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Extraordinary absorption by a thin dielectric slab backed with a metasurface
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The absorption of electromagnetic waves by a thin dielectric slab backed by a metasurface has been
comprehensively studied and discussed at microwave frequencies. The metasurface consists of a metallic
plate decorated with a periodic distribution of coaxial- or annular-type cavities. Analytical expressions for
the absorbance have been obtained by using a mode-matching method. For P -polarized waves it is predicted
that a low-frequency peak of perfect absorption is possible by properly choosing the lossy component of the
permittivity of the dielectric slab, with the position of this peak being easily tunable by the cavity length. It is also
shown that non-Bravais lattices, containing several cavities in the unit cell, and the excitation of guided waves
by the periodic array of resonators are complementary absorption mechanisms in the studied structures.
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I. INTRODUCTION

At the beginning of the last century Rayleigh pointed out
that flat rigid surfaces with cylindrical holes present acoustic
resonances for well-defined hole lengths [1]. Rayleigh also
showed that for the resonant conditions the acoustic energy is
concentrated in the holes and predicted that a similar effect
should occur with electromagnetic (EM) waves. The existence
of localized waveguide resonances, equivalent to the acoustic
resonances described by Rayleigh, has been extensively
demonstrated in metallic gratings [2–4]. For example, in
one-dimensional (1D) gratings with deep rectangular cross
sections, surface-shape resonances localized in the channels
can be excited when the impinging light has an electric-field
component perpendicular to the groove direction [3,4].

Metallic gratings can also exhibit absorption anomalies [5]
indicative of surface plasmon polariton (SPP) excitations at
the air-metallic interface. The excitation of a SPP induces a
minimum in the specular reflectance spectra of P -polarized
EM waves whose spectral position, in a first-order approxima-
tion, only depends of the dielectric constant and the period of
the grating.

Both surface-shape resonances and SPPs have been com-
prehensively studied in metallic slabs with two-dimensional
(2D) perforations in order to understand the phenomenon
of extraordinary optical transmission (EOT) observed by
Ebbesen and coworkers in 1998 [6]. In particular, it was
shown that coaxial- or annular-type cavities present a su-
perenhancement of the transmission due to the transverse
electromagnetic (TEM) mode always present in this particular
type of cavity [7–11].

Recently, 2D metallic gratings have been proposed as
high-absorbing surfaces by embedding holes with lossy di-
electrics [12,13]. Moreover, the advent of artificial structures,
named metamaterials (MMs), with the ability to create
independent tailored electric and magnetic responses has
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boosted the investigation of novel physical phenomena with
the promise of many interesting applications [14,15]. It is
the microstructured arrangement of small-scale elements that
drives the interaction of EM waves with these composites,
thus providing true effective media with behaviors that can
be tailored almost without limitation. This research field has
reported, for example, the design and demonstration of ab-
sorbing metasurfaces with near-unity absorbance in GHz [16]
and THz [17,18] regimes. The designed structures, which
consisted of lossy MM subwavelength resonators periodically
distributed on top of a dielectric slab, provided absorptivity
close to 100% over a narrow frequency range.

This work presents the design and comprehensive analysis
of high-absorbing structures consisting of a thin slab of a lossy
dielectric on top of a metasurface. The metasurface is made of
annular-type cavities patterned on a metallic plate. The plate
is here considered as a perfect conductor and, therefore, the
present study is valid at microwave frequencies. As in the MM
approach, the subwavelength cavities provide the resonances,
giving a strong concentration of EM energy which here is
absorbed by the thin dielectric slab on top. Although annular-
cavity arrays have previously been studied with regards to
their transmission characteristics [7–10,19], no studies have
been performed exploring their use as building blocks for
absorption enhancement. The fundamental mode (TEM mode)
of the annular cavities has no cutoff frequency, a feature
that is here employed to obtain extraordinary absorption
at low frequencies. This is an advantage in comparison
with empty-cavity designs where resonances are limited by
the frequency cutoff determined by the cavity diameter.
In comparison with metamaterial absorbers based on the
repetition of metallic resonators [16], the absorption in our
structures takes place at the dielectric absorbing layer on top
on the metallic surface. This feature can be also considered
as an advantage because of its easy fabrication; that is, the
thin dielectric film is just deposited on top of the surface
whereas the metallic resonators require a complex design
together with very accurate fabrication. Also, the possibility of
generating tailored surface dispersion characteristics to favor
the coupling of the incident wave to surface waves is impor-
tant for the objective of further enhancing the absorptivity
[11,20].
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In this study, the mode-matching technique is employed to
rigorously analyze the interaction of a plane wave impinging
on a thin and lossy dielectric layer backed by the metallic
metasurface. Numerical simulations reveal the occurrence of
several absorption regimes that can be associated with different
features of the arrays. In particular, near-unity absorption can
be achieved at long wavelengths.

The paper is organized as follows: After this introduction,
Sec. II introduces the structures under study and describes the
model approach employed in their analysis. Particularly, the
mode-matching technique is briefly explained and applied to
derive the analytical formulas giving the frequency-dependent
absorbance A(ω). Full-wave simulations are also reported
giving support to the model developed here. Afterwards, in
Sec. III, we critically discuss the absorptive properties of
the structures at low frequencies; i.e., below the diffraction
limit. The different features of the absorptive peaks are
comprehensively analyzed as a function of the structure
parameters. Section IV studies other physical mechanisms of
energy absorption, including the use of several cavities in the
unit cell and the excitation of guided modes in the dielectric
slab. Finally, Sec. V summarizes the main findings of this work
and proposes some tasks for the future.

II. MODEL AND NUMERICAL SIMULATIONS

The structure under study is shown schematically in Fig. 1.
The EM waves propagating in air (region I) impinge on a
thin dielectric slab (region II) placed on top of a metallic
metasurface (region III) containing a 2D array of annular
cavities with length h and inner and outer radii ri and re,
respectively. The cavities are filled with a lossless dielectric
material with permittivity εh and are distributed in a square
lattice with period a. The dielectric slab with complex
dielectric constant ε̂d = εd (1 + iξ ) has thickness �, which will
be considered very small in comparison either with a as well
as with the wavelength of the impinging waves (i.e., � � a,λ).

