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Abstract. This paper introduces the idea of using assertion checking
for enhancing the dynamic slicing of Maude computation traces. Since
trace slicing can greatly simplify the size and complexity of the ana-
lyzed traces, our methodology can be useful for improving the diagnosis
of erroneous Maude programs. The proposed methodology is based on
(i) a logical notation for specifying two types of user-defined assertions
that are imposed on execution runs: functional assertions and system
assertions; (ii) a runtime checking technique that dynamically tests the
assertions and is provably safe in the sense that all errors flagged are
definite violations of the specifications; and (iii) a mechanism based on
equational least general generalization that automatically derives accu-
rate criteria for slicing from falsified assertions.

1 Introduction

Back in the mid-80s, while the scientific research in Computer Science was just
taking off in Spain, some magnetic manuscripts written by Joseph Goguen and
José Meseguer came into our hands [17,18]. Although some predicted that no
language as ambitious as that described in [17,18,25] could reach widespread or
practical use, these ground-breaking documents were, for many of us, the starting
point for pursuing the advancement of multi-paradigm declarative languages and
their development environments. Towards this endeavor, the aim of this work
is to contribute to further advancing the state-of-the-art of the leading-edge
multi-paradigm language Maude.

Assertion checking is the problem of deciding whether a certain assertion
holds at a given program (or execution) point. Although not universally used, as-
sertion checking seems to have widely infiltrated common programming practice
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as witnessed by the growth of assertion capabilities in widely used programming
languages such as C], C++, and Java [12]. Assertions may be used statically to
support program analysis and also for secondary purposes, such as documenta-
tion and to provide information to an optimizer during code generation. A brief
history of the research ideas that have contributed to the assertion capabilities
of modern programming languages and development tools can be found in [12].
The most obvious way to dynamically use assertions is to test them at runtime
and report any detected violations. By finding inconsistencies between asserted
properties and the program code, runtime assertion checking can be used to re-
veal program faults and to obtain information about their locations. Since an
assertion failure usually reports an error, the user can direct its attention to the
location at which the logical inconsistency is detected and (hopefully) trace the
errors back to their sources more easily.

Program slicing [20] automatically identifies a subset of program statements
that either (i) contribute to the values of a set of variables at a given point, or
(ii) are influenced by the values of a given set of variables. The first approach
corresponds to forms of backward slicing, whereas the second corresponds to
forward slicing. Automatic slicing plays an important role in program diagnosis
and understanding since it allows one to focus on code fragments that are relevant
to a given slicing criterion, that is, the relevant information we want to track
(backwards or forwards) from a given execution point.

Maude [13] is a high-level language and high-performance system that sup-
ports both equational and rewriting logic computations. Maude modules corre-
spond to specifications in rewriting logic [24], which is a logic that allows the
representation of many models of concurrent and distributed systems. In [6,8],
a rich and highly dynamic parameterized scheme for exploring rewriting logic
computations is developed that can significantly reduce the size and complex-
ity of the runs under examination by automatically slicing both programs and
computation traces [4].

The aim of this work is to provide Maude with runtime assertion-checking
capabilities by first introducing a simple assertion language that suffices for the
purpose of improving error diagnosis and debugging of Maude programs, while
remaining tractable. We follow the approach of modern specification and verifi-
cation systems such as Spec] or the Java Modeling Language (JML) where the
specification language is typically an extension of the underlying programming
language and specifications are used as contracts that guarantee certain proper-
ties to hold at a number of execution states, e.g., before or after a given function
call [22]. We believe that this choice of a language is of practical interest because
it facilitates the job of programmers. Even if Maude is a highly declarative lan-
guage that supports a programming style where no conceptual difference exists
between programs and high-level specifications, a separate description given by
the assertions may help developers identify essential program behaviors to be
preserved when modifying code.

We distinguish two groups of assertions: 1) functional assertions, for spec-
ifying properties of functions defined by an equational theory; and 2) system
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assertions, which allow one to express properties concerning the system’s exe-
cution. The assertions we support allow us to express properties that are quite
general, including user–defined programs. However, for the functional assertions,
we require the user to ensure that the execution of any property terminates for
any possible initial state and that the resulting verdict is unique, in the same
spirit of Maude’s (canonical) equational theories. In the proposed framework,
if an assertion evaluates to false at runtime, an assertion failure results, which
typically causes execution to abort while delivering a huge execution trace. By
automatically inferring deft slicing criteria from falsified assertions, we derive
a self-initiating, enhanced dynamic slicing technique that automatically starts
slicing the trace backwards at the time the assertion violation occurs, without
having to manually determine the slicing criterion in advance. As a by-product of
the trace slicing process, we also compute a dynamic program slice that preserves
the program behavior for the considered program inputs [20].

The Maude Formal Environment (MFE) is a recent effort to integrate and
interoperate most of the available Maude analysis and verification tools. These
include among others an inductive theorem prover, a declarative debugger, and
Maude’s model checkers [23]. Maude supports strong typing and subtyping as-
sertions via membership axioms, which are used to automatically ‘narrow’ the
type T of a value into a subtype of T . Nevertheless, to the best of our knowledge,
no general built-in support is provided in Maude or the MFE for the runtime
checking of user-defined assertions. Related to our work, generic strategies are
defined in [16,28] to guarantee that a set of invariants (that can be expressed in
different logics) are satisfied at every computed state. This is achieved by avoid-
ing the execution of actions that otherwise would conduct the system to states
that do not satisfy the constraints. This is in contrast to our approach in two
ways. On the one hand, our assertions are external and evaluated at runtime,
whereas driving the system’s execution in such a way that every computation
state complies with the constraints makes the assertions internal to the pro-
grammed strategy. On the other hand, the strategy of [16,28] never results in
violated assertions, which is essential for automatic trace slicing to be fired ac-
cording to our approach. As another difference, we are able to check assertions
that regard: 1) the normalizations carried out by using the equational part of
the rewriting theory; and 2) system properties that are not necessarily global
invariants but can only hold in those states that match a given state template.

Following the discussion above, this work can be seen as the first frame-
work that exploits the synergies we can find between runtime assertion checking
and automated (program and program trace) transformations for improving the
diagnosis of Maude programs.

Plan of the paper The paper is organized as follows. Section 2 provides a brief
introduction to rewriting logic and Maude and introduces the running example
that we use throughout the paper: a conditional rewrite theory that models a
simple, distributed banking system. Section 3 introduces a very simple assertion
language and the notions of functional and system assertions whose violation
helps signal functional and system error symptoms. Section 4 recalls a trace slic-
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ing methodology for simplifying rewriting logic computations. Section 5 enriches
the slicing methodology with runtime assertion checking in order to improve the
diagnosis of erroneous Maude programs, and describes its implementation in the
ABETS tool. Section 6 concludes. More details and examples, and a thorough
comparison with the related literature, can be found in an extended version of
this article, which is available at [7].

2 Rewriting Logic and Maude

Let us recall some important notions that are relevant to this work. We assume
some basic knowledge of term rewriting [29] and rewriting logic [24] (RWL).
Some familiarity with the Maude language [14,13] is also required. Throughout
the paper, Maude notation will be introduced “on the fly” as required.

2.1 Preliminaries

Let Σ be a signature that allows operators to be specified together with their
type structure by means of suitable sets of sorts and kinds. By τ(Σ), we specify
the term algebra that includes all the ground terms built over Σ, while τ(Σ,V)
is the usual nonground term algebra built over Σ and the set of variables V.
Each operator in Σ is defined along with its sort and axiom declarations that
may specify algebric laws such as associativity (assoc), commutativity (comm),
and identity (id).

