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Summary

The long-lasting trend in the field of computation of stress and resource distri-
bution has found its way into computer networks via the concept of peer-to-peer
(P2P) connectivity. P2P is a symmetrical model, where each network node is
enabled a comparable range of capacities and resources. It stands in a stark
contrast to the classical, strongly asymmetrical client-server approach. P2P, origi-
nally considered only a complimentary, server-side structure to the straightforward
client-server model, has been shown to have the substantial potential on its own,
with multiple, widely known benefits: good fault tolerance and recovery, satisfac-
tory scalability and intrinsic load distribution. However, contrary to client-server,
P2P networks require sophisticated solutions on all levels, ranging from network
organization, to resource location and managing.

In this thesis we address one of the key issues of P2P networks: performing ef-
ficient resource searches of semantic nature under realistic, dynamic conditions.
There have been numerous solutions to this matter, with evolutionary, stigmergy-
based, and simple computational foci, but few attempt to resolve the full range of
challenges this problem entails. To name a few: real-life P2P networks are rarely
static, nodes disconnect, reconnect and change their content. In addition, a trivial
incorporation of semantic searches into well-known algorithms causes significant
decrease in search efficiency.

In our research we build a solution incrementally, starting with the classic Ant
Colony System (ACS ) within the Ant Colony Optimization metaheuristic (ACO).
ACO is an algorithmic framework used for solving combinatorial optimization
problems that fits contractually the problem very well, albeit not providing an
immediate solution to any of the aforementioned problems.

First, we propose an efficient ACS variant in structured (hypercube structured)
P2P networks, by enabling a path-post processing algorithm, which called Tabu
Route Optimization (TRO). Next, we proceed to resolve the issue of network dy-
namism with an ACO-compatible information diffusion approach. Consequently,
we attempt to incorporate the semantic component of the searches. This initial ap-
proximation to the problem was achieved by allowing ACS to differentiate between
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search types with the pheromone-per-concept idea. We called the outcome of this
merger Routing Concept ACS (RC-ACS ). RC-ACS is a robust, static multiphe-
romone implementation of ACS. However, we were able to conclude from it that
the pheromone-per-concept approach offers only limited scalability and cannot be
considered a global solution.

Thus, further progress was made in this respect when we introduced to RC-ACS
our novel idea: dynamic pheromone creation, which replaces the static one-to-one
assignment. We called the resulting algorithm Angry Ant Framework (AAF ). In
AAF new pheromone levels are created as needed and during the search, rather
than prior to it. The final step was to enable AAF, not only to create pheromone
levels, but to reassign them to optimize the pheromone usage. The resulting
algorithm is called EntropicAAF and it has been evaluated as one of the top-
performing algorithms for P2P semantic searches under all conditions.
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Resumen

La popular tendencia de distribución de carga y recursos en el ámbito de la com-
putación se ha transmitido a las redes computacionales a través del concepto de
la conectividad peer-to-peer (P2P). P2P es un modelo simétrico, en el cual a
cada nodo de la red se le otorga un rango comparable de capacidades y recur-
sos. Se trata de un fuerte contraste con el clásico y fuertemente asimétrico en-
foque cliente-servidor. P2P, originalmente considerado solo como una estructura
del lado del servidor complementaria al sencillo modelo cliente-servidor, ha de-
mostrado tener un potencial considerable por sí mismo, con múltiples beneficios
ampliamente conocidos: buena tolerancia a fallos y recuperación, escalabilidad
satisfactoria y distribución de carga intrínseca. Sin embargo, al contrario que el
modelo cliente-servidor, las redes P2P requieren de soluciones sofisticadas a to-
dos los niveles, desde la organización de la red hasta la gestión y localización de
recursos.

Esta tesis aborda uno de los problemas principales de las redes P2P: la búsqueda
eficiente de recursos de naturaleza semántica bajo condiciones dinámicas y realis-
tas. Ha habido numerosas soluciones a este problema basadas en enfoques evolu-
cionarios, estigmérgicos y simples, pero pocas han tratado de resolver el abanico
completo de desafíos. En primer lugar, las redes P2P reales son raramente estáti-
cas: los nodos se desconectan, reconectan y cambian de contenido. Además, la
incorporación trivial de búsquedas semánticas en algoritmos conocidos causa un
decremento significativo de la eficiencia de la búsqueda.

En esta investigación se ha construido una solución de manera incremental, comen-
zando por el clásico Ant Colony System (ACS ) basado en la metaheurística de
Ant Colony Optimization (ACO). ACO es un framework algorítmico usado para
búsquedas en grafos que encaja perfectamente con las condiciones del problema,
aunque no provee una solución inmediata a las cuestiones mencionadas anterior-
mente.

En primer lugar, se propone una variante eficiente de ACS para redes P2P estruc-
turadas (con estructura de hipercubo) permitiendo el postprocesamiento de las ru-
tas, al que hemos denominado Tabu Route Optimization (TRO). A continuación,
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se ha tratado de resolver el problema del dinamismo de la red mediante la difusión
de la información a través de una estrategia compatible con ACO. En consecuen-
cia, se ha tratado de incorporar el componente semántico de las búsquedas. Esta
aproximación inicial al problema ha sido lograda permitiendo al ACS diferenciar
entre tipos de búsquedas através de la idea de pheromone-per-concept. El resul-
tado de esta fusión se ha denominado Routing Concept ACS (RC-ACS ). RC-ACS
es una implementación multiferomona estática y robusta de ACS. Sin embargo, a
partir de esta implementación se ha podido concluir que el enfoque pheromone-
per-concept ofrece solo escalabilidad limitada y que no puede ser considerado una
solución global.

Por lo tanto, para lograr una mejora a este respecto, se ha introducido al RC-ACS
una novedosa idea: la creación dinámica de feromonas, que reemplaza la asig-
nación estática uno a uno. En el algoritmo resultante, al que hemos denominado
Angry Ant Framework (AAF ), los nuevos niveles de feromona se crean conforme
se necesitan y durante la búsqueda, en lugar de crearse antes de la misma. La
mejora final se ha obtenido al permitir al AAF no solo crear niveles de feromona,
sino también reasignarlos para optimizar el uso de la misma. El algoritmo resul-
tante se denomina EntropicAAF y ha sido evaluado como uno de los algoritmos
más exitosos para las búsquedas semánticas P2P bajo todas las condiciones.
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Resum

La popular tendència de distribuir càrrega i recursos en el camp de la computació
s’ha estès cap a les xarxes d’ordinadors a través del concepte de connexions d’igual
a igual (de l’anglès, peer to peer o P2P). P2P és un model simètric on cada node
de la xarxa disposa del mateix nombre de capacitats i recursos. P2P, considerat
originàriament només una estructura situada al servidor complementària al model
client-servidor simple, ha provat tindre el suficient potencial per ella mateixa,
amb múltiples beneficis ben coneguts: una bona tolerància a errades i recuperació,
una satisfactòria escalabilitat i una intrínseca distribució de càrrega. No obstant,
contràriament al client-servidor, les xarxes P2P requereixen solucions sofisticades
a tots els nivells, que varien des de l’organització de la xarxa a la localització de
recursos i la seua gestió.

En aquesta tesi s’adreça un dels problemes clau de les xarxes P2P: ser capaç de
realitzar eficientment cerques de recursos de naturalesa semàntica sota condicions
realistes i dinàmiques. Existeixen nombroses solucions a aquest tema basades
en la computació simple, evolutiva i també basades en l’estimèrgia (de l’anglès,
stigmergy), però pocs esforços s’han realitzat per intentar resoldre l’ampli conjunt
de reptes existent. En primer lloc, les xarxes P2P reals són rarament estàtiques:
els nodes es connecten, desconnecten i canvien els seus continguts. A més a més,
la incorporació trivial de cerques semàntiques als algorismes existents causa una
disminució significant de l’eficiència de la cerca.

En aquesta recerca s’ha construït una solució incremental, començant pel sistema
clàssic de colònia de formigues (de l’anglés, Ant Colony System o ACS ) dins de
la metaheurística d’optimització de colònies de formigues (de l’anglès, Ant Colony
Optimization o ACO). ACO és un entorn algorísmic utilitzat per cercar en grafs i
que aborda el problema de forma satisfactòria, tot i que no proveeix d’una solució
immediata a cap dels problemes anteriorment mencionats.

Primer, s’ha proposat una variant eficient d’ACS en xarxes P2P estructurades
(en forma d’hipercub) a través d’un algorisme de processament post-camí el qual
s’ha anomenat en anglès Tabu Route Optimization (TRO). A continuació, s’ha
procedit a resoldre el problema del dinamisme de les xarxes amb un enfocament
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de difusió d’informació compatible amb ACO. Com a conseqüència, s’ha intentat
incorporar la component semàntica de les cerques. Aquest enfocament inicial al
problema s’ha realitzat permetent a ACS diferenciar entre tipus de cerques amb
la idea de ”feromona per concepte”, i s’ha anomenat a aquest producte Routing
Concept ACS o RC-ACS. RC-ACS és una implementació multi-feromona robusta
i estàtica d’ACS. No obstant, s’ha pogut concloure que l’enfocament de feromona
per concepte ofereix només una escalabilitat limitada i no pot ser considerada una
solució global.

