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Abstract.

A study of soot measurement deviation using a diffusion charger sensor with three

dilution ratios enables was conducted in order to obtain a repeatable setting that can

be used to obtain measurements of the particulate matter in terms of soot mass emitted

by a light-duty diesel engine under transient operating conditions. The paper includes

three experimental phases: an experimental validation of the measurement settings in

steady-state operating conditions; evaluation of the proposed setting under the New

European Driving Cycle, and a study of the correlations for different measurement

techniques providing reliable correlations for estimating soot emission from opacity

measurement or from accumulation particle mode concentration. There are several

methods and correlations to estimate soot mass rate in the literature but most of

them were assessed for steady-state operating points. In this case, the correlations are

obtained by more than 4000 points measured in transient conditions. The results of

soot measurements allowed by the new two correlations and deviations less that 4% to

the reference measurement founded in both correlations are presented in this paper.

Keywords : Diesel engine, soot emission, optical techniques, electrical mobility

techniques, correlations
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Nomenclature

Symbols

Atot Total active surface area

Ac.conc. Accumulation particle concentration

C Cunningham correction factor

dn/dt Decrease in the ion concentration

Dp Particle diameter

ec Elementary charge

I Transmitted light intensity

I0 Incident light intensity

Ic Electrometer current

IDCS Diffussion charger sensor current

k Light extincion coefficient

kT Boltzman constant

K Coefficient for particle [1]

L Opacimeter measurement chamber length

mion Electric ions mass

n Ion concentration

nc Particle charges number

N Opacity

Npol. Polydisperse aerosol concentration

Sootconc. Soot concentration

Zp Electrical mobility

µ Gas viscosity
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Abbreviations

AFR Air to fuel ratio

CAD Cranck angle degree

DCS Diffusion Charging Sensor

DR Dilution Ratio

ECU Electronic Control Unit

ED Ejector diluter

EEPS Engine Exhaust Particle Sizer

EGR Exhaust Gas Recirculated

EUDC Extra Urban Driving Cycle

FPS Fine Particle Sampler

HACA Hydrogen Abstraction-aCetylene Addition

HSDI High Speed Direct Injection

ISF Insoluble Fraction

NEDC New European Driving Cycle

PAH Polycyclic Aromatic Hydrocarbon

PM Particulate Matter

PN Particle Number

PTD Porous Diluter Tube

PSD Particle size distribution

SOF Soluble Organic Fraction

SOI Start Of Injection

USLD Ultra Low Sulfur Diesel

1. Introduction

Nowadays, most important source of environment pollution comes from human sources,

most of them being powered vehicles [2]. One of the main causes of cardio-respiratory

diseases and negative effects on human health are the particles generated by diesel

engines [3, 4]. Due to these respiratory problems, European Union members began to

show a strong interest in reducing these emissions, imposing limits on the soot mass

emitted by diesel engines [5], and more recently on number of particles (PN) emitted

[6]. Currently, many researchers are giving knowledge about diesel aerosol and particles

morphology in the exhaust gas [7, 8]. Exhaust particulate matter (PM) is defined

as any solid or liquid material, except water, trapped in a filter material at a given

temperature, and it is mainly composed by insoluble carbonaceous material (ISF ) and

adsorbed hydrocarbons from fuel or lubricating oil (SOF ) [9].

For some time, different standards of the European Union [10] limit soot emission

from diesel engines based on the mass of particulate matter quantificated by gravimetric

method [11]. The problem associated to this method is the long time necessary to
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collect enough mass in the filters for a representative weighting. Also, volatilization

of certain semivolatile compounds which are adsorpted occurs up on the filters during

particle collection [12]. In adition, a rigorous methodology for subsequent analysis of

soot mass trapped in filters is reqired, since the SOF trapped must be extracted by

Soxhlet method [13]. Furthermore, this method only allows quantification of the final

filter mass trapped during a period of time, but do not allow the quantification of

the instantaneous particulate emission, so it is very difficult for engine calibration to

minimize the soot emission in transient operating conditions. Due to this fact, the use of

new systems capables to provide transient soot measurement are becoming increasing.

In this sense, it is necessary to establish optimum measurement conditions in order to

allow transient soot measurements with less posible variations.

