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Summary

This article explores the potential of kernel-based techniques for discriminating
on- and off-specification batch runs, combining Kernel-PLSDA and three common
approaches to analyze batch data by means of bilinear models: Landmark Features
Extraction, BatchWise Unfolding and VariableWise Unfolding. Gower’s idea of
pseudo-sample projection is exploited to recover the contribution of the initial
variables to the final model and visualize those having the highest discriminant
power. The results show the proposed approach provides an effective fault
discrimination and enables a correct identification of the discriminant variables in
the considered case studies.

Keywords: kernel-based methods, pseudo-sample projection, batch processes,

fault discrimination, fault diagnosis.

1. Introduction
The presence of complex non-linear relationships in data may represent a difficult
issue to solve when one tries to model them by means of the most common tools in

chemometrics, such as Principal Component Analysis (PCA), Principal Component
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Regression (PCR) or Partial Least Squares Regression (PLSR). In fact, these
methods are not able to describe the underlying structure of datasets that are
affected by severe non-linearities, since they assume this structure is linear [1]. In
recent years, many techniques have been proposed to handle such kind of
situations: those based on non-linear PLS [2-3] and neural networks [4] have been
the most exploited ones. Unfortunately, these approaches often encompass many
adjustable parameters, are time and memory-consuming and may suffer from
overfitting and local minima. In order to avoid these issues, the so-called kernel
methods have been developed [5]. These techniques, which also comprehend
Support Vector Machines (SVM) [6], have been broadly used for solving non-linear
problems in chemistry [7-8], biology [9], informatics [10-11] and continuous
process chemometrics [12-13]. Their basic principle is common: before modeling
the data, a transformation of the original input space into a higher dimensional
one, the feature space, is performed by using specific kernel functions. This
permits to describe non-linear relationships in a linear form and to solve the
problem under study by means of classical linear methods. Hence, performing, for
instance, PCA, PLS or PLS Discriminant Analysis (PLSDA) after the data matrix
transformation results in Kernel-PCA (K-PCA), Kernel-PLS (K-PLS) and Kernel-
PLSDA (K-PLSDA), respectively. Unfortunately, the information about the weights
or the contributions of the original variables is lost. Different possibilities [8, 14-
16] to overcome this limitation exist, but authors often abstain from resorting to
them, since they do not permit to graphically visualize the relation between
variables and final models. Krooshof et al. [17] extended the idea of the non-linear

biplots, described by Gower and Hardings [18], to recover and visualize this
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specific information. In this case, the importance and influence of the variables is
evaluated by constructing artificial samples, also known as pseudo-samples, whose
projection onto the space of the model gives information about their contribution
to it. This has been tested only on simulated datasets and in some metabolomic
studies [19-20].

The first aim of this article is to explore the potential of K-PLSDA for fault detection
in batch process analysis. Industrial batch processes generate massive amounts of
data, which are recorded for online treatment or posterior analysis. In particular,
during each batch run, m = 1; 2; ... ; M variables are measured att=1; 2; ...; T time
points. Data collected for i = 1; 2; ... ; [ batches are arranged in a three-way array
(IxMxT). Even though techniques for directly modeling this structure exist, the
most widely used approach to extract exploitable information from this kind of
data is to rearrange this three-way array into a matrix and then fit a bilinear model
by means of one of the aforementioned chemometric tools [21]. The three most
common unfolding strategies to perform this rearrangement are VariableWise
Unfolding (VWU), BatchWise Unfolding (BWU) and Landmark Feature Extraction
(LFE). VWU unfolds the original three-way array to a new matrix (ITxM) by
preserving the variable direction. BWU unfolds the initial structure to a new array
(IxTM) by preserving the batch direction. LFE defines F landmark features of the
evolution of the M variables in each batch and organizes them in a new matrix
(IxF). A good survey of these techniques can be found in [22].

This article will be focused on the analysis of historical batch operations for the
troubleshooting of specific problems occurred during particular process runs. The

identification of the variables, which evolve differently with respect to an in-
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control situation, (the so-called fault diagnosis) is a key point in such cases.
Unfortunately, classical tools such as the contributions plots are useless if one
wants to appeal to kernel-based methods for batch process analysis, due to the
transformation of the original data matrix. For this reason, a new method based on
pseudo-sample projection is proposed here for recognizing those variables, which

deviates from the Normal Operation Conditions.

