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Abstract 

Previous research indicated that high predictive performance in species distribution modelling 

can be obtained by combining both biotic and abiotic habitat variables. However, models developed 

for fish often only address physical habitat characteristics, thus omitting potentially important biotic 

factors. Therefore, we assessed the impact of biotic variables on fish habitat preferences in four 

selected stretches of the upper Cabriel River (E Spain).The occurrence of Squalius pyrenaicus and 

Luciobarbus guiraonis was related to environmental variables describing interspecific interactions 

(inferred by relationships among fish abundances) and channel hydro-morphological 

characteristics. Random Forests (RF) models were trained and then validated using independent 

datasets. In both training and validation phases, RF showed high performance. Water depth, 

channel width, fine substrate and water-surface gradient were selected as most important habitat 

variables for both fish. Results showed clear habitat overlapping between fish species and suggest 

that interspecific competition is not a strong factor in the study area. 

 

Keywords: Interspecific interactions, Random Forests, Squalius, Barbus, species distribution 

modelling, mesohabitat 

 

1. Introduction 

According to the IUCN (International Union for Conservation of Nature), 56% of Mediterranean 

freshwater species are threatened (Smith and Darwall, 2006) and, given the high degree of 

endemicity of freshwater biota, native fish should be the target of actions for biodiversity 

conservation (Corbacho and Sánchez, 2001; Doadrio, 2002). Consequently in the last decade, 

efforts to understand the link between habitat attributes and fish habitat use have increased, and 

currently habitat modelling for freshwater fish is considered an important field of research (Guay et 
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al., 2000; Lamouroux and Jowett, 2005; Olden et al., 2008; Strayer and Dudgeon, 2010; Mouton et 

al., 2011; Fukuda et al., 2012). 

This study focused on Squalius pyrenaicus (Southern Iberian Chub) and Luciobarbus guiraonis 

(Eastern Iberian barbel), two threatened fish species (Baillie et al., 2004) characteristic for 

Mediterranean rivers of Eastern Spain (Crivelli, 1996). These two species may act as an indicator 

for other Mediterranean fish since they face similar threats and knowledge gaps (Doadrio, 2001). 

Specifically, these fish populations have been declining due to habitat modification and water 

abstraction, as well as due to the introduction of alien species (e.g., Esox lucius, Hermoso et al., 

2010; Maceda-Veiga, 2012). Few studies have investigated the ecology of these fish (Crivelli, 

1996) and, to our knowledge, no habitat or fish distribution models are currently available for either 

S. pyrenaicus or L. guiraonis, like for most endemic fish species of the Iberian Peninsula 

(Grossman and De Sostoa, 1994; Magalhães et al., 2002; Martínez-Capel et al., 2009; Costa et al., 

2012). 

S. pyrenaicus is distributed in most of the large river basins of the Eastern and Southern Iberian 

Peninsula (Doadrio and Carmona, 2006). However, the species has become rare due to habitat loss 

and it was classified as Near Threatened (NT) in the IUCN red list (Baillie et al., 2004). Pires et al. 

(2000) investigated the ecology and life history strategies of S. pyrenaicus in some reaches of the 

middle Guadiana basin (Portugal), focusing on its growth rates and behavioural adaptations to 

summer drought. Kottelat and Freyhof (2007) described S. pyrenaicus as an ubiquitous species that 

inhabits small to medium-sized streams with a Mediterranean flow regime. Ferreira et al. (2007) 

found that S. pyrenaicus occurrence in the streams of central and Northern Portugal depends on the 

availability of coarse substrate and shading by overhanging trees.  

L. guiraonis is a native species of the middle and lower river courses of the Jucar River Basin 

District, dwelling also in lakes and reservoirs (Crivelli, 1996). In particular, its natural range is 

restricted to the region between the rivers Mijares and Serpis, but it has also been translocated in 

the upper part of the Guadiana river basin (Hermoso et al., 2011). The species is classified as a 

vulnerable species (Baillie et al., 2004) and local populations are heavily affected by habitat 

alteration and water abstraction. It is a large barbel (up to 50 cm in length) that migrates to 

upstream stretches during the spawning season (from April to June, Kottelat and Freyhof, 2007). 

When studying fish distribution, researchers assume that the associations of fish species and 

habitat characteristics arise from either biotic or abiotic variables or some combination of the two 

(Guisan and Thuiller, 2005). However, very few habitat models explicitly include biotic factors, 

which can be used to infer or provide clues about inter-specific interactions (Elith and Leathwick, 

2009). Indeed, habitat requirements for fish are often defined as abiotic features of the environment 
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that are necessary for the survival and persistence of individuals or populations (Rosenfield, 2003, 

Ahmadi-Nedushan et al. 2006). The habitat suitability index (HSI, Bovee, 1982), the most 

commonly used index of habitat quality, is an analytical tool used to represent preferences of 

different aquatic species for physical instream variables (e.g., velocity, depth, substrate, cover). 

This approach has been criticized because such models almost exclusively address physical habitat 

characteristics, thus omitting potentially important biotic factors (Armstrong et al., 2003; 

Rosenfeld, 2003; Teichert et al., 2010) and because the relationships fit poorly when transferred 

across different river morphologies (Armstrong et al., 2003).  

