, we assume that all the involved matrices have group
inverse. We start with a result partially given in [7] where the converse is
also included here.

Lemma 3.1. Let A ∈ Rn×n a matrix with rank(A) = r > 0. Then A ∈ PI

if and only if there exists a permutation matrix P ∈ Rn×n such that

A = P





XY XY M O

O O O

NXY NXY M O



 P T (1)

where M , N are arbitrary nonnegative matrices of appropriate sizes and
X = diag(x1, . . . , xr), Y = diag(yT

1 , . . . , yT
r ) being xi and yj positive column

vectors with i, j ∈ {1, . . . , r} such that Y X = I.

Proof. The necessity is given in the proof of the Lemma 2.1 in [7]. Since
P , M , N , X, and Y are nonnegative matrices, from (1) we get that A ≥ O.
Again from (1) and making a simple block multiplication we get A2 = A.
The sufficiency is then proved. �

An important particular case is shown in the following corollary.
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Corollary 3.2. Let A ∈ Rn×n with rank(A) = r > 0. Then A ∈ PGP if and
only if there exists a permutation matrix P ∈ Rn×n such that

AA# = P





XY XY M O

O O O

NXY NXY M O



 P T (2)

where M , N are arbitrary nonnegative matrices of appropriate size and X =
diag(x1, . . . , xr), Y = diag(yT

1 , . . . , yT
r ) being xi and yj positive column vectors

with i, j ∈ {1, . . . , r} such that Y X = I.

Proof. The group inverse A# of the matrix A satisfies that (AA#)2 =
AA#AA# = AA#, that is AA# is an idempotent matrix. Then, the results
follow directly by applying Lemma 3.1 to the matrix AA# when its nonneg-
ativity is assumed since rank(AA#) = rank(A). �

Now, the importance of this last result is that the condition A ≥ O

is suppressed and besides the form of the matrix A is slightly simplified
with respect to that given in Theorem 1 in [11]. More precisely, taking into
account that for a given matrix A ∈ Rn×n it follows that AA# is idempotent,
the nonnegativity of AA# allows to factorize this product. This factorization
leads to the following result on the matrix A.

Theorem 3.3. Let A ∈ Rn×n with rank(A) = r > 0. Then A ∈ PGP if and
only if there exists a permutation matrix P ∈ Rn×n such that

A = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (3)

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is nonsingular and X = diag(x1, . . . , xr), Y = diag(yT
1 , . . . , yT

r ) being xi and
yj positive column vectors with i, j ∈ {1, . . . , r} such that Y X = I.

In this case,

A# = P





XT−1Y XT−1Y M O

O O O

NXT−1Y NXT−1Y M O



 P T . (4)
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Proof. From Corollary 3.2 we can write AA# in the following form

AA# = P





XY XY M O

O O O

NXY NXY M O



 P T (5)

being P , M , N , X, and Y as there. We now partition adequately the matrix
A in a 3 × 3 block matrix as in (5) as follows

A = P





A1 A2 A3

A4 A5 A6

A7 A8 A9



 P T , (6)

and we apply the property (AA#)A = A. The form of AA# and the partition
of A lead to: A4, A5, and A6 are null matrices, Ai = XY Ai, and Ai+6 = NAi

for i = 1, 2, 3. Since A#A = AA#, the same property A(A#A) = A also
yields to A3 = O, A1 = A1XY , and A2 = A1M . Summarizing,

A = P





A1 A1M O

O O O

NA1 NA1M O



 P T , (7)

where A1 = XY A1 = A1XY . Then A1 = XTY being T = Y A1X. Note
that rank(A1) = rank(A) = r. Thus, r = rank(XTY ) ≤ rank(T ) ≤ r be-
cause T ∈ Rr×r. The converse is evident. The proof is then completed. �

In the following result the nonnegativity of the matrix A is added.

Theorem 3.4. Let A ∈ Rn×n with rank(A) = r > 0. Then A ∈ PPGP if
and only if there exists a permutation matrix P ∈ Rn×n such that

A = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (8)

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is a nonnegative nonsingular matrix, X = diag(x1, . . . , xr), Y = diag(yT
1 , . . . , yT

r )
being xi and yj positive column vectors with i, j ∈ {1, . . . , r} such that
Y X = I.
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Proof. Applying Theorem 3.3 we can deduce that A has the required form
(8). From A ≥ O and P ≥ O we have that P T AP ≥ O and thus, in par-
ticular, we get XTY ≥ O by (8). Since X ≥ O, Y ≥ O and Y X = I,
premultiplying and postmultiplying the inequality XTY ≥ O by Y and X,
respectively, we obtain T ≥ O. The converse is evident. �

A result related to the nonnegativity of A and A# independently is given
immediately.

