
PHYSICAL REVIEW B 88, 115118 (2013)

Low- Q whispering gallery modes in anisotropic metamaterial shells

Ana Dı́az-Rubio, Jorge Carbonell, Daniel Torrent, and José Sánchez-Dehesa*
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Anisotropic and inhomogeneous metamaterial shells are studied in order to exploit all their resonant mode
richness. These multilayer structures are based on a cylindrical distribution of radially dependent constitutive
parameters including an inner void cavity. Shell, cavity, and whispering gallery modes are characterized, and
special attention is paid to the latter ones. The whispering gallery modes are created at the boundary layers of
the shell with the background. Energy localization is produced with highly radiative characteristics when the
localization takes place at the external layer. These low-Q resonant states have frequencies that are independent
of the shell thickness. However, their quality factors can be controlled by the number of layers forming the
shell, which allows confining electromagnetic waves at the interface layers (internal or external), and make them
suitable for the harvesting of electromagnetic energy.
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I. INTRODUCTION

Textured surfaces are a means of guiding, absorbing, or
reflecting electromagnetic waves. Therefore, the so-called
surface or interface modes are a powerful alternative to control
the propagation, harvesting, or redirection of electromagnetic
waves.1–3 These phenomena can be selective in frequency or
broadband and give rise to a high number of applications in
virtually all spectral bands. To mention just a few examples
of recent studies, we can cite frequency selective surfaces for
microwaves,4,5 fishnet structures and metasurfaces at terahertz
frequencies,6,7 or surface plasmons in optics.8,9 One of the key
underlying drivers in this topic is the use of building blocks
based on geometrical arrangements of unitary constituents
at a subwavelength scale. At the same time, this research
context has also been boosted by the rise of metamaterials.
Metamaterials can be defined as artificial structures based
on inclusions or elements with subwavelength dimensions.
Using microstructured media allows a description in terms
of constitutive parameters, those that govern the behavior
of electromagnetic waves. With metamaterials it is possible
to tailor constitutive parameters (namely permittivity and
permeability) so as to achieve negative, null, or even extreme
values for them. These parameters can in turn be related to
other effective material magnitudes like the refractive index
or the impedance. Although the “material” concept usually
entails a bulk dimension, opposed to a two-dimensional system
or surface, both areas share a number of common problems
and possibilities.

Linked to the discussion above, this work analyzes the pres-
ence of interface or whispering gallery modes in anisotropic
metamaterial shells. In particular, we focus on cylindrical
shells based on radial photonic crystals (RPCs).10,11 In compar-
ison with the so called circular photonic crystals (CPCs),12,13

the RPCs are multilayered structures that are invariant under
radial translations and verify the Bloch’s theorem. This
last property is possible in cylindrical coordinates by using
anisotropic and radially dependent constitutive parameters,
which are feasible using the metamaterial concept.

We are interested here in finite size RPCs, or RPC
shells, consisting of a central cavity and a few layers of

RPCs. The resonant modes associated with these anisotropic
metamaterial shells allow designing devices for different types
of applications, like beam shaping shells or position and
frequency detectors.11,14 In addition to the Fabry-Perot-like
modes located in the RPC shell, cavity modes exist at the
central cavity whose features are equivalent to those predicted
for cylindrical cavities,15 but now the localization is due to the
band gap created by the RPC shell. Finally, whispering gallery
modes (WGMs) are the third type of resonant modes existing in
these structures and they are localized close to the interfaces
at the inner and outer boundaries of the RPC shell with the
background. This main purpose of this work is the study of
these resonances not previously described. As a salient feature,
we should cite that WGMs have resonant frequencies that are
independent of the shell thickness. We may also point out that
there are significant differences with respect to localization
when compared to Tamm states, characterized at the surface
of dielectric multilayers.16,17

The article is organized as follows. After this introduction,
Sec. II briefly reviews the main properties of the photonic
band structure of RPCs, for the sake of completeness. Then,
Sec. III presents a detailed discussion on how the properties of
a finite RPC can be obtained using the transfer matrix method
(TMM), an analytical model that is able to describe all the
resonant features associated with the metamaterial shells under
study. Section IV analyzes some characteristics of WGMs in
order to consider them as building units of devices for energy
harvesting. Finally, Sec. V summarizes the main findings of
this work.

II. RADIAL PHOTONIC CRYSTALS: PHOTONIC
BAND STRUCTURE

RPCs are a type of crystals (i.e., they accomplish the
Bloch theorem) that can be briefly described as periodic
structures with anisotropic and radially dependent constitutive
parameters.10 This definition equally applies to their acoustic
counterparts, the radial acoustic crystals (RACs), since there is
a formal equivalence between both problems.18 For a critical
comparison between RPC and RAC the reader is referred to
Refs. 10 and 18.
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Here we will focus on electromagnetic waves in cylindrical
structures and particularly considering TMz (Ez polarized)
modes. The obtained results can be nevertheless generalized
to other arrangements.