This section is divided into two parts. In the first part we
develop an approximate model describing the low-frequency

FIG. 1. (Color online) Schematic of proposed structures. Region
I is the background medium (air in our case), region II is a dielectric
slab with thickness � and dielectric permittivity εd (1 + iξ ). Region III
is a perfectly conducting metal containing a square distribution of
annular cavities with lattice period a and length h filled with dielectric
material εh. The external and inner radii of the annular cavities are re

and ri , respectively.

absorption of the structure, which is the topic of interest here.
In the second part we report a kind of “numerical experiments”
that are based on full-wave simulations using finite elements.
The results from these simulations confirm the validity of the
approximations employed in the analytical model and support
the predictions here obtained.

A. Analytical model

We describe here the model giving the analytical expression
for the absorbance A(ω), which is obtained from the difference
between the outgoing and the incoming energy fluxes. Thus,
A(ω) = 1 − R(ω), where R(ω) is the reflectance of the full
structure, and where region III is here considered as a perfect
conducting metal.

It is assumed that the structure is illuminated (see Fig. 1)
by a plane wave with wave vector k0 = (ω/c)(sin θ cos φ x̂ +
cos θ sin φ ŷ + cos θ ẑ) (in spherical coordinates). The geom-
etry of the problem indicates that the EM fields in the
background and in the dielectric layer can be decomposed
into components tangential and perpendicular to the metallic
surface, which defines the xy plane at z = 0. Thus, the
electric and magnetic fields are given by E(r) = Ez ẑ + Et

and B(r) = Bz ẑ + Bt , respectively, and the wave vector can
be expressed as k0 = q0 ẑ + kt , such that k2

0 = q2
0 + |kt |2. The

light polarization σ is named S when Et⊥kt or P when Et ||kt .
The temporal dependence e−iωt will be implicitly assumed in
the rest of the paper for all fields.

The interaction of the EM waves with the 2D array of
subwavelength cavities will excite two kinds of resonant
modes: (1) modes localized inside the cavities and (2) surface
waves with tangential wave number kG = kt + G, where G
are the reciprocal lattice vectors

G = m1b1 + m2b2, (1)

where bi are the primitive vectors of the reciprocal lattice [21].
A square lattice is here comprehensively studied but results can
be equally applied to a hexagonal lattice.

The solution for Et and H t can be obtained as a linear
combination of these diffracted waves, which additionally
can be decomposed into two polarizations σ = S,P , with
S and P being the polarizations perpendicular and parallel,
respectively, to the wave vector kG, and whose unit vectors
are given by

ûGS = ẑ × kG

|kG| (2)

for the S polarization and

ûGP = kG

|kG| (3)

for the P polarization.
Therefore, the fields in region I (the air) are expressed as∣∣E0
t

〉 = A−
0σ0

e−iq0(z−�) |kt σ0〉 +
∑
G,σ

A+
Gσ eiqG(z−�) |kGσ 〉 , (4)

∣∣−ẑ × H0
t

〉 = −Y 0
0σ0

A−
0σ0

e−iq0(z−�) |kt σ0〉
+

∑
G,σ

Y 0
GσA+

Gσ eiqG(z−�) |kGσ 〉 , (5)
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where A−
0σ0

is the amplitude of the incident wave with
polarization σ0 and q2

G = (ω/c0)2 − |kG|2.
Using Dirac’s notation, the diffracted wave with wave

vector kG and polarization σ is denoted by the ket |kGσ 〉,
and their normalized expressions are

〈r|kGσ 〉 ≡ 1√



eikG·r ûGσ , (6)

where 
 is the area of the unit cell and they satisfy
〈kGσ |r〉 〈r|kGσ 〉 = 1.

The modal admittances YGσ for the two polarizations are

Y 0
GS = qG

kω

√
ε0

μ0
, (7)

and

Y 0
GP = kω

qG

√
ε0

μ0
, (8)

where ε0 and μ0 are, respectively, the dielectric permittivity
and magnetic permeability of air.

Similarly, the tangential components of the fields in region
II (the dielectric slab) are∣∣Ed

t

〉 =
∑
G,σ

(B+
Gσ eipG(z−�) + B−

Gσ e−ipG(z−�)) |kGσ 〉 , (9)

and ∣∣−ẑ × Hd
t

〉 =
∑
G,σ

Y d
Gσ (B+

Gσ eipG(z−�)

−B−
Gσ e−ipG(z−�)) |kGσ 〉 , (10)

with p2
G = k2

d − |kG|2 and kd = k0
√

εdμd .
The modal admittances for each polarization are now

Y d
GS = pG

kω

√
εd

μd

, (11)

and

Y d
GP = kω

pG

√
εd

μd

. (12)

Finally, for the fields in region III (the metal with the
cavity array) we employ a modal expansion of the electric
and magnetic fields inside the cavities. It is well known
that the resonant frequencies inside the annular cavity are
characterized by M , the azimuthal mode number (half the
number of nodes) around the circumference of the annulus, and
N , the longitudinal mode number. A rigorous calculation of the
modes inside a single cavity can be performed using Bessel
functions of the first kind [22]. For the present discussion,
we may write the resonant frequencies (ignoring end effects)
approximately as [8]

ω(M,N) = c

[(
2M

ri + re

)2

+
(

Nπ

h

)2
] 1

2

, (13)

which is obtained with the condition of a perfect conductor and
is a good approximation when ri is comparable in magnitude
to re.

In the present work our model considers the family of
modes with M = 0 in the modal expansion inside the cavities,

which is justified in the limit where the light wavelength is
much larger than the diameter of the cavities. These modes are
excited only with radiation incident off normal.