Besides filter-based methods, various instruments and methods can be used to

measure particle concentration, which are nearly linked to soot mass concentration.

Particle sizing instruments can be used to measure particle size distributions. Generally,

those instruments are designed to measure the electrical mobility diameter of particles

such as the scanning mobility particle sizer [14], or engine exhaust particle sizer [15].

Recent studies have shown that soot present in the exhaust gas is mainly composed

by denominated accumulation particle concentration mode [16], so measurement of this

kind particle concentration in parallel to soot concentration measurement can give us

knowledge of the relationship between these two measurements.

Additionally, for all substances in the particulate matter, soot is recognized as the

main compound causing the smoke opacity [17], and therefore opacimeters are generally

used to measure this opacity. Nevertheless, opacity in the exhaust gas is not only

caused by soot concentration, and some deviation in the measurement is caused by

particle morphology and its effect on light scattering [18]. In this sense, other factors

such as exhaust gas temperature, flow rate and condensation takes great importance for

these conversions [19].

In the literature, numerous authors have attempted to find relationships between

different measurement techniques and actual soot mass emission [20, 21]. Due to engine

evolution, these relationships are becoming obsolete, and give erroneous estimations

of soot mass emitted by modern vehicles. Most of these correlations have been

obtained through measurements in steady-state operating points [22], being necessary

new correlations for estimate transient soot emission obtained during transient tests.

The aim of this paper is, therefore, to validate the condition measurement in a

device used for transient soot emision measurement (diffusion charging sensor) and then,

aplying the optimum condition measurement obtained for transient soot measurements,

derive empirical correlations between two different measurement techniques which can

provide a reliable measurement of the soot mass emission to the users. In this case,

related measurement techniques have been both opacity and electrical mobility of the

particles, with the soot rate measured directly by a diffusion charger.
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2. Methodology

Extensive experimental work has been conducted in order to correlate three different

measurement techniques that have been used in this study. Two different test types have

been assessed and the methodology used was as follows: firstly, steady-state operating

points were performed in order to select the optimun dilution ratio for soot measurement

with the difussion charging sensor. After optimun dilution ratio has been determined

for soot measurement, different New European Driving Cycles (NEDC) were assessed

in order to validate transient soot measurement. Finally, extra urban driving cycle

(EUDC) phase was used to correlate different techniqes during transients operations.

2.1. Optimun dilution ratio selection for soot measurement

Steady-state operating points have been performed to stablish how dilution stages affect

on soot measurement. Three steady-state engine modes (table 1) were assessed in order

to generate different particle size distributions and study the dispersion factors produced

or not as a result of different aerosol characteristics: in mode named A(Nuc), particle

size distribution was dominated by nucleation mode; mode named B(Bim) presents

bimodal particle size distribution; and mode named C(Ac) shows particle size distribution

dominated by accumulation mode.

Table 1. Steady state operating points for the validation of the soot measurement.

Mode Speed Torque Injection pressure SOI AFR

[rpm] [Nm] [bar] [oCAD] [−]

A(Nuc) 1500 210 1100 -3 17.7

B(Bim) 750 0 250 -0.50 58.7

C(Ac) 1660 91 800 0.85 21.9

2.2. Transient soot measurement through three different techniques

In the sencond part of the study, different NEDC‘s were conducted in order to check

the instantaneous and accumulated soot measurement during a homologation cycle, and

verify that selected dilution ratio was the optimun. After this verification, the EUDC

phase of the NEDC was selected to correlated accumulation particle concentration and

opacity measurement with the soot measurement performed with the optimun dilution

ratio.

In order to obtain good accuracy in the separation of accumulation particle mode,

particle size distributions can be decomposed by equation (1). It stablish that total

particle size distribution is the sum of both particle mode cocentrations, assuming the

log-normal size distribution function:
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dNi

d log dpi
=

1− x√
2π log σg1

exp

− log2
(

dp1
dpg1

)
2 log2 σg1

+

+
x√

2π log σg2
exp

− log2
(

dp2
dpg2

)
2 log2 σg2


(1)

In equation (1), x is the ratio of the total number of concentrations of two

distributions, dp1, dp2, σg1 and σg2 are the geometric mean diameters and geometric

standard deviations of each peak, and Ni is the particle number concentration of particle

size dpi.