Let us consider a RPC in two dimensions (2D) made of
alternating layers of type a (thickness da) and of type b

(thickness db) whose constitutive parameters are the following:

μra (r) = μ̂ra

r
= 0.25d

r
, μrb(r) = μ̂rb

r
= 0.5d

r
, (1)

μθa (r) = μ̂θar = 2r

d
, μθb(r) = μ̂θbr = r

d
, (2)

εza (r) = ε̂za

r
= d

1.5r
, εzb(r) = ε̂zb

r
= d

r
, (3)

where r is the radial distance from the center of the cylindrical
shell and d is the period of the multilayered structure (d =
da + db). From these values the components of the refractive
index tensor are calculated as follows: the radial component
is nr = √

μθεz, while the angular component is nθ = √
μrεz.

Figure 1(a) schematically shows a truncated RPC made of
five periods, and Figs. 1(b)–1(c) depict the profiles of the
parameters described by Eqs. (1) to (3).

It has been proven10 that the photonic band structure can be
calculated as

cos(Kd) = cos(kaqda) cos(kbqdb)

− 1

2

(
μ̂θb

μ̂θa

kaq

kbq

+ μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda) sin(kbqdb),

(4)

where K represents the Bloch wave number corresponding to
the multilayered structure and ka and kb represent the k vectors
in layers a and b, respectively.

The solution for this equation using the parameters de-
scribed in Eqs. (1)–(3) is displayed in Fig. 2(a), where q

denotes the symmetry order of the modes in the corresponding
band. Note that each band contains modes with well-defined
symmetry. In addition, note that modes with coefficient q >

0 have a cutoff frequency higher than zero. Also, part of the
q = 1 band (with dipolar symmetry modes) is inserted within
the first band gap of mode q = 0 (with monopolar modes).

Let us stress that by changing the material parameters in
Eqs. (1)–(3) it is possible to perform a band gap engineering
and design photonic structures that fit our needs. For example,
in Fig. 2(a) we observe that part of the first band of the
modes with dipolar symmetry is in the band gap of the rest
of the modes. This implies that only dipolar modes will be
excited by external sources in the frequency region [0.38–0.55]
(in reduced units). This feature can be extremely useful for
designing photonic devices based on finite size RPCs. The
modeling of these interesting structures is described below.

III. METAMATERIAL SHELLS BASED ON 2D RPCS:
ANALYTICAL MODEL

Let us consider now the case of a finite RPC consisting of
N periods and a void central cavity of radius rint. Figure 1(a)
shows a scheme of a finite size RPC consisting of a five period
multilayer with an inner air cavity of radius equivalent to the
thickness of two periods (rint = 2d). The resulting anisotropic

FIG. 1. (Color online) (a) Schematic picture of a truncated radial
photonic crystal. The resulting metamaterial shell has an inner void
cavity of radius rint = 2d and five periods of alternating type-a and
type-b materials. (b) Profiles of the radial (μr ) and angular (μθ )
permeabilities as a function of the radial distance. (c) Profile of the
dielectric permittivity εz.

and inhomogeneous metamaterial shells are studied here by
means of the transfer matrix method19 (TMM), which is a
suitable procedure for describing their rich resonant behavior.

The TMz polarized field at an arbitrary point (r, θ ) in the
2D space can be expressed in cylindrical coordinates as

Ez (r,θ) =
∑

q

Eq (r) eiqθ . (5)

In homogeneous and isotropic media, electric fields can
be represented by a linear combination of Bessel and Hankel
functions:

Eq (r,θ ) = [C+
iqHq(kir) + C−

iqJq(kir)]eiqθ , (6)

where k2
i = ω2εiμi with i = 1,2. Materials 1 and 2 are

the materials inside the inner cavity and in the external
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FIG. 2. (Color online) (a) Photonic band structure for the radial photonic crystal described in Sec. II. (b) Calculated transmission coefficients
Tq for the five period metamaterial shell described in Fig. 1. (c) Calculated transmission coefficients Tq for a structure similar to Fig. 1 but
with inverted a and b layer order (abab. . . changes to baba. . .). The peaks in a given Tq curve represent resonant modes with q symmetry. The
cavity (C) and whispering gallery (WG) modes are marked with arrows. The unmarked peaks correspond to Fabry-Perot (FP) modes and are
mostly located within the shell.

background, respectively. Note that this expression allows us
to obtain the field produced by external sources located at any
position inside the cavity (r < rint).