The fundamental mode |α〉 is the TEM mode of a coaxial
waveguide, which has no cutoff frequency, and the fields inside
the cavities are∣∣Eα

t

〉 = Cα(eikhz + 
αe−ikhz) |α〉 , (14)∣∣−ẑ × Hα
t

〉 = YαCα(eikhz − 
αe−ikhz) |α〉 , (15)

where the modal admittance is Yα = √
εh/μh and the reflec-

tion coefficient at the cavity bottom is 
α = −e−2ikhh. The
normalized TEM mode is

〈r|α〉 = − 1√
2π

eikG·Rα

√
ln(re/ri)

1

r
r̂. (16)

At the air-dielectric interface, located at z = �, the continu-
ity of the tangential components of the fields gives

A+
Gσ + A−

0σ0
δ0σ0 = B+

Gσ + B−
Gσ , (17)

Y 0
Gσ

(
A+

Gσ − A−
0σ0

δ0σ0

) = Y d
Gσ (B+

Gσ − B−
Gσ ). (18)

At z = 0, the metal-dielectric interface, the boundary
conditions impose the continuity of Et over the entire unit
cell and the continuity of H t over the annular cavity. Thus, at
the interface the field equations are∑
G,σ

(B+
Gσ e−ipG� + B−

Gσ eipG�) |kGσ 〉 = Cα(1 + 
α) |α〉 , (19)

∑
G,σ

Y d
Gσ (B+

Gσ e−ipG� − B−
Gσ eipG�) |kGσ 〉 = YαCα(1 − 
α) |α〉 .

(20)

Now, Eq. (19) is projected with the mode 〈kGσ | while Eq. (20)
is projected with cavity mode 〈α|, leading to

B+
Gσ e−ipG� + B−

Gσ eipG� = Cα(1 + 
α) 〈kGσ |α〉 , (21)∑
G,σ

Y d
Gσ (B+

Gσ e−ipG� − B−
Gσ eipG�) 〈α|kGσ 〉 = YαCα(1 − 
α).

(22)

The term 〈α|kGσ 〉 = 〈kGσ |α〉∗ represents the overlap inte-
grals of the diffracted waves in the dielectric layer with the
TEM mode inside the annular cavities. For S-polarized waves
the integral is canceled, 〈α|kGS〉 = 0, while for P -polarized
waves the integral takes the following form (see Appendix A):

〈kGP |α〉 = 〈α|kGP 〉∗ = −i

√
2πb√



eikG·Rα

√
ln(re/ri)

× J0(kGre) − J0(kGri)

kGre

. (23)

The unknown field coefficients in each region are finally
obtained by combining Eqs. (17), (18), (21), and (22).

The coefficients Cα inside the cavities are

Cα = − 4

M

Y 0
0 Y d

0

YH
0 Yα

〈α|ktP 〉 eip0�A−
0 , (24)
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with

YH
G = Y 0

GP (1 − e2ipG�) + Y d
GP (1 + e2ipG�), (25)

and

M = (1 − 
α) − (1 + 
α)χ, (26)

χ =
∑
G

H 2
GG

Y d
GP

Yα

Y 0
GP cos(pG�) − iY d

GP sin(pG�)

−iY 0
GP sin(pG�) + Y d

GP cos(pG�)
, (27)

with

H 2
GG = 〈α|kGP 〉 〈kGP |α〉 = |〈kGP |α〉|2. (28)

For the coefficients in the dielectric layer (region II) we get

B−
GP = 2

Y 0
GP

YH
G

A−
0 δG,0 + Y d

GP − Y 0
GP

YH
G

Cα(1 + 
α)

× 〈kGP |0〉 eipG�, (29)

B+
GP = Cα(1 + 
α) 〈kGP |0〉 eipG� − B−

GP e2ipG�. (30)

And the coefficients in the air (region I) are

A+
GP =

(
RdδG0 − 8

Y 0
0P Y d

0P

YH
0 Yα

Y d
GP

YH
G

(1 + 
α)

M

× eip0�eipG� 〈α|ktP 〉 〈kGP |α〉
)

A−
0 , (31)

where Rd is the reflection coefficient of the dielectric layer
without the metallic surface:

Rd = iY 0
0P sin(p0�) + Y d

0P cos(p0�)

iY 0
0P sin(p0�) − Y d

0P cos(p0�)
. (32)

Once the fields are determined in the three regions, the
reflectance of the system is calculated in terms of A+

G′P , which
is the amplitude of the reflected waves in the background.

Let us remark that the overlap integral 〈α|ktP 〉 appearing in
Eq. (31) becomes zero at normal incidence; i.e., 〈α|0P 〉 = 0
[see Eq. (16)]. As a consequence, the reflection coefficients
in the air reduce to the reflection coefficient of the dielectric
layer; A+

GP = RdδG,0, for any wave vector G.
In this work our interest is focused on frequencies below

the diffraction limit and, therefore, we consider that only
the fundamental mode G = 0 is excited. In other words, the
reflection coefficient is simply

R0(ω) = A+
0P /A−

0 (33)

and the absorbance in the dielectric slab is

A(ω) = 1 − |R0(ω)|2. (34)

Figure 2(a) shows a typical absorbance spectrum calculated
for incident EM waves with wave vector defined by the angles
φ = 0 and θ = π/4. The dielectric slab with thickness � =
0.3a has complex permittivity ε̂d = 2 + i0.05, and the metallic
metasurface consists of a square distribution of annular cavities
with length h = a and radii ri = 0.1a, re = 0.4a. The dotted
lines in this figure represent the absorptance calculated for a
dielectric layer without the annular cavities in the metal.

(a)

(b)

FIG. 2. (Color online) Absorbance spectrum A(ω) obtained for
the structure schematically described in Fig. 1. Results are obtained
with a P -polarized plane wave impinging along the direction φ = 0
and θ = π/4. The slab with thickness �/a = 0.3 is a lossy dielectric
with permittivity εd = 2 + i0.05. The metallic surface contains a
square distribution of annular cavities with radii ri/a = 0.1, re/a =
0.4, and length h/a = 1. The dashed curve corresponds to the
absorbance of the slab with a flat metal underneath, that shows the
same result at normal incidence (θ = 0). The insets depict the fields at
the peak positions. (a) Theoretical simulation. (b) HFSS simulation.

The results in Fig. 2(a) lead us to conclude that the
array of cavities is responsible for the absorptive peaks. In
brief, two kind of peaks are clearly distinguished. The peaks
C1 and C2 appear at frequencies corresponding to coaxial
cavity resonances; the insets show that C1 corresponds to the
fundamental TEM mode while C2 represents the (Fabry–Perot)
higher order TEM mode. Note that the lossy slab perfectly
absorbs the EM energy localized in the TEM mode C1. In
between, the low absorptive peak G1 corresponds to a hybrid
mode; a combination of standing waves localized in the cavity
with a propagating guided mode in the slab.