Wisz et al. (2013) reported that one solution to account for interspecific interactions is to use 

species distribution models in concert with biotic surrogate variables that reflect spatial turnover or 

gradients in the distribution of biotic interactions.  To model species distribution, Random Forests 

(RF, Breiman, 2001), a statistical method based on an automatic combination of decision trees, is 

currently considered a promising technique in ecology (Cutler et al., 2007; Franklin, 2010; Drew et 

al., 2011; Cheng et al., 2012). RF has been applied in freshwater fish studies (Buisson et al., 2010; 

Grenouillet et al., 2011; Markovic et al., 2012) and several authors have shown that, compared to 

other methodologies, RF often reach top performance in building predictive models of species 

distribution (Svetnik et al., 2003; Siroky, 2009; He et al., 2010; Mouton et al., 2011). Moreover, RF 

has been recently included in mesohabitat simulation tools, i.e., MesoHABSIM (Parasiewicz et al., 

2013; Vezza et al., 2014a) to model fish ecological response to hydro-morphological alterations. 

However, current applications at the mesohabitat scale (or mesoscale) focus on the evaluation of 

physical habitat for aquatic species and no studies are currently available to include both biotic and 

abiotic habitat variables in these analyses. 

To develop a reliable and ecologically relevant species distribution model, we used RF to predict 

fish distribution at the mesohabitat scale, based on both biotic and abiotic habitat variables. The 

aims of the study were: (i) to investigate which are the most important variables predicting the 

presence of S. pyrenaicus and L. Guiraonis, (ii) evaluate how interspecific interactions affect 

habitat use and (iii) validate the developed models using an independent data set to test its values 

for potential users. 

 

2. Methods 

2.1 Study area 

Data were collected on eight sampling sites of the Cabriel River (Fig. 1), which were selected 

based on their natural habitat conditions (i.e., absence of water abstractions, natural flow regime 

and river morphology) and the presence of age-structured populations of S. pyrenaicus and L. 
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guiraonis. The Cabriel River is part of the Júcar River Basin, which is one of the pilot basins for the 

implementation of the Water Framework Directive in Spain. 

catchment elevation ranges from 490 to 1790 m a.s.l. and 

study area has a typical Mediterranean climate 

resulting in low flows and high evapotranspir

Study sites for both model training and validation (named

V1, V2, V3 and V4 in downstream order, Fig

catchment (province of Cuenca, Spain)

watershed, the average riverbed slope is 

classification; Bossard et al., 2000) mainly 

study sites were selected as to differ in 

channel size and substrate composition), and flow duration curves

(V4), the low (Q95), mean (Q50) and high 

Salmonidae and cyprinidae are the predominant families. Besides 

Parachondrostomas arrigonis (Júcar nase

lozanoi (Iberian gudgeon) and Salmo trutta

course of the Cabriel River (CHJ, 2007)

 

Figure 1. Location of the training (Ti) and validation (V

(Júcar River basin, Spain). The main watercourses and the large reservoir of Contreras are also shown.

the Júcar River Basin, which is one of the pilot basins for the 

implementation of the Water Framework Directive in Spain. In total, the river is 220 km long, 

catchment elevation ranges from 490 to 1790 m a.s.l. and its drainage area covers 4750 km

has a typical Mediterranean climate with a mean annual precipitation of ca.

low flows and high evapotranspiration in summer and high flows in spring and autumn.

and validation (named, respectively, T1, T2, T3 and 

V1, V2, V3 and V4 in downstream order, Fig. 1) were all located in the upper part of the Cabriel 

province of Cuenca, Spain), upstream of the large Contreras Dam. In this part of the 

bed slope is 1.1% and land cover (from the Corine Land Cover 

mainly consists of  forested areas (86%) and crops (12%). The 

differ in both their morphological characteristics (mean gradient

), and flow duration curves, and, at the most downstream site 

and high (Q5) flow are, respectively, 0.94, 2.74 and 15.83 m

Salmonidae and cyprinidae are the predominant families. Besides S. pyrenaicus and L. Guiraonis

car nase), Pseudochondrostoma polylepis (Tagus nase

Salmo trutta (brown trout) are the species present in the up

). 

) and validation (Vi) study sites in the upper Cabriel catchment 

River basin, Spain). The main watercourses and the large reservoir of Contreras are also shown.

the Júcar River Basin, which is one of the pilot basins for the 

is 220 km long, the 

4750 km2. The 

of ca. 500 mm, 

and autumn. 

3 and T4 and 

re all located in the upper part of the Cabriel 

, upstream of the large Contreras Dam. In this part of the 

from the Corine Land Cover 

forested areas (86%) and crops (12%). The 

mean gradient, 

most downstream site 

15.83 m3s-1. 

L. Guiraonis, 

Tagus nase), Gobio 

are the species present in the upstream 

 

) study sites in the upper Cabriel catchment 

River basin, Spain). The main watercourses and the large reservoir of Contreras are also shown. 
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2.2 Habitat description and fish data 

Data were collected at the mesohabitat scale and the hydromorphological unit – HMU (e.g., 

pools, riffles, rapids) was considered the sampling unit for this study. HMUs often correspond in 

size and location to mesohabitats (Bain and Knight, 1996; Parasiewicz, 2007; Hauer et al., 2010) 

and can be used to capture the confounded effects of biotic and abiotic environmental variables, 

focusing on how aquatic species interact with the spatial arrangement of different habitat 

characteristics (Addicott et al., 1987; Kemp et al., 1999). 