In turn, electric fields inside the RPC shell (r > rint) can be
cast as10,11,14

Eq (r,θ ) = [(C+
q )lne

iklq (r ′−nd) + (C−
q )lne

−iklq (r ′−nd)]eiqθ , (7)

where

k2
lq = ε̂zl μ̂θlω

2 − q2 μ̂θl

μ̂rl

, (8)

r ′ = r − Ra , n = 1,2, . . . ,N , and l = a,b.
The electric fields in two consecutive layers are related

through the corresponding boundary conditions. Thus, for the

Ez polarized modes under study:

Ez (r,θ )|r=r+
int

= Ez (r,θ )|r=r−
int

, (9)

1

μ(r)

∂Ez (r,θ )

∂r

∣∣∣∣
r=r+

int

= 1

μ(r)

∂Ez (r,θ)

∂r

∣∣∣∣
r=r−

int

. (10)

These conditions are imposed at the interfaces of the unit
cell. Therefore, the matrix relating the complex amplitudes of
the plane waves in a b layer with those of the equivalent layer
of the next unit cell is(

(C+
q )bn−1

(C−
q )bn−1

)
=

(
A B

C D

)(
(C+

q )bn

(C−
q )bn

)
, (11)

where the transmission matrix ABCD elements are

A = e−ikbqdb

[
cos(kaqda) − 1

2
i

(
μ̂θb

μ̂θa

kaq

kbq

+ μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda)

]
, (12)

B = eikbqdb

[
−1

2
i

(
μ̂θb

μ̂θa

kaq

kbq

− μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda)

]
, (13)

C = e−ikbqdb

[
1

2
i

(
μ̂θb

μ̂θa

kaq

kbq

− μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda)

]
, (14)

D = eikbqdb

[
cos(kaqda) + 1

2
i

(
μ̂θb

μ̂θa

kaq

kbq

+ μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda)

]
. (15)
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For the case of a RPC shell made of N unit cells, the following relation applies:(
(C+

q )b0

(C−
q )b0

)
=

(
A B

C D

)N (
(C+

q )bN

(C−
q )bN

)
. (16)

The continuity conditions at the interface between the inner cavity (medium 1) and the RPC shell produce the
following transition matrix:(

C+
1q

C−
1q

)
= iπμ1

2

(
J ′

q(k1Ra) −Jq(k1Ra)
−H ′

q(k1Ra) Hq(k1Ra)

) (
1 1
Z1 −Z1

)(
(C+

q )b0

(C−
q )b0

)
, (17)

where

Z1 = i
μ1kbq

k1μ̂θbRa

.

The boundary conditions at the interface between the RPC shell and the external background (medium 2) give the second
transition matrix: (

(C+
q )bN

(C−
q )bN

)
= 1

2

(
1 1
1 −1

)(
Hq(k2Rb) Jq(k2Rb)

Z2H
′
q(k2Rb) Z2J

′
q(k2Rb)

) (
C+

2q

C−
2q

)
, (18)

with

Z2 = −i
k2μ̂θbRb

μ2kbq

.

Finally, the complex amplitudes of the E field in the inner cavity and in the external background are related by the overall
relation: (

C+
1q

C−
1q

)
=

(
M11 M12

M21 M22

)(
C+

2q

C−
2q

)
, (19)

M = iπμ1

4sin(Kd)

(
J ′

q(k1Ra) −Jq(k1Ra)
−H ′

q(k1Ra) Hq(k1Ra)

)(
AN BN

CN DN

)(
Hq(k2Rb) Jq(k2Rb)

Z2H
′
q(k2Rb) Z2J

′
q(k2Rb)

)
. (20)

The ABCD matrix elements are calculated by a method reported previously20 and can be written as

AN =
[

2 cos(Kd) +
(

μ̂θb

μ̂θa

kaq

kbq

− μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda) sin(kbqdb)

]
sin(NKd) − 2 sin[(N − 1)Kd], (21)

BN = −2i

[
cos(kaqda) sin(kbq

db) + μ̂θa

μ̂θb

kbq

kaq

sin(kaqda) cos(kbqdb)

]
sin(NKd), (22)

CN = −2Z1i

[
cos(kaqda) sin(kbq

db) + μ̂θb

μ̂θa

kaq

kbq

sin(kaqda) cos(kbqdb)

]
sin(NKd), (23)

DN = Z1

[
2 cos(Kd) −

(
μ̂θb

μ̂θa

kaq

kbq

− μ̂θa

μ̂θb

kbq

kaq

)
sin(kaqda) sin(kbqdb)

]
sin(NKd) − 2 sin[(N − 1)Kd], (24)

where cos (Kd) is the dispersion diagram described by Eq. (4).
The matrix M in Eq. (20) is used to determine the

transmittance (Tq) and the reflectance (Rq) of modes with
q symmetry from the RPC shell. Their expressions are

Tq = 1/M11, Rq = M21/M11. (25)

Let us recall that these coefficients always refer to the radial
propagation direction.