B. Numerical experiments

In order to support the results obtained from the analytical
model, full-wave simulations have been performed by using
a commercial software based on finite elements [23]. The
corresponding results are shown in Fig. 2(b) and demonstrate
that the absorptive profiles of the fundamental mode C1 and
its first higher mode C2 are equal to those obtained from the
model [see Fig. 2(a)].

However, it is observed that the absorptive profile of peak
G1, corresponding to the hybrid mode, is not well reproduced
since the model only takes into account the fundamental TEM
mode and its corresponding Fabry–Perot-like modes quantized
by the cavity length h. We should remark that G1 is above the
cutoff frequency of the grating modes due to the periodicity of
the lattice. The possible interaction of this type of mode with
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the evanescent modes in the coaxial cavity cannot be precisely
modeled with our method. This is obvious since our model only
considers the fundamental mode, the one with azimuthal mode
number M = 0, and its N longitudinal excitations inside the
coaxial cavities. Despite this slight disagreement, our model
gives a good quantitative prediction of the peak positions at
which the structure absorbs energy.

In the following sections we focus our analysis on the
behavior of the low-frequency peak of type C1, for which
the model perfectly reproduces the full-wave simulations.
Nevertheless, additional considerations will be given about
the guided modes of the slab in order to get a physical insight
into the origin of the G1 absorption peaks.

III. LOW-FREQUENCY ABSORPTION:
RESULTS AND DISCUSSION

This section comprehensively studies the low-frequency
absorptive peak C1 shown in Fig. 2. Note that this peak appears
below the diffraction limit, where only the fundamental mode
is excited in the metallic metasurface. It is also noticeable
that the peak appears at a wavelength λ1 ≈ 5a = 15�. These
features are employed below in order to obtain the reflection
coefficient R0(ω) and the absorptance A(ω) given by Eqs. (33)
and (34), respectively.

For a thin dielectric slab we can assume that p0� � 1, then
Rd ≈ −1 and it is easy to show from Eq. (31) that the reflection
coefficient can simplified to

R0 = −cos khh + i
(
H 2

00 + χ
)

sin khh

cos khh − iχ sin khh
, (35)

where H 2
00 = 〈α|ktP 〉 〈ktP |α〉.

The lattice sum term χ given in Eq. (27) is a frequency-
dependent complex quantity that can be expressed as χ (ω) =
χR + iχI . Therefore, the reflection coefficient can be given as

R0 = −cos khh + χI sin khh + i
(
H 2

00 − χR

)
sin khh

cos khh + χI sin khh − iχR sin khh
, (36)

and the absorbance of the system is

A(ω) = 1 − (cot khh + χI )2 + (
H 2

00 − χR

)2

(cot khh + χI )2 + χ2
R

. (37)

The behavior in frequency of χI and χR is obtained by
splitting the lattice sum in χ in the propagating (qG and pG

real) and evanescent contributions (qG and pG imaginary).
Since we are below the diffraction limit in both the dielectric
and the background, the only propagating mode is that with
G = 0. Thus,

χ (ω) = χ0 +
∑
G �=0

χG, (38)

where the term χ0 is obtained from Eq. (27) and is given by

χ0 = Y d
0P

Yα

Y 0
0P cos(p0�) − iY d

0P sin(p0�)

−iY 0
0P sin(p0�) + Y d

0P cos(p0�)
H 2

00

≈ kω√
k2
ω − |kt |2

√
ε0

εh

H 2
00; (39)

the last expression being obtained with the approximation
sin p0� ≈ 0. Note that χ0 is real since there are no losses
either in the background or in the cavities.

The terms χG for G �= 0 cannot be simplified with the same
approach since the lattice sum is infinite and the product pG�

grows linearly. Also, the presence of the complex permittivity
of the dielectric slab in the expressions makes it difficult to
split these terms into their real and imaginary parts. To do it,
we make a Taylor expansion of these terms around ξ = 0,

χG(ξ ) ≈ χG(ξ = 0) + ξ∂ξχG(ξ = 0). (40)

In this expansion, we know that χG(ξ = 0) is purely imaginary
and ∂ξχG(ξ = 0) is real (see Appendix B). Therefore,

χR(ω) ≈ χ0 + ξχ ′
G(ξ = 0), (41a)

χI (ω) ≈ −iχG(ξ = 0). (41b)

The frequency dependence of both χR(ω) and H00(ω) is very
smooth. Then it can be assumed that both are constant at low
frequencies. On the contrary, it can be seen that the frequency
dependence of χI is predominantly linear in kω with negative
slope; that is,

χI = −iχG(ξ = 0) ∼ −i
Y d

G

Yα

∼ −kω, (42)

since we are under the condition G �= 0 and pG is purely
imaginary.

The above considerations lead us to conclude that the
frequency dependence of the absorbance is

A(ω) = 1 − f 2(ω) + c2
1

f 2(ω) + c2
2

, (43)

where f (ω)2 = (cot khh + χI )2. A(ω) has a maximum as long
as f (ω)f ′(ω) = 0. But f ′(ω) is negative for the frequency
region of interest and, therefore, the only possibility of having
a maximum is f (ω) = 0. So the condition for having a peak
in the absorbance is

cot khh + χI (ω) = 0. (44)

In fact, this expression relates the peak position with the
cavity length h and the lattice sum χI , which contains only
the contribution of the evanescent modes. Therefore, it is
concluded that the position of the peak is mainly determined
by the interaction of the evanescent waves in the dielectric and
the fundamental mode of the annular cavities. Also, it must
be pointed out that the above condition depends on the layer’s
thickness �, but it is independent of ξ , the dissipative term of
the permittivity.

