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Abstract: In scheduling, estimations are affected by the 
imprecision of limited information on future events, 
and the reduction in the number and level of detail of 
activities. Overlapping of processes and activities 
requires the study of their continuity, along with 
analysis of the risks associated with imprecision. In this 
line, this paper proposes a fuzzy heuristic model for the 
Project Scheduling Problem with flows and minimal 
feeding, time and work Generalized Precedence 
Relations with a realistic approach to overlapping, in 
which the continuity of processes and activities is 
allowed in a discretionary way. This fuzzy algorithm 
handles the balance of process flows, and computes the 
optimal fragmentation of tasks, avoiding the 
interruption of the critical path and reverse criticality. 
The goodness of this approach is tested on several 
problems found in the literature; furthermore, an 
example of a 15-story building was used to compare 
the better performance of the algorithm implemented in 
Visual Basic for Applications (Excel) over that same 
example input in Primavera© P6 Professional V8.2.0, 
using five different scenarios. 

Keywords: activity splitting; fuzzy; generalized 
precedence relations; process flow; project scheduling; 
reverse criticality.  

1. INTRODUCTION 

Construction projects are developed under the 
constraints of scope, time and budget. To achieve the 
time target, including interim deadlines, construction 
schedulers generally use a group of tools known as the 
critical path method, scheduling through a hierarchy of 
three layers from low to high levels of detail (Nicholas 
& Steyn, 2008). This cascade structure implies that for 
short-term planning, the growth in the level of detail 
increases the number of activities with simple 
interdependences between them; however, long-term 
planning implies that, on the one hand, the number of 
activities is reduced but, on the other hand, complex 
interdependences with overlapping and decisions on 
continuity of the activities are generated (Arditi & 
Bentotage, 1996). The proposal presented later in the 
paper helps schedulers dealing with this issue. 

 

The problem of overlapping and splitting the activities 
was studied for first time by Crandall (1973), who 
considered that disallowing the splitting of activities 
was an excessive relaxation of the real problem; he 
proposed a novel algorithm with discretional 
fragmentation. After Crandall, several authors (Wiest, 
1981) (Valls, Martí, & Lino, 1996) (Moder, Philips, & 
Davis, 1983) have proposed different improvements to 
Crandall’s algorithm but, to the best of the authors’ 
knowledge, the problem of the overlapping and optimal 
fragmentation of activities is not totally solved yet. 
Furthermore, some of the activities of construction 
projects are grouped in processes (Hejducki, 2004) that 
cannot be addressed in the traditional way: the decision 
is not focused on the fragmentation of the activities but 
on the continuous execution (flow) between them 
throughout the process. 

Additionally, long-term planning involves unavailable 
or incomplete information, which requires rough 
estimations in the forecast of project parameters, 
producing a high risk of failure (Nicholas & Steyn, 
2008) (Ballesteros-Pérez, González-Cruz, & Pastor-
Ferrando, 2010) (Herroelen & Leus, 2005). To solve 
the problem of risk management in projects, statistical 
approaches have been proposed such as the Program 
Evaluation Review Technique (Malcolm, Roseboom, 
Clark, & Fazar, 1959), or the Monte Carlo Simulation 
Models based on random distributions (Alarcón, 
Ashley, Sucre de Hanily, Molenaar, & Ungo, 2011).  

Several authors argue that when the nature of the risk is 
associated not with the presence of random variables 
but with the imprecision of the estimates produced by 
limited information (Bonnai, Gourc, & Lacoste, 2004) 
(Herroelen & Leus, 2005), the use of the Theory of 
Fuzzy Sets is appropriate (Zadeh, 1965). Lootsma 
(1989) states that the Theory of Fuzzy Sets is closer to 
reality and simpler to use than stochastic models, 
facilitating the implementation of values that are not 
precisely known, but that can be limited within certain 
bounds of membership or fuzziness (Castro-Lacouture, 
Süer, Gonzalez-Joaqui, & Yates, 2009). In natural 
linguistic terms, when there is not sufficient 
information for a deterministic estimation or a 
statistical measurement, experts use their own 
judgment and experience with the available project 
information, with expressions such as “approximately” 
or “around” a minimum and a maximum value, in other 
words, “more-or-less” (Haque Khan & Akhtar Hasin, 
2012). 
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Summarizing, available mathematical models for 
practitioners in construction scheduling and planning 
do not consider the actual complex and imprecise 
conditions of projects (Castro-Lacouture, Süer, 
Gonzalez-Joaqui, & Yates, 2009), challenging 
decisions on discretional splitting of activities and 
continuity of processes. Therefore, in order to partially 
fill this gap, the authors propose a heuristic approach to 
the Project Scheduling Problem with Generalized 
Precedence Relationships applying the Theory of Fuzzy 
Sets, which allows the optimal splitting of activities 
and considers the processes flow. This way, this 
research contributes to the body of knowledge of 
construction project scheduling in two facets: (a) using 
fuzzy sets theory; and (b) implementing the splitting of 
activities and flow of processes. This approach takes 
into account the sometimes unavoidable interruption of 
activities at the construction site, improving other 
previously proposed algorithms, as well as the 
commercial software, and providing robust results. 
Furthermore, the use of fuzzy logic provides a 
friendlier environment for the practitioner than 
stochastics approaches. 

In order to introduce this proposal properly, the 
following section provides a literature review of the 
state-of-knowledge of the Project Scheduling Problem 
with Generalized Precedence Relationships (GPSP 
from now on). Section 3 details the proposed model for 
the fuzzy Project Scheduling Problem with Generalized 
Precedence Relationships (fuzzy-GPSP hereafter) with 
flows and minimal generalized relationships for 
production planning in construction projects. In section 
4, sound examples found in literature are solved in 
different ways to check the goodness and versatility of 
the fuzzy-GPSP. An example of application is 
displayed in Section 5 in order to prove that the model 
can be rigorously implemented to assist practitioners; 
the fuzzy-GPSP is compared to Primavera© P6 
Professional V8.2.0 in diverse scenarios presenting the 
differences and performance metrics. Finally, 
conclusions and limitations of the research are drawn. 

2. LITERATURE REVIEW 

The classical scheduling methods of Activity-On-
Arrow graphs, such as the Critical Path Method (Kelley 
& Walker, 1959) and the Program Evaluation Review 
Technique (Malcolm, Roseboom, Clark, & Fazar, 
1959), were developed simultaneously at the end of the 
50´s by two separate organizations (the DuPont and 

Remington Rand and the US navy with Polaris missile 
project respectively). They introduced the concept of 
precedence in a finish-to-start relationship ( ( )ijFS z ) in 
which activity j (successor) cannot start until activity i 
(predecessor) is totally finished. The times of each 
activity are computed by applying a forward-backward 
algorithm in a topologically ordered graph. Times 
obtained in the forward pass (ascending order) are 
known as the earliest starting time ( jES ) and the 

earliest finishing time ( jEF ) of the activities, 
establishing the duration of the project (makespan) as 
the earliest finishing time of the last activity. When the 
algorithm is applied in descending order (backward 
pass), the latest starting ( jLS ) time and the latest 

finishing ( jLF ) time of the activities are obtained. 

In addition to the classical finish-to-start relationship (
( )ijFS z ) of the Activity-On-Arrow (Fondahl, 1961), 

more Generalized Precedence Relations (GPRs) 
applying Activity-On-Node graphs were proposed by 
Kerbosch and Schell (1975), IBM (1968) and Crandall 
(1973). The first authors (Kerbosch & Schell, 1975) 
proposed the so-called Extended METRA Potential 
Method, developed in France in 1958 (Roy, 1962), 
introducing for the first time the notion of “percentage 
relation for the begin-begin (start-to-start) relation”. 
IBM (1968) and Crandall (1973) developed the 
Precedence Diagramming Method with GPRs as 
currently known. The new GPRs for the Precedence 
Diagramming Method are the start-to-start ( ( )ijSS z ), 

the finish-to-finish ( ( )ijFF z ) and the start-to-finish (

( )ijSF z ) relationships. 

Both methods, the Extended METRA Potential Method 
and the Precedence Diagramming Method, seem to be 
similar but are conceptually different. The Extended 
METRA Potential Method only computes the earliest 
starting and finishing times, considering activities as 
“no splitting allowed”. Crandall (1973) considered that 
disallowing the splitting of activities is an excessive 
relaxation of the real problem, and presented a 
complete heuristic algorithm to compute the times for 
the activities and the minimum duration of the project. 
The algorithm is capable of recognizing the segments (

&α β ) (see Fig 1) belonging to the same activity and 
the decision of splitting the activities is discretionary 
for practitioners. 