En aquest respecte s’ha realitzat progrés posteriorment introduint una nova idea a
RC-ACS: la creació dinàmica de feromones, la qual reemplaça a l’assignació un a
un de les mateixes. A l’algorisme resultant se l’ha anomenat en anglès Angry Ant
Framework (AAF ). En AAF es creen nous nivells de feromones a mesura que es
necessiten durant la cerca, i no abans d’aquesta. El progrés final s’ha aconseguit
quan s’ha permès a AAF, no sols crear nivells de feromones, sinó reassignar-los
per optimitzar la utilització de feromones. L’algorisme resultant s’ha anomenat
EntropicAAF i ha sigut avaluat com un dels algorismes per a cerques semàntiques
P2P amb millors prestacions.
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Chapter 1

Introduction

In this initial section of the thesis we will present and motivate the main problem
we tackle. We will discuss in general terms the elemental concepts, as well as the
background of our research and the challenges put forward by the state of the
knowledge. We will later continue to present a series of journal and conference
articles that encompass the totality our findings.

1.1 Challenges

The rapid growth of Internet and data traffic has put forward a great challenge for
engineers of diverse fields all over the globe. In order to match the demand for the
data volume that is transmitted over the Internet every day, progress is needed in
all aspects of technology: ranging from low-level hardware solutions, such as faster
and more robust connectors and routers, all the way to logical and methodological
changes, which revolve around the substitution of centralized, server-based models
with distributed peer-to-peer ones. Some could argue that the conceptual changes
are arguably more beneficial, especially short term, due to several reasons; the
cost and time of implementation to name the leading ones. Good examples of this
tendency are the implementations of tcp/ip v6 standard [1] and the very recent
http/2 network protocol [2]. The diffusion of a new technology might take upwards
of several years and new methodology, if exceptionally successful, propagates in a
matter of months.

One of such models was the aforementioned peer-to-peer (P2P) architecture. A
centralized client-server structure, in which one entity (server) possesses a dispro-
portionally large amount of resources and provides them, upon request to other,
underprivileged entities (clients), is without a doubt the most straightforward
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network-related model. It is not fault-free however, as it presents significant draw-
backs. A server is a single point of failure, it provides a hard-limit on the efficiency
of the system and is vulnerable to intentional attacks and natural disasters. Nat-
urally, there exists a number of sufficient, partial solutions that allow the client-
server model to work under most conditions, but only the step towards a serverless
P2P network guarantees a potentially unbound efficiency and robustness. In P2P
networks all entities (called peers) are equal, they posses a portion of the resources
of the system and the data traffic flows directly between the peers, which largely
eliminates the need for centralized servers.

Unfortunately, P2P networks present a challenge from the extreme opposite end of
the spectrum. With resources distributed among a large, often unknown, number
of peers how can we guarantee efficient resource searches? A centralized system
tracks precisely its resources and can answer instantly and correctly to a request
from a client. A distributed system lacks this capacity, as any attempt to globally
monitor peers and their content would forfeit the benefit of the decentralization.
Therefore, if a peer of the network releases a request (a query) for a set of resources,
it can only be resolved partially, against the neighbors of the emitter, or perhaps
some well-known good resource providers. The problem becomes more difficult
still, if we take in consideration the dynamic nature of P2P networks. Peers can
leave and join the network at will, as well as expand, modify or eliminate their
resource repositories.

The solution or potential solutions to this problem are multiple and vary greatly
in applicability and cost [3]. Nevertheless, most of them, even the most successful,
commercial implementations [4] are simple derivatives of the idea of an information
flood. Flooding consists of propagating queries to most, or even all of the peers
nearby to the emitter. These peers, in turn, can attempt to resolve the received
request or continue to propagate it to their own neighbors. Such a cascading
process is inherently difficult to control, to evaluate dynamically and to stop.
See figure 1.1 for a visual example of an information flood. Note the explosion of
traffic between the nodes, as well as the nodes called multiple times within a single
search. In addition to this problem, in most existing solutions the peers tend to be
organized in a predetermined structure, which reintroduces centralized concepts
and global deamons into P2P networks. This is not, however, a necessity, as
there are examples of search metaheuristics of purely distributed nature. A prime
example of this approach is the Ant Colony Optimization (ACO) metaheuristic,
which employs the concept of stigmergy - an indirect and completely decentralized
communication technique.

ACO [5] is a metaheuristic used to solve optimization problems, often modeled
as path and node searches in graphs, that mimics the behavior of ants in search
for food. From a biologists’ perspective ant behavior can be viewed as follows.
Ants seek ways to benefit the colony. To achieve this they can set out on a ran-
dom sweep of the nearby territory in search for goods or they can participate in
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Figure 1.1: Information flood-like propagation in a small P2P network. Node 22 ini-
tiates the call. Continuous lines represent the first generation of calls, dashed lines
represent the second generation and dotted lines represent the third generation.

the transportation of goods from the sources already located. These two broad
types of behavior are known as exploration and exploitation respectively. An ant
performing exploration might randomly stumble upon a valuable object. In such
an event it carries out an evaluation and returns to the nest, secreting a trail of
pheromone on its way back. The higher the estimated value, or goodness, of the
newly found source, the stronger the pheromone trail will be. This, in turn, can
entice more ants to choose to exploit that particular trail over performing explo-
ration. A self-reinforcing process takes place, where more and more ants deposit
pheromone, the trail becomes increasingly attractive and eventually results in a
densely populated trail. On the other hand, the deposited pheromone undergoes
constant evaporation, which is a natural way for ants to forget old trails that lead
towards exhausted sources. However, the pheromone evaporation provides an ad-
ditional benefit; namely, the shorter the trail, the less time it takes for an ant to
walk the trail entirely. If two trails lead towards the same source the shorter will
be less evaporated due to more frequent depositions of pheromone. The difference
in the pheromone intensity causes a difference in ant traffic and, after a while,
the longer route will be completely forgotten. This process was illustrated in the
double bridge experiment [6] and later modeled mathematically by Goss et al [7].

ACO search agents, just like real-life ants, have no knowledge of the entire space
they explore. Initially the amount of pheromone is low so agents survey the net-
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work in a near-random manner. As the pheromone gets progressively deposited
the agents’ behavior develops into more deterministic and less stochastic. Two
opposing processes take place: on one hand trails are being reinforced with new
depositions, on the other the pheromone evaporation decreases the pheromone in-
tensity. With time, some ways to construct the path are marked as progressively
less and less attractive, until they eventually evaporate away completely. After
a while all non-feasible or suboptimal trails get discarded and the solution path
converges to its final shape; the overwhelming majority of agents travel exclusively
on it and any deviation causes the goodness to decrease.

The use of ACO is a good first step towards efficient searches in P2P networks, as
ACO appears to be compatible with the decentralized nature of P2P. P2P networks
can be easily modeled as graphs, in its classical form ACO algorithms have no need
for centralized entities, are not limited to any particular topologies and provide
robust or even state-of-the-art solutions to many classical graph-related problems.
See figure 1.2 for a visual representation of a sample ACO-guided search in a
P2P network, compare with figure 1.1, most notably, the strain on the network
and the network traffic. Nevertheless, the use of ACO in P2P networks is not a
flawless idea. Due to the lengthy process of pheromone deposition and evaporation
ACO algorithms cope only to an acceptable degree with dynamic graphs and
dynamically distributed resources [8] [9] [10] [11]. In addition, and perhaps more
importantly, they are not suitable for class-based or semantic searches [12] [13].

Semantic search [14] is not a simple search for any resources, but rather resources
that fulfill a series of logical constraints. In its simplest, the constraint can be re-
duced to class adherence, which means that the search is performed and requesting
resources of given classes only. In the context of P2P networks semantic searches
are of high interest. First, the ability to recognize the request as belonging to a
given class of requests is a way to increase the precision of the response, by improv-
ing the query routing decisions. Second, separating unrelated query traffic allows
a specialized handling of each one. For instance, queries for scarce resources could
be allocated higher time-to-live, and therefore, increasing the chance of yielding
results.

As mentioned ACO search agents only work with a single pheromone value, that
indicates if a given direction is of high or low quality. With a class-constrained
search we are essentially unable to guarantee that the pheromone-reflected quality
is informing the agent about the constrained objective of their search. Moreover,
agents with different objectives might disagree about the quality of a certain path
and change its evaluation, introducing chaos and limiting the usefulness of ACO
substantially. The most trivial solution is to execute the simple ACO algorithm C
times (C layers) [15], one for each one of the C classes of the resources present in
the network, and to use only the appropriate layer for the resource and query class
in question. This solutions, unsurprisingly, is highly suboptimal and only suitable
for very low C [16].
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Figure 1.2: Information ACO-like propagation in a small P2P network. Node 22 ini-
tiates the call. Continuous lines represent the first generation of calls, dashed lines
represent the second generation and dotted lines represent the third generation.

From a multitude of existing ACO algorithms we chose the, arguably, most classical
and well known one: Ant Colony System (ACS, [17]). ACS was originally designed
to solve the Traveling Salesman Problem (TSP) so it required some modifications,
in order to work in a P2P environment. Above all, the authors of ACS, as they
were tackling a centralized problem, forfeited the distributed nature of ACO to
gain the efficiency of execution, by using a number of global operations and some
centralized data. In order to revert this change we split the global pheromone ma-
trix, which contained the totality of the pheromone state of the network, among
the nodes, so that each node has only the view of the nodes directly connected
to it. In addition, we defined the global pheromone evaporation as a local action,
performed by returning agents, to completely eliminated the need for global clocks
or messaging systems. Furthermore, we made some natural changes to the search
end conditions. In TSP it is, naturally, visiting all the nodes and returning to
the starting node. In our implementation it would not be sensible to maintain
such a requirement, so it was replaced by a time-to-live mechanic (TTL) and min-
imum resources found threshold. Finally, ACS includes a mechanism of selective
exploration. It consists of sending a number of agents, awaiting their return and
selecting only the best one for pheromone deposition, discarding the remainder.
This would be a very wasteful approach in a P2P network, where the main cost
of executing a query is the inter-node agent transfer. In our approach even a very
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inefficiently obtained resource should not be discarded, as the cost of obtaining it
has already been incurred and is irrecoverable.