Several studies proposed nucleation mode limits between 30 and 50 nm [23]. In

this study, nucleation mode particles was decomposed from 5.6 to 30 nm. Accumulation

mode particles was ranged from 30 to 560 nm.

3. Soot particle formation

In this section, soot particles formation will be described. It is necessary to state how

soot particles are formed due to the fact that the measurement carried out in this study

(accumulation particle concentration, opacity, and soot emission rate) are performed by

different methods, and they can be affected by the structure of these particles.

It is well known that soot is mainly carbon (ISF ) from high temperature

combustion and it is produced as an intermediate step between the fuel evaporation

and fuel dehydrogenation [24]. The evolution of molecules from vapor-phase or liquid-

phase to solid soot particles includes phenomena such a pyrolysis, precursor formation,

polymerization, nucleation and surface growing [25], as shown in Figure 1.

Firstly, fuel suffers pyrolysis phenomenon due to high temperatures in the

combustion chamber, whereby its molecular structure is altered and partially oxidized

[26]. Haynes and Wagner determined that C2H2, C2H4, CH4 and benzene were typical

compounds originating from fuel pyrolysis diffusion flames [27]. From this point,

aromatic ring formation is due to the attack of C2H2 to n − C4H3 radicals (at high

temperatures) or n − C4H5 radicals (at low temperatures). The first ring changes

by HACA process (Hydrogen abstraction-acetylene addition). HACA mechanism is

considered as a polymerization process due to the fast velocity involved [28], and

two phases can be identified: hydrogen is released first, which activates the aromatic

molecules, followed by the addition of acetylene, which promotes molecular growth and

cyclization of PAH [29].

Experimental studies show that the transition between precursor-soot occurs at

500 to 2000 Da [30]. On one hand, due to the high supersaturation of macromolecular

precursors, the partial pressure of these precursors acts as a driving force, so that the

macromolecules physically condense to yield in a soot liquid phase [31]. On the other
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hand, there is a theory that states that PAH molecules grow until they have a solid

transition [32].

In the final stage of soot formation, surface growth is a predominant process which

occurs by the addition of mass on the nucleate soot particle surface and leads to an

increase in the soot mass, but not in the particle number. During surface growing,

active reactants portion of primary soot particle accepts the gas-phase of acetylene

hydrocarbons. This mechanism (for surface growing) continues when the primary

particles are moved to less active cold areas, where the hydrocarbons concentration

is less than the limit of soot inception rate [33].

4. Experimental facilities

4.1. Engine and general instrumentation

This study was performed in a 2-liter, 4-cylinder, high-speed direct injection diesel

engine (HSDI) for passenger car applications. The engine was equipped with exhaust

gas recirculation system (EGR) and high-pressure fuel injection using a common-rail

injection system. Further detailed specifications of the engine are given in Table 2.

Table 2. Engine’s main characteristics.

Type 4-stroke [−]

Displacement 1997 [cm3]

Diameter (D) 85 [mm]

Stroke (S) 88 [mm]

Number of cylinders (z) 4 [−]

Valves per cylinder 4 [−]

Compression ratio 18:1 [−]

Max. power/speed 100 [kW ] at 4000 rpm

Max. torque/speed 320 [Nm] at 1750 rpm

Ultra low sulfur diesel (ULSD) fuel was used in all the tests according with

European standards and its properties are provided in Table 3.

Table 3. Fuel properties.

Cetane number 51.6 [−]

Viscosity at 40oC 2.46 [mm2/s]

Density at 15oC 0.843 [kg/l]

Lower heating value 42.055 [MJ/kg]

Sulfur content 6.6 [ppm]

Water content 96 [ppm]
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The engine was connected to a dynamometric brake SCHENCK-Dynas3 LI250,

which allows instant speed and torque engine control. In order to make possible

modifications of engine settings, the Engine Control Unit (ECU) is fully open and

the engine settings maps can be recalibrated with the ETAS-INCA software. The

test bench was fully equipped with K thermocouples and mean pressure sensors in the

exhaust, cooling, intake and lubrication systems. Fuel consumption was determined by

two methods. The first consists of a fuel gravimetric system with AVL-733S Dynamic

Fuel Meter. The measurement device consists of a measuring vessel filled with the fuel

and suspended on a balance system. Fuel consumption values are obtained by calculating

the vessel’s weight loss over time. Since the response time of this system may be too long

for transient operation, fuel consumption signal provided by the ECU was calibrated in

steady state operating conditions, and then used as a second fuel consumption measuring

system [34]. For measuring air mass flow rate at intake manifold, Sensyflow-P Sensycon

hot-plate anemometer system was used.