FFij (wj)

i

j
EFj

EFi

ESj LFjLSj

ESi LSi LFi

EFj

EFi

ESj LFjLSj

βi = di - SSij (wi)

ESi LSi LFi

SSij (wi)

αj = dj - FFij (wj)

Forward Pass αj  Computation Backward Pass βj  Computation

 
Fig. 1 Computing the fragments jα  and iβ in the Crandall (1973) and Valls et al. (1996) algorithms 
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Crandall’s algorithm was improved by Moder et al. 
(1983), including the start-to-finish relationship. More 
recently, Valls et al. (1996) analyzed Crandall’s 
algorithm and the splitting criteria failures, proposing a 
new computation for the splitting parameters, as well as 
a new and more realistic treatment of the start-to-finish 
relationship; they considered simultaneously two 
different values for z, concerning its predecessor and 
successor, respectively. Another algorithm was 
proposed by Hajdu (1996), which involved relaxing the 
splitting criteria without considering the &α β  
segments. 

For the “no splitting allowed” problem, the GPRs can 
be relaxed into the more familiar finish-to-start 
relations (Elmaghraby & Kamburowski, 1992) 
(standardized form), or into minimum start-to-start 
precedence relations (Bartusch, Möhring, & 
Radermacher, 1988) (De Reyck & Herroelen, 1998; 
1999). If more than one relationship exists between i  
and j , only the most restrictive must be considered. 
Unfortunately, in some cases, these relaxations provide 
infeasible solutions to the problem. 

The Precedence Diagramming Method with GPRs 
presents anomalous effects that are counterintuitive 
about the consequences of lengthening or shortening a 
job (Wiest, 1981) (Herbert & Deckro, 2011) (Valls & 
Lino, 2001), changing the concept of the critical path 
itself. This anomalous effect, called “reverse 
criticality”, is produced when a critical path passes 
through an activity from finish to start. Then, the 
activity’s effect on the critical path is “perverse” 
(Crandall, 1973), i.e., lengthening the activity shortens 
the critical path and shortening the activity lengthens 
the path; consequently, such a result is called a reverse 
criticality. Reverse criticality occurs because the z
value of the relationships is usually a function of the 
intensity in the execution of the activities; this aspect is 
not covered in the traditional formulation (Herbert & 
Deckro, 2011). 

Another approach considers the use of artificial neural 
networks in order to optimize the scheduling problem, 
taking the neural dynamics model of Adeli and Park 
(1995) for structural optimization as its point of 
departure. Adeli & Karim (1997; 2001), Karim & Adeli 
(1999a; 1999b), Adeli & Wu (1998), and Senouci & 
Adeli (2001) considered precedence relationships, 
repetitive and non-repetitive activities, work continuity, 
multiple crews, as well as the effect of changing job 
conditions on the performance of a crew in their 
scheduling models. All these models were based on the 
time-cost trade-off, seeking minimizing cost as well as 
time optimization. 

Other approaches considerer the intensity of the 
activities using the “feeding precedence” constraints 
(Kis, Erdös, & Márkus, 2004) (Kis, 2005; 2006), based 
on the model developed by Leachman et al (1990) with 
overlapping execution of activities. The Leachman 
dependences were classified by Bianco and Caramia 
(Bianco & Caramia, 2009; 2011; 2012) as 
%Completed-to-start (%CS) and additional feeding 

precedences are the Start-to-%Completed (S%C), 
Finish-to-%Completed (F%C) and %Completed-to-
Finish (%CF). To solve the partial overlap and 
fragmentation of activities, Kis (2006) proposed the 
manual splitting of activities, introducing appropriate 
precedence constraints. 

More recently, new approaches were proposed in order 
to face the problem of overlapped activities: Beeline 
Diagramming Method (Kim, 2012), Design Structure 
Matrix (Srour, Abdul-Malak, Yassine, & Ramadan, 
2013) and Concurrency Scheduling (Lim, Yi, Lee, & 
Arditi, 2014). The Beeline Diagramming Method 
represents the overlapping relationship of two activities 
with an arrow that indicates the direction of workflow, 
from any point of the predecessor to any point of the 
successor; it allows multiple linkage relationships 
between two activities, providing more realistic 
schedules in a hierarchy schedule (Kim, 2012). The 
Design Structure Matrix model, based on the work of 
Krishnan, Eppinger & Whitney (1997), finds the 
shortest possible (overlapped) design schedule by 
processing the dependence information gathered in the 
exchange among design activities. Concurrency-based 
scheduling keeps makespan and cost down by 
overlapping the predecessors and the successors 
without assigning additional resources, characterizing 
the activities by two attributes: evolution as the 
production rate of a predecessor activity, and sensitivity 
as the probability of rework´s occurrence in the 
successor when a change occurs in the predecessor 
(Lim, Yi, Lee, & Arditi, 2014). 

The problem of the Repetitive Scheduling Method, i.e. 
repetitive activities organized in processes, has been 
deeply studied since O´Brien (1969) proposed the Line 
of Balance for projects of multi-story buildings, houses, 
and highways or pipelines (Damci, Arditi, & Polat, 
2013). This method is widely accepted under different 
names as the Vertical Production Method (O´Brien, 
1975), Linear Scheduling Method (Barrie & Paulson, 
1978) (Adeli & Karim, 1997) (Ammar, 2013), Time-
Space Scheduling Method (Stradal & Cacha, 1982), or 
Repetitive Scheduling Method (Harris & Ioannou, 
1988) (Maravas & Pantouvakis, 2011); currently, it is 
more well-known as Location-Based Scheduling 
(Seppänen, Evinger, & Mouflard, 2014). 

The first works applying fuzzy logic to project 
scheduling problem was by Prade (1979) and Chanas & 
Kamburowski (1981) applying fuzzy numbers with 
triangular membership functions based on optimistic, 
the most likely, and the pessimistic estimates of the 
respective activity durations. Chang, Tsujimura, Gen, 
& Tozawa (1995) proposed a project planning based on 
fuzzy Delphi method, and Chen & Chang (2001) dealt 
with the problem of finding Multiple Possible Critical 
Paths using Fuzzy PERT. 

One of the most controversial problems on fuzzy 
scheduling is the problem of ranking (Brunelli & 
Mezei, 2013) (Deng, 2014) (Wang, Yang, Xu, & Chin, 
2006) and determining latest starting dates in a 
satisfactory manner. Dubois, Fargier, & Galva (2003) 
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dealt with the problem of determining latest starting 
dates and slack times in a satisfactory manner (Chanas 
& Kamburowski, 1981) (Rommelfanger, 1994) 
(Dubois, Fargier, & Galva, 2003). Chen & Huang 
(2007) proposed a method to measure the fuzzy 
criticality in project network. Castro-Lacouture et al. 
(2009) applied fuzzy values to time, cost, and material 
restrictions using fuzzy mathematical models. Ponz-
Tienda, Pellicer, & Yepes (2012) proposed a fuzzy 
scheduling model integrating a novel interpretation of 
Earned Value Indexes. The latest proposal was by 
Chrysafis & Papadopoulos (2014)  with an alternative 
approach to Fuzzy-PERT based on possibilistic 
estimate for the mean to avoid the problem of the 
backward recursion.  

Approaches applying robust optimization models were 
proposed by Long & Ohsato (2006). Shi and Blomquist 
(2012) and Maravas and Pantouvakis (2011; 2011b)  
proposed fuzzy durations for activities considering 
overlapping. The first authors (Shi & Blomquist, 2012) 
used the fuzzy Design Structure Matrix, indexing the 
time factor of information exchange along with the 
durations for each activity and their relationships in two 
different matrices: one for the predecessor activities 
and the other for the successor activities. The second 
authors (Maravas & Pantouvakis, 2011) applied the 
fuzzy Repetitive Scheduling Method for the scheduling 
of repeating activities whose unit production rates were 
uncertain or imprecise. Finally, Ma, Gu, & Li (2015) 
suggested a scenario-based proactive robustness 
optimization method, which aims to improve the 
soundness of construction project schedules that are 
developed using the critical chain project management 
method. 

Throughout the analyzed literature, researchers have 
shown that the GPRs are needed to formulate “real-life 
constraints” (Schwindt, 2014), and that fragmentation 
and overlapping of processes and activities is very 
effective in improving the estimation of the project 
makespan for the Unconstrained PSP (Valls, Martí, & 
Lino, 1996) (Ponz-Tienda, Benlloch-Marco, Andrés-
Romano, & Gil-Senbre, 2011) and Constrained PSP 
(Quintanilla, Pérez, Lino, & Valls, 2012), as well as for 
fast-tracking complex construction projects (Srour, 
Abdul-Malak, Yassine, & Ramadan, 2013) by setting 
up overlapping activities (Lim, Yi, Lee, & Arditi, 
2014). Pre-emption as a solution for the fragmentation 
has been widely studied in manufacturing and services 
environments. Nonetheless, realistic approaches to the 
optimal splitting and overlapping of activities and 
processes in construction projects with imprecise 
values for durations and relationships is almost void 
(Lino, Pérez, Quintanilla, & Valls, 2012) and still open 
for research (Schwindt, 2014).  