A position w in a term t is represented by a sequence of natural numbers that
addresses a subterm of t (Λ denotes the empty sequence, i.e., the root position).
Given a term t, we let Pos(t) denote the set of positions of t. By t|w, we denote
the subterm of t at position w, and by t[s]w, we denote the result of replacing
the subterm t|w by the term s in t.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set of
variables V to the set of terms τ(Σ,V), which is equal to the identity almost
everywhere except over a set of variables {x1, . . . , xn}. By {}, we denote the
identity substitution. The application of a substitution σ to a term t, denoted
tσ, is defined by induction on the structure of terms as usual [10]. Given two
terms t and t′, we say that t is more general than t′ iff there exists a substitution
σ such that tσ = t′. We also say that t′ is an instance of t.

Given a syntactic expression e, by Var(e), we denote the set of variables
that occur in e. Given a binary relation ;, we define the usual transitive (resp.,
transitive and reflexive) closure of ; by ;+ (resp., ;∗).

2.2 Rewrite Theories and Maude Modules

The static state structure as well as the dynamic behavior of a concurrent system
can be formalized as a RWL specification that encodes a conditional rewrite
theory. More specifically, a conditional rewrite theory (or simply rewrite theory)
is a triple R = (Σ,E,R), where:
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(i) (Σ,E) is a membership equational theory that allows us to define the sys-
tem data types via equations, as well as algebraic and membership axioms. Σ
is a signature that specifies the operators of R, while E = ∆ ∪B is the disjoint
union of the set ∆, which contains conditional equations and conditional mem-
bership axioms, and the set B, which contains algebraic axioms associated with
binary operators in Σ. The general Maude syntax of conditional equations and
membership axioms is the following:

ceq [l] : λ = ρ if C . cmb [l] : λ : s if C .

where l is a label (i.e., a name that identifies the equation), λ, ρ ∈ τ(Σ,V), s is a
sort and C is an equational condition, that is, a (possibly empty) conjunction of
equations t = t′, matching equations p := t, and memberships t : s′ that is built
using the binary conjunction connective /\, which is assumed to be associative.
When C is empty, the syntax for equations and memberships is simplified as
follows:

eq [l] : λ = ρ . mb [l] : λ : s .

A membership equational theory (Σ,E) is encoded in Maude through a func-
tional module that is syntactically delimited by keywords fmod and endfm. Func-
tional modules provide executable models for the specified equational theories.

Example 1. The following Maude functional module1 encodes an equational the-
ory that defines the functional part of a simple, distributed banking system.

fmod BANK-EQ is inc BANK-INT+ID . pr SET{Id} .

sorts Account PremiumAccount Status Msg State .

subsort PremiumAccount < Account .

subsorts Account Msg < State .

var ID : Id . op <_|_|_> : Id Int Status -> Account [ctor] .

var BAL : Int . op active : -> Status [ctor] .

var STS : Status . op blocked : -> Status [ctor] .

op Alice : -> Id [ctor] . op Bob : -> Id [ctor] .

op Charlie : -> Id [ctor] . op Daisy : -> Id [ctor] .

cmb < ID | BAL | STS > : PremiumAccount if ID in PreferredClients .

op PreferredClients : -> Set{Id} .

eq PreferredClients = Bob, Charlie .

op updateStatus : Account -> Account .

ceq updateStatus(< ID | BAL | active >) = < ID | BAL | blocked >

if BAL < 0 .

eq updateStatus(< ID | BAL | STS >) = < ID | BAL | STS > [owise] .

endfm

1 BANK-EQ includes the functional module BANK-INT+ID, which (i) imports INT for
integer manipulation and (ii) declares the sort Id that is used to parameterize SET{X
:: TRIV}.
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A bank account is represented as a term of the form < ID | BAL | STS > where
ID is the owner of the account, BAL is the account balance, and STS is the account
status, which can be blocked or active. The defined conditional membership
axiom states that an account is a PremiumAccount if its owner is included in the
PreferredClients set. Finally, the updateStatus operation updates the status
account to blocked when the account balance is negative.

(ii) R is a set of conditional labeled rules whose Maude syntax is the following:

crl [l] : λ => ρ if C .

where l is a label, λ, ρ ∈ τ(Σ,V), and C is a rule condition, i.e., an equational
condition that may also contain rewrite expressions of the form t = t′. When a
rule has no condition, we simply write rl [l] : λ => ρ .

A rewrite theory R = (Σ,E,R) is specified in Maude by means of a system
module, which is introduced by the syntax mod...endm. A system module may
include both a functional representation of the equational theory (Σ,E) and the
specification of the rewrite rules in R.

Example 2. The following Maude rewrite theory models the distributed behavior
of the banking system of Example 1.

mod BANK is inc BANK-EQ .

vars ID ID1 ID2 : Id .

vars BAL BAL1 BAL2 M : Int .

op empty-state : -> State [ctor] .

op _;_ : State State -> State [ctor assoc comm id: empty-state] .

ops credit debit : Id Int -> Msg [ctor] .

op transfer : Id Id Int -> Msg [ctor] .

rl [credit] : credit(ID,M) ; < ID | BAL | active > =>

updateStatus(< ID | BAL + M | active >) .

rl [debit] : debit(ID,M) ; < ID | BAL | active > =>

updateStatus(< ID | BAL - M | active >) .

rl [transfer] : transfer(ID1,ID2,M) ;

< ID1 | BAL1 | active > ; < ID2 | BAL2 | active >

=> updateStatus(< ID1 | BAL1 - M | active >) ;

updateStatus(< ID2 | BAL2 + M | active >) .

endm

Each state of the system is modeled as a multiset (i.e., an associative and com-
mutative list) of elements of the form e1; e2; . . . ...; en. Each element ei is either
(i) a bank account; or (ii) a message modeling a debit, credit, or transfer opera-
tion. These account operations are implemented via three rewrite rules: namely,
debit, credit, and transfer rules.

2.3 Rewriting and Generalization modulo Equational Theories

Let us consider a conditional rewrite theory (Σ,E,R), with E = ∆ ∪ B, where
∆ is a set of conditional equations and membership axioms, and B is a set of
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equational axioms associated with some binary operators in Σ. The conditional
rewriting modulo E relation (in symbols, →R/E) can be defined by lifting the
usual conditional rewrite relation on terms [19] to the E-congruence classes [t]E
on the term algebra τ(Σ,V) that are induced by =E [11]. In other words, [t]E is
the class of all terms that are equal to t modulo E. Unfortunately, →R/E is, in
general, undecidable since a rewrite step t →R/E t′ involves searching through
the possibly infinite equivalence classes [t]E and [t′]E .