The quality factor (Q) of a given resonant mode can also
be obtained from the matrix element M11 (ω) and involves
the calculation of the complex frequencies ωR that cancel this
matrix element: M11 (ωR) = 0, where ωR = ω0 − iα. Then,
the Q factor can be calculated from the real and imaginary

parts of the resonance frequency as Q = ω0
2α

. In the rest of
the work, unless otherwise indicated, Q factors are calculated
following this procedure.

A. Application of the TMM to a practical case

The TMM has been applied to the finite RPC shell depicted
in Fig. 1(a). The profiles of the constitutive parameters are
shown in Figs. 1(b) and 1(c). Note that we employ the
same constitutive parameters that were employed in the RPC
studied in Sec. II for the sake of comparison. The values
of the constitutive parameters (in relative units) within the
shell always remain positive and roughly vary between 0.1
and 10.
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The transmission properties of the shell are depicted in
Figs. 2(b) and 2(c). The difference between both cases only
comes from the layer ordering. In Fig. 2(b), layer profiles
exactly follow the data in Fig. 1, whereas in Fig. 2(c) the order
between a and b layers is inverted. Thus, in Fig. 2(b), the inner
layer is of a type and outer layer is of b type, but in Fig. 2(c) it is
the opposite. The different curves represent the transmittance
coefficients Tq for the total transmitted electrical field (Et

z),
whose expression is

Et
z (r,θ ) =

∑
q

A0
qTqHq (k0r) eiqθ , (26)

where A0
q represent the amplitudes of the incident wave modes,

Tq give information about the interaction between EM waves
and the RPC shell, and Hq are the Hankel functions. Note that
a given Tq curve is specifically related to the allowed band
with the same q symmetry in the dispersion diagram shown
in Fig. 2(a). The peaks observed in a selected Tq spectrum
represent the resonant modes with q symmetry in the shell.
The different mode types are classified as follows.

1. Fabry-Perot-like modes

If the peaks in the coefficients Tq appear at frequencies
contained within the photonic bands of the corresponding
dispersion relation [see Fig. 2(a)], they are produced by a
Fabry-Perot (FP) interference phenomenon due to the shell
finite thickness. Figure 3(a) plots, as an example, the E-field
pattern of a FP mode with dipolar symmetry (q = 1). Note
that the field is mainly located inside the shell, i.e., within the
radius range rint < r < 5d. The FP-like resonances have been
widely studied in previous works. For a detailed discussion

FIG. 3. (Color online) Resonant modes found in the five period
RPC shell described in Fig. 1: (a) Fabry-Perot-like mode with
symmetry q = 1 and frequency 0.3101 (in reduced units), (b) cavity
mode with symmetry q = 2 and frequency 0.3157 [C2 in Fig. 2(b)],
(c) whispering gallery mode with symmetry q = 0 and frequency
0.4724 [WG0 in Fig. 2(b)], and (d) whispering gallery mode with
symmetry q = 3 and frequency 0.9442 [WG3 in Fig. 2(b)].

of their properties and their potential application the reader is
referred to previous references.10,11

2. Cavity modes

When the peaks in Tq appear within the band gap of the
photonic band with q symmetry, they represent modes that
are confined in the central void region. For example, Fig. 2(b)
shows that the C1 peak appearing in the profile of the q = 1
spectrum (dashed line) corresponds to a cavity mode with
dipolar symmetry. C1 has frequency 0.1971 which is below
the cutoff of the corresponding band in Fig. 2(a). In a similar
manner, peaks C2 and C3 with respective frequencies 0.3157
and 0.4156, are due to the presence of cavity modes with
quadrupolar (q = 2) and hexapolar symmetry (q = 3). Note
how the positions of these low frequency modes are the same
for the configuration studied in Fig. 2(c); the reason for this
is the lack of interaction with the WGMs, which appears at
higher frequencies.

Figure 3(b) displays as an example the E-field pattern
corresponding to the cavity mode with quadrupolar symmetry
(q = 2). Let us stress that cavity modes are strictly related to
the size of the inner cavity and, as it is shown in Fig. 3(b), they
are strongly localized inside the cavity. Their properties will
be further discussed in Sec. IV.