Theorem 3.5. Let A ∈ Rn×n with rank(A) = r > 0. Then A ∈ PPG if and
only if there exists a permutation matrix P ∈ Rn×n such that

A = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (9)

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is a nonnegative nonsingular matrix with T−1 ≥ O, X = diag(x1, . . . , xr),
Y = diag(yT

1 , . . . , yT
r ) being xi and yj positive column vectors with i, j ∈

{1, . . . , r} such that Y X = I.

Proof. By Theorem 3.3, the matrix A has the required form (9) with
T ∈ Rr×r a nonsingular matrix. Under these assumptions, the nonnega-
tivity of A is equivalent to the nonnegativity of T as proved in Theorem 3.4.
Analogously, from (4) we get the equivalence between the nonnegativity of
A# and T−1. This ends the proof. �

We close this section remembering that a characterization of the set PG

was given in [2].

4. Analysis of the sets involving matrices of index greater than 1

It is well-known that a square matrix A ∈ Rn×n of index k > 0 can be
always written as [4]

A = S

[

C O

O N1

]

S−1 = BA + NA, (10)

denoting by

BA = S

[

C O

O O

]

S−1 and NA = S

[

O O

O N1

]

S−1
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where S and C are nonsingular and N1 is nilpotent of nilpotence index k.
Consequently, BA has index 1 and NA is nilpotent of nilpotence index k.
This expression is called the core-nilpotent decomposition of the matrix A

and it will be used in the analysis of the sets presented in the second section.
Note that if the matrix A ∈ Rn×n has index k > 1, it follows that

AAD = O if and only if A is the zero matrix or A is nilpotent of index
k. So, in what follows we will consider the remaining cases.

Theorem 4.1. Let A ∈ Rn×n and BA ∈ Rn×n be the matrix of the core-
nilpotent decomposition (10) of A with rank(BA) = r > 0. Then A ∈ PDP if
and only if there exists a permutation matrix P ∈ Rn×n such that the matrix
BA is given by

BA = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is nonsingular and X = diag(x1, . . . , xr), Y = diag(yT
1 , . . . , yT

r ) being xi and
yj positive column vectors with i, j ∈ {1, . . . , r} such that Y X = I.

In this case,

AD = P





XT−1Y XT−1Y M O

O O O

NXT−1Y NXT−1Y M O



 P T . (11)

Proof. From (10), we get AD = B
#

A and AAD = BAB
#

A + NAB
#

A = BAB
#

A

given that NAB
#

A = O. Since BAB
#

A = AAD ≥ O, Theorem 3.3 assures that
the matrix BA has the desired form because rank(BA) > 0. �

Another set to be studied is PDPDP.

Theorem 4.2. Let A ∈ Rn×n and BA ∈ Rn×n be the matrix of the core-
nilpotent decomposition (10) of A with rank(BA) = r > 0. Then A ∈
PDPDP if and only if there exists a permutation matrix P ∈ Rn×n such
that the matrix BA is given by

BA = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T

11



where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is nonsingular with T−1 ≥ O and X = diag(x1, . . . , xr), Y = diag(yT
1 , . . . , yT

r )
being xi and yj positive column vectors with i, j ∈ {1, . . . , r} such that Y X =
I.

Proof. Applying Theorem 4.1 we get that BA has the required form with
T ∈ Rr×r a nonsingular matrix. In order to assure the nonnegativity of
the matrix T−1 we observe that AD = B

#

A has the form (11). Now, simple
computations imply that the nonnegativity of T−1 is guaranteed by the non-
negativity of AD. The converse is evident. This ends the proof. �

We now study the remaining sets.

Theorem 4.3. Let A ∈ Rn×n and BA ∈ Rn×n be the matrix of the core-
nilpotent decomposition (10) of A with rank(BA) = r > 0. If A ∈ PPDP

then there exists a permutation matrix P ∈ Rn×n such that the matrix BA is
given by

BA = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (12)

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is nonsingular with T ≥ O and X = diag(x1, . . . , xr), Y = diag(yT
1 , . . . , yT

r )
being xi and yj positive column vectors with i, j ∈ {1, . . . , r} such that Y X =
I.