The amplitude of the absorbance has a frequency depen-
dence that can be obtained from Eq. (36). When this amplitude
fulfills the condition (44), the peak amplitude only depends
on the term H 2

00 − χR , which gives perfect absorption (unity
amplitude) when its value is zero. In other words, the condition
for having perfect absorption is

H 2
00 − χR = 0. (45)

This condition shows that perfect absorption depends on the
value for ξ through χR , but it is independent of h. Interestingly,
the condition for perfect absorption is independent of the
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FIG. 3. (Color online) (a) Absorbance spectra for three values of
cavity length h. (b) Frequency of the absorptive peak as a function
of h (black line). Results are obtained by using the incident direction
θ = π/4, φ = 0 and the following parameters of the structure: ri/a =
0.1, re/a = 0.4, �/a = 0.1, εd = 2 + i0.1, and εh = 1.

frequency at which it occurs, since it has been already
mentioned that the dependence in frequency of H00 and χR

is smooth.
Figure 3(a) depicts the behavior of the low-frequency peak

for three values of the cavity length h. Dashed, continuous,
and dotted lines represent the results for h/a = 0.3, 0.5, and
0.8, respectively. It is observed that the peak amplitude does
not depend on h, but its profile becomes sharper for lower
values of the frequency position. This behavior is strictly
related to the fact that TEM modes in longer cavity depths
have a weaker interaction with the dielectric slab. It is also
clear that the position of the peak strongly depends on the
length h. Moreover, this result indicates that the amplitude
remains constant when the coaxial length changes. Figure 3(b)
represents the condition (44) for having an absorption peak
with the black line, and the horizontal dotted lines mark
the coaxial lengths for which the absorption spectra are
represented in the top panel. A clear correspondence is noticed
between the crossing frequencies in Fig. 3(b) and the peak
positions in Fig. 3(a).

Variation in the absorption properties with the outer and
inner radius of the coaxial aperture is presented in Figs. 4 and 5.
Note that the dependence on re is also giving the dependence
with the lattice filling fraction f , which is f = π (re/a)2 for
the square lattice. The peak position is slightly connected
with the coaxial radii. In case of variations in re, the peak
position goes down in frequency when re increases; i.e., for
larger cavities the TEM mode becomes more localized and
decreases in frequency. On the other hand, when the inner radii
ri increases the peak position moves to higher frequencies
since the annular aperture becomes thinner. However, note

FIG. 4. (Color online) (a) Absorbance spectra A(ω) calculated
for three values of the external cavity radius re. (b) Absorbance
enhancement as a function of re. The structure dimensions are
ri/a = 0.1, h/a = 0.7, �/a = 0.1, the permittivity is εd = 2 + i0.1,
and the incidence angles are θ = π/4, φ = 0.

that the peak amplitude increases with the outer radii but is
independent of the inner radii.

Figure 6 shows how the absorption peaks changes in
shape with the losses in the dielectric ξ , comparing the
absorption spectrum for ξ = 0.025, 0.05, 0.1, for a structure

FIG. 5. (Color online) (a) Absorbance as a function of the annular
inner radius ri . The structure dimensions are re/a = 0.4, h/a = 0.7,
�/a = 0.1. The permittivity is εd = 2 + i0.1 and the incidence angles
are θ = π/4, φ = 0. (b) Absorbance enhancement in the active layer
as a function of ri .
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FIG. 6. (Color online) Absorbance in the dielectric slab with
thickness �/a = 0.1 for three values of ξ in its dielectric permittivity
εd = 2(1+ iξ ). The annular cavities on the metallic metasurface
have dimensions ri/a = 0.1, re/a = 0.4, and h/a = 0.7. Results are
obtained for the incidence angles θ = π/ 4 and φ = 0.

with ri/a = 0.1, re/a = 0.4, h/a = 0.7, �/a = 0.1, θ = π/4,
and φ = 0. Note that the peak position does not depend on
the dielectric losses in the slab. Note that perfect absorption
(unity absorbance) is obtained for ξ = 0.05 and not for the
larger value ξ = 0.1, indicating that ξ should be optimized for
a given structure in order to achieve perfect absorption.

Finally, Fig. 7 shows the absorbance for three thicknesses
of the dielectric slab. Notice that amplitude of the peak is
independent of the dielectric thickness, meaning that with the
proper design perfect absorption is obtained independently of
the thickness of the absorbing layer. However, also note that the
peak profile becomes broader for larger thickness, indicating
that absorption is proportional to the volume of the active layer.

FIG. 7. (Color online) Absorbance of a dielectric slab with per-
mittivity εd = 2 + i0.1 for three different thicknesses. The annular
cavities on the metallic surface have dimensions ri/a = 0.1, re/a =
0.4, h/a = 0.7. Continuous lines under the peaks represent the
absorbance without the metallic metasurface. Results are obtained
for the incident angles θ = π/ 4 and φ = 0.

IV. OTHER ABSORPTION MECHANISMS

We have learned from the previous section that the
mechanism acting at low frequencies is easily tunable to get
perfect absorption as a consequence of the interaction between
the metallic metasurface and the thin absorbing slab. In this
section two additional mechanisms of absorption by thin films
will be studied and, although it will be shown that they are less
efficient, they may offer more degrees of freedom to improve
the absorption by the thin film.

The first mechanism considers the possibility of using a
non-Bravais lattice; i.e., by considering more than one cavity
in the unit cell. The second mechanism will take into account
the excitation of guided modes in the slab by the metallic
grating underneath.

A. Non-Bravais lattices

Let us consider now the case in which more than one cavity
is associated with one point of a Bravais lattice. In other
words, we study here a periodic arrangement of cavities with
N annular cavities inside the unit cell of the square lattice. The
position of the α aperture in the unit cell is given by a vector Rα ,
with α = 1,2, . . . ,N . Under the monomode approximation we
have now a set of N coefficients Cα , one for each cavity,
then mode matching has to be applied at every aperture, and
Eqs. (21) and (22) become

B+
Gσ e−ipG� + B−

Gσ eipG� =
∑

β

Cβ(1 + 
β) 〈kGσ |β〉 , (46)

∑
G,σ

Y d
Gσ (B+

Gσ e−ipG� − B−
Gσ eipG�) |Gσ 〉 〈α|kGσ 〉

= YαCα(1 − 
α). (47)

By solving the system of equations defined by
Eqs. (17), (18), (46), and (47), we get