4.2. Experimental setup

Three different equipment were used in this study for measuring particle and soot

emission, as shown in Figure 2.

For particle measurement, TSI-EEPS has been employed in order to allow a fast

response in dynamic cycles [35]. TSI-EEPS is capable for measuring particle size

distribution with a frequency up to 1 Hz, and provide a measuring range between 5.6 to

560 nm. The methodology used to sampling exhaust aerosol from tailpipe and measure

particle size distribution in transient conditions, which is also applicable to steady state

conditions, is performed in the laboratory according to Desantes et al. [36] as shown

Figure 3. The dilution system used in this study was a DEKATI-FPS 4000 [37], and it

accomplished the sample in two stages. A porous tube (PTD) is used as the isothermal

primary diluter (A to B way in Figure 3) , and then ejector diluter (ED) is used as the

secondary diluter (B to C way in Figure 3).

In order to make posible smoke amount quantification present in exhaust gas, a

partial-flow opacimeter AVL-439 was used for measuring the opacity of exhaust gas. In

this sense, opacimeter is capable to measuring opacity in transient condition [38].

Finally, HORIBA-1230PM, which includes a TSI-DCS device for soot measurement,

was used to given a soot emission rate. The system consists of a diffusion charging sensor

with a specific dilution device for soot measurement [39].

Despite the continuous development of enhanced exhaust particle analyzers, there

are relevant difficulties associated with the emission measurement that have to be taken

into account when transient tests are being performed. The main problem is that

particle or soot analyzers usually have longer response time than the rest of the engine

transducers. Therefore, pollutant emission signals are slightly delayed in comparison

with the rest of the engine parameters. Since analyzers measure either particle

concentration or soot concentration, exhaust mass flow must be determined to calculate
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the instantaneous mass of pollutants emitted. Therefore, the synchronization between

exhaust mass flow and pollutant emission measurement devices becomes critical. The

synchronizing method adopted in this study is widely described by Broatch et al.[40].

4.3. Electrical and optical techniques for particle measurement

Since the aim of this work is to define the condition measurement for soot emission

rate measurement in a device capable for it, and correlate experimental results obtained

with different techniques, it is necessary to know the operating principle that each

system is using for carried out measurements. Figure 4 shows the operating principle

for each measurement systems. TSI-DCS, which is capable to allow soot emission rate,

based its operating principle in a diffusor charger. TSI-EEPS equipment, that allows

instantaneous particle size distribution, bases its operating principle on the electrical

mobility of particles according to their diameters. And finally, AVL-439 opacimeter

uses the light extinction technique to determine the percentage of light absorbed by the

carbon particles.

• Surface area measurement technique from diffusion charger sensor.

DCS is a device capable for active surface particles measurement in the exhaust gas

through a diffussion charger [41]. This active surface area (Atot) is proportional to

the soot amount present in the exhaust aerosol, as shown equation (2).

Atot =
1√
3kT
mion

dn

dt
(2)

Where dn/dt is the decrease in the ion concentration due to attack on the suface

particles, kT is the Boltzman constant, and mion is the electric ion mass.

The measurement principle for the equipment is based on the free ion generation in

a high voltage corona discharge (filtered exhaust gas ionization), which attack the

active surface of the particles by Brownian forces in axial mixing chamber (Brownian

diffusion) [42], as shown the center of Figure 4.A. Excess ions are collected by ion

trap using a low voltage electrode, and the charged particles are precipitated on a

isolated filter where the current is measured. The measured current is directly the

ion union ratio on particle surface, and it is an indicator of the quantity of ions

that are absorbed by the particle surface, as shown equation (3) .

dn

dt
=
Ic
ec

= −KNpol.n (3)

Where n is the initial free ions concentration, K is a coefficient which depends

of particle concentration, and Npol. is the polydisperse aerosol concentration.