Each site used for model training was at least 1 km long and was surveyed two to three times to 

record the distribution of HMUs and habitat variables. The total length of each sampling site was 

not constant, as the size of HMUs varied with flow (Costa et al., 2012). The four river stretches for 

model validation were shorter (ranging from 0.3 km to 0.6 km) and, due to the limited availability 

of access points to the river, V3 and V4 partially overlapped T3 and T4 respectively, but were 

surveyed at different moments in time. Specifically, habitat surveys and fish population assessment 

for model training were carried out between 2006 and 2009, whereas, data for model validation 

were collected between 2011 and 2012. Although a partial overlapping between training and 

validation sites occurred, this temporal distance and the variation in flow conditions between fish 

sampling campaigns ensured the independence of validation data from those used for model 

training. Surveys took place from June to October, i.e. after both species’ spawning period 

(Doadrio, 2001), and during low to medium flows (i.e. ranging from Q98 to Q40) to represent the 

habitat availability in the upper Cabriel River. 

Following previous research in Mediterranean rivers (Alcaraz-Hernández et al., 2011), five types 

of HMUs were considered: pool, glide, run, riffle and rapid. Pools were characterized by moderate 

to high water depth (> 0.5 m) generally associated with erosion phenomena, low flow velocity and 

a very low gradient. Glides were characterized by moderate to high water depth (> 0.5 m), low flow 

velocity and nearly symmetrical cross-sections. Riffles were characterised by the occurrence of 

surface ripples and moderate to high flow velocity (> 0.2 m/s) , whereas runs are similar to riffles 

but lack pronounced waves and ripples on the water surface. Finally, rapids were characterized by 

shallowness, a moderate to high gradient and abundant white-waters and macro-roughness 

elements. For each HMU, the following habitat variables were collected: longitudinal length, 

channel width, water-surface gradient, mean water depth, mean flow velocity, substrate 

composition and cover (Table 1). The first three variables, used to describe HMU size and 

longitudinal slope of the water surface, were measured through the CMII Hip Chain (CSP Forestry 

Ltd. Alford, Scotland), the laser distancemeter DISTO A5 (Leica Geosystems, Heerbrugg, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 
 

Switzerland), and the Haglöf HEC Electronic Clinometer (Haglöf Sweden AB, Långsele, Sweden), 

respectively. 

Mean water depth was calculated from point measurements uniformly distributed in four to eight 

cross-sections along the HMU, and each cross-section was entirely located in only one HMU type. 

The mean flow velocity of each HMU was calculated by dividing the value of the discharge during 

the survey (available at Pajaroncillo gauging station) by the mean HMU cross-section area. The 

substrate composition was assessed by eye and expressed as percentage of bedrock, coarse substrate 

(boulders and cobbles), fine substrate (gravel and sand), sludge (silt and clay) and submerged 

vegetation. To represent cover availability for fish, canopy shading (as the percentage of the overall 

HMU’s area), undercut banks (as the percentage of the HMU’s length) and the presence of large 

boulders and woody debris were included. Finally, both the reach mean width and gradient of each 

sampling site were included in the analysis as proxies of channel morphology to evaluate possible 

site-scale effects on fish distribution. 
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Table 1. Code, description, unit and range of the habitat variables included in RF models. Each fish species 

abundance was considered as a biotic habitat variable and was expressed by three classes: abs = absent,   

pres = present and abu = abundant. 

Variable code Description Unit Range 

Len Longitudinal length of the hydro-morphological unit  m 9 - 108 

Wid Mean channel width m 2.7 - 20.0 

Dmed Mean water depth m 0.29 – 3.52 

Vmed Mean flow velocity m/s 0.04 – 1.05 

Grad HMU gradient (longitudinal slope of the water surface) % 0.0 – 9.3 

RK Bedrock substrate % 0-100 

CS Coarse substrate (boulders and cobbles) % 0-100 

FS Fine substrate (gravel and sand) % 0-100 

SC Silt and clay substrate % 0-60 

SV Submerged vegetation % 0-90 

Sh Canopy shading  % 0-100 

UB Undercut banks % 0-100 

WD Woody debris - yes/no 

B Boulder cover - yes/no 

RWid Reach mean channel width m 6.5-11.9 

RGrad Reach mean gradient % 1.4-3.5 

ASP Abundance of Squalius pyrenaicus (Southern Iberian chub) - abs/pres/abu 

ALG Abundance of Luciobarbus guiraonis (Eastern Iberian barbel) - abs/pres/abu 

APA Abundance of Parachondrostomas arrigonis (Júcar nase) - abs/pres/abu 

APP Abundance of Pseudochondrostoma polylepis (Tagus nase) - abs/pres/abu 

AGL Abundance of Gobio lozanoi (Iberian gudgeon) - abs/pres/abu 

AST Abundance of Salmo trutta (brown trout) - abs/pres/abu 

 

Fish were counted in each HMU by snorkelling, as to observe habitat use during their diurnal 

routine. Two divers conducted the underwater counts in three independent passes from downstream 

to upstream (Baillie et al., 2004) throughout each HMU of each sampling site (Costa et al., 2012). 

Three snorkelling passes were considered enough to ensure a reasonably uniform probability of 

detection (Schill and Griffith, 1984), and, for each HMU, the sampling effort (expressed in minutes 

per unit area) and the number of counted fish was consistent among passes (coefficient of 

determination between two independent passes, R2 > 0.95). To ensure that each pass was 

independent, and not affected by previous passes, a time delay of about two hours was programmed 

between successive counts (sensu, Bain et al., 1985). The snorkelling technique was chosen for its 

effectiveness to assess fish population density at the mesoscale and to avoid any damage to the 

threatened target species. Moreover, we considered it the most appropriate methodology for this 
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study due to the morphological characteristics of the river (i.e. clear water, presence of pools and 

low channel width). However, underwater counts may fail to observe and classify fish in the 

shortest length class (Joyce and Hubert, 2003) and only fish > 5 cm for S. pyrenaicus and >10 cm 

for L. guiraonis were considered in the analysis. This allowed us to focus on adult fish and develop 

habitat models for 2+ or older individuals (García de Jalón et al., 1999; Pires et al., 2000). 