The Maude interpreter implements conditional rewriting modulo E by means
of two much simpler relations, namely→∆,B and→R,B . These allow rules, equa-
tions and memberships to be intermixed in the rewriting process by simply us-
ing an algorithm of matching modulo B. We define →R∪∆,B as →R,B ∪ →∆,B .
Roughly speaking, the relation→∆,B uses the equations of ∆ (oriented from left
to right) as simplification rules. Thus, by repeatedly applying the equations as
simplification rules from a given term t, we eventually reach a term t ↓∆,B to
which no further equations can be applied. The term t ↓∆,B is called a canon-
ical (or normal) form of t w.r.t. ∆ modulo B. An equational simplification of
a term t in ∆ modulo B is a rewrite sequence of the form t →∗∆,B t ↓∆,B .
Informally, the relation →R,B implements rewriting with the rules of R, which
might be non-terminating and non-confluent, whereas ∆ is required to be ter-
minating and Church-Rosser modulo B in order to guarantee the existence and
unicity (modulo B) of a canonical form w.r.t. ∆ for any term [14]. Terms are
rewritten into canonical forms according to their sort structure, which is induced
by the signature Σ and the membership axioms specified in ∆. In particular,
through membership axioms of the form cmb [l] : λ : s if C, we can as-
sert that any term B-matching λ has a specific sort s whenever a condition C

holds. Equational simplification of terms is naturally lifted to substitutions as
follows: given σ = {x1/t1, x2/t2, . . . , xn/tn}, we define the normalized substitu-
tion σ↓∆,B= {xi/(ti ↓∆,B)}ni=1.

Formally, →R,B and →∆,B are defined as follows. Given a rewrite rule
crl [r] : λ => ρ if C ∈ R (resp., an equation ceq [e] : λ = ρ if C ∈ ∆),

a substitution σ, a term t, and a position w of t, t
r,σ,w→R,B t′ (resp., t

e,σ,w→∆,B t′)
iff λσ =B t|w, t′ = t[ρσ]w, and C evaluates to true w.r.t σ. When no confusion

arises, we simply write t →R,B t′ (resp. t→∆,Bt
′) instead of t

r,σ,w→R,B t′ (resp.

t
e,σ,w→∆,B t′).

Roughly speaking, a conditional rewrite step on the term t applies a rewrite
rule/equation to t by replacing a reducible (sub-)expression of t (namely t|w),
called the redex, by its contracted version ρσ, called the contractum, whenever
the condition C is fulfilled. Note that the evaluation of a condition C is typically
a recursive process since it may involve further (conditional) rewrites in order
to normalize C to true. Specifically, an equation e evaluates to true w.r.t. σ
if eσ ↓∆,B=B true; a matching equation p := t evaluates to true w.r.t. σ if
pσ =B tσ↓∆,B ; a rewrite expression t ⇒ p evaluates to true w.r.t. σ if there
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exists a rewrite sequence tσ →∗R∪∆,B u, such that u =B pσ2; and, finally, a
membership t : s evaluates to true w.r.t. σ if tσ has sort s.

Under appropriate conditions on the rewrite theory, a rewrite step s→R/E t
modulo E on a term s can be implemented without loss of completeness by
applying a rewrite strategy that first simplifies the term s into its canonical
form s ↓∆,B , and then applies a rule r ∈ R to s ↓∆,B [15].

A computation (trace) C for s0 in the conditional rewrite theory (Σ,∆∪B,R)
is then deployed as the (possibly infinite) rewrite sequence

s0 →∗∆,B s0↓∆,B →R,B s1 →∗∆,B s1↓∆,B→R,B . . .

that interleaves →∆,B rewrite steps and →R,B rewrite steps following the strat-
egy mentioned above. After each conditional rewriting step using →R,B , in gen-
eral, the resulting term si, i = 1, . . . , n, is not in canonical normal form. There-
fore, it is normalized before the subsequent rewrite step with→R,B is performed.
Also, in the precise strategy adopted by Maude, the last term of a finite com-
putation is finally normalized before the result is delivered. By ε, we denote the
empty computation.

We define a Maude step from a given term s as any of the sequences s→∗∆,B
s↓∆,B→R,B t→∗∆,B t↓∆,B that head the non-deterministic Maude computations
for s. Note that, for a canonical form s, a Maude step for s boils down to
s →R,B t→∗∆,B t↓∆,B . We define mS(s) as the set of all the non-deterministic
Maude steps from s.

A generalization of a pair of terms t1, t2 is a triple (g, θ1, θ2) such that gθ1 = t1
and gθ2 = t2. The triple (g, φ1, φ2) is the least general generalization (lgg) of the
pair of terms t1, t2, written lgg(t1, t2), if (1) (g, φ1, φ2) is a generalization of t1, t2
and (2) for every other generalization (g′, ψ1, ψ2) of t1, t2, g′ is more general than
g. The lgg of a pair of terms is unique up to variable renaming [21].

In [9], the notion of least general generalization is extended to work mod-
ulo (order-sorted) equational theories, where function symbols can obey any
combination of associativity, commutativity, and identity axioms (including the
empty set of such axioms). Unlike the untyped case, for a pair of terms t1, t2
there is generally no single lgg, due to order-sortedness or to the equational ax-
ioms. Instead, there is a finite, minimal, and complete set of lggs (denoted by
lggE(t1, t2)) so that any other equational generalizer has at least one of them as
an instance. Given any element (g, φ1, φ2) of the set lggE(t1, t2), we define the
function π from Pos(t) to Pos(t1) that provides an injective correspondence be-
tween (the position of) any variable in g and (the position of) the corresponding
term in t1; we need this because computing modulo algebraic axioms may cause
the term structure of g to be different from both, t1 and t2. For instance, con-
sider an associative and commutative symbol f and the terms t1 = f(b, c, a) and
t2 = f(d, a, b). Then, a possible lgg modulo the associativity and commutativity

2 Technically, to properly evaluate a rewrite expression t⇒ p or a matching condition
p := t, the term p is required to be a ∆-pattern modulo B (i.e., a term p such
that, for every substitution σ, if xσ is a canonical form w.r.t. ∆ modulo B for every
x ∈ Dom(σ), then pσ is also a canonical form w.r.t. ∆ modulo B).
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of f is (f(a, b, X), {X/c}, {X/d}) ∈ lggE(t1, t2), where X is a variable. Note that
both t1 and t2 are syntactically different from f(a, b, X), and the value π(3) = 2
indicates the subterm c of t1 that is responsible for the mismatch with t2. By

l̂ggE(t1, t2) we denote the pair (G, π) where G = (g, φ1, φ2) is arbitrarily chosen
among those lggs in the set lggE(t1, t2) that have fewer variables, and π is the
corresponding position mapping from positions of g’s variables to the relative
subterms of t1.

One of the main motivations of our work is to help automate as much as
possible the validation and debugging of programs with respect to properties
that are outside of Maude’s typing system. Some of the properties we consider
can arguably be expressed by means of sorts and memberships in Maude. Nev-
ertheless, in the following section we deal with properties that these facilities
cannot handle.

3 The Assertion Language

Assertions are linguistic constructions that formally express properties of a soft-
ware system. Throughout this section, we consider a software system that is
specified by a rewrite theory R = (Σ,∆ ∪B,R). Without loss of generality, we
assume that Σ includes at least the sort State. Terms of sort State are called
system states (or simply states). State transitions are obtained by nondetermin-
istically applying the rewrite rules in R to canonical forms of system states.
A state s is simplified into its canonical form s ↓∆,B by using equations and
algebraic/membership axioms in ∆ ∪B.

In our specification language, assertions are formulas built on user-defined
functions. The meaning of such functions is specified by a user-defined program.
Our framework supports two kinds of assertions: functional assertions and system
assertions. Functional assertions allow properties to be logically defined on the
equational component of the rewrite theory R while system assertions specify
formal constraints on the possibly nondeterministic rule component of R. The
benefit of using a logic framework is that the definition and checking of all
asserted properties can be performed in a uniform and familiar setting.