3. Whispering gallery modes

In addition to the resonant modes previously described,
we have observed additional features in the transmission
spectra that have been associated with WGMs. The shoulders
annotated in Fig. 2(b) as WG0, WG1, WG2, and WG3 are
produced by resonant modes characterized by having their E

field mainly localized in the last (external) layer of the shell, as
it is usual for WGMs described in the literature. In the case of
Fig. 2(c) the same WGM are localized in the most inner layer
of the shell at slightly shifted frequencies and with sharper
transmittance peaks. The frequencies of modes WG0, WG1,
WG2, and WG3 have been obtained independently using a
method based on finite elements21 and their values are 0.4724,
0.5607, 0.7667, and 0.9442 (in reduced units). These values
are in agreement with the frequencies at which the shoulders
appear in the corresponding Tq curves (with q = 0 to 3).

The WGMs are characterized by two main properties. On
the one hand, their frequencies are always within the band gap
of the photonic bands with the same symmetry. On the other
hand, they appear in a truncated RPC with a void cavity at
its center. In other words, the structures sustaining WGMs are
anisotropic shells having two boundaries with the background.
For the case under study here, the external and inner borders
are at rext = 7d and rint = 2d, respectively.

Figures 3(c) and 3(d) display, as two typical examples,
the E-field patterns of WGMs with symmetries q = 0 and
q = 3, respectively; WG0 and WG3 in Fig. 2(b). It is
shown that E fields are mainly localized at the shell outer
layers.

Figure 4(a) specifically shows the E-field profile, along
the diameter crossing the horizontal axis, for the mode WG0
with frequency 0.4724. A comparison with the profiles of the
components of the refractive index tensor, which are shown in
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FIG. 4. (Color online) (a) The E-field profile along a diameter
section of a WG mode located at the outer layer of the five period RPC
shell described in Fig. 1. The monopolar mode WG0 with frequency
0.4724 is depicted. Note how the field amplitude exponentially
decreases with the separation from the external boundary. The inset
shows the E-field pattern in 2D for comparison purposes. (b) Radial
dependence of the radial and angular components of the refractive
index tensor.

Fig. 4(b), indicates that localization takes place in the external
interface, where the last layer is of b type (with nr = 1). At
this point it is interesting to recall that the so called Tamm
states were observed at the interface between a multilayered
dielectric structure and the background.17 The Tamm states are
strongly localized at the last layers of the multilayers due to the
high contrast between the refractive index of the last layers and
the background. In contrast, our WGMs, these being a kind
of surface states with circular symmetry, are slightly localized
and, therefore, highly radiative.

It is possible to obtain WGMs localized in the inner layer
of the shell by simply inverting the sequence of alternating a-
and b-type layers. Figure 5(a) shows the case of a WGM with
monopolar symmetry (q = 0) that has been obtained using an
inner layer b type and an outer layer a type [this is an opposite
configuration as compared to Fig. 4(b)]. The inset shows the 2D
field pattern of this mode that resonates at 0.4575 (in reduced
units), a value very close to that of the WG0 mode localized in
the outer layer of the shell (0.4724). From Fig. 5(a), the high
concentration of field observed inside the cavity (gray area) is
due to leakage of the interface mode to the inner cavity. At the
resonance frequency of the interface WG mode, a multiple of
the free-space wavelength is close to a value commensurate
with the cavity diameter (φ = 2rint), i.e., φ ≈ 3λ/2. Three lobes

FIG. 5. (Color online) (a) The E-field profile along a diameter
section of a WG mode located at the inner layer of the five period
RPC shell with inverted sequence (a-type and b-type layers have
been exchanged with respect to Fig. 1). The monopolar WG0 mode
with frequency 0.4575 is depicted. Note the high concentration of the
field in the cavity due to the leaky nature of this mode. The insets
show the E-field pattern in 2D for comparison purposes. (b) Radial
dependence of the radial and angular components of the refractive
index tensor.

in the E-field curve appear in practice along the diameter of
the inner cavity. The radial profiles of the E field shown in
Figs. 4 and 5, in comparison with the corresponding radial
dependencies of components nr and nθ , allow us to conclude
that localization of these types of modes is strongly related to
regions with high nθ .

Figure 2(c) shows that the spectral peaks of WGMs
localized at the inner layer are narrower than their counterparts
localized at the external layer [see Fig. 2(b)]. This means that
the internal WGMs present a strong localization character in
comparison with the external WGMs.

It has been pointed out that the main feature of WGMs
localized at the external layers of RPC shells is that they are
highly radiative. In other words, they have very low Q factors,
a property of paramount interest in building devices for energy
harvesting. The Q factors of WGMs are specifically studied
in the next section in comparison with the Q factors of cavity
and FP resonances.