To produce species distribution models, which can be implemented in common mesohabitat 

simulation tools, the dependent variable was defined as a binary response (i.e., fish 

absence/presence) for both S. pyrenaicus and L. guiraonis. To investigate the influence of 

interspecific interactions, the abundance of each observed fish species was included as biotic 

independent variable (Table 1). Specifically, for each species we classified fish abundance in three 

classes (absent, present and abundant). The cutoff value (expressed in individuals/m2) for low and 

high abundance was determined as the inflection point of the envelope curve of the fish density 

histograms (Parasiewicz, 2007). 

Data from 240 HMUs were used for S. pyrenaicus model training, whereas an independent 

dataset of 48 HMUs (20% of the training data-set) was used for model validation. For L. guiraonis, 

due to the absence of adult specimens in T1 and V1 sampling sites, the data from these stretches 

were excluded from model development and only 110 and 22 HMUs were considered respectively 

for model training and validation. T1, showing the highest gradient and the narrowest and most 

constrained channel, is the most diverse and variable stretch based on flow conditions. Due to the 

exclusion of T1 from L. guiraonis model construction, the two databases mainly differed in terms 

of number of observations, minimum channel width and maximum gradient of riffles and rapids 

(Table 2). In terms of fish occurrence, the model prevalence for S. pyrenaicus was 0.54 in training 

and 0.38 in validation, whereas for L. guiraonis it was 0.64 and 0.59, respectively. 
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Table 2. Description of the five HMU types in the study area. Proportion of samples HMUs, range of mean 

water depth, mean flow velocity and channel width, dominant substrates and  proportional occurrence of fish 

are reported for each category. See Table 1 for substrate codes. 

Squalius pyrenaicus  

HMU  

(N. Tot = 240) 

% over 

sampled 

HMUs 

Water 

depth  

Flow 

velocity 

Channel 

width 

Dominant 

substrate 

 

Fish 

occurrence 

 

Units (%) (m) (m/s) (m) (-) (%) 

Pool  34 0.54-3.52 0.04-0.33 4.5-15.2 FS-SV 77 

Glide  4 0.50-1.73 0.08-0.28 4.4-14.7 FS-SV 72 

Riffle  45 0.29-2.38 0.18-0.84 3.2-20.0 CS-FS-SV 47 

Run  3 0.92-1.39 0.27-0.41 8.2-12.3 CS-FS  80 

Rapid  14 0.30-0.88 0.13-1.05 2.7-13.6 CS 9 

Luciobarbus guiraonis  

HMU  

(N. Tot = 110) 

% over 

sampled 

HMUs 

Water 

depth  

Flow 

velocity 

Channel 

width 

Dominant 

substrate 

Fish 

occurrence 

 

Units (%) (m) (m/s) (m) (-) (%) 

Pool  32 0.62-3.52 0.08-0.33 6.05-15.2 FS 86 

Glide  6 0.80-1.70 0.12-0.28 11.4-14.7 FS-SV 83 

Riffle  39 0.32-2.38 0.14-0.84 4.25-20.0 CS-FS-SV 54 

Run  4 0.92-1.39 0.27-0.41 9.3-12.3 CS-FS 40 

Rapid  19 0.30-0.75 0.21-1.05 4.7-13.0 CS 28 

 

2.3 Data analysis 

Since many sampling units were contiguous, we firstly measured and tested spatial 

autocorrelation by means of Moran’s I with associated z-values (R package “spdep”, Bivand, 

2012). For this analysis, the fish data collected in each HMU and the Euclidean distance between 

HMU centroids were used to calculate Moran’s I and z-values in each surveyed river reach (Elith 

and Leathwick, 2009; Planque et al., 2011). 

To find effective habitat suitability criteria, the relationship between habitat variables and fish 

presence was explored by Random Forests (Breiman, 2001; Cutler et al., 2007), as implemented in 

R (R Development Core Team 2009; Liaw and Wiener, 2002). RF is an ensemble learning 

technique based on the combination of a large set of decision trees (i.e., Classification and 

Regression Trees - CART, Breiman et al., 1984). The CART technique splits a learning sample 

using an algorithm known as binary recursive partitioning, by which the data set is divided into two 

parts by maximizing the homogeneity in the two child nodes. This splitting or partitioning starts 
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from the most important variable to the less important ones and it is applied to each of the new 

branches of the tree (Vezza et al., 2010). 