3.1 The Assertion Logic

The core of our assertion language is based on (order-sorted) predicate logic,
where first order formulas are built over the signature Σ of the rewrite theory
R enriched with a set of user-defined boolean function symbols (predicates).
The truth values are given by the formulas true and false. The usual conjunc-
tion (and), disjunction (or), exclusive or (xor), negation (not), and implication
(implies) logic operators are used to express composite properties. Variables in
the formulas are not quantified.

Logic formulas can be defined in Maude by means of the predefined functional
module BOOL [14], which specifies the built-in sort Bool, the truth values, the
logic operators, and the built-in operators for membership predicates :: S for
each sort S, and term equality == and inequality =/= .
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mod BANK-PRED is inc BANK .

var ACC : Account . op isPremium : Account -> Bool .

var ID : Id . op getBalance : Account -> Int .

var BAL : Int . op getId : Account -> Id .

var STS : Status . op getStatus : Account -> Status .

ceq isPremium(ACC) = true if ACC : PremiumAccount .

eq isPremium(ACC) = false [owise] .

eq getBalance(< ID | BAL | STS >) = BAL .

eq getId(< ID | BAL | STS >) = ID .

eq getStatus(< ID | BAL | STS >) = STS .

endm

Figure 1. System properties specified by the BANK-PRED module.

The built-in Boolean functions == and =/= have a straightforward oper-
ational meaning: given an expression u == v, then both u and v are simplified
by the equations in the module (which are assumed to be Church-Rosser and
terminating) to their canonical forms (perhaps modulo some axioms such as
associativity) and these canonical forms are compared for equality. If they are
equal, the value of u == v is true; if they are different, it is false. The predi-
cate u =/= v is just the negation of u == v. In the module BOOL, valid formulas
are reduced to the constant true, invalid formulas are reduced to the constant
false, and all the others are reduced to a canonical form (modulo associativity
and commutativity) consisting of an exclusive or of conjunctions.

Predicates that are not specified in BOOL are module-dependent and can be
equationally defined as total Boolean functions over the domain formalized by
R. Therefore, we can define basic properties on a given rewrite theory R by
means of a system module PRED(R) that
– imports the (Maude encoding of) the rewrite theory R; and
– specifies predicates via user-defined operators that are associated with ter-

minating and Church-Rosser equational definitions of some total Boolean
function.
In this scenario, a well-formed formula is any term of sort Bool built using

the operators and variables declared in the system module PRED(R).
We say that a formula ϕ holds in R, iff ϕ can be reduced to true in PRED(R)

(in symbols, R |= ϕ).

Example 3. Consider the BANK system module of Example 2 and the new pred-
icates given in the BANK-PRED module of Figure 1. Then, within BANK-PRED we
can specify the formula

not(isPremium(ACC:Account)) implies getBalance(ACC:Account) > 0

which is true for every nonpremium bank account ACC with a positive balance.

3.2 System and Functional Assertions

System assertions formalize properties over (portions of) system states. Formally,
a system assertion (also called constrained term in [26]) is an expression of the
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form S{ϕ} where S is a (possibly non ground) term in τ(Σ,V) of sort State,
and ϕ is a well-formed formula such that Var(ϕ) ⊆ Var(S).

System assertions are checked against states of the system specified by R.
Roughly speaking, a system assertion S{ϕ} allows us to validate all system states
s that match (modulo the equational theory E) the state “template” S w.r.t.
the formula ϕ. More formally, we define the satisfaction of a system assertion in
a system state as follows.

Definition 1 (system assertion satisfaction). Let R = (Σ,E,R) be a
rewrite theory. Let S{ϕ} be a system assertion for R and s be a state in R.
Then, S{ϕ} is satisfied in s (in symbols, s |= S{ϕ}) iff for each w ∈ Pos(s),
for each substitution σ if s|w =E Sσ then ϕσ holds in R.

Note that, if there is no subterm s|w of s that matches S (modulo E), we
trivially have s |= S{ϕ}. This implies that S{ϕ} is not satisfied in s (in symbols,
s 6|= S{ϕ}) only in the case when there exist w and σ such that s|w =E Sσ, and
the formula ϕσ does not hold in R. We call w a system error symptom. Roughly
speaking, a system error symptom is the position of a subterm of the state s
that is responsible for the violation of the considered assertion in s.

Definition 2 (system error symptoms). The set of all system error symp-
toms for a state s and a system assertion S{ϕ} is defined as follows:

SysErr(s, S{ϕ}) = {w | ∃σ. s|w =E Sσ,w ∈ Pos(s), and ϕσ 6|= R}.

Observe that SysErr(s, S{ϕ}) = ∅, whenever s |= S{ϕ}.

Example 4. Consider the extended rewrite theory of Example 3 together with
the system assertion

Θ = < C:Id | B:Int | S:Status > { not(isPremium(< C:Id | B:Int |

S:Status >)) implies B:Int > 0 }

Then, Θ is satisfied in the state < Alice | 50 | active > ; < Bob | 40 |

active > ; debit(Alice,60), but it is not satisfied in serr = < Alice | -10 |

blocked > ; < Bob | 40 | active >, since Alice’s non-premium account has a
negative balance. The detected error symptom for the considered state and as-
sertion is the position 1 that refers to the subterm < Alice | -10 | blocked >

of serr .

The second type of assertions that we consider are functional assertions.
Functional assertions allow one to specify the general pattern O of the canonical
form for any input term t that matches a given template I, while allowing pre- and
post-conditions ϕin , ϕout over the equational simplification to also be declared.
Their general form is I {ϕin} → O {ϕout} where I,O ∈ τ(Σ,V), ϕin , ϕout

well-formed formulas, Var(ϕin) ⊆ Var(I) and Var(ϕout) ⊆ Var(I) ∪ Var(O).
Intuitively, functional assertions allow us to specify the I/O behaviour of the
equational simplification of a term t by providing
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Input: an input template I that t can match and a pre-condition ϕin that t can
meet;

Output: an output template O that the canonical form of t has to match and
a post-condition ϕout that the computed canonical form of t has to meet
(whenever the input term t matching I meets ϕin).

Note that, while system assertions S{ϕ} resemble Matching Logic (ML) for-
mulas π∧φ (called ML patterns), where π is a configuration term and φ is a first
order logic formula, functional assertions I {ϕin} → O {ϕout} remind Reacha-
bility Logic (RL) formulas ϕ ⇒ ϕ′, where ϕ,ϕ′ are ML patterns (for a survey
on ML/RL, see [27]). Different from our functional assertions, which predicate
on equational simplification sequences, RL formulas are evaluated on system
computations. Namely, the semantics of a RL formula ϕ⇒ ϕ′ is that any state
satisfying ϕ transits (in zero or more steps) into a state satisfying ϕ′, while ML
formulas are used to express (and reason about) static state properties, similarly
to our system assertions.

The notion of satisfaction for a functional assertion is given w.r.t. the equa-
tional simplification µ = t→∗∆,B t ↓∆,B of term t into its canonical form t ↓∆,B .