To summarize, the main objective of this thesis is to enable efficient Resolution
of Semantic Searches in P2P networks using Ant Colony Algorithms. In order
to complete it we must resolve the problem of the impact of dynamism of the
network on ACO (challenge 1) and allow ACO to route agents based not only on
the pheromone value, but also on the semantic content of the query, regardless
of the value C (challenge 2), while at the same time persevering all the desired
properties of ACO (global constraint).

1.2 Contributions

To resolve the challenges presented in the previous section we decided to divide
our efforts in six stages, each one concluding with a journal or a conference pub-
lication, validating our findings. First we focused on the problem of the dynamic
graphs (contributions 1 - 3), which we concluded with a real-life implementation
(contribution 4), and later we tackled the semantic issue (contributions 5 - 6),
with a real-life solution still pending. Aside the 6 contributions we provide one
additional of a technical nature, that summarizes our advances in ACO execution
environments (contribution 7*).

1. In chapter 2 we present the paper On the performance of ACO–based methods
in P2P resource discovery [12]. The main focus of this preliminary work was
to formally define what prerequisites must an algorithm fulfill in order to
be considered acceptable for P2P resources queries. We compare several
techniques and propose a couple of partial solutions in the form of hybrid
extensions of the classical approaches.

2. In chapter 3 we present the paper Ant Colony Optimization for resource
querying in dynamic peer-to-peer grids [8]. Here we summarize the problems
the dynamic graphs present for ACO algorithms. We examine 4 types of
network dynamism that is expected to be experienced in P2P networks and
demonstrate the effects they have on classical ACO algorithms.

3. Having formalized and demonstrated the problem we proceed to our first
complete solution to the problem of dynamism. In chapter 4, in the paper
A Diffusion-Based ACO Resource Discovery Framework for Dynamic P2P
Networks [18], we show how to efficiently combat the network dynamism
by a new mechanism called information diffusion, fully within the ACO
metaheuristic.

4. Subsequently, we decided to apply our extended ACO algorithm to solve a
real-life problem (see chapter 5). We opted to use it in the complex subject of
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learning unit recommendation for relearning tasks for people with Acquired
Brain Injuries (ABI ). As of December 4, 2015 our journal paper An ACO-
based personalized learning technique in support of people with Acquired Brain
Injury [19] is undergoing its second reviews.

5. In chapter 6 we present a global solution to the semantic search in P2P net-
works with ACO. The paper, titled A non–Hybrid Ant Colony Optimization
Heuristic for Convergence Quality [20] is the unveiling of our novel ACO
algorithm called Angry Ant Framework (AAF ). AAF was initially designed
to simply enable semantic searches with ACO, but it has proven to be better
in non-semantic context as well, which is demonstrated in this paper.

6. Finally, in chapter 7 we combine all the research to the date and study AAF
in a fully semantic context. In addition, we present improvements over the
original AAF design, with which we have achieved an unprecedented query
efficiency in P2P networks, both with and without the semantic components.
To the best of our knowledge, the algorithms presented in the paper An
Efficient ACO Strategy for the Resolution of Multi-Class Queries [16] are
the highest performing in the field of semantic ACO-based P2P searches
and have the potential to be evaluated as the state-of-the-art. Our work is
currently undergoing independent peer reviews.

7* We conclude our work with a publication of a technical nature. In order
to put forward some of the most elaborate and extensive ACO experiments
we were forced to write a highly configurable and expendable ACO middle-
ware. In the end we decided to transfer our programing effort to the ACO
community and we published our middleware at a workshop of a world-class
conference. See chapter 8 for the paper AntElements: An Extensible and
Scalable Ant Colony Optimization Middleware [21], which displays the high-
lights of our software.

In summary, throughout our research we have produced 7 scientific articles: 2
Q1 journal papers, 2 Q1 journal papers that are still under review, 2 CORE A
conference papers and 1 CORE B conference paper.
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Chapter 2

On the performance of ACO–based
methods in P2P resource discovery
Kamil Krynicki Javier Jaen Jose A. Mocholi

ISSI Research Group, Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

(2013), Applied Soft Computing Journal, 13(12), 4813–4831.
doi:10.1016/j.asoc.2013.07.022

Abstract

Over the recent years peer-to-peer (P2P) systems have become increasingly popu-
lar. As of today most of the internet IP traffic is already transmitted in this format
and still it is said to double in volume till 2014. Most P2P systems, however, are
not pure serverless solutions, nor is the searching in those networks highly effi-
cient, usually achieved by simple flooding. In order to confront with the growing
traffic we must consider more elaborate search mechanisms and far less centralized
environments. An effective proposal to this problem is to solve it in the domain
of Ant Colony Optimization metaheuristics. In this paper we present an overview
of ACO algorithms that offer the best potential in this field, under the strict re-
quirements and limitations of a pure P2P network. We design several experiments
to serve as an evaluation platform for the mentioned algorithms to conclude the
features of a high quality approach. Finally, we consider two hybrid extensions
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to the classical algorithms, in order to examine their contribution to the overall
quality robustness.

2.1 Introduction

Since the introduction of email, one of the most successful examples of a large–scale
distributed application in its time, the research field of distributed computing [22]
has experienced an enormous development. The reasons for using such systems are,
firstly, because the nature of the application requires that several computing nodes
produce and share data across a communication network and, secondly, because
of practical reasons with respect to a centralized system in terms of scalability,
reliability or expandability.

Distributed environments have drawbacks however, namely, it is quite difficult to
propose a resource discovery mechanism that would be as efficient as the optimum
of a centralized depository. It is also more of a challenge to obtain a complete
answer, as well as estimate the completeness of it. Even so, the benefits of a
distributed environment overweigh the drawbacks and that is why the search for
efficient resource discovery and search algorithms is crucial.

These drawbacks are specially challenging in P2P distributed environments. Ab-
stractly speaking, P2P systems are networks of interconnected peers, where some
provide resources of any nature whereas others wish to obtain them. The roles
of peers (sometimes referred to as nodes) are variable. One example of a real
life use of P2P might be en–masse concurrent calculations which have been done
with great success. Distributed computing projects, such as SETI@home [23] or
Collatz Conjecture [24], peaked at hundreds of teraflops of computing power with
relatively low costs. What stimulates the development of distributed techniques is
the comparison of these results with super–computers such as ORNL Supercom-
puter [25], which involve immense investments and oscillate at about ten–fifteen
thousand teraflops. Other examples of P2P application are: sharing of storage
and content distribution [4] [26] [27], where the desired content is treated as the
resource, sharing of bandwidth, streaming or even anonymous communication so-
lutions, both text and VoIP [28].

Nodes in P2P systems are in possession of resources. A query in such a system
is, in short, a process of demanding resources from a subset of peers and then
returning to the sender peer with results. There are several degrees of distribution
in P2P environment to be considered. The most extreme one is the case of P2P
systems with a very high distribution degree which implies the following:

1. The content, information or process of global scope is very highly undesirable.

10



2.2 Ant colony optimization for P2P searching

2. The cost of the exchange of data between two peers of the system is consid-
erable. So much so, the system would rather obtain no data than obtain low
relevancy data.

In this respect, a remarkable computing strategy to address the problem of effective
searching in highly distributed P2P systems has been Ant Colony Optimization
(ACO, introduced in [29]). With the query masquerading itself as an ant in search
of food and depositing chemical substance as trails, which can be read by other
ants, one can achieve a very good implementation of P2P search. The biggest
benefits of the use of ACO are: no (or a very small amount of) global information,
generic nature, quick convergence to near–optimal solution and robustness in terms
of system load.

There has been several ACO proposals addressing this issue (Ant Colony System,
ACS [17], Max–Min [30], Neighboring–Ant Search, NAS [31], SemAnt [13] and
various mixed solutions [32]), albeit there are factors whose impact has not been
thoroughly studied such as the existence of long distance connections between
peers in unstructured environments and the consideration of hybrid strategies
that take advantage of underlying structured topologies. Therefore, in this paper
we will show that there is still room for improvement in the area of ACO based
P2P search systems and we will propose an implementation of a P2P version of
ACS which is competitive in both unstructured network topologies with varying
number of long distance connections and structured hypercube ones if a hybrid
strategy is defined.

In section 2.2 we will analyze the problem in detail and describe the use of ACO
in P2P search. It will contain the mathematical base and the concepts to con-
sider; in section 2.3 we present motivations for choosing specific algorithms for the
comparative study. In section 2.4 we will propose the experimental dimensions to
be analyzed, the designed experiments and present their results with comments.
Finally, in section 2.5 we will formulate the final discussion.

2.2 Ant colony optimization for P2P searching

Ant Colony Optimization is a swarm intelligence approach to problem-solving
introduced by Marco Dorigo in his work on distributed optimization in 1991 [33].
The core idea of ACO is twofold, firstly – as properly named – it uses a swarm
of simple and stochastic automata to solve complex problems and, secondly, the
communication between these is through stigmergy and therefore indirect. Such
a communication method has shown to provide interesting results, especially with
the emphasis on finding the shortest path [7] or paths optimizing a given function
[34] [35]. The automata, or agents, in ACO are called ants. Each ant has the
simple task of finding the required resource (search phase) and bringing it back to
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its nest (returning phase); without the loss of generality one can limit the world,
in which ants live, to a bidirectional graph of finite size with nodes representing
possible locations of resources and edges representing trails.