IV. ENERGY HARVESTING WITH WHISPERING
GALLERY MODES

Energy absorption and harvesting is a topic of great interest
where artificially structured materials have shown potential
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advantages.3,22–24 In this context, we consider here a specific
configuration of RPC shells that enhances the energy exchange
between their resonant WGMs with the background EM fields.
The concept of energy harvesting is therefore considered here
as the ability of a given structure of exchanging with and
trapping EM energy from the surrounding medium. For this
purpose, structures based on low-Q resonators are preferred
in opposition to high-Q resonators that have low coupling
efficiency of EM radiation to the resonator. In what follows we
describe a metamaterial shell having WGMs with extremely
low Q factors.

A metamaterial shell is designed here for operating at
frequencies around f = 3 GHz (i.e., for wavelengths around
λ = 100 cm). The shells under study have radial period
d = 2 mm (da = db = d/2), the central cavity has radius
rint = 0.5 mm (rint = d/4), and the constitutive parameters
of the alternating layers are

μra (r) = 9.6d

r
, μrb(r) = 7.2d

r
, (27)

μθa (r) = 24r

d
, μθb(r) = 12r

d
, (28)

εza (r) = 8.4d

r
, εzb(r) = 49d

r
. (29)

These parameters are selected to produce WG modes with
extremely low Q factors. The profiles for these parameters
together with those of the components of the refractive index
tensor are described in Figs. 6(a) to 6(c). The constitutive
parameters roughly vary between 1 and 80, a stronger variation
than those depicted in Fig. 1.

The practical realization of artificial structures with the
profiles shown in Figs. 1 and 6 is not an easy task and
it involves a designing procedure that is beyond the scope
of the present work. However, the reader is referred to
Ref. 11 where it was demonstrated how radial photonic shells
with moderates values of permittivity and permeability were
designed and fabricated using concentric layers of split ring
resonators (SRR). For the large values of permittivity and
permeability studied here the use of SRR might not be the
best approach. Instead, small inclusions (cubes or spheres)
of ferroelectric materials (to obtain high permittivity) together
with magnetic resonance effects in high permittivity dielectrics
(Mie resonances) could be a better solution.

For the sake of comparison, the Q factors of the FP-like
modes and cavity modes have also been calculated as a
function of the number N of double layers. Results have
been obtained using the TMM described in Sec. III and have
been compared with the ones calculated using commercial
software.21 Only radiation losses are considered in all the
calculations. The possible dissipative losses associated with
the materials have been neglected in this first approach.

Figures 7(a) and 7(b) show the results obtained for the res-
onance frequencies and Q factors, respectively, of the FP-like
modes. Modes with dipolar (q = 1), quadrupolar (q = 2), and
hexapolar (q = 3) symmetries are studied. The FP-like mode
for a given symmetry corresponds to the lowest frequency
mode within the pass band. Note the excellent agreement
between the values calculated with the TMM (dashed lines)
and the commercial software COMSOL (continuous lines).

FIG. 6. (Color online) Profiles of the constitutive parameters
defining an anisotropic metamaterial shell made of five periods of
alternating materials and having a central cavity with radius rint =
2d . (a) Radial and angular permeabilities μr and μθ , (b) permittivity
εz, and (c) radial and angular components of the refractive index nr

and nθ , respectively.

The main features of these modes are the slight frequency
variation as a function of the number of layers (upper panel)
and also the small variation of the Q factor (less than one order
of magnitude).

Figure 8 shows the results corresponding to the cavity
modes. Figure 8(a) shows that their frequencies remain con-
stant as a function of the number of layers N and are very high
in comparison with that of FP modes. High frequency values
are explained because of the small dimensions of the cavity.
For this type of mode, only TMM calculations are reported
since the commercial software, which is based on the finite
elements method, is not efficient in simulating large electrical
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FIG. 7. (Color online) Frequency variation (a) and quality factor
Q variation (b) as a function of the number N of periods for the
Fabry-Perot resonances located in the shell described in Fig. 6. The
radius of the cavity being rint = 0.5 mm. Results from a commercial
software (COMSOL) are compared with the transfer matrix method
(TMM).

size objects. Figure 8(b) shows that the corresponding Q

factors exponentially increase with N . This can be understood
as a consequence of the exponential decaying behavior of the
E field within the photonic band gap. A similar behavior was

FIG. 8. (Color online) Frequency variation (a) and quality factor
Q variation (b) as a function of the number N of periods for the
modes located in the inner void cavity of the shell described in Fig. 6.
The radius of the cavity being rint = 0.5 mm. Results are obtained
with the transfer matrix method (TMM).