2. Materials and methods

2.1 Datasets

In this paper, three datasets are considered. The first is a simulated data array
containing the evolution of 10 variables at 25 sampling times in 30 different
batches: 15 are evolving under Normal Operation Conditions (NOC), while the
remaining 15 are faulty due to an increment in the variance of some variables. The
second one relates to a polymerization process described in [23] and consists of 23
batches (18 NOC and 5 off-specification) during which 10 variables are measured
at 100 time points. In this case, both VWU and BWU were applied to the original
three-way array. The third dataset was described in [24] and contains the values of
8 landmark features extracted from the variable trajectories of 71 batches (33
NOC, 10 on-specification but presenting an abnormally high quantity of residual
solvent, and 28 off-specification) of a pharmaceutical spray drying process. In
contrast with the original article, the second group of 10 batches was excluded
from the analysis in order to enable a simpler discrimination between on-

specification and off-specification runs, as for the previous datasets.
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2.2 Kernel transformation
The framework of the different kernel-based techniques is based on the so-called
kernel transformation, which is sketched in a general form in SI.1.
Its mathematical formulation is given by:

K(xix)) = <o (x1), (x)> (1)
where Xx; and X; are two row vectors belonging to the original dataset, to which a
non-linear mapping function ¢ is applied, while < and > denote the inner product.
Therefore, the initial NxJ data array, X, where N is the number of observations and
J the number of measured variables, is transformed into a new square symmetric
NxN kernel matrix, K, in which each position contains a value representing the
dissimilarity or distance between two different observations. When dealing with
kernel-based techniques, it is not necessary to know the mapping function a priori:
there are many generic kernel functions one can use in order to obtain K and all of
them exhibit two fundamental properties: i) they project the original data onto a
high dimensional space, the feature space; ii) they provide a way to calculate the
inner product between observations in this feature space.
The former permits to describe in a linear way possible non-linear relationships in
the data. The latter makes all the algorithms of the classical multivariate linear
techniques, which only use the inner product matrix (PCA, PLS and Fisher
Discriminant Analysis, FDA, as demonstrated by Cao et al. [1]), suitable for being
applied in the higher dimensional feature space. For the purposes of this article,
only three kernel transformations, the linear, the 2md-order polynomial and the

Gaussian (executed by Radial Basis Functions) will be taken into account. Their
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mathematical formulations are listed in Table 1, together with the symbols of their
possible adjustable parameters.

[INSERT HERE TABLE 1]

2.3 Pseudo-sample projection
A pseudo-sample corresponds to a particular observation that carries all the
weight in one single variable. For example, the vector [0, O, .., 1, 0, .., 0],
represents one of the possible pseudo-samples associated to the variable x; of a
specific dataset. By projecting an observation like this onto the latent structure of a
classical 1-LV PLSDA model, the score for this new sample is calculated as follows:
thew=[0,0, .., 1,0, ..., 0O]W" = w; (2)
This score is equal to the j-th value of the weighting vector, w*, and, thus, gives
information about the contribution of variable x; to the model. Creating for each
variable a pseudo-sample matrix, P;, which contains in the j-th column values
ranging from the minimum to the maximum of that variable and 0 in all the other
entries, and projecting it onto the latent space, trajectories of points are
constructed according to the equation:

0,...,0,min(x;),0,...,0 min(x;)w;
Pw* = W = 3)

o0,..,0, ma;(xj), 0,..,0 max&j)wj
It is straightforward to generalize this result to the case in which more than 1 LV is
considered. Here, the matrix resulting from the previous operation defines the
geometrical locus of all the points lying along the direction determined by the