Ants follow a simple and non-deterministic search algorithm that can be summa-
rized in the following (the micro-scale algorithm – ant’s behavior):

Algorithm 1: Micro-scale algorithm
1: Consider the Ant A1 that finds itself in a node ne (emitting node) of graph
G = (V,E), where V is a set of vertices and E is a set of edges, with the task
of finding the set of resources {r|r ∈ q(G)}, where q(G) is a perfect response
of the graph G to the query q.

2: A1 checks the node in which it currently resides for the presence of resource r.
3: if resource r is found then
4: r is added to the ant’s basket.
5: end if
6: if A1 has found enough resources to fill its basket or any other pre–established

condition or set of conditions D(A) holds true, A1 then
7: proceed to step 12.
8: end if
9: A1 performs the step transition based on available, local knowledge:
ST (A1, nj , q). Being in node nj , it chooses noden ∈ {ni|(nj , ni) ∈ E} as
the next destination. Adds n to the stack of nodes visited, n(A1).

10: A1 performs Local Pheromone Update – metaphore of the natural process of
pheromone evaporation.

11: Proceed to step 1.
12: A1 converts from being a Forward Ant to being a Backward Ant.
13: (optional, indication of a hybrid ACO) A1 performs optimization of the stack

n(A1)
14: A1 performs an evaluation of the trail found based on a quality measure func-

tion QM(A1).
15: A1 returns to the emitting node following the stack n(A1), at every step per-

forming an update of the locally stored pheromone trails using Global Phero-
mone Update rule – metaphore of pheromone deposition.

16: When A1 returns to the emitting node, it deposits found resources from the
basket and the algorithm concludes.

Several key factors that define ACO algorithms canbe deduced from the mi-
cro–scale algorithm:

1. Graph topology (or the lack thereof).

2. State Transition function ST (A,n, q), where A stands for ant, n is the current
node and q is the carried query.
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3. Local Pheromone Update function: the model of pheromone evaporation.

4. Global Pheromone Update function: the model of depositing pheromones
after the search concludes.

5. Quality Measure function QM(A), where A stands for ant. Here, in fact, the
ant is the evaluated element, seeing how it represents the query, the route
over the graph and the resources found.

6. Query completion requirement D(A), where A stands for ant.

7. Post–processing algorithms – such as route optimization, loop detection and
removal, graph topology exploitation, etc.

One of the most popular implementations of the ACO metaheuristic is Ant Colony
System [17]. It is an extension and improvement over the Ant System (AS) [36].
It has been chosen as the principle candidate for P2P search. In the particular
case of ACS the query completion is achieved by either collecting between Rmin
and Rmax resources or making ttl steps (time to live – the maximum amount of
state transitions); formally:

D(A) =

{
1 if ifr ∈ [Rmin, Rmax] ∨ h ≥ ttlmax,
0 otherwise,

(2.1)

where r is the amount of resources found and h is the amount of steps taken.

If no resources were found the ant has a choice whether to finish the algorithm
empty or perform the route back to the emitting node, without any pheromone
updates and inform the node about the failure. For our purposes we chose the
latter solution.

Consequently, the macro–scale algorithm (the system’s large scale behavior) for
ACO P2P search could be defined as follows:

Algorithm 2: Macro-scale algorithm
1: Query q is requested upon the node n.
2: Bring to life a Forward Ant FAq in the node n and supply it with q.
3: Let FAq perform the micro–scale algorithm.
4: Until δt time units have passed, consider the q resolution pending.
5: if Backward Ant BAq is received in the node n after less than δt time units

have passed then
6: consider the basket of BAq the graph’s response to q and dispose of BAq.
7: else if BAq is not received within δt time units then
8: consider the q resolved with no results.
9: end if
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Taking as basis the previous generic algorithmic schema, the definition of an
ACO–based query resolution algorithm in P2P environments must conform to the
following additional query–resource (q–r) principles for it to be considered P2P
compliant:

1. Every node may have any amount of resources, including zero resources.

2. Every node may issue a query – that is, a request for a set of resources of any
nature; one that may be constructed of resources residing in one or many
nodes within the network.

3. Every node may not be aware of the content of any other node but itself.

4. Every node must be connected to a set of nodes via bidirectional links of
high traveling cost. A Degenerated (disconnected) node may be connected
to zero other nodes.

5. Every query is propagated among nodes, collecting resources that correspond
to the request issued.

6. The destination (the final) node of a query is never known a priori nor is it
deterministic.

7. The trail of a query is never known a priori nor is it deterministic.

The previous list of requirements will serve to filter out algorithms that have
no applicability in the field of P2P. Omitting of any or all of these principles is
possible. Such a system would, however, suffer from lower generality and it would
be incomparable to the real world P2P networks. Once the generic approach for
ACO P2P searching has been introduced we can discuss, within the dimensions
mentioned above, some of the more prominent ACO algorithms proposed in the
literature. In the following subsections we will describe in moderate detail some of
the principle ACO and ACO-like algorithms, besides the well-known ACS strategy,
and then formulate the subset of those best applicable for P2P and proceed to
in–detail study.

2.2.1 Semant

The Semant algorithm [15] is our second candidate for P2P search, it uses a very
similar approach to the classical ACS, however it adds several extensions. One of
the most prominent is the use of a 2–dimensional pheromone table stored in every
node, that is a (keyword, outgoing link) pair, rather than the typical 1–dimensional
pheromone per outgoing link. This can be understood as an additional layer
(overlay) of pheromones per every taxonomy entity used in the query routing. For
more details on the concept, and our variation of it, see section 2.3.1.
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Semant maintains the exploration–exploitation dilemma approach from the ACS.
The exploitation is now expressed as in:

s = argmaxu∈Jk(r) {τρ(cu)× ηβu} (2.2)

where:

- τρ(cu) ∈ [0, 1] is the pheromone level from the current node to the u node
within the c concept overlay

- ηu is the cost of traveling to u

- s is the next node to be visited, and, as in ACS, it is deterministic.

The major change is the exploration phase: every edge that origins in the current
node is assigned a probability pcr ∈ [0, 1] according to (2.9), but in this case a
resolution of probability is done per link, which means that pcr is the probability
that the r destination node in the c concept overlay will be returned as the next
step:

pcr =
τcr × ηβr∑

u∈Jk(r) τρ(cu)× ηβu
(2.3)

The consequences of such an approach are twofold: firstly, there might be more
than one link as a result of this, and secondly, there might be no links. In the first
case, the original FA is sent to one of the chosen links and a clone of the FA,
called FAci, will be sent to every i–th link, i > 1. In the second case, a result will
be obtained by falling back to the exploitation phase. This behavior is formally
described by equation 2.4 and constrained by 2.5:

GOj =

{
1 if p ≤ pcr,
0 otherwise,

(2.4)

∑
j∈Jk(r)

pj = 1 (2.5)

where GOj is a function that expresses the fact of an ant (or its clone) choosing
to go to the j node (value 1) or not (value 0) and p is a random variable.

The pheromone management is also different to the ACS approach. The phero-
mone deposition is a linearly growing function, that is, the act of dropping n units
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of pheromone will increase the value by n. Hence the maximum value of τ(r, u) is
more of an issue to consider:

τρ(vu)← τ(r, u) + δτ(r, u) (2.6)

τρ(vu)← τρ(vu) + wd ×
|S|
Smax

+ (1− wd)×
|L|

2Lmax
(2.7)

where wd ∈ [0, 1] is a parameter that expresses the balance between both compo-
nents of the equation, R is the amount of resources found, Rmax is the maximum
resources allowed, ttlmax is the maximum number of steps allowed and h is the
number of steps taken. Here, as in ACS, the pheromone levels can be limited
by phmax and phmin. Since SemAnt uses linear growth of pheromone, instead of
weighted growth, the phmax must be set to a very high value, in order to avoid
issues with having all the paths at its maximum value – thus not providing any
information.

The evaporation process is very similar to ACS and somewhat simplified:

τ(r, u)← (1− ρ) · τ(r, u) (2.8)

The query completion is achieved in an identical manner to ACS.

2.2.2 Neighboring–Ant Search

Another proposition of an extension of the basic AS was proposed by C. Gómez
Santillán et al. [31]. It is based on exploiting the node distribution and several
look–ahead heuristics. For in depth look consult the work [31]. Here we will
focus on the pseudocode governing the behavior of Neighboring–Ant Search (NAS),
provided by the authors of NAS:

Algorithm 3: NAS algorithm
1: for all query in rk create a search agent k with TTLk = maxTTL and Hitsk =

0 do
2: while Hitsk < maxResultsandTTLk > 0 do
3: if the unvisited sk ∈ {rk ∪ Γ(rk)} has the searched resource then
4: rk = append sk to pathk
5: Hitsk = Hitsk + 1
6: Local Pheromone Update
7: Global Pheromone Update
8: else
9: if rk is a leaf node or does not have an unvisited neighbor then
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10: remove the last node from pathk
11: else
12: sk = apply the transition rule with the DDC function
13: rk = append sk to pathk
14: Local Pheromone Update
15: end if
16: end if
17: end while
18: TTLk = TTLk − 1
19: end for
20: kill the search agent

At step 3 clearly the NAS algorithm takes advantage of basing its routing decisions
on the content of the neighboring nodes. This, yet again, violates the third of the
q–r principles. Furthermore at step 10 it permits removing nodes from the path
hence improving the overall quality measure by simulating the path shorter than
it actually was. And finally, NAS generates a BA (called retrieval agent) at every
occurrence of a resource, putting a great additional load on the system. A remark is
made in [15], where Michlmayr notices that the less resources a single agent carries
(the Rmin variant of Semant), the better overall score of the results obtained, but
the smaller the value of a single query. In other words: there is an increase of
measured quality (which will be defined formally in the section 2.4.2) but at the
cost of the real value for the user (less results at a time), and for the system (more
load).