Several scheduling techniques have been briefly 
presented in this section, but available mathematical 
models and decision support systems for practitioners 
hardly take into account the complex and ill-defined 
conditions of construction projects. Karim & Adeli 
(1999c)  stated that “the limitations and shortcomings 
of the existing software systems used in practice are 

also recognized by the construction industry” (p. 381); 
however, the traditional CPM approach “is still being 
used despite its documented shortcomings, particularly 
for projects involving repeating tasks” (Karim & Adeli, 
1999c) (p. 380). Therefore, in order to partially fill this 
gap and make a contribution to the body of knowledge, 
the authors propose in the next section a heuristic 
approach to the fuzzy Project Scheduling Problem with 
Generalized Precedence Relationships allowing the 
optimal splitting of activities and considering the 
processes flow. 

3. THE PROPOSED FUZZY-GPSP FOR 
PRODUCTION PLANNING IN CONSTRUCTION 

PROJECTS. 

For the purpose of this research, an activity is defined 
as a unique and basic work entity which consumes a 
certain quantity of resources with a constant intensity 
during its execution; an activity can be carried out by 
parts (Lopez & Roubellat, 2013). A process is defined 
as a set of P repetitive activities (called cycles) that 
must be executed strictly one after the other but not 
necessarily in a continuous way; they consume the 
same quantity of resources with a constant intensity 
during their execution. 

The formulation of the proposed model for the 
Unconstrained GPSP is based on the following 
principles: (a) the activities of the project can be 
fragmented in a discretionary way according to the 
criteria of the practitioner; (b) under a functional point 
of view, a maximum of one interruption point per 
activity is considered (Valls, Martí, & Lino, 1996); and 
(c) the activities belonging to the same process must be 
executed without interruption and with discretional 
continuity between them, according to the criteria of 
the practitioner (Fig. 2). In real environments, activities 
and processes interact with each other, transmitting 
information in the form of “minimum production 
flows”, which are necessary for the occurrence of 
future events in the successor activities and/or 
processes. 

Activity (Aj)

Process (Pj)

dj

dj

dj - βj βj

Aj1 Aj2 Aj... Ajpj
Aj... AjPj  

Fig. 2 Splitting criteria of Processes and Activities 

Before presenting the model, the traditional subtraction 
in the backward pass of the fuzzy-PSP needs to be 
explained to avoid further confusion. Computing the 
latest times (LS) of the activities is an important issue 
which can provide negative values for the left side of 
the obtained fuzzy number. This happens because the 
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backward pass of the pseudo-code 1 is strictly applied 
as with crisp values, without taking the precaution that 
computing the LS of the activities is calculated by 
solving an equation with the LS as the unknown term 
(Eq. 1): 

   i i i i i iLS Dur LF LS LF Dur+ = → = −   (1) 

This fact does not have transcendental implications on 
scheduling with crisp values, but with fuzzy values the 
equation must be solved as a Minkowski´s subtraction 
(Buckley & Eslami, 2002) (Chrysafis & Papadopoulos, 
2014) of the supports of the fuzzy number (Eq. 2), 
guarantying that the obtained solution is always 
culminate in an positive confidence interval (Gil-Aluja, 
2004). If a fuzzy difference is applied, negative values 
can be obtained for the times of the activities, providing 
incorrect solutions: 

 
( ) ( ) ( )

( ) ( ) ( )
( )

( )

1 2 3 1 2 3 1 2 3

1 2 1 1

2 2 2

3 2 3 3

, , , , , ,

min ,

max ,

ii i

i i i i i i i i i

i i i i

i i i

i i i i

LS x Dur x LF x

ls ls ls d d d lf lf lf

ls ls lf d
ls lf d
ls ls lf d

⊕ =

⊕ =

 = −
 = −
 = −

 (2) 

In the model introduced in this paper, the criteria for 
computing the times of the activities is an evolution of 
Crandall’s proposal (1973), including the Valls et al. 
(1996) start-to-finish relationship, with a different 
formulation for determining the splits of the activities 
and the Latest Starting (LS) times, which avoid 
unfeasible solutions providing optimal project 
makespan. The proposed algorithm is based on 
establishing the value of the fragment jβ  in two phases. 

In the first phase, jβ  is initialized as the minimum 
“work/feeding GPR” restriction that affects the 
finishing of the activity (Eq. 3). Once the times of the 
successors are computed, jβ  is recomputed in a second 
phase (Fig. 3), as the minimum feasible value that 
meets the constraints of the problem, applying Eq. 4. 

 min( | ) ,      j ij ijFF SF i sucessor of jβ = ∀   (3) 

βj

FFij (pj|wj|z)
SFij (pi,wi|pj,wj|z)

i1

i2

j
z EFj

EFi1

EFi2

ESj

αij
dj - βj

z

 
Fig. 3 Computing the fragment jβ  

( )
0

 max ,

ij j i j j
i j j j

ij

j j j j j ij

True d EF ES
EF ES d

False

p d w

a β
β

a

β β a

→ = − − −≤ − − →  → =

= ⋅ + −

  (4) 

The possible relationships between activities and 
processes are explained in the following paragraphs, 
with the criteria and pseudo-code for determining the 
times. 

The finish-to-start ( ( )ijFS z ) precedence relationship 
between activities (or activities-processes) (Fig. 4) 
represents the minimum number of z “time units” that 
must elapse between the completion of the predecessor 
activity, iA , and the start of the follower activity, jA (or 

activity jpA  of the process jP ).  

βi

Starting time of Aj

Starting time of Pj

di - βi βi

di - βi

dj - βj βj

Ai

Aj

Ai

Pj

FSij (z)

FSij (z)
Aj1 Aj2 Aj... AjPj

 
Fig. 4 Finish-to-start ( ( )ijFS z ) relationship between activities 

and activities-processes 

The pseudo-code to compute the times for the fuzzy 

finish-to-start ( )( )ijFS z x  precedence relationship is 

presented in Pseudo-code 1: 
Pseudo-code 1: fuzzy FS relationship 

Early Times  
( ) ( )  predecessor i successor j→CASE OF  

( ) ( )
[ ] [ ]( )

( )

:
    max ,

    max ,
j j i

j j j j

activity i activity j
ES ES EF z

EF EF ES d

aa  aa

aaaa  

→
   = ⊕   
       = ⊕       

Case 

 

( ) ( )
[ ] [ ]( )

( )

1 1

1 1

:
    max ,

    
    ,2

j j i

j j j

activity i process j
ES ES EF z

EF ES d
FrWComputeProccessesTimes j

aa  aa

aaa 

→

   = ⊕   
     = ⊕     

Case 

CALL 

 

 END CASE  
Latest Times  

( ) ( )  predecessor i successor j→CASE OF  

( ) ( )
[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]( )

:
    min ,  

    min ,
i i j

i i i i

activity i activity j
LF LF LS z

LS LS LF d

aaaa 

aaaa  

−

 = − 
= −

Case 
 

( ) ( )
( )

[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]( )

1

 :
    ,1
    min ,  

    min ,
i i j

i i i i

activity i process j
BckWComputeProccessesTimes j

LF LF LS z

LS LS LF d

aaaa 

aaaa  

→

 = − 
= −

Case
CALL 

 
 END CASE  

Note: the arithmetic operator – is the traditional (not 
fuzzy) subtraction operator (Eq. 2) 

 
The feeding/work & time start-to-start (

( | | )ij i iSS p w z ) precedence relationship between 
activities (or activities-processes) (Fig. 5) represents 
the minimum number of i ip d⋅  or/and iw  “work units” 
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( 0 1,i i ip w d≤ < <  ) required on the predecessor 
activity, iA , prior to the start of the successor activity, 

jA  (or process jP ), with an additional lag of z “time 
units”. 

dj - βj βj

di - βi βi

Ai

Aj

Ai

Pj

SSij (pi|wi|z)

pi· di wi z

Aj1 Aj2 Aj... AjPj

SSij (pi|wi|z)

di - βi βi

pi· di wi z

Starting time of Aj

Starting time of Pj  
Fig. 5 Feeding/work & time start-to-start ( ( | | )ij i iSS p w z ) 

ESj = EFi - di + (pi·di + wi + z) 

pi· di wi z

SSij (pi|wi|z)

pi· di wi z

di - βi βi
Ai

Aj / Pj

pi·di+wi>di-βi ESj = ESi + (pi·di + wi + z)

di

Not feasible solution 

Feasible solution 
Ai

Aj / Pj

 
Fig. 6 Feasible / not feasible solution for the ( | | )ij i iSS p w z  

In the forward pass for computing the earliest starting (
jES ) times of the successor activity or process, it is 

necessary to verify the feasibility of the solution when 
the predecessor activity is to be split. When

i i i i ip d w d β⋅ + > − , the minimum production flow 
required for starting the successor is not met, so it is 
necessary to delay the starting time of the successor (

/j jA P ) to a feasible position from the finishing time 

of the predecessor ( iA ), as can be seen in the right side 
of Fig. 6. 