Recombining equations (2) and (3), active surface area is given in terms of the

electrometer current. Equation (4) shows how the active surface area is determined.
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Atot =
1

ec

√
3kT
mion

IDCS (4)

• Electrical mobility measurement technique.

Scanning mobility particle size measurements is the extended method for

investigating particle size distributions of engines exhaust aerosol during steady-

state conditions. In this sense, due to the fact that scan all particle range

concentration is needed, acquisition of a particle size distribution takes several

minutes. However, the development of segmented differential mobility analyzers

has extended allowing detailed analysis to transient engine testing. As stated

in 4.2, TSI-EEPS is the system used for PSD measurements in this work. The

measurement principle of this device are based on electrical mobility acquired by

the particles as a function of its diameter, as shown equation (5).

Zp =
ncecC

3πDpµ
(5)

Where nc is the particle charges number, C is the Cunningham correction factor,

µ is the gas viscosity, and Dp is a particle diameter. Therefore, for a polydisperse

aerosol, the particles acquire electrical mobility according to their diameter.

Figure 4.B shows the scheme of the measurement principle. Firstly, particle entries

in charger zone. In order to solve the problem of multiple charges that particles

show, the aerosol charging method has been accomplished through two unipolar

needle diffusers. At first glance, a negative needle puts the negative net charge

on particles to reduce the number of highly positive charged particles and prevent

overcharging in the second needle. Then, positive charger puts a predictable net

positive charge on the particles. A series of electrometers downstream of the

charging area detect the current in a specific range, capables for detecting a range of

associated electrical mobility particle diameter, being able to determine the particle

size distribution [15].

• Optical technique for continuous opacimeter.

It is widely known the use of this system for opacity measurement in the exhaust gas.

The operation principle of this equipment is based in the Beer-Lambert law, and it

can provide online signal of smoke amount present in exhaust gas. Beer-Lambert

law relates the current of inlet light (right side in Figure 4.C) in a medium with the

outlet current after light absorption by the medium (left side in Figure 4.C). The

relationship between the two intensities can be expressed by equation (6).

I

I0
= e−kL (6)
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Where k term is the gas extinction coefficient, and it is defined as the amount of

light extinguished by length unit, which increases as the particle concentration do

[44]. Opacity measurement is therefore defined as N , which can vary from 0 to 100

and is proportional to a light extinction inside the tube, as defined by equation (7).

I

I0
= 1− N

100
= e−kL (7)

5. Results and discussion

5.1. Measurement method for optimun dilution ratio selection

In order to validate the soot measurement that HORIBA-1230PM performs through

TSI-DCS, particle size distribution and total particle concentration in the exhaust gas

during the steady-state operating points have been measured at both the beginning

and the end of measurement phase. Figure 5 shows how the measurement process was

carried out.

This part of the study has been done because the optimun dilution ratio was not

defined for this equipment, so it is necesary to optimize the processes that could infer

in the measurement. Figure 6 shows the results of the study for the three steady-state

operating points tested.

Plots at the left side of the figure 6 correspond to a particle size distributions

of the three steady-state operating point that have been tested, showing particle size

distributions taken both at the beginning and end of soot measurement phase. These

particle size distributions show variability at each steady-state operating points along the

entire measurement phase. Particle size distribution figures show the invariance in the

three steady-state operating points. These graphs show that the exhaust gas emission

and aerosol composition does not vary during the steady-state points tested. Moreover,

plots at the right side of figure 6 show soot measurements allowed by TSI-DCS using the

three dilution ratios enables, namely DR8, DR40 and DR80. Furthermore, accumulation

particle mode concentration in the exhaust gas taken at the beginning and end of the

measurement phase are presented in the same plot, which is closely linked to the soot

composition [16].

It is clearly observed that DR40 corresponds to the largest amount of soot measured

in all cases. The highest difference between soot measurements at different dilution

ratios in the same steady-state point corresponds to the A(Nuc) operating point. This

is due to the fact that particle size distribution in the exhaust gas at this operating

point consists mainly in nucleation particle mode concentration. In this particles type

(<30 nm), Brownian diffusion losses have been produced in the charger due to the strong

electric field generated in the corona discharge [45], which are depositing in the diffusion

charger surface. This is closely linked to the losses in the transfer tube of a given length

due to aerosol diffusion and thermophoretic forces at low flow [46].
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In the case of high accumulation particle mode concentration (C(Ac)), another

phenomenon associated with lower dilution ratios occurs. A decrease in particle charging

efficiency due to the free ions defect for particle attack in the diffusion charger [42] was

found. Moreover, focusing on comparison between DR40 and DR80 measurement do not

exist almost difference between them in high accumulation particle mode concentrations

(point B(Bim) and C(Ac)). In contrast, at low accumulation particle mode concentration

(point A(Nuc)) there is a decrease in soot amount measured due to the lower detection

limit of the TSI-DCS. High dilution ratios produce a very low particle concentration

which cannot be detected by the equipment.