FIG. 9. (Color online) Frequency variation (a) and quality factor
Q variation (b) as a function of the number N of periods for the outer
interface whispering gallery resonances located in the shell described
in Fig. 6. The radius of the cavity being rint = 0.5 mm. Results from
a commercial software (COMSOL) are compared with the transfer
matrix method (TMM).

observed for the cavity modes confined in RACs. The reader
is referred to a previous work20 for a detailed discussion of the
properties of cavity modes in anisotropic and inhomogeneous
acoustic shells.

Let us point out that the behavior of FP-like modes and
cavity modes is completely analogous to the corresponding
modes studied in the acoustic counterparts of these photonic
structures, the metamaterial shells based on RAC.20 The
energy harvesting carried out by EM or acoustic waves would
be more efficient with resonant modes with the lowest Q

factors. Then, with this goal in mind, cavity modes in a
metamaterial shell made of a small number of layers are
preferable. However, WGMs can be obtained with lower Q

factors as it is explained below.
Figure 9 reports the properties of WGMs localized at the

outer shell surface as a function of N . Figure 9(a) shows that
their frequencies have a negligible dependence with the shell
thickness. Their values for N = 2 (four layers) are 3.35 GHz
(WG1), 4.29 GHz (WG2), and 5.36 GHz (WG3). For the case
N = 1 (a double layer) no surface mode was obtained since the
band gap concept cannot apply to a single period shell. Again,
results obtained with our analytical TMM are well supported
by the numerical experiments using COMSOL.

A very remarkable property of these modes is that their
frequencies, as in the case of cavity modes, do not vary with
the shell thickness. This would seem counterintuitive since the
frequency of WGMs in cylindrical cavities made of isotropic
dielectric medium depends on the optical path determined
by the cavity perimeter; that is 
 = n × 2πR, where n is the
refractive index and R is the cavity radius. For the anisotropic
and inhomogeneous shell under consideration, Fig. 6(c) shows
that nr is constant within each layer of types a or b, their
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values alternate in consecutive layers between nra = 15 and
nrb = 25. Since the external layer (of b type) has a higher
angular refractive index nθ , compared to the background or
the closest shell layer (of a type) it may guide some energy
in the angular direction. Conditions exist for these modes to
be propagative within the external b layer, and this time again
resonant modes appear due to the finite size of the perimeter
of this external layer. The refractive index in this perimeter
varies asnθ = √

εzμr ∝ 1/r , which is an inverse function of
the radial distance [see Eqs. (27) to (29)]. Now, this refractive
index with inverse radial dependence makes that the “optical
path” (∼ nθ × 2πr = ct , with ct being a constant) of the outer
layer is independent of the size (or number of layers) of the
shell. This explains the constant resonant frequencies of the
whispering gallery modes and their independence with respect
to the number of layers.

Figure 9(b) indicates that the Q factors decrease with the
thickness of the shell, an interesting feature that can be useful
for energy harvesting. We may provide an intuitive explanation
for this observed feature. The decreasing values of Q when
the size of the shell increases are related to the occurrence of
WGMs in the band gaps of the multilayer shell. It is clear that
in the respective band gap propagation of the EM wave of the
WG mode in the radial direction and towards the center of
the structure is prohibited (WGMs only “travel” in the angular
direction). This is one of the requirements for the existence of
these modes. When we consider finite size shells, thicker mul-
tilayers that produce the exponential tails of the E field towards
the center will not reach the inner cavity and lose localization
in comparison with thinner shells. It is observed in Fig. 9 how
the Q factors converge to an apparently common value for an
increasing number of layers. This common value is necessarily

FIG. 10. (Color online) Frequency variation (a) and quality factor
Q variation (b) as a function of the number N of periods for the inner
interface whispering gallery resonances located in the shell described
in Fig. 6 when the layer order of a and b types is inverted. The radius of
the cavity being rint = 0.5 mm. Results from a commercial software
(COMSOL) are compared with the transfer matrix method (TMM).

the one corresponding to the surface mode weakly localized
at the interface between the background with the semi-infinite
structure. Note that mode WG1 has the lowest Q factor among
all the modes analyzed here. For the higher order WGMs, their
Q factors are 2 orders of magnitude lower than those calculated
for the FP-like modes with similar order. In comparison with
the Q factors obtained for cavity modes C1 and C2, WG1 has a
Q-factor comparable with that of C1 at N = 2, while WG2 has
a Q factor 2 orders of magnitude larger (at N = 2). However,
for increasing shell thickness WGMs strongly decrease their
Q factor up to values several orders of magnitude lower than
that of the cavity modes. It can be concluded that WGMs
associated with a thick enough metamaterial shell are the best
candidates to guarantee an efficient energy exchange with the
EM waves to/from the background.