A+
GP =

(
R0δG,0 − 8eip0�eipG� Y 0

0P Y d
0P

YH
0

Y d
GP

YH
G

×
∑
αβ

1 + 
α

Yα

M−1
αβ 〈β|G0P 〉 〈GP |α〉

)
A−

0 , (48)

where the matrix elements Mαβ are defined as

Mαβ = (1 − 
α)δαβ − (1 + 
β)χαβ, (49)

and the interaction sums are given by

χαβ =
∑
G

H
αβ

GG

Y d
GP

Yα

Y 0
GP cos(pG�) − iY d

GP sin(pG�)

−iY 0
GP sin(pG�) + Y d

GP cos(pG�)
,

(50)

with

H
αβ

GG = 〈α|GP 〉 〈GP |β〉 . (51)

Figure 8 shows the absorbance spectra for a square lattice
containing four cavities per unit cell. All the four cavities have
the same inner and outer radii, given by ri/a = 0.1 and re/a =
0.2, respectively, but different depths, being h1/a = 0.35,
h2/a = 0.4, h3/a = 0.45, and h4/a = 0.5. The dielectric slab
with thickness �/a = 0.1 has a permittivity ε = 2 + i0.1. This

245123-7
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FIG. 8. (Color online) Absorbance of dielectric slab with thick-
ness �/a = 0.1 and permittivity εd = 2 + i0.1 on top of a metallic
metasurface containing four annular cavities in the units cell (see
the inset). The four cavities have the same cylindrical section
(ri1,2,3,4/a = 0.1, re1,2,3,4/d = 0.2), but their lengths are different:
h1/a = 0.35, h2/a = 0.4, h3/a = 0.45, and h4/a = 0.5. Results are
obtained for the incident angles φ = 0 and θ0 = π/ 4.

result is obtained for the incident angle is θ0 = π/4. It is clear
that there is no coupling between the cavity resonances, since
the response of the complete system can be understood as
the superposition of the responses of four different cells, each
one having one of the holes and respective depth h1, h2, h3,
or h4, which has been depicted in the figure by dotted lines.
This lack of interaction can be confirmed by the fact that
the interaction matrix χαβ has only significant values in the
diagonal elements when α = β. The individual resonances
of each cavity have very low coupling to neighboring cells
and, therefore, these supercells can be employed for designing
multifrequency absorbing layers.

B. Guided modes in slab

The excitation of guided modes of the dielectric layer
can also produce absorptive peaks. These modes propagate
along the lateral dimension of the slab and, consequently, their
optical paths can be much larger than that corresponding to
the vertical dimension. Remember that the excitation of these
modes from the far field is not possible since the parallel wave
number required for this excitation cannot be provided by a
free propagating wave. The role of the array of resonators
is precisely to provide this additional wave number by the
excitation of a set of diffracted waves.

Figure 9(a) shows the absorbance spectra for three values
of the permittivity: εd = 2(1 + i0.05) (continuous line), εd =
2(1 + i0.005) (dashed line), and εd = 2(1 + 0.15i) (dotted
line). Results are obtained for the incident direction defined
by the angles θ = π/4 and φ = 0, and the parameters of the
structure are reported in the caption. The absorptive peaks
denoted by G1, G2, and G3 are caused by the excitation of
hybrid modes that are guided along the dielectric slab. They

FIG. 9. (Color online) (a) Absorbance with a dielectric slab of
thickness �/a = 0.1 and permittivity εd = 2(1 + iξ ). Absorbance has
been calculated for three values of ξ . (b) Dispersion diagram of the
guided modes inside the slab. The annular cavities on the metallic
metasurface have dimensions ri/a = 0.1, re/a = 0.4, and h/a = 0.4.

Results are calculated for the incidence angles θ0 = π/ 4 and φ = 0.

are excited thanks to the transverse component kGi
of the

diffracted modes, as explained below.
The P -polarized guided modes of a dielectric slab with a

metallic grating underneath are obtained by setting Cα = 0
in Eq. (21) and inserting the condition obtained for B±

GP into
Eqs. (17) and (18). In addition, by assuming that there is no
incident field, the condition for the existence of a guided mode
can be written as

−iY 0
GP sin(pG�) + Y d

GP cos(pG�) = 0. (52)

FIG. 10. (Color online) Dependence of the absorbance for the
incident angle θ at fixed φ = 0. Results are obtained with a slab
with �/a = 0.1 and permittivity εd = 2(1 + i0.05). (b) Dispersion
diagram of the guided modes inside the slab. The annular cavities
on the metallic metasurface have dimensions ri/a = 0.1, re/a = 0.4,
and h/a = 0.4.
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This expression is contained in the denominator of the term
χ (ω) [see Eq. (36)]. When this condition is fulfilled a peak in
the absorbance spectrum will appear, as shown in Fig. 9(b),
where the dispersion diagram of the dielectric slab (black line)
and the transverse components of the diffracted modes (dotted
lines) are depicted. Notice that the crossing points between
both of them mark the peak positions. The reciprocal vectors
at which the peaks appear are G1 = (−1,0), G2 = (−1,1) =
(1, − 1), and G3 = (−2,0), using the labeling G = (m1,m2)
of Eq. (1).

The dependence on the incident direction is depicted in
Fig. 10 where it is clearly shown the angle dependence
predicted by condition (52). Notice that, on the contrary,
no dependence is found for the low-frequency peak, which
corresponds to the fundamental cavity mode.

V. SUMMARY

In summary, we have developed an analytical model for
studying the absorptive properties of structures consisting of
a very thin and lossy dielectric slab on top of a metasurface.
This model has allowed us to comprehensively analyze the
absorbance of P -polarized EM waves impinging a lossy
dielectric backed with a metasurface consisting of a metallic
plate with a periodic arrangement of coaxial or annular
cavities. An analytical expression for the absorbance has been
obtained under the assumption that only the fundamental mode
of cavity array is excited. The results obtained from this
expression have been corroborated by full-wave simulations
based on finite elements.

It has been shown that a perfect absorption (unity ab-
sorbance peak) can be obtained as a consequence of the
interaction of the dielectric slab with the excited fundamental
mode of the annular cavity. This narrow resonant peak
appears at wavelengths one order of magnitude larger than
the thickness of the dielectric slab and the conditions for its
frequency position and amplitude have been demonstrated. It
was found that its frequency position mainly depends on the
cavity length and that perfect absorption (unity amplitude)
is mainly determined by the absorptive properties of the
dielectric slab. Therefore, both properties can be tailored at
will by using our analytical expressions.