All these factors contribute to the fact that in [31] NAS achieves results better
by approximately one order of magnitude and simply it is not comparable with
an ACO algorithm of a more pure nature. The fact of examining the content of
neighboring nodes should improve the results by a factor of average node degree,
that is, an average of the degrees of all the nodes in the system. This is because
within, what is calculated as one step, they analyze all the neighbors, therefore
making several steps in one; in the terms of means this translates into making
n=average node grade steps and later reporting it as one step. Worth mentioning
is the fact that NAS guides the FA (search agents) towards nodes with high
degrees, further exploiting the proposed approach.

2.2.3 Random k–walker

The most straightforward algorithm is the k–walker explored in detail in [37].
It has to be emphasized that it is not an ACO algorithm, but it serves as a
good benchmark, a reference in a given test; it is also proposed as such in the
experimental study of Semant, which we follow closely in order to maximize the
fidelity of its result recreation. Moreover, the random behavior is a firm minimum
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performance expectance; a way to discard an algorithm if it fails to surpass it
in every measure. The reason why it has been included in this section is that it
can be easily expressed in the ACO’s terms, degenerated but valid, and follow the
general flow of ACO. By doing this we also show how we implemented it using our
ACO testing middleware.

The state transition consists of one phase – the dilemma of exploration versus
exploration is removed. On the first step k–walker generates k forward ants and
each one of them makes a random decision on how to continue; on every other it
simply takes a random decision 2.9. The probability of choosing to go from the
node r to the node s is pk(r, s) (2.10))

s =

{
{S} if |h| > 0,

{S1, . . . , Sk} if |h| = 0,
(2.9)

where h is the number of steps taken.

pk(r, s) =

{
1

|Jk(r)| if s ∈ Jk(r),

0 otherwise,
(2.10)

The pheromone management is not relevant because τ(r, u) does not appear in
2.10. Therefore for evaporation, as well as deposition are:

τ(r, u)← τ(r, u) (2.11)

which indicates that there is no pheromone evolution.

The query completion is achieved in an identical manner to ACS.

2.2.4 Other algorithms

Other ACO algorithms that are highly worth mentioning are the following:

1. AntNet [38]

2. AntHocNet [39]

3. Ant Based Control [40]

Their core ideas however do not fit our established q–r principles. The AntNet
and AntHocNet are mainly used for packet routing where the destination is well
known and only the path is to be discovered. This stands in high contrast to the
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q–r principles, in which the destination in not known but merely described by the
combination of query, resources and the algorithm. The same problem occurs with
Ant Based Control, which is used in circuit switching environments.

For the sake of completeness another approach deserves a mention – it is the most
straightforward and most redundant approach of all – namely: the k–flooding [41].
It has been used for many years in the Gnutella protocol [4] and it is basically
sending the query to all the neighbor nodes until the k–th depth. Flooding has a
somewhat limited variant; called t–top k–flooding, in which case the flood is sent
to only the t best neighbors. As shown in the work by Jun–qing Li et al. [42] they
are vastly inefficient compared to ACO and will not be considered in this work.

2.2.5 Summary of the algorithms

Once the main algorithmic ACO–based approaches for solving the proposed prob-
lem have been presented, the following comparative table relates them according
to some dimensions that are important for selecting the candidate algorithms that
will be included in our experimental study.

Table 2.1: Comparison of classical algorithms

E
vo
lu
ti
ve

D
et
er
m
.

Se
m
an

ti
c

Lo
ok

A
he
ad

H
yb

ri
d

q–r compliant
ACS 3 7 7 7 7 3

Semant 3 7 3(tax.) 7 7 3

NAS 3 7 7 3(var.) 7 7, violates pt. 3
k–Random Walks 7 7 7 7 7 3

AntNet 3 7 7 7 7 7, violates pt. 6
AntHocNet 3 7 7 7 7 7, violates pt. 6
Ant Based Control 3 7 7 7 7 7, violates pt. 6
k–flood 7 3 7 7 7 7, violates pt. 7
t–top flood 7 3 7 7 7 7, violates pt. 7

From Table 2.1 we can easily conclude that in the pure form only three algorithms
qualify, in terms of q–r principles, for further study. This was the reason why we
chose to increase the test sample by introducing a set of extensions to the classical
approach. In the section 2.3 we present the mentioned extensions in detail.
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2.3 Proposed ACO extensions

In order to adapt ACS closely to the requirements of P2P environments we have
decided to introduce two extensions that can be used separately or combined at
will: a semantic and a hybrid extension. The semantic extension is based on that
proposed by Semant’s authors and the hybrid extension is aimed at exploiting
hypercube topology.

Based on the algorithms selected in Section 2.2.5 and with the use of the extensions
explained below we create four new algorithms, namely: Semantic ACS, Hybrid-
Semantic ACS, Hybrid Semant and Hybrid k-Random Walks. All of them are
compliant with our q–r principles and they are a combination of the corresponding
classical algorithm and one or both extensions.

2.3.1 Semantic Extension: Routing Concept

The first extension is the notion of the Routing Concept, mentioned already while
discussing Semant in section 2.2.1. Its theoretical base was presented in [43], where
the idea of several Overlay Networks superposed over the Physical Node Network
is introduced.

Every node n keeps a 2–dimensional matrix Ω : Nn×Rn, with real, positive values,
where Nn is the space of outgoing links from the node n and Rn is the space of
routing concepts maintained by this particular node n. This matrix is referred
to as routing table, or routing matrix. The n′–th, r–th element of Ω corresponds
to the pheromone value of the n′–th outgoing link for the r–th routing concept,
which can be written as Ωn′r = τ . There are two functions defined:

1. phUpdate(n′, r, τ), that establishes as τ the value Ωn′r for the n′ ∈ Nn and
r ∈ Rn

2. phRetrieve(n′, r), that returns the value Ωn′r for the n′ ∈ Nn and r ∈ Rn.

In both cases, if r /∈ Rn, the matrix is redefined as Ω† : Nn × R†n, the space
of routing concepts is redefined as R†n : Rn ∪ r, and ∀n′ ∈ Nn{Ωn′r = phinit}
where phinit is the initial value of the pheromone. Both functions are undefined
for n′ /∈ Nn. Node n, at initialization, has Rn = {rdef}, and ∀n′ ∈ Nn{Ωn′rdef =
phinit}, where rdef is the default routing concept. In other words: if the requested
routing concept is not present in the routing table the table is extended by adding
a new row for the missing routing concept all with initial values. Additionally, the
routing table maintains the pheromone value only for the immediate neighbors.

Notice that it stands in contrast to the AntNet [38] algorithm, where the second
dimension in the routing table is also used, but it monitors all the accessible nodes
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from a given node n, both directly and indirectly: (node,outgoing link). Such
an approach would be not good, both memory– and efficiency–wise, in a P2P
environment due to the typical size range and high dynamism.

Routing concept is a generalization of the pheromone–per–keyword approach, in-
troduced in [44]. Firstly, the routing concept does not have to be a keyword but
any type of distinction will serve, such as a taxonomy of entities, numerical values,
etc. Additionally, it allows the query to choose, at every step, into which overlay
network it should be injected, rather than have one fixed at query’s creation. The
routing table dimension in each node can grow and shrink at will, without any
a priori limitations. If no routing concept is chosen the default routing concept
will be used – eliminating the Overlay Network concept for a given query. If the
routing concept remains unchanged during the querying process the approach is
reduced to the one described in Semant. ACS can be extended easily by adding
the routing concept functionality.

2.3.2 Hybrid Extension: Hybrid Route Optimization

In its most general approach hybrid setups are very complex and elaborate systems
of coordinated algorithms of mutual interaction. In order to properly apply hy-
brid extension we, firstly, faced a design decision, as there are several large classes
of hybrid techniques. According to [45] the most suitable hybrid class for evo-
lutionary–class metaheuristic is HRH (high–level relay hybrid). In such a setup
algorithms that form components of the hybrid are self–contained and sequentially
executed, forming processing (initial phase) and postprocessing (intermediate and
final phases). As the author mentions, coarse grain evolutionary components,
such as ACO, are not suitable for finding near–optimal solutions under difficult
conditions. Local search technique is a good complement in this case.

Another view of Hybrid taxonomy is provided in [46]. There the author estab-
lishes a slightly more in–depth, yet similar, taxonomy based around four key
questions: the class of the hybridized components (metaheuristics, search tech-
niques, seeding techniques, etc.), the level of hybridization (weak, strong), the
order of execution (parallel, interleaved, batch) and control strategy. In this light
ACO–applicable hybrid systems would be denominated weak–coupled, batch, in-
tegrative solution, similar to the previous suggestion of HRH. The author also
decomposes the hybrid strategies into level–by–level processing approaches, where
four elements are extracted: output function (OF ), improvement method (IM ),
solution combination method (SCM ) and input function (IF ), which can be de-
picted as OF+IM+SCM+IF. The ACO itself is fully expressed in the above terms;
we, however, add the TRO (Taboo Route Optimization, see below) in the SCM
phase.
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Our attempted solution is akin to the one by Duan et al. [47], which propose
the following structure: DE+HS+HJ, where DE is the Differential Evolution al-
gorithm representing the evolutive component (ACO in our case), HS is the Har-
mony Search (which has been omitted in our approach), and finally HJ is the
Hooke and Jeeves direct search method, a Local Search Algorithm that performs
the final refinement. For HJ we use a domain–and–topology bound solution which
we named TRO.

The TRO consists of path shortening with the assumption of an underlying hy-
percube topology and exploits the fact that optimal paths in hypercube–based
networks are well–known and solved problems. During the process of converting
a forward ant into a backward ant the route optimization will be executed. The
Taboo Route Optimization draws its name somewhat from the Taboo Search [48],
as they have several concepts in common. In our case the taboos, however, are
not solutions but components of the solutions to be maintained in the final result.
Also they are not established within the search process, but injected in the initial
step.