In RF, each tree of the forest is grown by selecting a random bootstrap subset Xi (where i = the 

index of the bootstrap iteration, ranging from 1 to the maximum number of trees t) of the original 

dataset X and a random set of predictive variables (Liaw and Wiener, 2002). This represents the 

main difference compared to standard decision trees, where each node is split using the best split 

among all predictive variables. Moreover, RF corrects many of the known issues in CART, such as 

over-fitting (Breiman, 2001), and provides very well-supported predictions with large numbers of 

independent variables (Cutler et al., 2007). As the response variable was categorical (fish 

presence/absence), we confined our attention to classification RF models. The algorithm for 

growing a RF of t classification trees performs as follows (for full details see Breiman, 2001): 

i) t bootstrap subsets Xi (the training dataset) are randomly drawn with replacement from 

the original dataset, each containing approximately two third of the elements of the 

original dataset X. The elements not included in the training dataset are referred to as out-

of-bag (OOB) data for that bootstrap sample. On average, each element of X is an OOB 

element in one-third of the t iterations. 

ii)  For each bootstrap sample Xi, an unpruned classification tree is grown. At each node m 

variables are randomly selected and the best split is chosen between them. 

iii)  The trees are fully grown and each tree is used to predict OOB observations. New 

predictions (for the OOB elements) are calculated by means of the majority vote of OOB 

predictions of the t generated trees. In particular, the predictions from all the trees are 

combined to predict an observation class (as well as a probabilistic prediction output) for 

that observation. Note that, as OOB observations are not used in the fitting of RF trees, 

the out-of-bag estimates are essentially cross-validated accuracy estimates. 

iv) Global RF accuracies and error rates (i.e. the OOB error, EOOB, and within-class errors, 

EClass(j)) are finally computed using OOB predictions. 

The EOOB is also used to choose an optimal value of t. In our analysis EOOB stabilization occurred 

between t = 1500 and t = 2500 replicates. However, a heuristic estimation of t taking into account 

for EOOB stabilization and variable interaction with a large set of independent variables is defined as 

[2*( t for EOOB stabilization) = 5000] (Evans and Cushman, 2009). The m parameter (indicating the 

number of variables permutated at each node) is defined as the square root of the total number of 

predictor variables included in each model, with a minimum of m = 2 (Breiman, 2001). 

To assess the importance of a specific predictor, in RF the values of each variable are randomly 

permuted for the OOB observations, and then the modified OOB data are passed down the tree to 
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get new predictions. The difference between the prediction accuracy before and after the 

permutation gives the importance of a variable for one tree, and the importance of the variable for 

the forest is computed as an average over all trees. However, the permutation importance embedded 

in the RF algorithm overestimates the variable importance of highly correlated variables. Thus, a 

conditional variable importance, proposed by Strobl et al. (2008), was used in this study to avoid 

bias towards correlated predictor variables. 

As model parsimony is important for future model applications (i.e., less variables to be 

surveyed), the most parsimonious model was identified by the Model Improvement Ratio (MIR, 

Murphy et al., 2010) technique. The improvement ratio was calculated as [In/Imax], where In is the 

importance of a given variable and Imax is the maximum model improvement score. Starting from 

MIR = 0, we then iterated through MIR thresholds (i.e. 0.02 increments), with all variables above 

the threshold retained for each model (Evans and Cushman, 2009). The models corresponding to 

different subsets were then compared and the model exhibiting the minimum EOOB and the lowest 

maximum EClass(j) was selected (Fig. 2). Lastly, to avoid collinearity effects on the model 

performance, the correlation among the selected variables was tested using a correlation matrix. For 

models including both numerical and categorical variables, an heterogeneous correlation matrix 

was computed using the polycor package in R (Fox, 2007). 

The performance of the predictive models was evaluated using five performance metrics, i.e., 

accuracy, sensitivity, specificity, Cohen’s kappa (k) area under Receiver Operating Characteristic 

(ROC) curve (AUC), and true skill statistic (TSS), which are commonly used in ecological 

modeling (Mouton et al., 2010). Accuracy represents the proportion of overall correctly classified 

observations, while sensitivity and specificity, respectively, refer to the proportion of actual 

positives and negatives correctly identified as such. The k coefficient, which takes into account the 

agreement occurring by chance, is a statistical measure of inter-rater agreement for categorical 

items. However, the chance percentage can provide misleading results as a low kappa (i.e. 0) could 

result for a model with good agreement if one category dominates the data (i.e., low or high 

prevalence, Bennett et al., 2013). To address this issue, AUC, measured from ROC plots, and TSS 

(Allouche et al., 2006) are used as performance metrics that are independent of prevalence (Mouton 

et al. 2010) and represents useful measures of how well a model is parameterized and calibrated. 

Furthermore, a confusion matrix, expressed as a bar chart, allowed visualization of model 

performance.  
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Figure 2. Habitat model for S. pyrenaicus
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3. Results 

Pools, riffles and rapids (occurrence = 34%, 45%, 14%, respectively) were the most common 

hydromorphological units (HMUs) in the upper Cabriel River, whereas glide and run (occurrence = 

4% and 3%, respectively) could be considered as rare. S. pyrenaicus occurred most frequently in 

pools, glides and runs, whilst it was less frequent in riffles and almost absent in rapids. L. guiraonis 

showed a similar distribution pattern, its frequency of occurrence decreasing as the flow velocity 

was increasing; most barbels were found in HMUs classified as pools, whereas their presence was 

the lowest in rapids (Table 2). Spatial dependency in fish distribution was tested by Moran’s I with 

associated z-values, that suggested a random spatial pattern (z-values <|1.96|) and showed no 

evidence of spatial autocorrelation.  