Also, two additional mechanisms for EM absorption by
these structures have been considered. The first mechanism
considers the possibility of creating supercells with more
than one cavity per unit cell, which is especially useful
to design multifrequency absorbers. The other mechanism
studied consists of the excitation of guided waves in the
dielectric layer, which also produces absorbance peaks but
much weaker than that featured at low frequencies.

Hopefully, the results reported here will stimulate ex-
periments confirming the predictions. Although the results
reported here are polarization sensitive and for oblique inci-
dence, the present analysis can be applied to other metasurfaces
containing different types of resonators and polarizations.
For a continuation of this work the goals are the design
of metasurfaces producing omnidirectional absorbance by
the dielectric film at any polarization and with broadband
properties.
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APPENDIX A: OVERLAP INTEGRALS

The application of boundary conditions by mode-matching
requires the calculation of the overlap integrals

〈kGσ |α〉 =
∫∫


c

〈kGσ |r〉 · 〈r|α〉 d


=
∫∫


c

〈r|kGσ 〉∗ · 〈r|α〉 d
, (A1)

where the surface integral is over the coaxial aperture. The
electric field inside the coaxial apertures corresponding to the
TEM mode is given by [24]

〈r|α〉 = ∇tψTEM, (A2)

where ψTEM is a solution of Laplace’s equation

∇2ψTEM = 0. (A3)

The calculation of the overlap integrals (A1) is better done if
the S and P modes above the plate are expressed as

〈r|kGP 〉 = 1√



−i

kG

∇t e
ikG·r , (A4)

and

〈s|kGS〉 = 1√



−i

kG

ẑ × ∇t e
ikG·r . (A5)

Then, for P -polarized waves, the overlap integral is

〈kGP |β〉 = −i

kG

√



∫∫

c

∇t e
ikG·r · ∇tψTEMd
, (A6)

which, by using Green’s first identity, can be expressed as

〈kGP |β〉 = i

kG

√



(∫∫

c

eikG·r∇2
t ψTEMd


−
∫

∂
c

eikG·r n̂ · ∇tψTEMdl

)
. (A7)

The first term of the above integral vanishes because of
∇2

t ψTEM = 0, and the second term can be easily obtained;
therefore, the expression for the overlap with P -polarized
waves is given by

〈kGP |α〉 = −i

√
2πb√



eikG·Rα

√
ln(b/a)

J0(kGb) − J0(kGa)

kGb
. (A8)

Similarly, for S-polarized waves, the overlap integral is
written as

〈kGS|α〉 = −i

kG

√



∫∫

c

( ẑ × ∇t e
ikG·r ) · ∇tψTEMd
. (A9)

Again, by applying Green’s first identity and using ∇2ψTEM =
0, we get

〈kGS|α〉 = −i

kG

√



∫
∂


ψTEM r̂ · ( ẑ × ∇t e
ikG·r )dl. (A10)
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However, the above integral cancels, since boundary con-
ditions for the TEM mode requires that ψTEM = 0 on the
aperture’s boundary, where the above integral is performed.
Thus, 〈kGS|α〉 = 0.

APPENDIX B: REAL AND IMAGINARY PARTS OF χ

The properties derived for the low-frequency absorption
peak analyzed in Appendix A requires the identification of the
real and imaginary parts of the lattice-sum term χ defined by
Eq. (27). This identification is not easy to do in general, due
to the complex form of this term in addition to the presence
of the complex dielectric constant of the slab. However, for
the current situation, some approximations can be made. The
lattice-sum term can be decomposed into the term for G = 0
and the sum for G �= 0:

χ = χ0 +
∑
G �=0

χG. (B1)

It is shown in the text that, under the thin-film approximation,
the term χ0 is a real quantity; thus, we only need to identify the
real and imaginary parts of the term χG. Given that the main
complexity appears because of the presence of the complex

dielectric constant of the slab, we will extract it from the
expressions by making a Taylor expansion of χG around the
loss factor ξ , which is assumed to be a small quantity, thus

χG(ξ ) ≈ χG(ξ = 0) + ξ∂ξχG(ξ = 0). (B2)

The first term of the expansion is found to be purely imaginary,
since it is given by

χG(ξ = 0) = H 2
GG

Y d
GP

Yα

Y 0
GP cos (pG�) − iY d

GP sin (pG�)

−iY 0
GP sin(pG�) + Y d

GP cos(pG�)
,

(B3)

and, below the diffraction limit, the propagation constants pG

when ξ = 0 are purely imaginary, and so are the impedance
terms Y 0

GP and Y d
GP . Then, it is easy to see that, in the above

equation, the term H 2
GG is real, while the fraction Y d

GP /Yα

is purely imaginary. The last term in the expression is real
because cos(pG�) and i sin(pGl) are also real and the i factor
in all the impedances cancel each other.

The second term in the expression has a more complex
form, since it is the derivative χG with respect to ξ for
ξ = 0 and, after some tedious but straightforward analysis, is
given by

χ ′
G(ξ = 0) =

∑
G �=0

H 2
GG

Y d
G

Yα

2�k2
dpG

(
Y d

G

2 − Y 0
G

2) + (
k2
G − p2

G

)[
2iY d

GY 0
G(1 − cos 2pG�) − (

Y d
G

2 + Y 0
G

2)
sin 2pG�

]
4p2

G

(
Y d

G cos pG� − iY 0
G sin pG�

)2 , (B4)

which is found to be real. Effectively, the term H 2
GG is real, while the following fraction is purely imaginary. Exploring the

numerator of the second term, it is easy to see that all the terms are purely imaginary: the first one is linear in pG, the second
one contains the factor 2i, and the third one is proportional to sin pG�. This term multiplied by the first fraction gives us a real
number. Finally, since the denominator is real, it is found that the full expression is real.
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[3] T. López-Rios, D. Mendoza, F. J. Garcı́a-Vidal, J. Sánchez-

Dehesa, and B. Pannetier, Phys. Rev. Lett. 81, 665
(1998).

[4] J. A. Porto, F. J. Garcı́a-Vidal, and J. B. Pendry, Phys. Rev. Lett.
83, 2845 (1999).