Algorithm 4: TRO algorithm
1: Nodes within the path p : [n1, n2, . . . , nN ] that was covered by a forward ant

FA, will be analyzed and all those that have provided required resources will
be marked as taboo. The first and the last node will be marked as well. As a
result we obtain the path pt : [nt1, . . . , nnri , . . . , n

t
ri , . . . , n

t
N ], where:

- nnri is read as the i–th node that has not provided any resources, and
- nri is read as the i–th node that has provided resources.

2: A subpath spt will be composed of only marked nodes nti of the path pt and
nodes will be renamed nsp1 , nsp2 , etc. spt : [nsp1 , nsp2 , . . . , nspM ]

3: For every pair nspi , nspi+1
of nodes form the subpath spt, a topology–based

optimal path between them will be found, named pi+1
i and expressed as a

sequence of nodes. The path resolving is performed according to the standard
deterministic routing approach [49]. If pi+1

i is shorter than the number of
nodes interposed between nspi , nspi+1

in the original path p, the appropriate
section within p will be replaced by pi+1

i .
4: Once the process is complete the newly created path will be named poptim

and will replace the original path p, which was provided to the backward ant
BA by the forward ant FA; thus BA will follow the path poptim on its way to
the emitting node.

All the backward ant pheromone duties will be performed on the way as shown in
the section 2.2.
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2.4 Experimental Study

Based on our previous comparative study, we decided to choose for further testing
only those algorithms that were compliant with our established q–r principles.
Of those that remain, the pure ACS was also rejected due to the fact that it
would inevitably score less than the Semantic ACS, this way we place Semant
and Semantic ACS on equal footing. In the following section, we will describe the
network topologies, the quality metrics and the test setup that were used in the
experimental study.

2.4.1 Network topologies

In its purest form the ACO algorithms do not use any additional path processing.
Nevertheless the idea of local path optimization was introduced early, in [29] to
improve both: the speed of the path convergence, as well as the quality of the
solution obtained. One of the approaches is to use advantages the topology may
provide; some network topologies include ring [50], toroid [51], hypercube [52] and
others in which corresponding local path optimizations apply. In this respect, we
will verify whether the topology has no impact on either the speed or quality of
convergence unless followed by a local optimization algorithm that uses it explicitly
as it has been stated in [15] [31] by taking into consideration the three topologies
described next.

Semant topology

The world consists of n nodes, where n is an even number. The nodes are organized
in a fully connected grid with a toroidal topology, where both dimensions d1, d2
of the creating rectangle are chosen to fulfill |d2− d1| ∼= 0 to minimize the average
distance. Additionally, every node n1 has one long distance connection (LDC) that
connects it directly to another node n2 with the toroidial distance ||n2, n1|| > 2.
The probability of a node n1 having LDC of length len is proportional to len−1.
The above description is taken directly from the guidelines in [15]. This kind of
world will be named sem–n, where n stands for the number of nodes. In the [15]
and [31] the sem–n world is approached as if unstructured. The average degree of
a node is

av(sem− n) = 5 (2.12)
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LDC topology

This kind of world resembles the sem–n world in every detail with the exception
of LDC connections. In the sem–n world every node has exactly one LDC con-
nection, while in this world there will be extra m LDC connections distributed
randomly and evenly among all the nodes. The length–wise distribution of LDC
connections from sem–n still applies. This kind of world will be named ldc–n–m
where n stands for the number of nodes and m for the number of additional LDC
links. The average degree of a node in ldc–n–m is:

av(ldc− n−m) =
(5n+ 2m)

n
= 5 + 2

m

n
(2.13)

Note that:

sem− n ≡ ldc− n− 0 (2.14)

Hypercube topology

The hypercube world is a hypercube manifold of degree d. Therefore it will have
n = 2d nodes. This kind of world will be named hc–d,. In this case the average
degree of a node is, unsurprisingly:

av(hc− d) = d (2.15)

Additionally note that:

av(hc− 10) ∼= av(ldc− 1024− 2400) (2.16)

2.4.2 Quality measures

We have decided to adopt a common efficiency quality measure which is widely
used by several authors such as in [15] and [17], where it is defined as a Hop per
Hit (dimensionless) ratio; hop is the number of steps taken by an agent and hit is
the number of resources found and it reflects rather well the quality of a resolution
of queries. It is, yet again, a measure taken from the Semant study, which we
must use in order to remain comparable. What is irrelevant in our testing is
the absolute execution time. In the real setups the evolution takes place in the
span of days, even weeks. So in our case it is, for all practical purposes, highly
accelerated and the execution time transmits no information. One might argue the
importance of the time factor in an attempt to solve a local problem by applying
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ACO algorithm; it is, however, not our case. In the field of P2P query routing the
true value is how quickly the system evolves in terms of iterations, rather than
time units. Moreover, it is important to add supplementary views in order to fully
understand the undergoing processes. These will be provided by two additional
metrics: Hit per Ant (dimensionless) and Ants (dimensionless).

Hit per Ant reflects the amount of resources found by a single agent. This permits
to compare easily multi–ant algorithms with single–ant ones. There is a question
to consider here: with comparable Hop per Hit values, could low Hit per Ant
be considered inferior to high Hit per Ant? We argue that the answer to this
question is affirmative, because a low Hit per Ant value reflects the fact that each
agent finds a small amount of resources. In consequence, in order to achieve a
comparable Hop per Hit value an algorithm with a low Hit per Ant ratio will have
to use more ants in the process, which will directly affect the system load in a P2P
environment. To better understand compare ten ants, each one performing one
step, with one ant performing ten steps.

On the other hand, the amount of ants used, denoted as Ant, which could be
read as Ants per Query, shows how many ants are created by a single request.
This measure can be used to analyze whether the system evolves towards using
less ants, which is a favorable situation if a scalable P2P system is to be capable
of processing a vast number of queries per unit of time. In this respect, we will
consider a forward and a backward ant as separate beings so the absolute minimum
for this measure is two ants if a backward ant’s creation is forced and one, if it is
not.

2.4.3 Experiment Setup

Every test will consist of an amount n of queries of random nature, with a given
taxonomy (see 2.4.3), released from random nodes within the given world. The
query will be propagated following the rules of the algorithm that is being tested.
For every query a set of data will be stored: the birth (creation) nanosecond,
the death nanosecond, the query as text, the number of hops made, the number
of resources found and the location of resources found. Based on this we will
sort the full data, collected over the n iterations, by birth nanosecond, calculate
the quality measures (see section 2.4.2) and present the results as graphs. The
amount of queries will be fixed at n = 105. Each test run will be repeated three
times to assure consistency. The decision to limit the execution repetition at three
was taken due to time and disk space constrains. The full set of crude data, as
it is, occupies more than 60 Gb of disk space and is a result of more than 250
hours of pure processing time. Additional limiting factor was a high consistency
of independent executions leading us to believe that more repetitions would not
improve accuracy.
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Our testing platform is a highly configurable Java–based engine that supports all
the above algorithms. Tests will be run on Intel Pentium 4 630 at 3.00GHz with
4 GB of ram on a 32bit Windows 7 machine.

The scalability of the solution is not an issue to be addressed in our case, as all the
real-life implementations will be very highly distributed and slow-evolving. While
testing the limits of our software in the mentioned machine we managed to easily
generate graphs of up to 60000 nodes and release onto them more than 106 ants.
A typical user would own not more than several nodes and process only singular
ants at a time.

Taxonomy and resource distribution

ACM Computing Classification System [53] will be the taxonomical vocabulary
used. Every resource in the network G′ is described by one, and only one leaf
taxonomical concept t of the ACM classification. A resource has therefore only
two properties: its owner vertex v and a taxonomical label t. It is written as
r(v, t). Note that v1 = v2 ∧ t1 = t2 6=⇒ r1(v1, t1) = r2(v2, t2). Such an approach
leads to valuing higher those nodes that provide many resources of the same t,
which is the objective.

The distribution of resources within the network follows strictly the approach by
the test setup [15]. The resources are evenly distributed among the nodes, as
well as among the entities in the taxonomy tree. Additionally, every node is a
designated expert in a given field (there can be multiple experts in each field)
which is expressed by the composition of resources in it. Of all the resource units
in a node, 60% is labeled with the field in which the node is considered an expert,
further 20% is labeled with another field that is closely related in the taxonomical
tree to the expert field, and the last 20% is purely random, but with the restriction
to be outside the expert field. This is said to resemble real–world distribution,
reflecting the fact that people have specific interests and hobbies [54].

Query and query resolution

Every query q will only carry one of the ACM classification leaf entities and it will
be fully defined by it. In this case, however, q1(t1) = q2(t2) ⇐⇒ t1 = t2. The
benefit of such an approach is to be able to compare results of two queries released
at different time points in the testing process and to show relative improvement
between them.