The models including only abiotic variables showed 76% and 84% accuracy for S. pyrenaicus 

and L. guiraonis, respectively, whereas Cohen’s kappa, AUC and TSS were respectively 0.52, 0.80 

and 0.54 for S. pyrenaicus, and 0.66, 0.85 and 0.68 for L. guiraonis (Fig. 3). Although these models 

performed well, considering biological interactions among species slightly increased the models 

performance. Specifically, the models for S. pyrenaicus and L. guiraonis reached 80% and 91% 

accuracy, Cohen’s Kappa values of 0.59 and 0.80, AUC values of 0.85 and 0.95, and TSS values of 

0.60 and 0.80, respectively. The model built using only biotic variables showed the lowest 

performance, i.e., 72% and 77% accuracy, 0.45 and 0.53 Cohen’s Kappa, 0.72 and 0.76 AUC, and 

0.44 and 0.55 TSS, for the S. pyrenaicus and L. guiraonis models, respectively (Fig. 3). 

 

 
 Figure 3. Random Forests model performance for (A) S. pyrenaicus and (B) L. guiraonis using (i) only 

abiotic, (ii) both biotic and abiotic, and (iii) only biotic habitat variables. Model accuracy (in terms of 

correctly classified observations), sensitivity, specificity, Cohen’s kappa (k), area under the ROC curve 

(AUC) and true skill statistic (TSS) are shown for each model. 
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According to the partial dependence plots (Fig. 4), the models developed using only abiotic 

variables provided similar sets of selected inputs for the two species, although variable were ranked 

differently. Specifically, mean water depth (Dmed), channel width (Wid) and the proportion of fine 

substrate (FS) were positively correlated with the presence of both fish species, whilst HMU 

gradient (Grad) was negatively related to the presence of both species. The probability of presence 

of S. pyrenaicus also increased with the proportion of submerged vegetation (SV) and decreased 

with the percentage of sludge (silt and clay, SC) (Fig. 4). 

 
Figure 4. Partial dependence plots of the habitat models for (A) S. pyrenaicus and (B) L. guiraonis. 

Partial plots represent the marginal effect of a single variable included in the RF model on the probability of 

fish presence, while averaging out the effect of all the other parameters (Cutler et al., 2007). Selected 

variables are reported in order of importance. 

 

In the models including both biotic and abiotic variables, the abundance of three cyprinid species 

was positively correlated to the probability of presence of both target fish species (Fig. 5). 

Specifically, the abundances of L. guiraonis, P. arrigonis and G. lozanoi were selected in the model 

for S. pyrenaicus, whereas the abundances of P. Arrigonis, S. pyrenaicus and G. lozanoi were 

selected in the model for L. guiraonis. However, when L. Guiraonis was abundant, the probability 

of presence of S. pyrenaicus slightly decreased. Mean water depth and the proportion of fine 

substrate were also selected as important abiotic variables in both fish models, whereas only HMU 

gradient was selected in the model for S. pyrenaicus. 
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Figure 5. Partial plots of variable marginal effects in the RF models for (A) S. pyrenaicus and (B) L. 

guiraonis, considering both biotic and abiotic habitat variables. Fish abundance was expressed by three 

classes: Abs = absent, Pres = present and Abu = abundant. Selected variables are reported in order or 

importance. 
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As for the model built using both biotic and abiotic habitat variables, the same fish abundances 

were selected in the model built using only biotic variables, i.e., P. Arrigonis, G. lozanoi and L. 

guiraonis for S. pyrenaicus, and P. Arrigonis, S. pyrenaicus and G. lozanoi for L.guiraonis (Fig. 6). 

 
Figure 6. Partial plots of variable marginal effects in the RF models for (A) S. pyrenaicus and (B) L. 

guiraonis, considering only biotic habitat variables. Fish abundance was expressed by three classes: Abs = 

absent, Pres = present and Abu = abundant. Selected variables are reported in order or importance. 

 

Due to the ecological relevance and the high model performance, model validation with an 

independent dataset was carried out only for the predictive models built by abiotic variables. For S. 

pyrenaicus, the model showed an accuracy of 75%, a Cohen’s kappa of 0.51 and a TSS of 0.55, 

although being slightly over-predictive (sensitivity = 0.93 and specificity = 0.62). The L. guiraonis 

model performance was even higher, achieving an accuracy of 81%, whereas Cohen’s kappa and 

TSS were equal to 0.60 (Fig. 6). Compared to model training, the area under ROC curve (AUC) 

decreased, showing a value of 0.75 for S.pyrenaicus model and 0.81 for L. guiraonis model. 
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Table 3: Validation of the habitat models for S. pyrenaicus and L. Guiraonis built using only abiotic 

variables. Model accuracy, specificity, sensitivity, Cohen’s kappa, area under ROC curve and true skill 

statistic are reported in the table, together with the prevalence, number of observations and proportion of the 

training data for each validation dataset.  

Model validation S. pyrenaicus L. guiraonis 
Accuracy 0.73 0.81 
Sensitivity 0.93 0.77 
Specificity 0.62 0.83 
Cohen's kappa 0.47 0.60 
Area under ROC curve 0.75 0.81 
True skill statistic 0.55 0.60 
Prevalence 0.38 0.59 
Number of obs. 48 22 
Proportion of the 
calibration dataset (%) 20 20 

 

4. Discussion 

This study focused on the prediction of S. pyrenaicus and L. guiraonis distribution in the upper 

Cabriel River (Eastern Spain), taking into account the relative importance of both biotic and abiotic 

habitat variables. In particular, we evaluated the role of interspecific interactions to shape fish 

distribution, which constitute a valuable contribution for modelling and evaluating habitat for fish. 