[5] R. W. Wood, Proc. R. Soc. London A 18, 269 (1902).
[6] T. Ebbesen, J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, Nature

(London) 391, 667 (1998).
[7] F. I. Baida and D. Van Labeke, Phys. Rev. B 67, 155314

(2003).
[8] M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R.

Lawrence, Phys. Rev. Lett. 94, 193902 (2005).
[9] V. Lomakin, S. Li, and E. Michielssen, Microwave Opt. Technol.

Lett. 49, 1554 (2007).
[10] A. Roberts, Opt. Express 18, 2528 (2010).
[11] F. Baida, A. Belkhir, O. Arar, E. Barakat, J. Dahdah,

C. Chemrouk, D. V. Labeke, C. Diebold, N. Perry, and M.-P.
Bernal, Micron 41, 742 (2010).

[12] J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran,
S. Fan, and M. L. Brongersma, Opt. Lett. 34, 686 (2009).

[13] E. Lansey, I. R. Hooper, J. N. Gollub, A. P. Hibbins, and D. T.
Crouse, Opt. Express 20, 24226 (2012).

[14] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and
Engineering Explorations (Wiley, Hoboken, New Jersey, 2006).

[15] R. Marqués, F. Martı́n, and M. Sorolla, Metamaterials with
Negative Parameters: Theory, Design and Microwave Appli-
cations, Vol. 183 (John Wiley & Sons, New York, 2008).

[16] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J.
Padilla, Phys. Rev. Lett. 100, 207402 (2008).

[17] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt,
and W. J. Padilla, Opt. Express 16, 7181 (2008).

[18] Y. Cheng, Y. Nie, and R. Gong, Opt. and Laser Technol. 48, 415
(2013).

[19] F. Baida and D. Van Labeke, Opt. Commun. 209, 17 (2002).
[20] M. I. Haftel, C. Schlockermann, and G. Blumberg, Phys. Rev.

B 74, 235405 (2006).
[21] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-

Saunders Int. Edition, 1976).
[22] R. E. Collin, Field Theory of Guide Waves, 2nd ed. (IEEE,

New York, 1991).
[23] H. F. S. S. (HFSS), Ansys, v.14 (2014).
[24] J. Jackson, Classical Electrodynamics (John Wiley & Sons,

New York, 1998).

245123-10

http://dx.doi.org/10.1080/14786440208636033
http://dx.doi.org/10.1080/14786440208636033
http://dx.doi.org/10.1080/14786440208636033
http://dx.doi.org/10.1080/14786440208636033
http://dx.doi.org/10.1103/PhysRevLett.80.5667
http://dx.doi.org/10.1103/PhysRevLett.80.5667
http://dx.doi.org/10.1103/PhysRevLett.80.5667
http://dx.doi.org/10.1103/PhysRevLett.80.5667
http://dx.doi.org/10.1103/PhysRevLett.81.665
http://dx.doi.org/10.1103/PhysRevLett.81.665
http://dx.doi.org/10.1103/PhysRevLett.81.665
http://dx.doi.org/10.1103/PhysRevLett.81.665
http://dx.doi.org/10.1103/PhysRevLett.83.2845
http://dx.doi.org/10.1103/PhysRevLett.83.2845
http://dx.doi.org/10.1103/PhysRevLett.83.2845
http://dx.doi.org/10.1103/PhysRevLett.83.2845
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1038/35570
http://dx.doi.org/10.1103/PhysRevB.67.155314
http://dx.doi.org/10.1103/PhysRevB.67.155314
http://dx.doi.org/10.1103/PhysRevB.67.155314
http://dx.doi.org/10.1103/PhysRevB.67.155314
http://dx.doi.org/10.1103/PhysRevLett.94.193902
http://dx.doi.org/10.1103/PhysRevLett.94.193902
http://dx.doi.org/10.1103/PhysRevLett.94.193902
http://dx.doi.org/10.1103/PhysRevLett.94.193902
http://dx.doi.org/10.1002/mop.22484
http://dx.doi.org/10.1002/mop.22484
http://dx.doi.org/10.1002/mop.22484
http://dx.doi.org/10.1002/mop.22484
http://dx.doi.org/10.1364/OE.18.002528
http://dx.doi.org/10.1364/OE.18.002528
http://dx.doi.org/10.1364/OE.18.002528
http://dx.doi.org/10.1364/OE.18.002528
http://dx.doi.org/10.1016/j.micron.2010.06.009
http://dx.doi.org/10.1016/j.micron.2010.06.009
http://dx.doi.org/10.1016/j.micron.2010.06.009
http://dx.doi.org/10.1016/j.micron.2010.06.009
http://dx.doi.org/10.1364/OL.34.000686
http://dx.doi.org/10.1364/OL.34.000686
http://dx.doi.org/10.1364/OL.34.000686
http://dx.doi.org/10.1364/OL.34.000686
http://dx.doi.org/10.1364/OE.20.024226
http://dx.doi.org/10.1364/OE.20.024226
http://dx.doi.org/10.1364/OE.20.024226
http://dx.doi.org/10.1364/OE.20.024226
http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1364/OE.16.007181
http://dx.doi.org/10.1364/OE.16.007181
http://dx.doi.org/10.1364/OE.16.007181
http://dx.doi.org/10.1364/OE.16.007181
http://dx.doi.org/10.1016/j.optlastec.2012.11.016
http://dx.doi.org/10.1016/j.optlastec.2012.11.016
http://dx.doi.org/10.1016/j.optlastec.2012.11.016
http://dx.doi.org/10.1016/j.optlastec.2012.11.016
http://dx.doi.org/10.1016/S0030-4018(02)01690-5
http://dx.doi.org/10.1016/S0030-4018(02)01690-5
http://dx.doi.org/10.1016/S0030-4018(02)01690-5
http://dx.doi.org/10.1016/S0030-4018(02)01690-5
http://dx.doi.org/10.1103/PhysRevB.74.235405
http://dx.doi.org/10.1103/PhysRevB.74.235405
http://dx.doi.org/10.1103/PhysRevB.74.235405
http://dx.doi.org/10.1103/PhysRevB.74.235405