Finally, Figure 7 shows the sensitivity of soot measurement respect to the

accumulation particle mode concentration. This variation was calculated according

to the equation (8), and allows checking soot measurement variation for each test with

different dilution ratios.

Sensitivitymeas. =
Sootconc.
Ac.conc.

(8)

It is appreciated that the soot measurement taken at the beginning and the end

of the measurement phase allows similar variations respect to accumulation particle

concentration mode. As shown in Figure 7, DR40 measurements present a higher

sensitivity to soot measurements for the three steady-state operating points, which

indicates that this is the optimal dilution ratio for soot measurements with DCS.

5.2. Transient soot measurement with three simultaneous differents measurement

techniques

Once the optimun dilution ration has been selected, soot data measurement obtained

during the assessment of NEDC is presented. It was performed through the three

dilution ratios allowed by HORIBA-1230PM to evaluate its influence in the soot

measurement on dynamic conditions. Since the aim of this paper is to find empirical

correlations between different measurement techniques used, opacity and accumulation

mode particle concentration also have been measured at the same time that soot

emission rate. Figure 8 shows soot concentration, accumulation particle concentration

and opacity measurement along the three NEDC carried out.

As shown in Figure 8.A, soot measurement is affected by the dilution ratio used.

During the urban phases (ECE−15) there is not difference between soot measurements

with different dilution ratios due to the lower particle concentration at these phases,

although it is possible to observe that soot measurement made with DR8 is below

than other two. When the issue is focused on the EUDC phase, it is clearly visible

that DR8 soot measurement is different from other two DR measurements. In this

case, accumulation mode particle concentration is much higher, so the influence of

free ions availables for particle charging is much higher as explained in Section 5.1.
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To ensure that the decrease in soot measurement is not associated to the daily

variation, accumulation particle concentration mode and opacity measurements show

invariance on the three cycles performed (Figure 8.B and Figure 8.C), obtaining the

same accumulation particulate concentrations and opacity values for each cycle.

In order to find the deviation in the measurement of soot mass emitted during

whole cycle, the accumulated soot were calculated during the NEDC, allowing up to

21.9% less with DR8 than the soot mass measured with DR40, which was established as

optimum for soot measurement. Figure 9 shows the accumulated soot throughout the

NEDC and the difference found when the DR8, DR40 and DR80 were compared.

5.3. Proposed correlations for estimation of soot mass rate

As shown in the previous section, soot concentration, opacity, and accumulation mode

particle concentration are closely linked. Figure 10 shows soot concentration, opacity

and accumulation particle mode concentration throughout the EUDC phase, and it is

clearly visible the correspondence with different measurement techniques. In this phase

of NEDC, the increase in accumulation particle mode concentration of exhaust aerosol

composition is relevant. Selected data for correlations between different techniques have

been chosen from the start of EUDC phase (Idle−0%load) until the instant before the

deceleration ramp (2150min−1 − 53%load).

Figure 11 shows over 4000 sample points taken into account during this EUDC

phase for analysis and correlation between different techniques. As shown in section 5.1,

dilution ratio to be taken into account in the soot measurement are optimized, and DR40

has been employed with TSI-DCS for soot measurement.

Figure 12.A1 and figure 12.B1 show the two correlations obtained from the opacity

to soot measurement, and between the accumulation mode particle concentration to

soot measurement. In order to correlate the different techniques and validate the

regressions that has been obtained, it has been made a statistical data analysis, where

it is found correspondence with an R2 = 89.8% between opacity and soot measurement

(in the range from 0% to 40%); and an R2 = 93.7% for the accumulation particle mode

concentration and soot measurement (in the accumulation particle concentration range

from 0 to 2 ∗ 1014 #/m3). Both correlations have been evaluated for a 95% confidence

interval [47]. Furthermore, Figure 12.A2 and Figure 12.B2 show the data that have

been measured versus values that have been obtained with correlations, ckecking that

the adjustment corresponds to the measured values.