The resolution of a query qr(tr) in a node ni consists of finding all the resources
that have been labeled with tr, that is, all the resources rr ∈ {r|∃r(ni, tr)}.
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Table 2.2: ACS and Semant recommended parameters

Parameter Interpretation Value
(ACS)

Value
(Semant)

TTL Time to Live 25 25
q0 Weight of exploiting vs. exploring strat-

egy
0.80 0.85

Rmax Maximum number of resources to fetch 10 10
Rmin Minimum number of resources to fetch 5 5
α Weight of newly deposited pheromone 0.07 N/A
wd Weight of resource quantity vs. link costs N/A 0.5
β Weight of link costs 1 1
γ Factor in pheromone evaporation 0.02 N/A
ρ Weight of evaporation 0.10 0.07
phmin Minimum pheromone level 0.001 0.001
phmax Maximum pheromone level 1 10000
phinit Initial pheromone level 0.009 0.009

Query distribution

During the evaluation process every node of the network N of size n has a prob-
ability of being chosen to generate a query q with the probability of 1

N . In the
Semant’s evaluation setup is time-based, every node has a probability of 0.1 to
generate a query at every time unit. This leads to the conclusion that in order
to have an equivalent test to the Semant test of T time units one must execute
n × 0.1 × T sequential iterations. A scale factor of ×10 will be used in order to
convert between time units of Semant and iterations used in this work. Every
query q will carry a randomly chosen taxonomy entity t with the guarantee that
there exists a resource within the network N that is described by t.

Execution Parameters

In Table 2.2 we summarize the recommended parameters for ACS and Semant
algorithms.
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Experiment Evaluation

Within each experiment the obtained data will be processed and presented two-
fold:

First, we will intend to simply plot the data points of all the three measures
mentioned in the section 2.4.2. Due to the large amount of data and its high
variability we chose to use simple rolling average of the size 64 as an impulse filter
and a data-set compacting method. This will serve as a graphical confirmation of
consistency between independent executions; as well as allowing us to formulate
initial observations.

Second, we choose to perform statistical analysis to back up the graphical obser-
vations. Here, again, we use rolling average in order to limit the amount of data
involved in calculations. The process will be performed over all the independent
executions within an experiment; having in mind that each configuration is exe-
cuted three times. The statistical analysis will consist of stating the H0 and H1

hypothesis as follows:

1. H0: There is no statistically relevant difference between the algorithms ACS,
SemAnt and RandomWalker k-2, in terms of Hop per Hit measure.

2. H1: There exists a statistically relevant difference between the algorithms
ACS, SemAnt and RandomWalker k-2 in terms of Hop per Hit measure.

For the hypothesis’ evaluation we will use the Friedman test, for the mutual com-
parison between the algorithms and the Wilcoxon Signed-Rank Test method with
the Bonferroni correction applied. All the statistical tests will be performed at
σ < 0.05. Evaluation techniques we apply have been proposed by Derrac et al.
in [55] specifically for such cases of studies. The only exception to the above de-
scription is the Experiment 1, where we attempt to recreate the Semant’s results
in terms of Hop per Hit. There is only graphical data provided by the authors of
Semant and therefore we must rely on graphical analysis solely.

We will use the T-Means test to express difference between any given pair of
algorithms if necessary.

2.4.4 Performance in an unstructured environment

Experiment 1: sem–1024 world – recreating the results of Semant

In this section we will analyze the performance of the chosen algorithms in an
unstructured world. Firstly we show that we have managed to recreate the results
of Semant using our testing platform and, then, we extend the comparison. The
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topology used in the work [15] is always sem–1024, all the execution parameters
are described in Table 2.2. In order to make any subsequent results viable we
must first demonstrate that the implementation of the environment of Semant is
comparable to the results obtained in the original work. To achieve this we have
developed a testing platform and applied the strictest details that are provided in
the original Semant work.

Being able to recreate results presented in [15] leads to the conclusion that the im-
plementation we have created is a correct one albeit there is a slight and irrelevant
difference in the results of random k–walker, most likely due to an implementation
decision taken by authors and not specified explicitly in their work. Additionally,
in this experiment we have included a comparison between these two approaches
and our extension of ACS taking advantage of the Routing Concept idea presented
above.

The most notable difference between ACS and Semant is visible in the section
of 0 – 10000 iterations; see Figure 2.1. Semant, due to the fact of using many
ants, seeds much more pheromone in a shorter period of time. It affects a greater
part the system with singular iterations, especially in the very early phase, when
the probability of generating multiple ants at each step is high; this fact will be
referred to as the iteration impact. The upside to this is that paths appear quicker,
as the initial phase is much more intense. From the Figure 2.1a) we can conclude
that the relative improvement within the initial 10% of the iterations is large: in
case of Semant the average number of HpH drops from 24 to 18, while in case of
ACS only from 17 to 16. Nevertheless, ACS performs better still in absolute terms.
The downside however is what happens after: the multi–ant approach continues to
generate additional ants (albeit sporadically) and drags results into slightly worse
values. And, not surprisingly, the overall convergence is better with the traditional
ACS approach than the Semant one. Notice also the Figure 2.1b) that reflects the
efficiency of a single agent: clearly Semant makes no progress in this field, the
improvement of HpH must stem out of shortening the paths rather than collecting
more resources. In case of ACS we observe a continuous improvement throughout
the entire test – asymptotically to the value of 1.7 HpA.

The convergence can be defined as the state of paths in the system after passing the
horizon of iterations, a point after which there is no (or very little) improvement
in measures. It can be observed that Semant’s horizon is estimated at about 30000
iterations, while ACS’ is at > 100000 iterations; however, it is not as clear and one
might argue a different point in time. This is due to the fact that in the hc–d tests
we notice that the expected value for convergence seems to be 10 HpH, regardless
of the setup. It has not been reached here due to the insufficient length of the test;
nevertheless, not reaching the horizon is not as crucial as the relative correlation
between the algorithms in this setup.
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Figure 2.1: Results in sem–1024
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Experiment 2: ldc–1024–m world

In this section we will analyze the impact of the number of randomly added long
distance connections to the previous setup. The important question to be an-
swered here is whether denser connections will provide benefits in terms of con-
vergence. Although it has been suggested that the variation of long distance
connections should not have any influence, there is no empirical evidence to sup-
port this claim. Consequently, we have considered a family of ldc–n topolo-
gies that will be subjected to the test; the chosen values are: ldc–1024–100,
ldc–1024–300, ldc–1024–600, ldc–1024–1200, ldc–1024–2400 and ldc–1024–4800
with average node degree of 5.19, 5.59, 6.17, 7.34, 9.69 and 14.38 respectively.

The results shown in the below figures and tables indicate that the influence of long
distance connections is in almost all cases negligible. It is not as simple as stating
that there is no influence; it is, however, highly disproportional to the amount
of links added. Theoretically, starting with the extreme cases, a fully connected
graph and a graph organized into a ring, we must expect that in the first case all
the possible queries will be answered in at most one step, while in the other they
will be answered, on average, in n/4 steps, where n is the amount of nodes; which
makes a considerable difference. Thus the statement that the appearance of new
links has no influence has been proven false in the extreme cases.

Extreme cases aside, we see from Figure 2.2 that effectively tripling the average
degree of the nodes will not result in equivalent improvement in measurements.
Still, if we consider the HpH measure we can see that, even though Semant and
Random Walks have hardly reacted to the amount of links, the densest network
always results in the best convergence. ACS makes much more of the network
size. This can be appreciated especially in the measure of Hit per Ant, where the
difference reaches 28%, bearing in mind that the number of links is more than 5
times the original.

The Friedman Test mean ranks are presented in Table 2.3. We can report that
statistically significant difference was observed, χ22(17) = 26865.258, σ = 0.00.
Further analysis with Wilcoson Signed Ranks Test of the values (presented in Table
2.4) proves that increasing the random links improves the measured parameter
significantly (with minor exceptions in Random Walker k-2), with the significance
level at σ < 0.05, and σ < 0.0072 after the Bonferroni correction. Finally, in
Table 2.4, row ACS-Semant, we compare corresponding ACS and Semant results
concluding that in all cases ACS is significantly better than Semant with σ < 0.05,
and σ < 0.0035 after the Bonferroni correction.

It must be stated however that, in absolute values, the improvements are not
very satisfying, so unless the cost of adding and maintaining an internode link is
exceptionally low, it makes very little sense to blindly densify the unstructured
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network in hope of better convergence. Note that Semant is still unable to use
just two ants and only approaches this value asymptotically.

Table 2.3: Experiment Ranks, Friedman Test for ldc-1024-m world

Test (acs-ldc-) 100 300 600 1200 2400 4800
Mean Rank 8.25 6.19 5.78 3.65 2.63 2.03
Test (sem-ldc-) 100 300 600 1200 2400 4800
Mean Rank 9.43 9.25 8.3 8.61 7.56 7.16
Test (ran-ldc-) 100 300 600 1200 2400 4800
Mean Rank 15.98 15.62 15.59 15.41 15.32 14.23

Table 2.4: Wilcoxon Signed Ranks Test statistics, based on positive ranks, for intra-
ACS, intra-Semant , intra-Random Walker k-2 and ACS to Semant inter-comparison in
ldc-1024-m

ACS (acs-) -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800 -ldc-100
- - - - - -
-ldc-100 -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800

Z -26.921 -6.348 -29.688 -19.039 -13.145 38.682
σ 0.000 0.000 0.000 0.000 0.000 0.000
Semant (sem-) -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800 -ldc-100

- - - - - -
-ldc-100 -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800

Z -1.713 -12.361 -3.589 -12.178 -5.765 22.930
σ 0.087 0.000 0.000 0.000 0.000 0.000
Rand. (ran-) -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800 -ldc-100

- - - - - -
-ldc-100 -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800

Z -6.532 -10.008 -2.490 -1.778 -17.634 26.960
σ 0.000 0.313 0.013 0.075 0.000 0.000
ACS (acs-) -ldc-100 -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800
- - - - - - -
Semant (sem-) -ldc-100 -ldc-300 -ldc-600 -ldc-1200 -ldc-2400 -ldc-4800
Z -15.424 -28.274 -26.339 -35.756 -36.203 -37.198
σ 0.000 0.000 0.000 0.000 0.000 0.000
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2.4.5 Performance in an structured (hypercube–structured)
environment

In this section we will show that the simple act of choosing a topology and, by con-
sequence, structuring the world is not sufficient in order to achieve better results.
Experiment 3 displays performance in hc–d worlds without any hybrid approach;
that is: without taking any benefit of the underlying structure, and compares
them to the ldc–n–m worlds. In experiment 4 we will propose a way to exploit the
hypercube topology and present adequate improvements. Experiment 5 further
explores the ideas of experiment 4 and highlights some details of hc–d worlds that
the previous failed to show.