Proof. Applying Theorem 4.1 we get that BA has the required form with
T ∈ Rr×r a nonsingular matrix. Using the core-nilpotent decomposition of
A we arrive to

AADA = (BA + NA)B#

A (BA + NA)

= BAB
#

A BA + NAB
#

A BA + BAB
#

A NA + NAB
#

A NA = BA

since NAB
#

A = B
#

A NA = O. Then, from A ≥ O and AAD ≥ O, we have that
BA ≥ O and this implies that T ≥ O after simple computations. The proof
is then completed. �

Note that the converse of previous theorem is, in general, not valid as the
following example shows.
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Example 4.1. The matrix

A =









1 1 0 0
0 1 0 0
0 0 0 −1
0 0 0 0









is not nonnegative and its core-nilpotent decomposition is A = BA+NA where

BA =









1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0









≥ O and NA =









0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0









being NA nilpotent, BA of index 1 written as (12) with

T =

[

1 1
0 1

]

≥ O and nonsingular,

and M = N = O, X = Y = I, and P = I.

However, the converse can be only partially established.

Remark 1. Following the same notation as in Theorem 4.3, we have that
if A = BA + NA with BA in the form (12) and T a nonnegative nonsingular
matrix then AAD ≥ O and BA ≥ O.

Theorem 4.4. Let A ∈ Rn×n and BA ∈ Rn×n be the matrix of the core-
nilpotent decomposition (10) of A with rank(BA) = r > 0. If A ∈ PPD then
there exists a permutation matrix P ∈ Rn×n such that the matrix BA is given
by

BA = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (13)

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈
Rr×r is nonsingular with T ≥ O, T−1 ≥ O and X = diag(x1, . . . , xr), Y =
diag(yT

1 , . . . , yT
r ) being xi and yj positive column vectors with i, j ∈ {1, . . . , r}

such that Y X = I.
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Proof. From Theorem 4.2 we get that BA has the required form with
T ∈ Rr×r a nonsingular matrix having T−1 ≥ O. As A ≥ O and AD ≥ O we
have AAD ≥ O and A ≥ O which are the hypothesis of Theorem 4.3, and
so, we can assure that T ≥ O. This completes the proof. �

As before, the converse of Theorem 4.4 is, in general, not valid as the
following example shows.

Example 4.2. In this case, the matrix

A =









1 0 0 0
0 1 0 0
0 0 0 −1
0 0 0 0









of index k = 2 is not nonnegative and its core-nilpotent decomposition is
A = BA + NA where

BA =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









≥ O and NA =









0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0









being NA nilpotent, BA of index 1 written as (13) with T = I, M = N = O,
X = Y = I, and P = I.

Again, the converse can be only partially established.

Remark 2. Following the same notation as in Theorem 4.4, we have that if
A = BA +NA with BA in the form (12) and T and T−1 nonnegative matrices
then AD ≥ O and BA ≥ O.

We close this section considering the nonnegativity of the matrix A.

Remark 3. Following the same notations as before, we derive the following
equivalences under the assumption A ≥ O:

(a) AAD ≥ O if and only if BA has the form (12) with T ≥ O and nonsin-
gular.

(b) AD ≥ O if and only if BA has the form (12) with T ≥ O and T−1 ≥ O.
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5. Further results and applications

In this section, we will use the results previously established and the
core-nilpotent decomposition (10) of a square matrix A of index k > 0 to
characterize the {l}-Drazin periodic matrices, for any integer l > 1. We
recall that this kind of matrices are those that satisfy AD = Al−1. By simple
computations we can firstly show that AD = Al−1 is equivalent to Al−1 =
A2l−1 and Ak = Ak+l. For that, we use the properties of the Drazin inverse
of a square matrix A ∈ Rn×n.

We now continue with a previous result to the characterization of the
{l}-Drazin periodic matrices.

Lemma 5.1. Let A ∈ Rn×n and BA ∈ Rn×n be the matrix of the core-
nilpotent decomposition (10) of A with rank(BA) = r > 0, and let l > 1 such
that Bl

A ≥ O. If AD = Al−1 then there exists a permutation matrix P ∈ Rn×n

such that

BA = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is a nonsingular matrix such that T l = I, and X = diag(x1, . . . , xr), Y =
diag(yT

1 , . . . , yT
r ), xi and yi are positive column vectors with i, j ∈ {1, . . . , r}

such that Y X = I.