origin of the latent space and the point whose coordinates are defined by the
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weights of the j-th variable on the A calculated LVs. In a classical PLSDA model,
representing these points does not provide any additional information, but, as will
be shown later, it is possible to get an idea from this kind of plot about how the
original variable evolves in the latent space when kernel-based methods are
applied. In fact, Postma et al. [19] demonstrated pseudo-sample projection permits
to recover the information related to the contribution of the original variables
when dealing with a Euclidean distance matrix, say D. In addition, D (double-
centered) is directly generated applying a linear kernel transformation to a generic
mean-centered dataset (see Appendix I for the details). Thus, it is possible to resort
to this strategy even when one uses K-PLSDA. In this case, it is only needed to
transform each pseudo-sample array into a pseudo-sample kernel one by the same
transformation as for the matrix used for constructing the model. The result is a
PxN array, which contains information about the dissimilarity between the P
pseudo-samples and the N observations of the training set. The mathematical
formulation of this extension is described in Appendix II. Moreover, this is valid
not only in case one is exploiting a linear function to transform the analyzed data.
The pseudo-sample projection can be used when dealing with all the kernel
transformations, provided that they generate sets of distances which may be
embedded in a Euclidean space [18].

The whole procedure used in this article for building kernel-based models and
recovering the information about the influence of the original variables comprises
the following steps: i) Autoscale the original data matrix, X; ii) Transform the
autoscaled dataset into a kernel matrix, K, by a specific kernel function; iii) Double-

center K so that:
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K. = K- K — K, + Ky, 4)
where K;, K, and K,,; contain the column means, the row means and the overall
mean of the K matrix, respectively; iv) Fit a PLSDA model on K; v) Create a
pseudo-sample matrix, Pj, for each one of the original J variables as described
before; vi) Apply to each pseudo-sample matrix the same kernel transformation as
for the training data in order to obtain a pseudo-sample kernel matrix, P/X; vii)
Double-center every PX so that:
= K

~ P, + Ky (5)

K _ K 7
PX = P¥ - K ,

)
= K . . =
where the p-th row of P;,, contains the mean of the p-th row of PjK. Notice that K,

. . = K . .
is substituted by the term P, since the total number of rows of PjK is usually

different from the number of rows of K; viii) Project each j-th pseudo-sample
kernel matrix onto the latent structure, as follows

Tips

= PiwK (6)
where W*K corresponds to the weighting matrix of the K-PLSDA model; ix) Plot the

predicted scores, Tjps, for recovering the information about the contribution of

each original variable to the K-PLSDA model.

3. Results and discussion

3.1 Simulated example

A 750x2 set of scores following trimmed circular trajectories was generated,
creating 2 classes of 15 different trajectories of 25 observations each, as shown in
Figure 1.

[INSERT HERE FIGURE 1]
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Every trimmed circular profile represents a proper batch score trajectory, which
defines its evolution in the latent variable space and might have been obtained
applying PCA on a VWU data array. So, multiplying this set of scores by a 2x10
transposed matrix of loadings, calculated building a PCA model on real process
data, a 750x10 dataset was constructed, which contains the evolution of 10
variables at 25 sampling times in 30 different runs. As shown in Figure 2, this
results in two classes of batches characterized by differences in the variance of the
measured variables and not in their mean values (e.g. due to sensor or controller
faults).

[INSERT HERE FIGURE 2]
To verify whether pseudo-sample projection enables the correct identification of
the discriminant variables, three columns of the resulting dataset were substituted
by three white noise vectors.
Finally, the whole array was divided into a training and a test set, containing 500
(20 complete batches) and 250 (10 complete batches) observations, respectively.
Batch selection was randomly performed class-wise.
Four different cross-validated classification models, with a growing degree of non-
linearity, were built on the simulated data. The performance of the final models is
summarized in Table 2.

[INSERT HERE TABLE 2]
Clearly, the two classes cannot be satisfactorily separated by classical PLSDA and
K-PLSDA with a linear kernel transformation. However, resorting to non-linear
kernel functions permits to correctly discriminate most of the observations

belonging to the two different categories for both training and test set. The best
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correct classification rate is obtained by the 2nd-order polynomial kernel model,
whose scores and predicted class values plots are shown in Figure 3.

[INSERT HERE FIGURE 3]
Here, it is important to take into account that each one of the represented symbols
corresponds to a specific time point of a particular batch. K-PLSDA is then able to
correctly discriminate most of the time samples in which the process is
progressing under Normal Operation Conditions or not.
The highest discrimination ability of this model is reasonable, considering that the
differences between the two classes under study are associated to the variance of
the measured variables, which results, indeed, in a quadratic transformation of the
original data.
In order to check whether pseudo-sample projection permits to recover the
information about the discriminant power of the original variables, for each
column of the simulated data matrix, a 20x10 pseudo-sample array was built,
transformed and projected onto the model space as described in Section 2.3.
Figure 4 shows the obtained outcomes.