Definition 3 (functional assertion satisfaction). Let R = (Σ,E,R) be a
rewrite theory, with E = ∆∪B. Let I {ϕin} → O {ϕout} be a functional assertion
for R, and µ be the equational simplification of the term t in τ(Σ,V) into its
canonical form t ↓∆,B w.r.t. ∆ modulo B. Then, I {ϕin} → O {ϕout} is satisfied
in µ (in symbols, µ |= I {ϕin} → O {ϕout}) iff for each substitution σin s.t.
t =B Iσin , if ϕinσin holds in R, then there exists σout such that t ↓∆,B=B

O(σin ↓∆,B)σout and ϕout(σin ↓∆,B)σout holds in R.

Note that I {ϕin} → O {ϕout} is (trivially) satisfied in µ when either t
does not match Iσin (modulo B) or ϕinσin does not hold in R. Intuitively, a
functional error occurs in an equational simplification µ where the computed
canonical form fails to match the structure or meet the properties of the output
template O. In other words, Φ = I {ϕin} → O {ϕout} is not satisfied in µ only
in the case when there exists an input substitution σin s.t.

– t =B Iσin and ϕinσin holds in R;
– t ↓∆,B 6=B O(σin ↓∆,B)σout or ϕout(σin ↓∆,B)σout does not hold in R, for

any substitution σout .

Definition 4 (functional error symptoms). Let R = (Σ,E,R) be a rewrite
theory, with E = ∆ ∪B. Let Φ = I {ϕin} → O {ϕout} be a functional assertion
for R. Let µ = t →∗∆,B t ↓∆,B be an equational simplification such that µ 6|= Φ
with input substitution σin . Then, a functional error symptom for µ w.r.t. Φ is
any position in Pos(t ↓∆,B) that belongs to the following set:

FunErr(µ, Φ) = {π(w) ∈ Pos(t↓∆,B) | ((g, σ1, σ2), π)

= l̂gg∆∪B(t↓∆,B , O(σin ↓∆,B)) and g|w ∈ Var(g), w ∈ Pos(g)}
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Roughly speaking, FunErr(µ, Φ) is computed by “comparing” the canonical form
t ↓∆,B with the instance O(σin ↓∆,B) of the output template O by the (nor-
malized) substitution σin ↓∆,B using a least general generalization algorithm
modulo equational theories. More specifically, an arbitrarily-selected least gen-
eral generalization (g, σ1, σ2) (modulo ∆ ∪ B) between t ↓∆,B and O(σin ↓∆,B)

is chosen via l̂gg∆∪B , and potentially erroneous subterms of t↓∆,B are detected
by selecting every position π(w) ∈ Pos(t ↓∆,B) in correspondence with a posi-
tion w ∈ Pos(g). The intuition behind this method is that variables in g reflect
possible discrepancies between the canonical form and the instantiated output
template, and, thus, subterms (t↓∆,B)|π(w) represent, to some extent, a possible

anomalous subterm of t↓∆,B .

It is worth noting that the use of l̂gg∆∪B is generally preferable to the adop-
tion of a pure syntactic lgg algorithm since it minimizes the number of variables
in g (and, hence, the points of discrepancy between t ↓∆,B and O(σin ↓∆,B),
which facilitates isolating erroneous information. Let us see an example.

Example 5. Let us consider the equational simplification f(0, 0) →+
∆,B c(1, 3)

w.r.t. an equational theory (Σ,∆∪B) in which the operator c is declared com-
mutative. Let Φ = f(X, Y) {true} → c(Z, 1) {even(Z)} be a functional assertion,
where predicate even(Z) checks whether Z is an even number.

Then, (f(0, 0), c(1, 3)) 6|= Φ (with input substitution σin = {X/0, Y/0}), since
variable Z in the output template c(Z, 1) is bound to 3 and even(3) is false.

Then, l̂gg∆∪B(c(1, 3), c(Z, 1)) returns a pair ((g, σ1, σ2), π) such that g con-

tains the minimum number of variables. For instance, l̂gg∆∪B(c(1, 3), c(Z, 1)) =
((c(Z, 1), {Z/3}, {}), {1 7→ 2}) and FunErr(µ, Φ) = {2}, which precisely detects
that the term c(1, 3)|2 = 3 is what causes the violation of Φ.

By contrast, the computation of a purely syntactic least general generaliza-
tion would have delivered the more general result (c(W, Z), {W/1, Z/3}, {}) and
the larger functional error symptom set {1, 2} (which represents the positions of
both arguments of the canonical form c(1, 3)), thereby hindering the isolation
of the erroneous subterm of c(1, 3).

Example 6. Consider again the extended rewrite theory of Example 3. Then, the
functional assertion

Φ = updateStatus(ACC:Account){isPremium(ACC:Account)}→ ACC:Account{true}

states that premium account statuses (as well as other information in the ac-
count) remain unchanged after updateStatus is invoked. Thus, Φ is not satisfied
in the following equational simplification

updateStatus(< Bob | 95-100 | active >)→+
∆,B < Bob | -5 | blocked >

with input substitution σin = {ACC/< Bob | 95-100 | active >} and
σin ↓∆,B= {ACC/< Bob | -5 | active >}. Hence, there is a single (syntatic)
least general generalizer

l̂gg∆∪B(< Bob | -5 | blocked >,ACC(σin ↓∆,B)) =
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= ((< Bob | -5 | X:Status >,{X/blocked},{X/active}),{3 7→ 3})

where FunErr(µ, Φ) = {3} is the functional error symptom set that pinpoints
the anomalous status on Bob’s premium account < Bob | -5 | blocked >.

Finally, an assertional specification A for a rewrite theory R = (Σ,E,R) is
a set of functional and system assertions for R. By F(A), we denote the set of
functional assertions in A, while S(A) denotes the set of system assertions in A.
By s |= S(A) (resp. µ |= F(A)), we denote that s satisfies all assertions in S(A)
(resp. µ satisfies all assertions in F(A)).

In the following section, we outline our previous work on trace slicing for
RWL theories.

4 Enhancing Trace Slicing

Trace slicing [1,2,3,4,5] is a transformation technique for RWL theories that can
drastically reduce the size and complexity of entangled, textually-large execution
traces by focusing on selected computation aspects. This is done by uncovering
data dependences among related parts of the trace w.r.t. a user-defined slicing
criterion (i.e., a set of symbols that the user wants to observe). This technique
aims to improve the analysis, comprehension, and debugging of sophisticated
rewrite theories by helping the user inspect involved traces in an easier way. By
step-wisely reducing the amount of information in the simplified trace, it is easier
for the user to locate program faults because pointless information or unwanted
rewrite steps have been automatically removed. Roughly speaking, in our slices,
the irrelevant subterms of a term are omitted, leaving “holes” that are denoted
by special variable symbols •.

A term slice of the term s is a term s• that hides part of the information in s;
that is, the irrelevant data in s that we are not interested in are simply replaced
by (fresh) •-variables of appropriate sort, denoted by •i, with i = 0, 1, 2, . . ..

The next auxiliary definition formalizes the function Tslice(t, P ), which al-
lows a term slice of t to be constructed w.r.t. a set of positions P of t. The
function Tslice relies on the function fresh• whose invocation returns a (fresh)
variable •i of appropriate sort that is distinct from any previously generated
variable •j .

Definition 5 (Term Slice). Let t ∈ τ(Σ,V) be a term and let P be a set
of positions s.t. P ⊆ Pos(t). Then, the term slice Tslice(t, P ) of t w.r.t. P is
computed as follows.