The Pseudo-code 2 is presented to compute the times 

for the fuzzy start-to-start ( ) ( ) ( )( )| |iij iSS p x w x z x

precedence relationship, including a new computation 
for the Latest Starting times based on a parameter ijk : 

Pseudo-code 2: fuzzy SS precedence relationship 

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]( )

[ ] [ ] [ ]

  
    

i i i i i

i i i i i i

i i i

d p d w
EF ES d p d w

p d w

α α α α α

α α α α α α

α α α

β− < ⊗ ⊕
  = − − ⊕ ⊗ ⊕ 

  = ⊗ ⊕ 

IF THEN

ELSE IF :  
END IF

α

ij
α

ij

k

k
 

Early Times  

( ) ( )  predecessor i successor j→CASE OF  

( ) ( )
[ ] [ ]( )

( )

:
    max ,

    max ,

j j i

j j j j

activity i activity j
ES ES ES z

EF EF ES d

aa  aa

aaaa  

→

     = ⊕ ⊕     

       = ⊕       

Case 
α

ijk  

( ) ( )
[ ] [ ]( )

( )

1 1

1 1

    max ,

    
    ,2

j j i

j j j

activity i process j
ES ES ES z

EF ES d
FrWComputeProccessesTimes j

aa  aa

aaa 

→

     = ⊕ ⊕     
     = ⊕     

Case 

CALL 

α

ijk
 

 END CASE  
Latest Times  

( ) ( ) predecessor i successor j→CASE  OF  

( ) ( )
[ ] [ ] [ ] [ ] [ ]( )    min ,i ji

activity i activity j

LS LS LS za aaa 

→

= − −

Case 

ijk α  

( ) ( )
( )

[ ] [ ] [ ]( )1

 
    ,

    min ,
j

i i j

activity i process j
BckWComputeProccessesTimes j P

LS LS LS z
aaaa 

→

   = − −   

Case
CALL 

α

ijk

 

 END CASE  
Note: the arithmetic operator – is the traditional (not fuzzy) 
subtraction operator (Eq. 2) 
 
The feeding/work & time finish-to-finish (

( | | )ij j jFF p w z ) precedence relationship between 
activities (Fig. 7) represents the minimum number of

j jp d⋅  or/and jw  “work units” ( 0 1,j j jp w d≤ < <  ) 
required on the follower activity, jA , after the 

completion of its predecessor, iA , with an additional lag 
of z “time units”. 

pj· dj wjz
di - βi βi

FFij (pj|wj|z)
Ai

Aj
dj - βj βj

Finishing time of Aj  
Fig. 7 Feeding/work & time finish-to-finish ( ( | | )ij j jFF p w z ) 

The Pseudo-code 3 is presented to compute the times 

for the fuzzy finish-to-finish ( ) ( ) ( )( )| |jij jFF p x w x z x  

precedence relationship:  
Pseudo-code 3 fuzzy FF precedence relationship 

Early Times  

[ ] [ ] [ ]

[ ]( )max , aux

i j j j

j j

aux EF p d w z

EF EF

aaa  aaa 

aa  a

     = ⊕ ⊗ ⊕ ⊕     

   =   
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[ ]

  

    

0

j j j j

ij j i j j

ij

EF ES d

d EF ES

α α α α

α α α αα

α

β

α β

α

       ≤ − −       

       = − − −       

  = 

IF THEN

ELSE IF :  

END IF

 

( )max ,j j j j j ijp d w
aaaaaa    

β β a           = ⊗ − −            

[ ] [ ]    i i jj is continuous ES EF d
αα α  −  IF THEN  =  

Latest Times  

[ ] [ ] [ ]( )min ,i i j j j jLF LF LF p d w z
α α α αα α α       = − ⊗ − −       

[ ] [ ] [ ] [ ]( ),i i i iLS LS LF dα α α α= −min  

[ ]        j i jj is not due to be split LF LS d
α αα   = ⊕   IF THEN  

Note: the arithmetic operator – is the traditional (not fuzzy) 
subtraction operator (Eq. 2) 
 
The feeding/work & time start-to-finish (

( , | , | )ij i i j jSF p w p w z ) precedence relationship between 
activities (Fig. 8) represents the minimum number of

j jp d⋅  or/and jw  “work units” ( 0 1,j j jp w d≤ < <  ) 
required on the follower activity, jA , after the 

minimum number of i ip d⋅  or/and iw  “work units” (
0 1,i i ip w d≤ < <  ) on the predecessor activity, iA , has 
been completed, with an additional lag of z “time 
units”. 

zwipi· di 

βidi - βi

wjpj· dj 
SFij (pi,wi | pj,wj | z)

Ai

Aj
dj - βj βj

Finishing time of Aj

Ai1 Ai2 Ai... Aipi Ai... AiPi
Pi

z

wjpj· dj 

SFij (pi,wi | pj,wj | z)

Aj
dj - βj βj

Finishing time of Aj  
Fig. 8 Feeding/work & time start-to-finish ( ( , | , | )ij i i j jSF p w p w z ) 

This approach for the start-to-finish relationship (
( , | , | )ij i i j jSF p w p w z ) is based on the formulation 

proposed by Valls et al. (1996), and suits a greater 
diversity of conditions more closely to reality. The 
traditional formulation ( ( )ijSF z ) only considers the 
units required between the finish of the activity and the 
start of the predecessor; this fact implies the paradox, in 

production terms, that a follower activity can finish 
without a “real start” of the predecessor. 

The procedure to compute the times for the fuzzy 
finish-to-finish ( ) ( ) ( ) ( ) ( )( ), w | , |i jij i jSF p x x p x w x z x  

precedence relationship is presented in the Pseudo-code 
4. 

Pseudo-code 4: fuzzy SF precedence relationship 
Early Times  

( ) ( )  predecessor i successor j→CASE OF  

( ) ( )
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]( )
( )

[ ] [ ] [ ]( )

      
        

                     
    
        

i i i i i

i i i i i i

j j j

i i i j j

activity i activity j
d p d w

EF ES d p d w

p d w

p d w p d

aaaaa   

aaaaaa    

aaa 

aaaa 

β
→

− < ⊗ ⊕
  = − − ⊕ ⊗ ⊕ ⊕ 

     ⊕ ⊗ ⊕     

     = ⊗ ⊕ ⊕ ⊗     

Case 
IF THEN

ELSE IF :  

α

ij

α

ij

k

k ( )
[ ] [ ]( )

    
    max ,

j

j j i

w

EF EF ES z

aa

aa  aa

 ⊕  

     = ⊕ ⊕     

END IF
α

ijk

( ) ( )
[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )max ,    

i
j j ip j j j

EF EF EF p d w z

process i activity j
aaaaaa     a

= ⊕ ⊗ ⊕ ⊕

→Case 
 

 END CASE  

[ ]
  

    
0

j j j j

ij j i j j

ij

EF ES d
d EF ES

α α α α

α α α αα

α

β

α β

α

       ≤ − −       
       = − − −       

  = 

IF THEN

ELSEIF 
END IF

 

( )max  ,j j j j j ijp d w
aaaaaa    

β β a= ⊗ − −                         

[ ]     j i jj must be continuous d EF ES
α αα   = −   IF THEN  

Latest Times  
( ) ( )  predecessor i successor j→CASE OF  

( ) ( )
[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]( )

    min ,

    min ,
i i j

i i i i

activity i activity j
LF LF LF z

LS LS LF d

aaaa 

aaaa  

→

   = − −   
= −

Case 
α

ijk  

( ) ( )
[ ]( )
[ ]( )

( )

 
    min ,

    min ,
    ,  

i i

i i i

ip ip j

ip ip ip i

i

process i activity j
LF LF LF z

LS LS LF d
BckWComputeProccessesTimes i p

aa  a a

aaa   a

→

     = −    

     = −     

Case

CALL 

 

 END CASE  
Note: the arithmetic operator – is the traditional (not fuzzy) 
subtraction operator (Eq. 2) 
 
The flow & time ( ( | | )ij i jFl p p z ) relationship between 
processes or activity-processes (Fig. 9) represents the 
minimum number of ip cycles (or i ip d⋅ ) required on 

the predecessor process, iP  (or activity iA ), prior to the 
starting of process jP , with an additional lag of z “time 
units”. This formulation for the flow & time 
relationship is and adaptation of the Valls et al. (1996) 
proposal of the start-to-finish precedence relationship 
between activities. 
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Aj1 Aj2 Aj...

Starting time of Ajp j

Ajpj Aj...