[INSERT HERE FIGURE 4]
The different trajectories represent the predicted scores calculated from the
pseudo-sample kernel matrices constructed for all the original variables
(numbered from 1 to 10). The blue dotted line corresponds to the discriminant
direction between the centers of gravity of the two classes of observations,
obtained from Figure 3a. The font-size of the numerical characters constituting
each trajectory increases in correspondence of regions of the latent space where

the respective variables assume higher values and viceversa. So, comparing this
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graph with the scores plot in Figure 3a, it is rather clear that the second class (red
squares) contains batch runs associated to either higher or lower values of the
labeled variables than those belonging to the first group (blue dots).
In order to define an objective criterion for evaluating the discriminant power of
the original variables, the cosine of the angle formed by the blue dotted line and
each trajectory was calculated. These values are listed in Table 3 and clearly
indicate that all the variables except xs, x9 and x10 have good discriminant power
(i.e. angle cosines close to 1). Notice that for these latter there are no clear
trajectories (see Figure 4) and then the cosine of the angles cannot be precisely
calculated. This is coherent with the simulated data shown in Figure 2 where the
variables with differences in variance between on- and off-specification batches
are x1 to x7.

[INSERT HERE TABLE 3]
3.2 VWU/K-PLSDA (polymerization process)
The polymerization dataset under consideration contains observations related to
on- and off-specification batches, but the time period in which their evolution
differs is unknown. In order to identify it, a preliminary exploratory K-PCA model
was built, using a linear kernel transformation, on all the NOC process runs.
Hotelling’s T? and SPE (Squared Prediction Error) statistics were calculated for the
remaining faulty ones after their projection onto the latent variable space. The
resulting T? and SPE control charts are shown in SI.2.
It is straightforward to identify that the initial time interval of the process (the first
15 time points) is where the off-specification batches have different evolution than

the on-specification ones. In this case, using classical PCA instead of K-PCA would
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have returned very similar results (not shown). Therefore, in order to discriminate
the two classes, only this period was considered in the following step of data
analysis. So, the initial VWU matrix was reduced to a 345x10 one, which was then
divided into a training and a test set, containing 225 and 120 observations,
respectively. Their selection was performed leaving outside the training set all the
time samples associated to 6 on-specification and 2 off-specification batches,
randomly chosen. A linear kernel transformation was applied to the calibration
data and a cross-validated 2-LV PLSDA model was built on the resulting 225x225
kernel matrix. Its performance was evaluated in terms of R? and Q2 showing
values of 94.7% and 94.3%, respectively. In order to assess its prediction ability
the observations of the test set were transformed in the same way as those of the
training set (generating a kernel test matrix with dimension 120x225), projected
onto its latent structure and, according to their predicted y values, assigned to one
of the two considered classes. Results are displayed in Figure 5.
[INSERT HERE FIGURE 5]

The K-PLSDA scores plot on the two latent variables (Figure 5a) shows a perfect
separation between the observations belonging to the different categories. Since
the model was built after the transformation of a VWU data matrix, as for the
previous case, each represented symbol corresponds to a specific time point of a
particular batch. As will be shown, this is a fundamental difference with respect to
the other described approaches based on BWU and LFE.

The good discrimination is corroborated by the plot of the predicted class values
(Figure 5b). 100% correct classification rate is obtained both in training and test

sets for the two categories. As aforementioned, plotting directly the loadings or the
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weights of models like this is totally uninformative since the kernel matrix only
contains values of dissimilarity between observations. This is the reason why
pseudo-sample projection is needed to recover the information about the
contribution of the original variables to the discrimination between the two
classes. For each column of the VWU data matrix, a 20x10 pseudo-sample array
was built, transformed and projected onto the model space. Figure 6 shows the
obtained outcomes.

[INSERT HERE FIGURE 6]
The values of the cosine of the angle formed by the blue dotted line and each
trajectory are summarized in Table 4.