In the opacity case, the adjusted correlation corresponds to equation (9):

Sootconc. = 7.148438 + 5.72431[N ]−
− 0.0995499[N ]2

(9)

In the case of accumulation particle mode concentration, the correlation found is

as follows equation (10):
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Sootconc. = 3.53435 + 2.65092E−13[Ac.conc.]+

+ 8.07561E−28[Ac.conc.]
2

(10)

5.4. Soot emission rate correlations validation

In order to validate the proposed correlations, entire NEDC cycle has been carried out

to ensure the correlations response versus dynamic cycles. Instantaneous concentrations

and accumulated results are shown in Figure 13.

Figure 13.A shows instantaneous soot concentration throughout the cycle obtained

by HORIBA-1230PM throught TSI-DCS direct measurement, and the instantaneous

soot concentration obtained through the proposed correlations. Furthermore, figure 13.B

shows the total soot mass emitted throughout the cycle using correlations and direct

measurement. Table 4 shows the variation of both correlations compared to direct soot

measurement, not getting to 4% deviation.

Table 4. Variations for proposed correlations.

Correlation Variation [%]

Opacity correlation 3.49

Accumulation part. correlation -1.93

At first glance, opacity correlation overestimates soot concentration during the

whole cycle due to NO2 interference during the opacity measurement. Since this

compound has optical properties for light absorption [48], it can be decrease light

intensity reaching the optical detector, thereby increasing the opacity measurement.

Jones states that opacimeters can detect between 0.00016 m−1 and 0.00024 m−1

of light extinction coefficient per NO2 ppm [49], so that 30 ppm typical concentration

of NO2 at idle operating point has a 0.006 m−1 light absorption coefficient, which

corresponds to an increase of 2.2% in the opacity. Note also that the opacimeter presents

quite dispersion below 2% opacity (k = 0.001 m−1), which is the measurement resolution

of the equipment [50].

Instead, the particle correlation presents a fairly accurate adjustment since this

model takes into account the particle morphology (accumulation particle mode) of the

exhaust gas aerosol, so that deviations obtained with the model are almost negligible.

6. Summary and Conclusion

Nowadays, the necessity to estimate soot amount emitted by current engines during

transient conditions are increasing importance. Due to this fact, soot measurement

systems for transient conditions are being used. In this sense, it is necessary to define

measurement conditions for the use of this analyzer and check what kinds of influence
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factors affect the soot measurement in order to perform test with the least variability

possible.

On this basis, a comprehensive experimental analysis of how dilution ratio affects

soot measurement was performed in steady-state operating conditions. A sensitivity

analysis shows the variability on soot measurement when three different dilution ratios

were used, allowing a recommendation for the dilution ratio applied. Moreover, dynamic

tests through NEDC confirm that the selected dilution ratio allows less deviation in the

soot measurements.

Furthermore, there were two new correlations between different measurement

techniques to estimate an instantaneous soot mass concentration from a light-duty diesel

engine through transient conditions measuring opacity or accumulation particle mode

concentration present in the exhaust gas.

Based on the analysis of the results, the following conclusions were highlighted.

• The dilution ratio employed significantly affects to soot measurement due to the

particle charging process inside the analyzer. The optimun dilution ratio value

found in this study was 40.

• TSI-DCS has been validated as a system capable for determining the soot

concentration in transient operating conditions, showing a high speed in the

response of the analyzer.

• Correlations for estimate soot concentration through different measurement

techniques have a fit with a R2 = 93.7% for accumulation particle mode correlation

and a R2 = 89.8% for opacity correlation, and a deviation of 3.49% and -1.93%

respect to TSI-DCS direct soot measurement respectively.
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[20] J. Arrègle, V. Bermúdez, J. R. Serrano, and E. Fuentes. Procedure for engine transient cycle

emissions testing in real time. Exp. Therm. Sci., 30(5):485–96, 2006.

[21] AVL 415S. Technical note. Smoke-meter, the new correlation curve. www.avl.com.
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