Ai1 Ai2 Ai... Aipi Ai... AiPi

AjPj

Aj1 Aj2 Aj... Ajpj Aj... AjPj

Starting time of Ajp j

Fl (pi,wi| pj,wj | z)

Pj

Pi

Pj

Pi

z

pi·di wi z

βi

Fl (pi,wi| pj,wj | z)

 
Fig. 9 Flow & time ( ( , | , | )ij i i j jFl p w p w z ) 

The algorithm to compute the times for the fuzzy flow (

( ) ( ) ( ) ( ) ( )( ), | , |i jij i jFl p x w x p x w x z x ) relationship is 

presented in the Pseudo-code 5. 
Pseudo-code 5 fuzzy flow precedence relationship 

Early Times  

( ) ( )  predecessor i successor j→CASE OF  

( ) ( )
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ] [ ]

[ ] [ ]

:
      
        
    
    
    max ,

    

j j

j

i i i i i

i i i i i

i ii

jp jp i

jp

activity i process j
d p d w

EF d p d w
p d w

ES ES ES z

EF ES

aaaaa   

aaaaa   

aa  aa

a

β

aaa 

→
− < ⋅ +

  = − ⊕ ⊗ ⊕ 
= ⊗ ⊕

      = ⊕ ⊕      
  = 

Case 
IF THEN

ELSE IF :  
END IF

α

ij

ij

α

ij

k
k α

k

jjp jd
a a   ⊕   

 

( ) ( )
[ ]

:

    max ,

    max ,

j j i

j j j

jp jp ip

jp jp jp j

process i process j

ES ES EF z

EF EF ES d

aa  a a

aaa   a

→
      = ⊕      
        = ⊕        

Case 
 

 END CASE  

( )1,  jFrWComputeProccessesTimes j p +CALL  

Latest Times  

( ),  jBckWComputeProccessesTimes j PCALL :  

( ) ( ) :predecessor i successor j→CASE  OF  

( ) ( )
[ ] [ ] [ ]    min ,

ji i jp

activity i process j

LS LS LS z
aaaa 

→
    = − −    

Case 
α

ijk  

( ) ( )
[ ]

[ ]( )

 

    ,

    min ,

i i j

i i i

ip ip jp

ip ip ip i

process i process j

LF LF LS z

LS LS LF d

αα α α

α α α α

→
     = −       

     = −     

Cαse

min  

( ),  iBckWComputeProccessesTimes i pCALL  

 END CASE  
Note: the arithmetic operator – is the traditional (not fuzzy) 
subtraction operator (Eq. 2) 
 
The algorithm for computing the times of the processes 
in the forward ( _  ( ,  )jFrWComputeProcc Times j p ) 

and backward ( _  ( ,  )iBckWComputeProcc Times i p ) 
pass is shown in pseudo-code 6. 

Pseudo-code 6 Forward / Backward pass of processes 
( )_ ,  FrWComputeProcc Times j p  

( )
( )

1

     1
    min ,

    min ,

j

jk jk jk

jk jk jk j

k p P
ES ES EF

EF EF ES d

α α α

α α α α

−

=

     =     

       = ⊕       

FOR to step

END FOR

 

       j is due to be continoussIF THEN  

( )
( )

1 1

1 1 1

min ,

min ,

j j jP j j

j j j j

ES ES EF P d

EF EF ES d

α α α α

α α α α

       = − ⊗       

       = ⊕       

 

( )
( )

1

 2    1
    min ,

    min ,

j

jk jk jk

jk jk jk j

k P
ES ES EF

EF EF ES d

α α α

α α α α

−

=

     =     

       = ⊕       

FOR to step

END FOR

 

END IF  
( )_ ,  BckWComputeProcc Times j p  

   1  1k p=FOR to step  

( )
( )

1min ,

min ,

jk jk jk

jk jk jk j

LF LF LS

LS LS LF d

α α α

α α α α

+     =     

       = −       

 

END FOR  
       j is due to be continousIF THEN  

( )
( )

1

 2    1
    min ,

    min ,

j

jk jk jk

jk jk jk j

k P
ES ES EF

EF EF ES d

α α

α α α α

α −

=

     =     

       = ⊕       

FOR to step

END FOR

 

END IF  
Note: the arithmetic operator – is the traditional (not fuzzy) 
subtraction operator (Eq. 2) 
 
The compiled heuristic algorithm for the fuzzy-GPSP, 
presented in the pseudo-code 7, implements pseudo-
codes 1 to 7, and summarizes the procedure. The 
previous step consists in establishing the value for the 
project starting time ( ( )ProjectStart a ), the number of 
activities/processes, and the interval for the alpha cuts (
alphainterval ), which must be a real number between 
zero and one ( 0 1alphainterval≤ ≤ ). The proposed 
algorithm is simpler than the existing ones and corrects 
the errors that other approaches have, especially by 
computing the latest times. 
Pseudo-code 7 Compiled algorithm for the fuzzy-GPSP 

( ) ( )  0,0 0,ProjectStart a =SET  
  NumberofActivitiesSET  

| 0 1 alphainterval alphainterval≤ ≤SET  

( )Phase 0 : Preliminary  computationsβ  

 0  1  alpha alphainterval=FOR to step   
 1    1i NumberofActivities=FOR to step  

max ( )

 =  
 relationship is ( ) 

[ ] [ ] [ ] [ ]i

ij ij

j j j

predecessor activity
FF SF

p d waaaa   β = ⊗ +

IF 
AND  OR  THEN

END IF

  

END FOR  
END FOR  
Phase 1 : Forward - Pass computations  

[ ] [ ]1ES ProjectStartaa =  
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 0  1  alpha alphainterval=FOR to step  
 1    1j NumberofActivities=FOR to step  
 1  1  1i j= −FOR to step  

  relationshipCASE OF  
Finish-to-Start;

      : _finish start Fw⋅
Case 

Call Pseudo - code 1  

Start-to-Start;
      : _start start Fw⋅
Case 

Call Pseudo - code 2
 Finish-to-Finish;

      : _finish finish Fw⋅
Case 

Call Pseudo - code 3
 Start-to-Finish;

      : _start finish Fw⋅
Case 

Call Pseudo - code 4
 Flow relationship;

     : _
     : 

Flow Fw
Fw

Case 
Call Pseudo - code 5
Call Pseudo - code 6

 

 END CASE  
END FOR  
END FOR  
END FOR  
Phase 2 : Backward - Pass computations  

 0  1  alpha alphainterval=FOR to step  
   1  -1i NumberofActivities=FOR to step  
 1    1j i NumberofActivities= +FOR to step  
  relationshipCASE OF  

Finish-to-Start;
    :  _start start Bw⋅
Case 

Call Pseudo - code 1
Start-to-Start;

    :  _start start Bw⋅
Case 

Call Pseudo - code 2  

Finish-to-Finish;
    :  _finish finish Bw⋅
Case 

Call Pseudo - code 3
 Start-to-Finish;

    :  _start finish Bw⋅
Case 

Call Pseudo - code 4
 

Flow relationship;
    :  _
     : 

Flow Bw
Bw

Case 
Call Pseudo - code 5
Call Pseudo - code 6

 

 END CASE  
END FOR  
END FOR  
END FOR  
 

The previous fuzzy values for the earliest starting times 

( )1 2 3( ), , ( )j j j jES es es es
α

α α  =   and the earliest 

finishing times ( )1 2 3( ) , , ( )j j j j jEF ef ef ef
α

α α  =   of the 
activities must be interpreted as depicted in Fig. 10, 
based on the values of ( )1 2 3( ) , , ( )j j j j j

α
β β α β β α  =   . 

In order to build the temporal diagram on its latest 
times, the earliest starting times jES

α
    and the 

earliest finishing times jEF
α

   , they must be changed 
by the latest starting time 

1 2 3( ( ), , ( ))j j j jLS ls ls ls
α

α α  =   and the latest finishing 

times 1 2 3( ( ), , ( ))j j j jLF lf lf lf
α

α α  =  , respectively. 

 

1

α

0

es
j1

es
j1
(α

)

es
j3
(α

)

es
j3

es
j2

ef
j1

ef
j1

(α
)

ef
j3

(α
)

ef
j3

ef
j2

β2jd2j - β2j

j

efj1(α) - βj1(α)esj3(α) +dj3(α)- β3j(α)

ESj(α)=(esj1(α), esj2, esj3(α)) EFj(α)=(efj1(α), efj2, efj3(α))

 
Fig. 10 Interpretation of fuzzy times to build the temporal diagram for a specific alpha cut

The Total Float ( ( )TF x ) of the activities must be 
computed in the traditional way (Eq. 5) as the fuzzy 
difference between the Latest Finishing ( ( )LF x ) time, 
the Early Starting ( ( )ES x ) time and the duration (

( )d x ) of the activities. Additionally, the floats of each 
one of the fragments of the activities can be computed 
obtaining the starting ( ( )stF x ) (Eq. 6) and finishing (

( )fsF x ) floats (Eq. 7) of the activities.  

 ( ) ( ) ( ) ( )TF x LF x ES x d x= ž ž  (5) 

 ( ) ( ) ( )stF x LS x ES x= ž  (6) 
 ( ) ( ) ( )fsF x LF x EF x= ž  (7) 

The fuzziness in the floats enhances the notion of 
criticality itself, making it possible to rank the activities 

in different degrees of criticality through the Critical 
Index ( jCI ) and the Critical Value ( jCV ) which 
established the criticism degree and the risk of 
criticality respectively. 