Random Forests (RF) was effective in predicting the probability of fish presence in response to 

habitat variables and the conditional variable importance (Strobl et al., 2008) provided a fair means 

of comparison that can help identify the truly relevant predictor variables. For the first time in 

species distribution modelling, the conditional variable importance was used together with the 

Model Improvement Ratio (MIR) technique (Murphy et al., 2010) and the procedure showed 

effectiveness in identifying a parsimonious set of not correlated variables, which minimize noise 

and improve model performance. Furthermore, the MIR procedure can be considered appropriate 

for parsimonious model construction as RF is noted to be robust to overfitting when the number of 

noise variables increases (Hastie et al., 2009). According to Freeman at al. (2012), we did not 

balance the species prevalence in model construction phases (e.g., re-sampling the data to have 

prevalence = 0.5), due to its negligible influence on RF results. All models showed high accuracy, 

sensitivity/specificity values and Cohen’s kappa statistics indicating reliable predictions with low 

cross-classification errors. Moreover, the area under ROC curve (AUC) and the true skill statistic 

(TSS), which can also be considered independent of prevalence (Vaughan and Ormerod, 2005; 

Maggini et al., 2006), suggested good to excellent model performance (Pearce and Ferrier, 2000; 

Allouche et al., 2006).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 
 

The presence of S. pyrenaicus and L. guiraonis in pools and glides, but also in moderate to fast 

water habitats, such as riffles (Table 2), is in accordance with the classification of both fish as 

eurytopic species (Matono et al., 2006; Capela, 2007). S. pyrenaicus had been previously defined as 

lithophilic (Doadrio, 2001), as riffles with abundant gravel are important spawning sites for the fish 

(Granado-Lorencio, 1996; Ilhéu et al., 1999; Doadrio, 2001). This spawning behaviour is in 

accordance with the one described for S. cephalus (European chub), which selects shallow running 

waters as spawning sites (Fredrich et al., 2003). In our study, the preference shown by both fish 

species for pools, glides and riffles may depend on the selected survey period (June-October), in 

which the main drivers of the species distribution may be related to daily feeding and resting 

activities rather than spawning (Doadrio, 2001). Considering the diel and seasonal variation of 

habitat requirements (sensu Davey et al., 2011), one can state that the protection and enhancement 

of habitat diversity seems to be the best strategy to favour the conservation of these endemic Iberian 

species (Ilhéu et al., 1999; Magalhães et al., 2002). 

Although the predictive models for the two target species were built using two different training 

datasets (Table 2), the selected biotic and abiotic inputs and their influence on the probability of 

presence were similar. This results may suggest that the fish distribution patterns are similar and the 

two species generally occupy similar habitats. Indeed, S. pyrenaicus and L. guiraonis were 

frequently observed in mixed species groups during the surveys. Therefore, the positive effect of 

cyprinid abundances on the probability of fish presence (Fig. 5 and 6) may not indicate positive 

interspecific interactions but only habitat overlapping. Only when L. Guiraonis was classified as 

abundant, the probability of presence of S. pyrenaicus slightly decreased, which can be indicative 

of possible competition between the two fish species in such a condition. The Iberian species of 

chub and barbel are considered generalist, mainly relying on invertebrates, detritus and plants in 

accordance to their relative availability (Granado-Lorencio, 1996; Valladolid and Przybylski, 1996; 

Carmona et al., 1999), although at the microhabitat scale, differences in the feeding habits can lead 

to the differential use of the water column (Grossman and De Sostoa, 1994). This resource 

partitioning can therefore explain the coexistence between species and the overlap in habitat use 

shown by the models (Martínez-Capel, 2000). Indeed, the analysis on the correlation between fish 

densities, and particularly the correlation between the two target species and other fish species (Fig. 

7), revealed that cyprinid densities were positively correlated (Spearman’s coefficient ranging from 

0.28 to 0.77), hence emphasizing the habitat overlapping and the limited role of interspecific 

competition. However, it is important to state that competition can limit population size without 

completely excluding species from habitats (e.g. competitors do coexist), and further analysis of 
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fish abundance may provide valuable additional information (Fukuda et al., 2012; Olaya-Marín et 

al., 2013).  

 

Figure 7. Spearman correlation coefficients among fish density values in the study area. Species codes 

are reported in Table 1. 

 

It is important to note that all modelling approaches designed to account for biotic interactions 

have important limitations in inferring causation from spatial data. If the distribution of one species 

is shown to be highly dependent on the distribution of another species it can be difficult to 

differentiate if this is due to a real biotic interaction between the two species or is better explained 

by one or more overlooked environmental factors not accounted for in the model (Wisz et al., 

2013). Building three different models, which account for (i) only abiotic (Fig. 4), (ii) both biotic 

and abiotic (Fig. 5), and (iii) only biotic variables (Fig. 6) can be seen a possible approach to gain 

insights on the role of the different drivers of species distribution. However, the proposed approach 

needs some prior knowledge on the ecology of the species under study to include the appropriate 

environmental predictors at the appropriate scale resolution, in order to avoid the risk of concluding 

that there is completion or mutualism when this is not the case (Wisz et al., 2013). 

Looking at the selected abiotic variables (Fig. 4), the positive effect of water depth and channel 

width on cyprinids occurrence has been pointed out in Iberian rivers (Godinho et al., 1997; 

Carmona et al., 1999; Pires et al., 2000). Particularly, studies carried out at the micro-scale showed 

that both Squalius and Barbus prefer deep-water habitats (Grossman and De Sostoa, 1994; 

Martínez-Capel et al., 2009). However, contrary to Ferreira et al. (2007), the proportion of fine 

substrate (which is almost absent in the upper Cabriel River) was shown to be an important variable 
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for S. pyrenaicus occurrence. The importance of submerged vegetation for fish has been 

demonstrated in a number of studies (Arlinghaus and Wolter, 2003; Oliva-Paterna et al., 2003; 

Santos et al., 2004; Gomes-Ferreira et al., 2005), and has been related to a combination of factors 

including physical stresses, food availability and predation risk (Ferreira et al., 2007). Clavero et al. 