FIG. 11. (Color online) E-field patterns of an external point
source illuminating a RPC shell and exciting a whispering gallery
mode, (a) an external whispering gallery mode at 4.277 GHz, (b)
simultaneous excitation of internal and external whispering gallery
modes at 4.303 GHz, and (c) internal whispering gallery mode at
4.323 GHz. Here the total number of layers of the shell is seven, with
inner and outer layers of the same a type.
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If the layer order is inverted (i.e., higher nθ value for the
inner interface layer), the previously observed WGMs are
transferred to that interface. The behavior of these modes
is described in Fig. 10 and is coherent with the previous
discussion. Again, the resonant frequencies of the WGM of the
inner interface are independent of the size of the shell. This
behavior is obvious for this configuration since the circular
dimension of the inner layer is kept constant when adding
external layers. Resonant frequencies are only slightly shifted
with respect to those of Fig. 9. In coherence also with the
previous discussion, the Q factors obtained increase with the
number of layers since the exponential tail is smaller at a larger
distance from the inner surface. In other words, the internal
WGMs will be increasingly isolated with respect to external
background and, therefore, the radiation losses will be smaller
(i.e., higher Q factors). However, the Q-factor variation with
the number of layers is not exponential as it was in the case of
cavity modes (see Fig. 8).

Finally, let us discuss the case of two degenerate WGMs
obtained for a single shell, one being located at the outer
boundary and the other at the inner boundary. This case is
achieved considering a shell with an odd number of layers
(seven layers equivalent to three periods and one additional
b-type layer); the total diameter being equal to φ = 15 mm.
Figure 11 reports how a point source located at a distance
rsource = 20 mm (≡10d) from the shell center illuminates the
shell for three slightly different frequencies. It is shown how
the WG2 mode at the outer layer is excited at 4.277 GHz,
while the WG2 mode at the inner layer is excited at
4.323 GHz. Moreover, Fig. 11(b) shows that both modes
are simultaneously excited at 4.303 GHz. The frequency
differences are much smaller than those depicted in Figs. 4
and 5 since the inner void cavity size is much (electrically)
smaller and there is a lower perturbation due to it. In the
case depicted in Fig. 11(c), the resonant mode is linked
to the inner interface of the shell with the cavity. In order
to complete this graphical information, the Q factors of
these two degenerate modes have been calculated showing
a non-negligible difference. For the external WGM shown in
Fig. 11(a) we obtained the value QWG2 ext = 503, whereas for
the internal WGM shown in Fig. 11(c) QWG2 int = 1824. This
difference is expected since the internal WGM is more isolated
from the external background and, consequently, is less
radiative.

This is a representative example of how the WGMs can
be used as a mechanism for improving the energy harvesting
from external EM waves and collecting it at the central active

area. Although it is not the purpose of this paper to design a
practical device that optimally gathers energy radiated in its
surroundings, one can note from Fig. 11 that electric field (and
hence energy) tends to concentrate in the interface layers rather
than close to the source position. We understand this fact is a
proof of the ability of the device to harvest EM energy.

In spite of the rigorous results previously discussed, a word
of caution should be added regarding the possible effects that
losses will play in the artificial structures with the required
radially dependent constitutive parameters (permittivity and
permeability). It has been pointed out that these structures will
be based on arrays of individual units with local resonances.
Therefore, the losses associated with resonance effects will
degrade the performance of the anisotropic shells based on
them. The performance will be deteriorated up to a quantity
that will depend of our ability to select the best (low loss)
materials and the designing procedure. Since our target here
is to produce WGM with low Q, the intrinsic losses should
not be a severe drawback and the radiation losses, which do
consider here, will be the dominant loss contribution.

V. CONCLUSION

We have analyzed the existence of low-Q whispering
gallery modes at the interface layers of anisotropic and
inhomogeneous metamaterial shells. Conditions for these
modes to exist are basically the existence of prohibited band
gaps in the dispersion diagram of the shell and interface layers
with high refractive index as compared to the background.
These modes present the particular feature of having resonant
frequencies independent of the shell thickness, a property
allowing adapting the quality factor of the resonant modes
in a very simple manner. At the same time, energy exchanges
with electromagnetic waves in the surrounding background are
favored, allowing the use of the anisotropic metamaterial shells
as a means of harvesting electromagnetic energy. Particularly,
broadband operation by the reported low-Q whispering gallery
modes can be obtained by changing the properties of the cavity
medium, like its radius and dielectric constant.
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