In this way, an activity belongs totally to the set of 
critical activities (membership equal to 1) if the vertex 
of the fuzzy float is zero ( )2 0jf = . When the vertex of 

the fuzzy float is a positive value ( )2 0jf > and the left 

support is a negative value ( )1 0jf ≤ , the activity is only 
critical for certain degrees of vagueness from zero to 
the Critical Index ( jCI ). The Critical Index ( jCI ) is 
the value of the alpha cut for which all the values of the 
float’s subset are greater than zero (Eq. 8 and Fig. 11). 
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Values near to one represent more criticality than 
values near to zero. 

( ) ( )
( ) ( ) ( ){ }

1 2 3

1 3 1

0, 0 |, 0

, : 0j

j j j j

CI

j j j j j j j j

jF x f f f

F f CI f CI CI

C

f CI

I∀ = ≤ > >

   = = ∈ =   

∃

�
 (8) 
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Fig. 11 Critical Index ( jCI ) 

The same value for the Critical Index ( jCI ) can be 
obtained for infinite shapes with identical vertex and 
supports of ( )F x  depending on their convexity (Fig. 
12), but convex shapes present more risk of criticality 
than non-convex shapes for the same Critical Index (

jCI ). The Critical Value ( jCV ) establishes the risk of 
criticality, and is computed by applying Eq. 9 as the 
relation of areas (left side ( 1 jS ) between right side (

2 jS ) from zero of the fuzzy float ( ( )F x ) multiplied by 

the Critical Index ( jCI ). However, values near to 1 
represent more risk of criticality than values near to 
zero. 

 1

2

j
j j

j

SCV CIS
 = ⋅ 
 

  (9) 

In a similar way, the risk of accomplishing the project 
makespan (Fig. 13) can be computed over the 
compromise date, establishing the Risk Index (RI) as 
the relation between the area to the right side of the 
compromise date and the total area of the fuzzy 
makespan by applying Eq. 10. 

 2

1

SRRI SR=   (10) 
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Fig. 13 Risk Index ( RI ) of fuzzy makespan  

4. COMPARISON TO PREVIOUS RELEVANT 
PROBLEMS 

The proposed fuzzy-GPSP model needs numerical 
experimentation and comparison to test its reliability. 
However, libraries cited in the literature for 
benchmarking (e.g. (Demeulemeester & Herroelen, 
2002) (Valls, Martí, & Lino, 1996)) are not available 
for this comparison due that researchers did not 
explicitly provide them; moreover, the Project 
Scheduling Problem Library (Kolisch & Sprecher, 
1996) was developed for finish-to-start relationships 

and does not consider the GPRs. Therefore, the authors 
follow other approaches. For the numerical 
experimentation some relevant problems identified in 
the literature are solved in different ways. These 
relevant problems were proposed by Crandall (1973), 
Valls et al. (1996), Maravas and Pantouvakis (2011), 
Kim (2012), and Shi and Blomquist (2012). They are 
computed again using the proposed fuzzy-GPSP and 
the results are compared to the original solution; Table 
1 summarizes how each of them considers feeding, 
work and time GPRs and flow, as well as their main 
limitations. They are briefly discussed next. 
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The Crandall (1973) problem was reproduced and 
computed with the proposed fuzzy-GPSP algorithm 
considering “splitting allowed” for all the activities, 
durations as crisp values, and all the relationships 
between the activities as “Work GPRs”. The problem 
was solved with the fuzzy-GPSP algorithm, obtaining 
the same times for the activities. Due to the simplicity 
of the problem, the goodness of Crandall’s proposal 
was not conclusive. In fact, some failures were detected 
by Valls et al. (1996), especially on the splitting criteria 
and the computation of the latest starting (LS) times, 
which can produce discontinuities in the critical path 
when criticality is at the beginning and involves the β 
fragment of an activity. 

The problem used by Valls et al. (1996) in their 
research was solved with the following criteria: all the 
durations are taken as crisp values and the relationships 
as “Work GPRs”. The project makespan and the early 
times obtained are the same as the original results 
provided by the authors. However, Valls et al.’s 
algorithm (1996) is difficult to interpret and implement, 
presenting some relatively ambiguous aspects such as 
the criterion for calculating the latest starting (LS) times 
of the activities. These values are not included in their 
work and are not entirely consistent with the 
conclusions obtained by applying their formulation. 

The Maravas and Pantouvakis (2011) six-unit repetitive 
project, presented by Harris & Ioannou (1988), for 
testing the fuzzy Repetitive Scheduling Method has 
been reproduced considering: (1) activity A as three 
continuous processes 1,2A , 3,4A  and 5,6A ; (2) activity B 

as one splittable process of six activities ( 1 6B − ); (3) 
activity C as one continuous process of four activities (

1 4C − ) and an additional activity 6C ; and (4) activities E 

and F as continuous processes ( 1 6 1 6/E F− − ). The values 
obtained when applying fuzzy-GPSP to the problem are 

the same as those obtained by the authors for the vertex 
(crisp values), and seem to be the same for the supports 
of the fuzzy times that are not explicitly stated. The 
only difference is in activity B because of the 
discretional interruption between units 3 and 4 (“work 
break to accommodate the delivery”). 

The problem used by Kim (2012) for the Beeline 
Diagramming Method has been solved considering all 
the activities as “no splitting allowed”, durations as 
crisp values, and transforming all precedence 
relationships ( Np Ns− ) into start-to-start GPRs (

( )0 || 0wp sS NpS N= −= ) when necessary. The 
results obtained are totally coincident in time and 
criticality with those presented by the author. 

The Shi and Blomquist (2012) problem is the most 
recent proposal found in the literature, with all the 
durations as fuzzy values and the relationships as 
“feeding GPRs”. For a proper transformation, the 
overlapping established by the time factor is 
transformed into start-to-start relationships (Eq. 11), 
because they represent the best fit to the nature of the 
model proposed by the authors: 

( ) ( ) ( )( )
( )
( ) ( ) ( ) ( ) ( )( )( )
( )

| |  |

0

 

0

iij i

i

iji ij i ij j

SS p x w x z x

p x

w x SS B x d x C x d x

z x

 =
 = ⊗ ⊗ − ⊗

 =

 (11) 

The differences observed with the Shi and Blomquist 
(2012) problem are due to the computation of the 
overlapping established by the times factor. In Eq. 11 
the “−” sign is a not fuzzy operation and this 
interpretation provides more trustworthy values for the 
supports of the fuzzy times (all values are positives for 
the times of the activities). 

 
Table 1 Algorithms: characteristics, limitations and comparison 

Algorithm  Feeding 
SS,FF,SF  Work 

SS,FF,SF  Time 
FS,SS,FF,SF 

 Flow 
Fl 

 Limitations 

Crandall (1973)  ⨯, ⨯, ⨯  ✓, ✓, ⨯  ⨯, ⨯, ⨯, ⨯  ⨯  Splitting criteria 
LS computation 

Valls et al. (1996)  ⨯, ⨯, ⨯  ✓, ✓, ✓  ⨯, ⨯, ⨯, ⨯  ⨯  Complex computation 
LS computation 

Maravas and 
Pantouvakis (2011)  ⨯, ⨯, ⨯  ⨯, ⨯, ⨯  ✓, ⨯, ⨯, ⨯  ✓  Only time FS and flow 

relationships 

Kim (2012)  ⨯, ⨯, ⨯  ✓, ⨯, ⨯  ✓, ⨯, ⨯, ⨯  ✓  No splitting allowed 
Only FS/SS relationships 

Shi and Blomquist 
(2012)  ✓, ⨯, ⨯  ⨯, ⨯, ⨯  ⨯, ⨯, ⨯, ⨯  ⨯  Only one GPR  

Fuzzy arithmetic 
fuzzy-GPSP  ✓, ✓, ✓  ✓, ✓, ✓  ✓, ✓, ✓, ✓  ✓  --- 

✓ available,⨯ not available 
The algorithms displayed in Table 1 deal with the 
problem of overlapping in activities and processes. 
These algorithms are key contributions to the state-of-
knowledge of simultaneity and fragmentation. As it can 
be inferred from Table 1, the proposed fuzzy-GPSP 
outperforms the others in these five facets: (a) it 
considers all the feeding GPRs (only the algorithm 

proposed by Shi and Blomquist (2012) takes into 
account the SS), avoiding reverse criticality; (b) it 
allows the use of the four work and time GPRs; (c) it 
improves Crandall (1973) and Valls et al. (1996) 
approaches with a new computation of the 
fragmentation avoiding the interruption of the critical 
path; (d) it includes the balance of process flows (only 
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embraced previously by Maravas and Pantouvakis 
(2011) and Kim (2012)); and (e) it presents an 
innovative formulation of fuzzy values for durations 
and relationships (even though a fuzzy approach was 
already proposed by Shi and Blomquist (2012), this one 
is more complete and robust). 