Tslice(t, P ) = recslice(t, P, Λ), where

recslice(t, P, p) =


f(recslice(t1, P, p.1), . . . , recslice(tn, P, p.n))

if t=f(t1, . . . , tn), n ≥ 0, and p ∈ P̄
t if t ∈ V and p ∈ P̄
fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .
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Roughly speaking, the function Tslice(t, P ) yields a term slice of t w.r.t. a
set of positions P that includes all symbols of t that occur within the paths
from the root of t to any position in P , while the remaining information of t is
abstracted by means of •-variables.

Example 7. Consider the specification of Example 1 and the state t = < Alice

| 50 | active > ; < Bob | 100 | active > ; debit(Alice,20). Consider
the set P = {1.2, 3.1, 3.2} of positions in t. Then,

Tslice(t, P ) = < •1 | 50 | •2 > ; •3 ; debit(Alice,20).

Trace slicing can be carried out forward or backward. While the forward
trace slicing results in a form of impact analysis that identifies the scope and
potential consequences of changing the program input, backward trace slicing
allows provenance analysis to be performed; i.e., it shows how (parts of) a pro-
gram output depend(s) on (parts of) its input and helps estimate which input
data need to be modified to accomplish a change in the outcome. While depen-
dency provenance provides information about the origins of (or influences upon)
a given result, the notion of descendants is the key for impact evaluation. In the
sequel, we focus on backward trace slicing.

Let us illustrate by means of an example how it can help the user think
backwards (i.e., to deduce the conditions under which a program produces some
observed data).

Example 8. Consider the BANK system module of Example 2 and the computa-
tion trace Cbank in program BANK that starts in the initial state

< Alice | 50 | active > ; < Bob | 20 | active > ; < Charlie | 20 |

active > ; < Daisy | 20 | active > ; debit(Alice,80) ; credit(Alice,20)

and ends in the final state

< Alice | - 10 | blocked > ; < Bob | 20 | active > ; < Charlie | 20 |

active > ; < Daisy | 20 | active >

Let us assume we manually define as the slicing criterion the negative balance
-10 for client Alice, which is a possible malfunction of the BANK specification,
since regular account balances must be non-negative numbers according to the
semantics intended by the programmer. Therefore, we execute trace slicing on
the trace Cbank w.r.t. the slicing criterion < •1 | -10 | •2 > ; •3 ; •4 ; •5
that observes the negative balance of Alice’s account in order to determine the
cause of such a disfunction. The output trace slice delivered by the trace slicing
technique is as follows

< •1 | 50 | •2 > ; •3 ; •4 ; •5 ; debit(•1,80) ; credit(•1,20)
credit•→

< •1 | 70 | •2 > ; •3 ; •4 ; •5 ; debit(•1,80)
debit•→

< •1 | -10 | •2 > ; •3 ; •4 ; •5

which greatly simplifies the trace Cbank by only showing the origins of the ob-
served negative balance while excluding all the bank accounts that are not related
to Alice.
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Throughout this paper, we assume the existence of a backwardSlicing(s0 →∗∆∪B
sn, s

•
n) function as defined in [8] that yields the backward trace slice s•0•→∗

s•n of the computation trace s0 →∗∆∪B sn w.r.t. a term slice s•n of sn. This
function relies on an instrumentation technique for Maude steps that allows the
relevant information of the step, such as the selected redex and the contractum
produced by the step, to be traced explicitly despite the fact that terms are
rewritten modulo a set B of equational axioms that may cause their components
to be implicitly reordered in the original trace. Also, the dynamic dependencies
exposed by backward trace slicing are exploited in [8] to provide a (preliminary)
program slicing capability that can identify those parts of a Maude theory that
can (potentially) affect the values computed at some point of interest.

The main idea of this work is to enhance backward trace slicing by using
runtime assertion checking to automatically identify the relevant symbols to be
traced back from the erroneous states of the trace, that is, those states where an
assertion is falsified. In conventional program development environments, when
a given assertion check fails, the programmer must thoughtfully identify which
program statements impacted on the value(s) causing the assertion failure. An
additional advantage of blending trace slicing and runtime checking together is
that the runtime checking not only helps automate the trace slicing, but trace
slicing also helps answer the question that immediately arises when an assertion
is violated. This question is “What caused it?”. By using our enhanced, backward
trace slicing methodology, error diagnosis is greatly simplified because accurate
criteria for slicing are automatically inferred from the computed error symptoms
that immediately bootstrap the slicing process so that much of the irrelevant data
that does not influence the falsified assertions is automatically cut off.

5 Integrating Assertion-Checking and Trace Slicing

Dynamic assertion-checking and trace slicing can be smoothly combined together
to facilitate the debugging of ill-defined rewrite theories. In this section, we for-
mulate an assertion-checking methodology to verify whether a given computa-
tion trace C meets the requirements formalized by an assertional specification
A. In the case when a functional or system assertion A ∈ A fails to be satis-
fied over C, a fragment P of C (that exhibits the anomalous behaviour w.r.t.
A) is returned together with the corresponding set of system/functional error
symptoms. Then, we show how backward trace slicing can take advantage of the
computed error symptoms to produce small, easy-to-inspect computation slices
of all those fragments that have been proven to be erroneous by the assertion-
checking methodology.

5.1 Dynamic Assertion-Checking

We first extend the notion of satisfaction of the functional assertions to state
equational simplifications (i.e., equational simplifications that reduce a state into
its canonical form), where the state may contain an arbitrary number of function
calls that might eventually be simplified. For this purpose, we introduce the
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following auxiliary definitions. Given R = (Σ,E,R), with E = ∆ ∪B, the term
t is an equational redex in R if there is (λ = ρ if C) ∈ ∆ and substitution σ such
that t =B λσ. Given R and a system state s in R, Top(s) is the set of minimal
positions w ∈ Pos(s) such that s|w is an equational redex in R. Formally,

Top(s) = {w ∈ Pos(s) |s|w is an equational redex and

@w′ ≤ w s.t. s|w′ is an equational redex}.

Roughly speaking, Top(s) selects all the positions in Pos(s) that identify
those outermost subterms of s to be equationally simplified into their canonical
form in order to compute s↓∆,B . In other words, given the equational simplifica-
tion of the state s, S : s →+

∆,B s ↓∆,B , each subterm s|w, with w ∈ Top(s),
is reduced to (s ↓∆,B)|w in S. This allows functional assertions to be effec-

tively checked over each equational simplification s|w →+
∆,B (s ↓∆,B)|w such

that w ∈ Top(s).

Definition 6 (extended functional assertion satisfaction). Let R =
(Σ,E,R) be a rewrite theory, with E = ∆ ∪ B, and let s be a system state
in R such that Top(s) 6= {Λ}. Let s→+

∆,B s ↓∆,B be an equational simplification
for the state s in R. Let A be an assertional specification for R. We say that
F(A) is satisfied in s →+

∆,B s ↓∆,B (in symbols, s →+
∆,B s ↓(∆,B)|= F(A)), iff

for each w ∈ Top(s), s|w →+
∆,B (s↓∆,B)|w |= F(A).

System and functional error symptoms (whose definitions have been given in
Section 3 for a single system/functional assertion) can be naturally extended to
assertional specifications in the following way.

Definition 7 (state error symptoms). Let R = (Σ,E,R), with E = ∆∪B,
be a rewrite theory. Let A be an assertional specification for R. Let s be a state
of R. Then,

SysErr(s,A) =
⋃
Θ∈S(A) SysErr(s,Θ)

FunErr(s→+
∆,B s↓∆,B ,A) =

⋃
Φ∈F(A),w∈Top(s) {(s|w →

+
∆,B (s↓∆,B)|w,

FunErr(s|w → (s↓∆,B)|w, Φ))}
The notion of satisfaction for an assertional specification in a given compu-

tation is then formalized as follows.