Proof. The condition AD = Al−1 implies that B
#

A = (BA + NA)l−1 =
Bl−1

A + N l−1
A since BANA = NABA = O. Then, BAB

#

A = Bl
A ≥ O , so we

can apply Theorem 3.3, having that BA and B
#

A are in the form (3) and (4),
respectively. Moreover, by using these expressions, the equality BAB

#

A = Bl
A

can be written as the equivalent one




XY XY M O

O O O

NXY NXY M O



 =





XT lY XT lY M O

O O O

NXT lY NXT lY M O



 .

Then, it follows that XY = XT lY . Premultiplying by Y , postmultipliying
by X, and using that Y X = I, we obtain T l = I. �

Note that this last lemma gives only necessary conditions to get AD =
Al−1. In order to obtain necessary and sufficient conditions we present the
following result.
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Theorem 5.2. Let A ∈ Rn×n and BA ∈ Rn×n be the matrix of the core-
nilpotent decomposition (10) of A with rank(BA) = r > 0, and let l > 1 such
that Bl

A ≥ O. Then

AD =

{

Al−1 l ≥ k + 1
Al−1 − N l−1

A l < k + 1

if and only if there exists a permutation matrix P ∈ Rn×n such that

BA = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (14)

where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is a nonsingular matrix such that T l = I, and X = diag(x1, . . . , xr), Y =
diag(yT

1 , . . . , yT
r ), xi and yi are positive column vectors with i, j ∈ {1, . . . , r}

such that Y X = I.

Proof. To prove the necessity, by Lemma 5.1 we only have to show that
condition AD = Al−1−N l−1

A implies that BA has the form (14) when l < k+1.
Clearly, AD = B

#

A = (BA + NA)l−1 −N l−1
A = Bl−1

A . Then, BAB
#

A = Bl
A ≥ O.

Following a similar reasoning as in Lemma 5.1 we get that BA has the form
(14) with T l = I.

For the converse, by making some computations, we have that AD =
B

#

A = Bl−1
A since T l = I. Then,

Al−1 = Bl−1
A + N l−1

A =

{

AD l ≥ k + 1
AD + N l−1

A l < k + 1

and the proof is then completed. �

In the following corollary we can see that the above result includes the
case k = 1.

Corollary 5.3. Let A ∈ Rn×n with rank(A) = r > 0, ind(A) = 1, and
let l ≥ 1 such that Al ≥ O. Then Al+1 = A if and only if there exists a
permutation matrix P ∈ Rn×n such that

A = P





XTY XTY M O

O O O

NXTY NXTY M O



 P T (15)
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where M , N are arbitrary nonnegative matrices of appropriate size, T ∈ Rr×r

is a nonsingular matrix such that T l = I, and X = diag(x1, . . . , xr), Y =
diag(yT

1 , . . . , yT
r ), xi and yi are positive column vectors with i, j ∈ {1, . . . , r}

such that Y X = I.

Proof. The case l > 1 is a direct consequence of Theorem 5.2 because
A# = Al−1 is equivalent to Al+1 = A and the core-nilpotent decomposition
becomes A = BA for k = 1. The case l = 1 corresponds to Lemma 3.1 (where
A2 = A and T = I). �

Moreover, for the case A ≥ O, the additional condition T nonnegative
must be added, that is, for l ≥ 1:

A ≥ O and Al+1 = A ⇐⇒ A has the form (15) with T ≥ O and T l = I.

However, for index greater than 1 the relations are the following.

Remark 4. The cases corresponding to AD ≥ O or A ≥ O can be studied
as in Theorem 5.2. We derive the following results for l > 1.

(a) AD ≥ O and

AD =

{

Al−1 l ≥ k + 1
Al−1 − N l−1

A l < k + 1

if and only if BA has the form (14) with T−1 ≥ O and T l = I.

(b) If A ≥ O and

AD =

{

Al−1 l ≥ k + 1
Al−1 − N l−1

A l < k + 1

then BA has the form (14) with T ≥ O and T l = I (moreover, T−1 ≥ O

when l ≥ k + 1).

Example 4.2 can be used to see that the converse of (b) is not valid.
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