5. EXAMPLE OF APPLICATION 

As an example of implementation of the algorithm, a 
building of 15 floors is selected. The first three floors 
are under-ground and the remaining 12 are above-
ground. To ensure the constructability of the 
foundations, the starting of “excavation phase 2” (a 
splitted activity) requires at least 14 days from the 
starting of the “water drainage” to guarantee that the 
water table is controlled. Additionally, the “water 
drainage” must work without interruption until at least 
seven floors of the structure is completely finished to 

offset the water pressure with its weight. This fact 
implies that the duration of the “water drainage” is 
unknown and depends on the times of the followers and 
especially of the structure. The concrete of the 
foundations is scheduled in three phases, and 
overlapped with the reinforcement bars. The structure 
is a process of 15 activities overlapped with the 
processes of masonry, facades and basements with an 
additional lag of 12 days for removal of formwork to 
ensure the proper hardening of the concrete. A total of 
18 activities/processes which summarize 78 activities 
and sub-processes are considered, contemplating the 
widest possible set of conditions. 

The fuzzy values for the durations of the 
processes/activities, the number of activities by process 
and the five scenarios analyzed are displayed in Table 
2. The nature of the relationships between activities 
and/or processes is shown in Table 3. 

 Table 2 Example: description of activities, continuity and duration 

Code Description Process/activity 
Continuity Scenarios # of  

activities 
Duration 
( )1 2 3, ,d d d d  # 1 # 2 # 3 # 4 # 5 

1 Previous works Yes Yes Yes Yes Yes 1 d(3,5,6) 
2 Excavations 0.0/-1.0 Yes Yes Yes Yes Yes 1 d(12,12,14) 
3 Water drainage Yes Yes Yes Yes Yes 1 Dependent 
4 Diaphragm-wall Yes Yes Yes Yes Yes 1 d(45,45,50) 
5 Excavations Yes Yes Yes Yes Yes 1 d(28,30,35) 
6 Rebars for foundation works Yes Yes Yes Yes Yes 1 d(15,18,20) 
7 Concrete foundation Ph.1 Yes Yes Yes Yes Yes 1 d(1,1,3) 
8 Concrete foundation Ph.2 Yes Yes Yes Yes Yes 1 d(1,1,3) 
9 Concrete foundation Ph.3 Yes Yes Yes Yes Yes 1 d(1,1,3) 

10 Structure Yes Yes Yes Yes Yes 15 d(11,12,14) 
11 Decks No No No No Yes 1 d(10,15,25) 
12 Masonry works No No No Yes Yes 12 d(3,4,5) 
13 Facades No Yes No No Yes 12 d(6,7,8) 
14 Basements No No No No Yes 3 d(25,30,35) 
15 Paving works No No Yes No Yes 12 d(5,6,8) 
16 Office works No No No No Yes 12 d(10,11,12) 
17 Reworks & finishing No No No No Yes 1 d(25,35,45) 
18 Delivery/reception Yes Yes Yes Yes Yes 1 d(1,1,1) 

 
Table 3 Relationships between processes and activities 

Code Description Predecessor  
 # 1 # 2 # 3 # 4 

1 Previous works --    
2 Excavations 0.0/-1.0 FS1-2(z) 

 

   
3 Water drainage FS2-3(z) SF11-3(p,w,z)   
4 Diaphragm-wall FS2-4(z)    
5 Excavations SS3-5(p,w,z) FS4-5(z)   
6 Rebars for foundation works FS5-6(z)    
7 Concrete foundation Ph.1 SS6-7(p,w,z)    
8 Concrete foundation Ph.2 SS6-8(p,w,z) FS7-8(z)   
9 Concrete foundation Ph.3 FS6-9(z) FS8-9(z)   

10 Structure FS9-10(z)    
11 Decks FS10-11(z)    
12 Masonry works Fl10-12(pi,pj,z)    
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13 Facades Fl10-13(pi,pj,z)    
14 Basements Fl10-14(pi,pj,z)    
15 Paving works Fl12-15(pi,pj,z)    
16 Office works Fl13-16(pi,pj,z) Fl15-16(pi,pj,z)   
17 Reworks & finishing Fl14-17(pi,pj,z) Fl16-17(pi,pj,z) FF14-17(p,w,z) FF16-17(p,w,z) 
18 Delivery/reception FS17-18(z)    

The example of application of the proposed fuzzy-
GPSP algorithm has been implemented in Visual Basic 
for Applications (Excel 2013) (Ponz-Tienda, Yepes, 
Pellicer, & Moreno-Flores, 2013) for a proper 
comprehension of the versatility and goodness of the 

proposal (Fig. 14). This application can be downloaded 
from http://goo.gl/VZR0Ta, and allows anyone to 
modify the values for the fuzzy times, the type of 
relationships, the release date and the continuity of 
activities and processes. 

 
Fig. 14 Implementation of the fuzzy-GPSP algorithm in Visual Basic for Applications (Excel 2013) 

The app computes the fuzzy times, fuzzy floats, critical 
index, and critical value of activities and processes. It 
also calculates the risk of accomplishing the project 
makespan over the release date, and plots the fuzzy 
time for any of the activities by their ES, EF, LS, and 
LF (Fig. 15 and Fig. 16). Additionally, it permits 
changes in the precision of the computations modifying 
the alphainterval, and the discretization of the fuzzy 
times in real days. The app has been partially 
implemented with C# to test the CPU time required to 
compute the fuzzy times and floats obtaining a mean of 
6.67·10-5 seconds for a problem with 35 activities and 
10 alpha cuts using an Intel ® Core™ i7-4770 
processor at 3.40GHz and 8Gb (RAM). 

The example of application included in the app has 
been solved for five different scenarios with the same 
compromise date (415 days) and values for durations 
and relationships.  In scenario #1, activities 1 to 10 and 
18 are considered as no splitting allowed, processes 12 
to 16 as no continuous, and activities 11 and 17 as 

splitting allowed obtaining the fuzzy makespan 
represented in the Fig.15 (RI=27.96%). In scenario #2, 
process 13 (Facades) has been changed to continuous, 
increasing the RI of accomplishment up to 74.38% 
(Fig.16) given that the relation between the area to the 
right side of the compromise date (red line in Fig.15 
and Fig.16) and the total area is bigger in scenario #2 
(Fig.16) than in scenario #1 (Fig.15). In scenarios #3 
and #4, process 15 (paving works) and process 12 
(masonry works) are considered continuous 
respectively; for scenario #3, the fuzzy makespan is 
(357.0, 399.0, 450.0) and the RI is 43.83%; for scenario 
#4 the fuzzy makespan increases to (379.0, 421.0, 
483.0) and the RI to 85.87%. Finally, in scenario #5, all 
the activities and processes are considered continuous. 
The metrics obtained for the fuzzy makespan, Risk 
Index (RI), sum of the Critical Index (Σ CIi), Critical 
Value (Σ CVi), and fuzzy Total Float ( iTF∑ ) of all 
processes and activities are shown in Table 4. 

Table 4 Performance metrics of the example of application 
 ES makespan 

RI Σ CIi Σ CVi 
iTF∑  

 es1(0) es2 es3(0) ( )1 0tf∑  2tf∑  ( )3 0tf∑  
Scenario 1 340.0 385.0 449.0 27.96% 10.5 9.24 216.0 1066.0 1939.0 
Scenario 2 368.0 413.0 477.0 74.38% 10.2 8.56 240.0 1112.0 1985.0 
Scenario 3 357.0 399.0 450.0 43.83% 10.5 8.90 147.0 947.0 1729.0 
Scenario 4 379.0 421.0 483.0 85.87% 11.5 9.53 125,0 980.0 1828.0 
Scenario 5 379.0 421.0 483.0 85.87% 11.5 9.53 -120.0 749.0 1623.0 

In Table 4, it can be observed that the continuity of 
processes and activities usually increases the makespan 
of the project from (340.0, 385.0, 449.0) for the 
scenario #1 to (379.0, 421.0, 483.0) in scenarios #4 and 
#5, and the risk of accomplishment from 27.96% 
(scenario #1) to 85.87% (scenarios #4 and #5). This 
risk of failure in the accomplishment of the project 
makespan is evidenced by comparing the critical 

metrics; for the scenario #1, the sum of total floats (
iTF∑ ) is a positive fuzzy value (216.0, 1066.0, 

1939.0) which provides a buffer of security along the 
project. In scenario # 5, ensuring the continuity for all 
the activities and processes, iTF∑ is negative in his 
left side indicating greatest compliance risk. 

http://goo.gl/VZR0Ta
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To check the goodness of the proposal, the scenario #1 
of the example of application has been scheduled and 
compared with Primavera© P6 Professional V8.2.0 
(P6P). First (Solution A), the model has been solved 
considering the same activities/processes and the 
needed relationships for each algorithm that best 
considers the project restrictions. The project makespan 
provided by P6P is of 409 days versus 385 of the 
optimal makespan with fuzzy-GPSP (table 5); 

additionally, P6P presents 276 differences on scheduled 
times and 69 on float values of activities compared to 
the proposed fuzzy-GPSP. Later (Solution B), the 
model was scheduled with P6P without restrictions in 
the number of activities with the aim to obtain the same 
values provided by fuzzy-GPSP; for solution B, P6P 
required 78 activities with 137 relationships versus 18 
activities/processes and 25 relationships needed with 
the fuzzy-GPSP. 