[INSERT HERE TABLE 4]
Variables x4, X7, X9 and x10 are proved to be the most significant ones with values of
this cosine clearly higher than the other ones.
Also in this case, the font-size of the numerical characters of each trajectory
increases in correspondence to regions of the latent space where the respective
variables assume higher values and viceversa. Therefore, comparing this graph
with the scores plot in Figure 53, it is possible to infer that off-specification batches
are characterized by higher values of variables x7, x9 and x10 and lower values of
variable x4 in comparison to the on-specification ones, as confirmed by
representing their original temporal evolution, shown in SIL.3.
Similar results are obtained from a PLSDA model without a kernel transformation,
as highlighted in SI.4. The plot is associated to a specific time point of the interval
during which the off-specification batches evolve differently from the others, but

the displayed profile is consistent with all the other analyzed time samples.
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3.3 BWU/K-PLSDA (polymerization process)

The same procedure described in Section 2.3 was then applied to the BWU data
matrix (23x1000) from the polymerization process. A linear kernel was chosen for
the transformation of the original array. Since only few observations (i.e. batches)
were available for the calibration of the model, it was not possible to evaluate its
predictive ability via an external test set. As will be discussed later, permutation
tests were used for overcoming this limitation. PLSDA was applied on the resulting
23x23 kernel matrix. Results are shown in Figure 7.

[INSERT HERE FIGURE 7]

The final Leave-One-Out CV 2-LV model shows R2 and QZ? values of 97.5% and
95.9%, respectively. The separation of the two classes is perfect, leading to 100%
correct classification rate both in calibration and cross-validation. Unlike the VWU
case, here each represented symbol corresponds to a whole batch: therefore, the
discrimination highlights the difference between on- and off-specification batches.
Due to the structure of the original dataset, 1000 pseudo-sample trajectories
showing the importance of a particular variable measured at a specific time spot
were constructed, each one constituted by 20 points. Representing all these
trajectories would have made the plot uninterpretable. For this reason, only those
related to the time period, during which the difference in the evolution of the
batches was detected, according to the initial K-PCA analysis discussed in Section
3.2, were included in SI.5. The graph is divided in 10 sections as the number of
original variables. Inside every section, the pseudo-sample trajectories for the
respective variable at the different considered time points are represented. The

blue dotted line corresponds to the class discriminant direction. As in the VWU
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case, the cosine of the angle formed by each trajectory and this direction was
selected as criterion of variable importance. In SI.5, only the pseudo-samples
trajectories characterized by a value of the amplitude of this angle lower than 30°
are black-coloured. Variables x4, X9 and x10 are found to have high contributions to
the model approximately for the whole interval under study, while variable x7 is
significant only in part of this period. This is also shown by plotting the values of
the cosine of the angles formed by the series of respective trajectories and the
discriminant direction with respect to the batch time, as illustrated in Figure 8.
[INSERT HERE FIGURE 8]
Variables x», xs, x6 also proved to have high significance in small periods. In such
cases, a further investigation of the original variable trajectories is always needed
to properly identify the root causes generating problems during the process.
As for the previous examples, the pseudo-sample plot (SI.5) is built using larger
bullet-size in correspondence of the zones of the latent space in which the
respective variable assumes higher values and viceversa. Hence, it is
straightforward to conclude that on-specification batches are characterized by
lower values of variables x7, xo and x10 and higher values of variable x; in
comparison to the off-specification runs, which exactly corresponds to the
outcomes discussed before.
In order to validate the final model, a permutation test [26] was performed. SI.6
shows the validation plots obtained for the BWU kernel matrix. The difference

between the two categories under study is proved to be statistically significant (p-
value < ﬁ = 0.005 for both R? and Q?).