(2004) also stressed its importance in well-conserved upper reaches of Iberian rivers as refuge for 

small-sized S. pyrenaicus. This fish can also respond negatively to pressure related to 

morphological alteration (CEMAGREF, 2008); and, according to our model, an increase of the 

proportion of silt and clay substrate may result in a decrease of S. pyrenaicus occurrence. 

The performance in validation (Table 3) demonstrated the great efficacy and the ecological 

relevance of the selected abiotic variables in predicting fish distribution at the mesoscale, and this 

result is coherent with the previous ecological knowledge on habitat selection by Mediterranean 

cyprinids (Granado-Lorencio, 1996). It is important to highlight here that the use of independent 

data for validation is a not common procedure, often omitted in species distribution models (Elith 

and Leathwick, 2009). Current practice usually involves testing predictive performance using data 

resampling (e.g., split-sample or cross-validation procedures), and more experimental verification 

of modelled fish-habitat relationships is needed to provide valuable insights on model effectiveness 

and transferability (Bennett et al., 2013). Indeed, model generality should be tested on a spatially 

independent data-set since the use of accuracy estimates based on cross-validation procedures tend 

to differ (Edwards Jr et al., 2006). However, collecting new data is costly and needs to be 

optimized. Some work has attempted to identify the minimum sample requirements for deriving 

robust predictions at minimal costs, and have shown that different modelling methods might require 

different minimum sampling size (Stockwell and Peterson, 2002). Following Freeman et al. (2012) 

and Stockwell & Peterson (2002), we assumed that, for RF, 20% of the training data-set and more 

than 20 observations per species were suitable for model validation. Moreover, improving model 

parsimony was useful to identify the lowest number of variable to be surveyed, and this approach 

will help in the case of future model applications. 

The mesoscale resolution and the potential of RF in considering categorical and continuous 

variables allowed us to gain an insight into the influence of both biotic and abiotic variables on fish 

habitat use and to test if fish habitat selection was mainly driven (or not) by instream physical 

characteristics. The presented approach substantially differs from the traditional, more common 

micro-scale analysis, which is less flexible in accounting for multiple species and biotic interactions 

(Parasiewicz et al. 2013). This study represents a step towards including interspecific interactions in 

mesohabitat simulation tools (e.g., MesoHABSIM, Parasiewicz, 2007, MesoCaSiMiR, Eisner et al., 

2005) in order to clarify the role of biotic interactions more rigorously across different spatial scales 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 
 

(from HMU scale, to river segments, to entire catchment). As reported in Hirzel and Guisan (2002), 

collecting fine-grained observational data across large spatial extents, stratified to represent 

variation in environmental gradients, can be useful to better investigate the effect of biotic 

interactions on species distribution. Such cross-scale analyses could be performed for freshwater 

fish using mesoscale approaches by building regional fish distribution models that describe how 

biotic interactions influence species assemblages and the processes that shape them (Araújo and 

Rozenfeld, 2014). Regional habitat models built at the mesohabitat scale have been already 

proposed in Vezza et al. (2014a,b). Following the proposed modelling procedure, the incorporation 

of biotic variables as predictors of fish distribution could also be considered in future studies using 

habitat simulation models to design environmental flows and river restoration actions to allow a 

better understanding of complex impact sources on the habitat use by fish (Boavida et al., 2012). 

Nevertheless, the proposed modeling procedure has the limitation of ignoring the importance of 

population dynamics which can generate time lags in the relationship between environmental 

conditions and species' abundances. Looking at the results, our findings may represent the 

“ecological snapshot” of the upper Cabriel River and more studies would be needed to clarify the 

structure of freshwater fish assemblages in the Mediterranean area. The Upper Cabriel River 

constitutes a natural (unimpacted) study area to develop reference habitat models, which can be 

useful for the management of local populations. A more regional approach would be needed to 

validate the obtained results across different catchments in the Jucar River Basin District to gain 

more insight on habitat requirements of the considered fish species. However, samples from 

different rivers in nearly natural conditions are difficult to collect given the high degree of hydro-

morphological alteration of Mediterranean rivers (Belmar et al., 2013; Feio et al., 2013) and the 

sensitive state of the fish (Crivelli, 1996; Baillie et al., 2004). 

Apart from their ecological relevance, the obtained predictive models are based on variables 

which can be objectively measured and can be very useful to support habitat simulation tools. RF 

can be seen as a promising tool for the ecological management of Mediterranean rivers and 

predictive models can be implemented in the context of hydraulic-habitat simulation systems 

(Vezza et al., 2014b). Species distribution models should include the effects of interspecific 

interactions (Elith and Leathwick, 2009) and many conservation actions could benefit from 

modelling approaches that include both abiotic and biotic habitat variables (Guisan and Thuiller, 

2005). Perspectives for refining predictions of fish distribution by accounting for biotic interactions 

remain in the early stages of development (Wisz et al., 2013). This approach is considered as an 

interesting line of research and further studies in Mediterranean rivers have been already planned 

for the near future. 
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