 
Fig. 15 Fuzzy makespan, risk index and space-time chart for scenario #1 

 
Fig. 16 Fuzzy makespan, risk index and space-time chart for scenario #2 

Table 5 Compared results for case 1with Primavera© P6 Professional V8.2.0 
  Model Activities Relationships Makespan Optimal Differences 

 Time Floats 

Scenario 1 Solution A Fuzzy-GPSP 18 25 385.0 Yes -- -- 
Primavera 6 18 31 409.0 No 276 69 

Solution B Primavera 6 78 137 385.0 Yes 0 0 
Then, to analyze the versatility of the fuzzy-GPSP, the 
number of operations needed in the transition from 
scenario #1 to #5 was computed (considering all the 
activities and processes continuous); the results are 
summarized in Table 6, comparing the obtained 
makespan and the number of differences in scheduled 
times and floats. P6P needed sixty operations versus 
the seven operations used by fuzzy-GPSP. 
Furthermore, the solution obtained with P6P is not an 
optimal solution, presenting 48 differences in 
scheduled times and 33 in floats compared to the 
proposed fuzzy-GPSP.  

The scenario #5 was selected as it provides the most 
unbiased analysis. The procedure used with P6P in 
order to guarantee the continuity of processes and 
activities is to establish the primary constraint of the 
activity status “As Late As Possible”, from the last 
activity to the first in topological order, consuming the 
free float of all the activities. With this procedure, the 
differences depend on the topological position in the 
graph, and they are reduced when all activities are 
considered in the analysis.

Table 6 Compared results for transition from scenario #1 to scenario #5 
 Model Activities Relationships Makespan # Oper Optimal Differences 

Time Floats 

Scenario 5 Fuzzy-GPSP 18 25 421.0 7 Yes -- -- 
Primavera 6 78 137 385.0 60 No 48 33 

 Risk Index 27,96%
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The fragmentation of construction activities and 
processes with many work intervals, restarts and 
interruptions is questionable from a practitioner’s point 
of view. Continuity is desirable to reduce direct cost, 
but overlapping and fragmentation reduces the risk of 
accomplishment and the project makespan. The 
proposed model does not consider the cost of disruption 
because, in the authors’ opinion, the benefits of 
improving the project makespan and reducing the risk 
of not accomplishment could be significantly more 
relevant than the cost of disruption. Nonetheless, it is 
discretional, and fairly straightforward, for schedulers 
to consider it in their decision-making. 

The proposed fuzzy-GPSP is an important innovation 
on construction project scheduling, providing a robust 
and friendly decision support system, not only in its 
theoretical nature but in real life projects too. The 
limitations of the proposed model have to be analyzed 
more in-depth, although it has been tested with P6P as 
well as with some relevant problems identified in the 
literature that have been successfully solved, matching 
or improving their original solutions, despite the 
differences between them.  

6. CONCLUSIONS 

Scheduling of construction projects involves problems 
related to the overlapping of processes and activities, 
reverse criticality, fragmentation, continuity and the use 
of unavailable or incomplete information. These facts 
produce a high risk of failed forecasts where a realistic 
approach in imprecise scenarios is not totally solved. 
The algorithms proposed by previous researchers only 
cope with some kinds of Generalized Precedence 
Relations and partially fail to provide satisfactory 
solutions to long-term scheduling problems. 

Therefore, with the aim of helping to fill this gap, this 
paper presents a heuristic approach to the Project 
Scheduling Problem with Precedence Relations 
applying the Theory of Fuzzy Sets, which allows the 
splitting of activities and considers the optimal 
processes flow. The compiled heuristic algorithm for 
the fuzzy-GPSP is presented in the pseudo-code 7, 
being simpler than the existing ones and corrects the 
errors that other approaches have, especially by 
computing the latest times. It computes the fuzzy times, 
fuzzy floats, critical index, and critical value of 
activities and processes; it also calculates the risk of 
accomplishing the project makespan over the release 
date, plotting the fuzzy time for any of the activities by 
their ES, EF, LS, and LF. Additionally, it permits 
changes in the precision of the computations modifying 
the alphainterval, and the discretization of the fuzzy 
times in real days. 

In order to test the performance of the model, it has 
been compared to previous algorithms proposed by 
other authors, discussing its capabilities. Furthermore, 
the model has been implemented in Visual Basic for 
Applications (Excel 2013) and applied to a building of 
15 floors with a total of 18 activities/processes and 25 

relationships, which summarizes 78 activities/sub-
processes and 137 relationships, comparing the 
obtained schedules with Primavera© P6 Professional 
V8.2.0 in five different scenarios and transitions 
between them. 

This paper contributes to the body of knowledge of 
construction project scheduling in several ways: 

1. It comprises a complete state-of-knowledge of 
overlapping and splitting activities in the Project 
Scheduling Problem. 

2. It presents a more realistic formulation of the fuzzy 
arithmetic for computing the latest starting times of 
the activities, which avoids the negative values. 

3. It puts forward a fuzzy heuristic algorithm for the 
unconstrained case which improves and corrects 
previous contributions, computing unequivocally 
the fragmentation of activities. 

4. It proposes a model for construction scheduling that 
takes into consideration all the feeding, work and 
time Generalized Precedence Relations, allowing 
the splitting of activities and continuity of processes 
in a discretionary way, as well as the balance of 
process flows. 

5. The proposed model avoids the interruption of the 
critical path and the reverse criticality issue. 

Schedulers and users can use the model in order to 
overcome some of the problems of the current 
algorithms, because these barely consider the complex 
and ill-defined conditions of construction projects. To 
begin with, the proposed algorithm handles all the 
feeding, work and time Generalized Precedence 
Relations and computes the fragmentation avoiding the 
interruption of the critical path. The model avoids 
reverse criticality by using feeding precedence 
relationships instead of the classical work days; this 
approach suits the natural thinking style of schedulers, 
who initially analyze and estimate the amounts, 
production flows and interdependences between 
activities. This anomaly implies that practitioners have 
to be alert if they use commercial software with 
Generalized Precedence Relations, when adjusting the 
project duration by modifying the duration of the 
critical path or in the process of rescheduling the 
project. This can provide incorrect schedules, with 
errors difficult to detect and resolve, especially with a 
great number of activities. Furthermore, this algorithm 
includes the balance of process flows, letting the 
scheduler to analyze the effects of overlapping and 
continuity of processes or activities over the makespan, 
as well as to deal with a single process instead of 
multiple different activities. Its implementation in a 
professional application can help practitioners to 
schedule real and complex projects in imprecise 
environments, modelling the project according to their 
needs and thinking style in an easy way, without having 
to adapt the real problem to the imposed relaxation of 
commercial software. 
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NOTATION 

The following concepts, symbols and acronyms are used in this article: 

Concepts, symbols and acronyms Meaning 
( ){ } 1 2 3( ) , | ; ( )  ,  ,  ( )A x x x x A x a a aµ= ∈Ω =  Fuzzy number of Ω (fuzzy set of real numbers) 

1 3[ ,  ]a a  Support of a fuzzy number (membership equals zero) 

2a  Vertex of a fuzzy number (membership equals one) 

1 3[ ] [ ( ), ( )]A a aa aa =  Alpha cut (alpha interval) of ( )A x  
1 3 1 2 1 3 2 3[ ( ), ( )] [ ( ), ( )]a a a a a a a aaaaa   = + ⋅ − + ⋅ −  Alpha interval calculation 

1 3[ ] #  [ ] [ ]  [ ( ),  ( )]; | 0 1A B C c cα α α α α α α= = ∀ ≤ ≤  Conceptual fuzzy arithmetic by intervals 

1 3

1 1 1 1

1 3 1 3

3 1 3 1

3 3 3 3

( ) ; ( )

( )# ( ), ( )# ( ),
( )# ( ), ( )# ( ),
( )# ( ), ( )# ( ),
( )# ( ) ( )# ( )

c c

a b a b
a b a b
a b a b
a b a b

aa

aaaa  
aaaa  
aaaa  
aaaa  

   
   
   = =   
      
   

min max  Fuzzy arithmetic by intervals 
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 Fuzzy number ( )C x strictly less than or equal to a 
given set of fuzzy numbers 

CIj Critical index of j 
EF Early finish 
ES Early start 

FFij(pj | wj | z) Finish to finish relationship 
Flij(pi | pj | z) Flow relationship 

FSij(z) Finish to start relationship 
fuzzy-GPSP Fuzzy project scheduling problem with GPRs 

GPRs Generalized precedence relations 
GPSP Project scheduling problem with GPRs 

LF Latest finish 
LS Latest start 

PSP Project scheduling problem 
P6P Primavera© P6 Professional V8.2.0 
RV Risk value 

SFij(pi,wi | pi,wi | z) Start to finish relationship 
SSij(pi | wi | z) Start to start relationship 

TF Total float 
TFN Triangular fuzzy number 
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