3.4 LFE/K-PLSDA (pharmaceutical spray drying process)
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A K-PLSDA model was built on the LFE data matrix (61x8) from the
pharmaceutical spray drying process. Among the initial observations, 12 (7 on-
specification and 5 off-specification) were found having abnormally high residuals
and therefore were excluded from the final classification in order not to jeopardize
its quality. A further K-PLSDA model was then constructed on the reduced LFE
dataset (49x8). Since a linear kernel transformation did not provide good results, a

Radial Basis Function was applied to the original array. The o parameter was

optimized by leave-one-out cross-validation and fixed at a value of 0.8. Smaller
values would have generated over-fitting and hardly interpretable pseudo-sample
trajectories. A cross-validated 2-LV PLSDA model was built on the resulting 49x49
kernel matrix. Its performance was assessed according to the values of R? (73.8%)
and Q? (43.6%). Figure 9 displays the K-PLSDA scores plot and the predicted y
values for all the observations in calibration and cross-validation.
[INSERT HERE FIGURE 9]

Also in this case, each represented symbol corresponds to a whole process run.
Here, the model does not guarantee high performance as those described in the
previous examples. This is due to the fact that the selected landmark features have
quite low correlation to the quality of the batches [24]. Nevertheless, resorting to a
K-PLSDA model enabled a satisfying discrimination even dealing with a dataset
like this (73.08% and 91.30% correct classification rate in cross-validation for the
two categories, respectively). In order to recover the information about the
original variables, a 20x8 pseudo-sample matrix was constructed per each column
of the initial LFE array. The resulting pseudo-sample trajectories are represented

in Figure 10.
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[INSERT HERE FIGURE 10]

The graph is built in the same way as SL5. As stated by Gower [18], non-linear
kernel transformations lead to non-linear pseudo-sample trajectories. Since it is
impossible to univocally define an angle between the separation direction and a
curved line, the interpretation of the variable importance is not straightforward.
On the other hand, by inspecting the plot, it is rather clear that the only variables,
whose pseudo-sample evolution is correlated to the blue dotted line, are x1, x2 and
xg. All the other trajectories cover circular paths (variables x4, x5 and xs) or show a
nearly linear trend with a direction almost orthogonal to the discriminant one
(variable x3 and x7). As in the previous cases, larger font-sizes indicate regions of
the latent space in which the labeled variables assume higher values. So, it is easy
to infer off-specification batches are characterized by lower values of variable xs
and by higher values of variables x; and x2. The obtained outcomes are coherent
with the conclusions reached in the original article by Garcia-Mufoz et al. [24],
where it is detailed “a high-quality product is also associated with low solvent level
in the collector tank (variable x1)”, “batches that progress faster (with higher
values of xg) tend to be those with high product quality” and “a low temperature in
the dryer at the end of stage 1 (variable x2) might also seem desirable”.

For assessing the model performance, a permutation test was executed, due to the
small number of observations constituting the dataset. The results are shown in
SL7.

The model is found to be statistically significant with respect to the other
permuted classifications (R? p-value = 0.003, Q2 p-value < 0.005). However, even if

the Q? of the final model is always larger than those calculated modifying the class
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label of the single observations, its R? is lower than some obtained after the class
randomization. This aspect might be a caution indicator of the presence of
variables whose contribution is unrelated to the class of the objects [27]. This issue
is quite common when dealing with LFE [22]. In general, selecting a set of
landmark features, which summarize the evolution and the differences between
on-specification and off-specification batches in a proper way, may not be obvious:
this may often lead to less reliable results when dealing with such kind of datasets

than directly operating on the evolution of the measured variables during time.

4. Comparison between K-PLSDA and classical PLSDA models

The analysis of the simulated dataset highlighted the main advantage of using non-
linear kernel-based classification methods over classical PLSDA. In fact, when
complex data structures have to be modeled, such bilinear technique leads to low
and unsatisfactory correct classification rates, which jeopardizes the fault
detection. In such cases, exploiting non-linear classifiers radically improves the
quality of the discrimination and the identification of the process runs, which did
not progress under Normal Operation Conditions. This is also confirmed by the
results obtained in the second case study. In fact, for the first real dataset, for both
the VWU and BWU matrices, resorting to K-PLSDA for discriminating NOC batches
from faulty ones did not result in significantly better performance than building a
classical PLSDA model (results not shown). This similarity is a consequence of the
fact that a linear kernel transformation permitted to obtain satisfying correct
classification rates for the two considered classes, which means the original data

were not affected by strongly non-linear relationships [1] and, therefore, they
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might have been analyzed by means of conventional bilinear approaches, obtaining
very similar outcomes.