Definition 8 (satisfaction of an assertional specification). Let R =
(Σ,E,R), with E = ∆ ∪ B, be a rewrite theory and C be a computation in R.
Let A be an assertional specification for R. Then the specification A is satisfied
in C iff

– for each state s in C that is a canonical form w.r.t. ∆ modulo B, s |= S(A);
– for each state s in C that is not a canonical form w.r.t. ∆ modulo B, s→+

∆,B

s↓(∆,B)|= F(A).

To check an assertional specification A in a given computation C, we can
simply traverse C and progressively evaluate system assertions over states and
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functional assertions over state equational simplifications, respectively. Defini-
tion 9 formalizes this methodology into the function check(C,A) that takes as
input a computation C and an assertional specification A and delivers a triple
(P,Err ,flag) where P is a prefix of C, Err is a set of functional or system error
symptoms w.r.t. A, and flag ∈ {none, sys, fun}.

Roughly speaking, function check(C,A) returns (P,Err ,flag) as soon as it
encounters either a state or a state equational simplification in which A is not
satisfied: P represents a prefix of C that reaches a state in which a system/func-
tional assertion is violated, Err specifies the associated error symptom set, and
flag declares the nature of the computed symptoms (fun stands for functional
error symptoms, sys for system error symptoms, and the keyword none indicates
that no symptom has been identified).

Definition 9 (assertion checking). Let R = (Σ,E,R), with E = ∆∪B, be a
rewrite theory and C be a computation in R. Let A be an assertional specification
for R.

check(C,A) =



(ε, ∅,none) if C = ε

(µ→∗R,B C′′,Err ,flag) if C = µ→∗R,B C′ and µ |= F(A)

and (C′′,Err ,flag) = check(C′,A)

(µ,FunErr(µ,F(A)), fun) if C = µ→∗R,B C′ and µ 6|= F(A)

(s→R,B C′′,Err ,flag) if C = s→∗R,B C′, s = s ↓(∆,B)

and s |= S(A)

and (C′′,Err ,flag) = check(C′,A)

(s,SysErr(s,S(A)), sys) if C = s→∗R,B C′, s = s ↓(∆,B)

and s 6|= S(A)

where µ = s→+
∆,B s ↓∆,B is a non-empty equational simplification for s.

The runtime checking methodology formalized in Definition 9 can be in-
terpreted either as an asynchronous (and trace-storing) technique or as a syn-
chronous one (by considering that the input trace C is lazily generated as succes-
sive Maude steps are incrementally consumed by the calculus). In the following
section, we formalize a truly synchronous methodology where traces, or rather
whole search trees, can be stepwisely examined in a forward direction, reporting
a violation at the exact step where it occurs.

5.2 Runtime Assertion-Based Backward Trace Slicing

Given a conditional rewrite theoryR = (Σ,E,R), with E = ∆∪B, the transition
space of all computations in R from the initial state s0 can be represented as
a computation tree,3 TR(s0). RWL computation trees are typically large and
complex objects that represent the highly-concurrent, nondeterministic nature
of rewrite theories.

3 In order to facilitate trace inspection, computations are visualized as trees, although
they are internally represented by means of more efficient graph-like data structures
that allow common subexpressions to be shared.
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function analyze(s0, (Σ,∆ ∪B,R),A, depth)
1. T = s0
2. d = 0
3. while (d ≤ depth) do
4. F = frontier(T )
5. for each s ∈ F
6. for eachM∈ mS(s)
7. (P,Err ,flag) = check(M,A)
8. case flag of
9. none :
10. T = expand(T , s,M)
11. sys :
12 w = selectSysSymptom(Err)
13 l• = TSlice(last(P),Posw(last(P))
14. return backwardSlice(s0 →∗R∪∆,B P, l•)
15. fun:
16. (t→+

∆,B t↓∆,B , L) = {selectFunSymptom(Err)})
17. (t↓∆,B)• = TSlice(t↓∆,B ,

⋃
w∈L Posw(t↓∆,B))

18. return backwardSlice(t→+
∆,B t↓∆,B , (t↓∆,B)•)

19. end case
20. end for
21. end for
22. d = d+ 1
23. end while
24. return T
end

Figure 2. The analyze function.

Our methodology checks rewrite theories w.r.t. an assertional specification
A at runtime by incrementally generating and checking the computation tree
TR(s0) until a fixed depth. In fact, the complete generation of TR(s0) is generally
not feasible since some of its branches may be infinite as they encode nontermi-
nating computations. The general analysis algorithm, which is specified by the
routine analyze(s0,R,A, depth), is given in Figure 2. We use the following auxil-
iary notation: given a position w of a term t, Posw(t) = {w.w′ | w.w′ ∈ Pos(t)}.
The computation tree is constructed breadth-first, starting from a tree T that
consists of a single root node s0. At each expansion stage, the leaf nodes of the
current T are computed by the function frontier(T ). Expansion of an arbitrary
node s is done by deploying all the possible Maude computation steps stemming
from s that are given by mS(s). Whenever a Maude step M is produced, it is
also checked w.r.t. the specification A by calling check(M,A) that computes
the triple (P,Err ,flag). According to the computed flag value, the algorithm
distinguishes the following cases:

flag = none. No error symptoms have been computed; hence, A is satisfied in
the Maude stepM, andM can safely expand the node s by replacing s with
the path represented byM (via the invocation of expand(T , s,M)), thereby
augmenting T .
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flag = sys. In this case, check returns a set of system error symptoms Err to-
gether with a computation P (which is a prefix of the Maude step M) that
violates a system assertion of A. The computation s0 →∗R∪∆,B P is then
generated and backward sliced w.r.t. a term slice l• of the last state of P.
This term slice conveys all the relevant information that we automatically
retrieve by using Definition 5 from the (system) error symptom w selected by
the function selectSysSymptom(Err), while all other symbols in l are consid-
ered meaningless and simply pruned away. This way, the algorithm delivers a
trace slice s•0•→ P• that removes from the computation all of the information
that does not affect the production of the chosen error symptom.

flag = fun. Some functional assertions have been violated by the considered
Maude step M. Hence, the algorithm selects a functional error symptom
(t →+

∆,B t↓∆,B , L) and returns the backward trace slicing of t →+
∆,B t↓∆,B

w.r.t. a term slice of t↓∆,B that includes all the subterms of t↓∆,B that are
rooted at positions in L. As explained in Section 3.2, these subterms indicate
possible causes of the assertion violation.

It is worth noting that, in our framework, we do not attach any specific
semantics to selectSysSymptom and selectFunSymptom functions since many
selection strategies can be specified with different degrees of automation and
associated tradeoffs. For instance, we can simply obtain a fully automatic selec-
tion strategy by selecting the first symptom in Err . On the other hand, a purely
interactive strategy can be implemented by asking the user to choose a symptom
at runtime.

Finally, if the analyze function terminates without detecting any assertion
violation, then a (verified) tree T is delivered that encodes the first depth levels
of the computation tree TR(s0); otherwise, the trace slice of the first computation
that is found to violate an assertion is delivered. When multiple assertions are
violated, analyze can be invoked iteratively.