On the other hand, when the LFE matrix was dealt with for the second real dataset,
the best discrimination between the two categories under study was obtained by a
kernel transformation performed using a radial-basis function (RBF). Here, if one
compares the RBF K-PLSDA scores and y-predicted plots, displayed in Figure 9,
with the ones constructed when a classical PLSDA model is built on the original
matrix, shown in Figure 11, it is possible to verify the clear improvement in the
separation between the observations belonging to the different classes, achieved
when the kernel-based method is applied.

[INSERT HERE FIGURE 11]

5. Conclusions

In this article, a novel approach for fault discrimination and diagnosis in batch
processes was proposed. It combines the ability of kernel-based classification
techniques (in particular K-PLSDA) of dealing with complex non-linear data
structures with the power of pseudo-sample projection (originally conceived by
John Gower) for recovering the information related to the contribution of the
initial variables to the final model, which permits to overcome one of the main
drawbacks of these methods.

K-PLSDA shows similar performance to classical PLSDA, when linear
transformations are appropriate for the datasets under study, but leads to better
discrimination between the classes in case non-linear functions are needed for

modelling more complex data structures, as clearly highlighted by the analysis of
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the simulated and LFE datasets. In both scenarios, the pseudo-sample projection
enables a correct identification of the discriminant variables. For all these reasons,
the authors’ suggestion for practical users is to resort to non-linear K-PLSDA when
standard bilinear techniques provide unsatisfactory outcomes.

Moreover, it was seen that the described strategy may constitute a powerful
method for detecting differences in the variance of the variable trajectories
measured during batch runs and then could represent an important crossroad in
this specific field of statistical process monitoring and control.

These satisfying results can be certainly considered a good starting point for
implementing this strategy as a complementary tool for Batch Multivariate

Statistical Process Control (BMSPC) methods.

Appendix I
Relationship between the Euclidean Distance Matrix, D, and the inner product
matrix, XXT
The Euclidean distance between two observations contained in a generic data

matrix Xxm), Xi and x;, is:

dij = ||x; — Xj”2 = x—-x)'(x - x) = x'x; +x7%; — 2x;,"%; (7)
Let F be the inner product matrix so that:
F = XXT (8)
The Euclidean distance matrix is then defined as:
D = f1T + 1fT — 2F (9

where f= diag(F)and1 = (1,1, ...,1)". Centering X so that:
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X =X--117X (10)
it is obtained:
F=3XXT =
X - 211™X)(X - ~11™X)T = F — ~F117 - ~117F + - 117F117 (11)

Consider the double-centered Euclidean distance matrix:

B= —HDH' (12)
whereH =1 — %11T. So:
B= —H(f1T + 1fT — 2F)H" (13)
Since:
FITHT = f17(1 - 21107 = 117 - £EH1T = 0 (14)
it is verified:
Hf1™HT = 0 = H1fTHT (15)
Therefore:

B = HFHT = (I - ~11MF(I — ~110)T = F- ~F11T — ~117F +
—1(1"FD1T = F (16)

that is:
B = —-HDHT = XX" (17)
The Euclidean distance matrix D after double-centering is equal to the inner

product matrix XXT.

Appendix II

Extension of the pseudo-samples projection to the feature space
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Suppose one has built a 1-LV PLSDA model on a double-centered Euclidean
distance matrix, Bvxn), obtained based on the distances between the observations
in X(vxm). The scores of the objects belonging to the training set are calculated as:
tvx) = BuxmyW Bvxy (18)
where w*B represents the weighting vector obtained from B, which does not show
the contribution of the M original variables. Substituting (17) in (18):
tinxty = X veany XT(rxyW B () (19)
Rewriting formula (18):
tos) = X e ( XTuxmyW'Bvx1)) = X (vxmyW” (1) (20)
where w” actually contains information about the influence of the M original
variables on the model.
Projecting the pseudo-sample [0, .., 0, 1, O, .., O]u~m onto the PLSDA latent
structure and calculating the respective predicted score results in:
thew = [0, s 0, 1,0, ..., 0]1xa) XTmxmyW*Bvx1) = [0, ..., 0,1, 0, ..., 0] crxany W* (mx1)
= w” (21)
thew 1S exactly equal to the j-th value of the vector w”. When using a series of
pseudo-samples instead of only one, trajectories of points are constructed, whose
evolution gives an idea about how the original variables contribute to the final
model. Since the linear kernel matrix exactly corresponds to the inner product one,
it is straightforward to infer this outcome is valid when dealing with the respective
data transformation. However, as stated by Gower [18], the same property is
verified when dealing with all those generating sets of distances, which may be
embedded in a Euclidean space. The Euclidean nature of the Gaussian kernel is

particularly clear since it is calculated as a function of the Euclidean distance [28].
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Figure 1: On-specification and off-specification simulated batch score

trajectories
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Figure 3: a) PLSDA scores plot of the 2rd-order polynomial kernel model built
on the simulated data matrix and b) predicted y values for both
training and test sets. The black dotted line represents the
probability threshold, calculated according to the Bayes’ theorem

[25]. (EV: Explained Variance).
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Figure 4: Pseudo-sample predicted scores plot for the 2md-order polynomial
kernel model built on the simulated dataset. The blue dotted line
represents the discriminant direction between the centers of gravity

of the two considered classes. (EV: Explained Variance).



LV#2 — 44.17% EV

@ On specification Training
B Off specification Training
-0.015 O On specification Test
0 Off specification Test
-0.015 -0.01 -0.005 001 0015

o 0005
LV#1 — 50.44% EV

Figure 5: a) PLSDA scores plot of the model built on the reduced VWU kernel

data matrix and b) predicted y values for both training and

test sets.

0.02

Y Predicted

The black dotted

Cond

0.6

04

02r

On specification Training
Off specification Training
On specification Test
Off specification Test

-0.2

L L
50 100

L
300

threshold, calculated according to the Bayes’ theorem [25].

Explained Variance). Its use is justified by verifying that the response

values calculated by the model for the observations of the training set

are normally distributed within each single class.
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Figure 6: Pseudo-sample predicted scores plot for the reduced VWU kernel
matrix. The blue dotted line represents the discriminant direction
between the centers of gravity of the two considered classes. (EV:

Explained Variance).
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cross-validation. The black dotted line represents the probability
threshold, calculated according to the Bayes’ theorem [25]. (EV:

Explained Variance).
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Figure 10: Pseudo-samples predicted scores plot for the LFE kernel matrix.

Each subplot contains a pseudo-sample trajectory for a specific

variable. The blue dotted line represents the discriminant direction

between the centers of gravity of the two considered classes. (EV:

Explained Variance).
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Figure 11:

a) Scores and b) y-predicted plots obtained building a classical
PLSDA model on the original LFE data matrix. The black dotted
line represents the probability threshold, calculated according to
the Bayes’ theorem [25]. Correct classification rate in CV: 69.2%
(on-specification), 78.3% (off-specification). (EV: Explained

Variance)



Table 1: Kernel functions used in this article and list of their adjustable

parameters.
Kernel Type Kernel Function Adjustable parameters
Linear X; X, None
2nd-order polynomial (xiij)Z None
i — ;[
exp(—————
Gaussian 20 o




Table 2: Latent variable number and correct classification rate of the 4 models

built on the simulated dataset

Correct classification rate (%)

LV Training Training Test Test
I class II class I class II class
PLSDA 2 96.0 46.0 100 42.4
K-PLSDA
(linear 2 95.6 45.2 100 42.4
kernel)
K-PLSDA
(2nd-order
polynomial 2 98.4 100 100 92.8
kernel)
K-PLSDA
(rbfkernel, 5 100 99.2 100 87.2

6=0.5)




Table 3: Values of the cosine of the angles formed by each pseudo-sample

trajectory and the class discriminant direction (simulated data matrix).

Var. 1 Var. 2 Var. 3 Var. 4 Var.5 Var.6 Var.7 Var. 8 Var.9 Var. 10

0.88 0.97 0.89 0.92 0.80 0.87 0.81 - - -




Table 4: Values of the cosine of the angles formed by each pseudo-sample

trajectory and the class discriminant direction (VWU data matrix).

Var. 1 Var. 2 Var. 3 Var. 4 Var.5 Var.6 Var.7 Var. 8 Var.9 Var. 10

0.27 0.11 0.27 0.18 0.53 0.49