5.3 The ABETS system

The assertion-based slicing methodology of Section 5.2 has been fully imple-
mented in a prototype tool we call ABETS (Assertion-BasEd Trace Slicer), which
is publicly available at http://safe-tools.dsic.upv.es/abets together with
some documentation and examples. The implementation comprises: (i) a front-
end consisting of a RESTful Web service written in Java, with an intuitive user
interface based on AJAX technology written in HTML5, Canvas, and Javascript;
and (ii) a back-end that implements the proposed trace analysis methodology in
Maude. The implementation of the backend consists of about 350 Maude func-
tion definitions (approximately 2700 lines of source code) that partially reuse the
slicing and exploration machinery developed in previous work [4,5,8], extending
it with the constraint-checking capabilities described in this paper.

To perform dynamic analysis with ABETS, the user must provide (i) the
Maude program to analyze together with an initial state, and (ii) the list of as-
sertions to be checked together with the module that defines the extra predicates

http://safe-tools.dsic.upv.es/abets
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that are used in the assertions. In order to non-deterministically search for asser-
tion violations, the tree expansion is carried out up to a given depth bound that
is measured in Maude steps. Whenever an assertion fails to be satisfied in the
computation tree, the user is given an automatically generated counterexample
trace slice that he/she can fully inspect, query, and slice further.

In ABETS, the trace slices can be easily navigated and all of the relevant infor-
mation of the rewrite steps involved (e.g., equation/rule applications, matching
substitutions, redex/contractum positions) is recorded and made available to
the user. Furthermore, by disregarding rules and equations that are not used
in the computed trace slice, ABETS can also generate a dynamic program slice
where only potentially faulty fragments of the code are kept. Our preliminary
experience has shown that the synergistic capabilities of ABETS can provide a
very powerful Swiss knife in error diagnosis and debugging. The system allows
assertion checking to be disabled when the functions/states they refer to are
no longer under consideration so that no overhead is incurred after program
analysis.

For demonstration purposes, let us analyze the BANK system of Example 2 to-
gether with an assertional specification ABANK that includes the system assertion
Θ of Example 4 and the functional assertion Φ of Example 6. Let us consider
the expansion of all Maude steps that originate from the initial state

s0 = < Alice | 20 | active > ; < Bob | 50 | active > ; < Charlie | 10 |

active > ; debit(Alice,30) ; transfer(Bob,Charlie,60)

This is achieved in ABETS by calling analyze(RBANK,ABANK, 1), where RBANK is
the rewrite theory specified by the BANK system module.

The assertion checking algorithm immediately discovers thatΘ is not satisfied
in the following Maude step M

s0
debit−→ updateStatus(< Alice | 20 - 30 | active >) ; < Bob | 50 | active

> ; < Charlie | 10 | active > ; transfer(Bob,Charlie,60)

−→+ < Alice | -10 | blocked > ; < Bob | 50 | active > ; < Charlie |

10 | active > ; transfer(Bob,Charlie,60)

since Alice’s nonpremium account has a negative balance. Here, the transition
−→+ represents the equational state simplification that follows the rewrite step
from s0 by using the debit rule.

Then, a system error symptom is automatically computed by the tool, which
unambiguously signals the anomalous subterm < Alice | -10 | blocked > of the
last state of M, and produces the associated term slice

l• = < Alice | -10 | blocked > ; •1 ; •2 ; •3

Finally, the algorithm automatically generates the backward trace slice of M
w.r.t. l•, that is,

< Alice | 20 | active > ; •1 ; •2 ; debit(Alice,30) ; •3 •→+

< Alice | -10 | blocked > ; •1 ; •2 ; •3
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×Trace information

State Label Trace Trace  Slice

1 'Start <  Alice  |  20  |  active  >  ;;  <  Bob  |  50  |  active  >  ;;  <  Charlie  |  10  |
  active  >  ;;  debit(Alice,30)  ;;  transfer(Bob,Charlie,60)

•

2 toBnf debit(Alice,30)  ;;  <  Alice  |  20  |  active  >  ;;  <  Bob  |  50  |  active  >  
;;  <  Charlie  |  10  |  active  >  ;;  transfer(Bob,Charlie,60)

•

3 fromBnf <  Bob  |  50  |  active  >  ;;  <  Charlie  |  10  |  active  >  ;;  transfer(Bob,
Charlie,60)  ;;  debit(Alice,30)  ;;  <  Alice  |  20  |  active  >

•

4 debit
<  Bob  |  50  |  active  >  ;;  <  Charlie  |  10  |  active  >  ;;  transfer(Bob,
Charlie,60)  ;;  updateAccountStatus(<  Alice  |    20  -  30    |  active  >
)

•  ;;  •  ;;  •  ;;  updateAccountStatus(<  •  |    50  -  60    |  active  >)

5 builtIn <  Bob  |  50  |  active  >  ;;  <  Charlie  |  10  |  active  >  ;;  transfer(Bob,
Charlie,60)  ;;  updateAccountStatus(<  Alice  |  -  10    |  active  >)

•  ;;  •  ;;  •  ;;  updateAccountStatus(<  •  |  -  10    |  active  >)

6 Label-EQ43 <  Bob  |  50  |  active  >  ;;  <  Charlie  |  10  |  active  >  ;;  transfer(Bob,
Charlie,60)  ;;  <  Alice  |  -  10    |  blocked  >

•  ;;  •  ;;  •  ;;  <  •  |  •  |  blocked  >

Total  size: 828 105

Reduction  Rate:  87%

Export trace to clipboard

Figure 3. Trace Slice after refuting the functional assertion Φ of Example 6.

which suggests an erroneous implementation of the debit rule. Indeed, debit
always authorizes withdrawals from a nonpremium account even when the in-
tended payout exceeds the account balance, which is in contrast with the state-
ment asserted by Θ.

Similarly, by re-executing the analysis algorithm on a mutation of the original
BANK module that fixes the buggy debit rule, we can also discover a violation
of the functional assertion Φ that detects an anomalous behaviour of function
updateStatus: in fact, updateStatus blocks every bank account with a negative
balance, while premium accounts should always be kept active. The delivered
trace slice is shown in Figure 3 toghether with the achieved reduction (87%).
Finally, by running the program slice option of ABETS, all program statements
related to the updateStatus function are automatically identified and isolated
in a program slice, since they can (potentially) cause the erroneous program
behavior.

6 Conclusions and Further Work

We have formalized a framework that integrates dynamic slicing and runtime as-
sertion checking to help diagnose programming errors in rewriting logic theories.
A key feature of our approach is that the assertions (or more precisely, their run-
time checks) are used to automatically synthesize advisable slicing criteria from
inferred error symptoms. Our methodology smoothly blends in with the general
framework for the analysis and exploration of rewriting logic computations that
we developed in previous research [8].

The techniques we have developed are adequately fast and usable when ap-
plied to programs of several hundred lines, yet there are certainly several ways
that our prototype implementation can be improved. For instance, one issue of
interest would be to properly extend the current linear representation of Maude
steps in ABETS, which intentionally obviates recording the traces for the recur-
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sive evaluation of conditions for the sake of efficiency. Other planned improve-
ments are to add more flexibility to the selection and processing of violated
assertions and to refine the slicing criterion C that we infer from the falsified
functional assertion I {ϕin} → O {ϕout}, by further generalizing C using ϕout

to reduce the number of variables of interest. Finally, we are also working on
extending the system to deal with (object-oriented) Full Maude specifications.
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