Experiment 3: Hybridless approach

It is interesting to see that a completely different organization of nodes (hc–10
and ldc–1024–2400) of similar node degree results in comparable outcomes. This
only further confirms what was stated earlier: the node degree has very little
impact. In Figure 2.3 the graphs belonging to one world overlap nearly perfectly
the graphs belonging to the other. Even though Friedman Test does detect a
significant difference in terms of Hop per Hit, it is about 0.46 for ACS and 0.23
for Semant in absolute values, which is negligible, as shown in Table 2.5.

Focusing on the results within the hc-d we can easily make a several very strong
statements. It becomes very obvious that ACS outperforms Semant undisputedly
in terms of convergence quality. This stands especially true considering that in
every single measure (Figure 2.4, Table 2.7) ACS comes out ahead. One thing
needs to be pointed out: it is interesting to see how ACS struggles increasingly
to converge with the size of the world – e.g. a small world such hc–7 is fully
penetrated after less than 5000 iterations, whereas one of size hc–13 still has not
reached its horizon even after 105 iterations. Semant suffers such a problem as
well, however in a slightly less impacting manner: in spite of the high iteration
impact, it does not reach the value of about 2 Ant per Query, which would be the
indication of the horizon, in Semant’s case.

Last conclusion, which we arrive at, is that regardless of the size of the hc–d world
the convergence is always within a range of similar values. Moreover they are not
far off the results obtained in the Experiment 2 and it leads us to believe that a
wise choice of topology could affect the convergence speed only; not improve the
quality of the convergence obtained.

The statistical analysis resulted in similar conclusions to the ones obtained in Ex-
periment 2. Table 2.6 presents the confirmation of statistical differences, χ2(20) =
34130.756, σ = 0.00; in Table 2.7 we order all the tests in statistically significant
ascending order along the hc-d values at σ < 0.0035, with minor exceptions for the
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Random Walker k-2, and row ACS – Semant of Table 2.7 proves the superiority
of ACS over Semant at σ < 0.0017. Bonferroni correction was applied in all the
cases.

Table 2.5: Comparison: hc-10 with ldc-2400

Paired Mean Std. 95% Conf. Int. df Sig.
Dev Error Lower Upper

acs-hc-10 0.4592 1.4060 0.0314 0.3976 0.5209 1999 0.00
-
acs-ldc-2400
sem-hc-10 0.2373 1.7562 0.0392 0.1603 0.3143 1999 0.00
-
sem-ldc-2400

Table 2.6: Experiment Ranks, Friedman Test for ldc-1024-m world

Test (acs-hc-) 7 8 9 10 11 12 13
Mean Rank 1.25 2.53 3.31 5.14 7.64 10.1 11.72
Test (sem-hc-) 7 8 9 10 11 12 13
Mean Rank 5.43 6.08 7.97 9.46 10.86 12.38 14.10
Test (ran-hc-) 7 8 9 10 11 12 13
Mean Rank 16.05 17.58 17.73 17.9 17.98 17.95 17.73

Experiment 4: Hybrid approach

In this section we will show the impact of adding a hybrid path processing to a
known topology – in this case hc–d, as it was considered in the experiment 3.
The worlds identical to experiment 3 will be chosen, so apart from the usage of
TRO there is no difference between this experiment and the experiment 3. We
must stress that the hybrid approach is not general, as it requires the hypercube
topology. It is based around exploiting the knowledge provided by this fact.

There are several interesting results stemming out these tests. We need to em-
phasize that both Semant and ACS are inherently unstructured algorithms, that
is, such ones that were designed to operate in unstructured worlds. Firstly, in the
comparison of hybrid hc–d against the non–hybrid we see that Semant has finally
been able to make some progress in the Hit per Ant measure, reaching consider-
able results, compare 2.6 versus 2.2 and 2.5. In Table 2.8 we can observe that the
difference in HpH measure is about 8.44 for ACS and 10.64 for Semant, in absolute
values. This is a highly relevant difference and proves that it has been a quality
leap from a hybridless hypercube to a hybrid hypercube.
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Table 2.7: Wilcoxon Signed Ranks Test statistics, based on positive ranks, for intra-
ACS, intra-Semant , intra-Random Walker k-2 and ACS to Semant inter-comparison in
ldc-1024-m

ACS (acs-) -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13 -hc-7
- - - - - - -
-hc-7 -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13

Z -35.088 -18.649 -33.309 -34.594 -29.898 -23.934 38.730
σ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Semant (sem-) -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13 -hc-7

- - - - - - -
-hc-7 -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13

Z -10.956 -25.574 -18.510 -15.284 -16.240 -17.386 38.725
σ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rand. (ran-) -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13 -hc-7

- - - - - - -
-hc-7 -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13

Z -20.402 -1.885 -2.888 -0.191 -0.282 -0.829 22.838
σ 0.000 0.059 0.004 0.848 0.778 0.407 0.000
ACS (acs-) -hc-7 -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13
- - - - - - - -
Semant (sem-) -hc-7 -hc-8 -hc-9 -hc-10 -hc-11 -hc-12 -hc-13
Z -38.570 -37.639 -37.307 -35.293 -29.590 -23.308 -21.946
σ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The hybrid approach in itself is such a powerful tool that even the random algo-
rithm has finally reported a slightly improved convergence values in HpH terms.
Of course it is not quite suitable to name the state convergence in its case as there
is no pheromone, nor system evolution involved.

The convergence limits have changed from 10 Hop per Hit for ACS and 18 Hop
per Hit for Semant to 2 Hop per Hit and 5 Hop per Hit respectively; see Figure
2.5a. That is a significant improvement of factor oscillating between ×4 and ×5.
Also a single ant is much more efficient now, being able to find the unprecedented
3 resources while it has never reached more than 2, see Figure 2.5b.

ACS, as earlier, outperforms Semant, but here the quick convergence of Semant
plays a much more crucial role. In large worlds the Hop per Hit measure seems
to be better for Semant than ACS. It is not so: what actually occurs is that
ACS is further from its corresponding horizon than Semant. Semant has always
displayed such a quality but never has it ended in the state of Semant actually
being higher evaluated than ACS (see hc–12, hc–13 in Figure 2.6). Consider, for
instance, the point 2.1b. There is a short section of 5000 iterations where Semant
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actually performs better than ACS. Here, due to the size of the world, every
convergence process is slowed down so much that the short section mentioned
above is encompassed within our entire test of 105 iterations. The horizon is never
reached and the convergence does not occur. To further analyze this phenomenon
we proposed experiment 5.

Again the output of the Friedman Test confirms the graphical analysis (see Table
2.9). χ2(20) = 33529.717, σ = 0.00. In case of the Wilcoxon Sign Ranked com-
parison (Table 2.10, σ < 0.0035) we have noticed one deviation from the typical
result, namely the acs-hco-9 does not appear to be better than acs-hco-8. It can be
explained by a surprisingly high quality of acs-hco-8, which is always a possibility
in a non-deterministic setup. The most relevant results are presented in ACS –
Semant row, in Table 2.10. We can clearly see that until the hc-10 world ACS is
significantly better while hc-11 and above it is significantly worse. It is a statistical
confirmation of the undergoing processes, explained in the previous paragraph.

The hybrid approach has allowed all the algorithms to reach convergence of values
never achieved before. The costs of the hybrid approach are: slightly increased
computation effort, further positioned convergence horizon and the requirement
to establish a topology.

Table 2.8: Comparison: hc-10 with ldc-2400

Paired Mean Std. 95% Conf. Int. df Sig.
Dev Error Lower Upper

acs-hc-10 8.4376 2.7425 0.0613 8.3173 8.5579 1999 0.000
-
acs-hco-10
sem-hc-10 10.6375 4.00151 0.0897 10.4615 10.8136 1999 0.000
-
sem-hco-10

Table 2.9: Experiment Ranks, Friedman Test for hc-d world with hybrid path opti-
mization

Test (acs-hco-) 7 8 9 10 11 12 13
Mean Rank 5.76 3.07 2.67 4.99 8.31 11.96 13.04
Test (sem-hco-) 7 8 9 10 11 12 13
Mean Rank 7.02 5.15 5.18 6.47 8.14 11.39 13.95
Test (ran-hco-) 7 8 9 10 11 12 13
Mean Rank 16.78 17.39 17.98 17.70 17.96 18.01 18.09
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Table 2.10: Wilcoxon Signed Ranks Test statistics, based on positive ranks, for intra-
ACS, intra-Semant, intra-Random Walker k-2 and ACS to Semant inter-comparison in
hc-d with hybrid path optimization

ACS (acs-) -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13 -hco-7
- - - - - - -
-hco-7 -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13

Z -24.130 -0.698 -32.828 -37.134 -38.101 -33.411 38.734
σ 0.000 0.485 0.000 0.000 0.000 0.000 0.000
Semant (sem-) -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13 -hco-7

- - - - - - -
-hco-7 -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13

Z -19.591 -5.183 -20.480 -24.662 -34.783 -34.470 38.724
σ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rand. (ran-) -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13 -hco-7

- - - - - - -
-hco-7 -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13

Z -9.142 -8.679 -4.220 -4.185 -10.047 -1.671 19.031
σ 0.000 0.000 0.000 0.000 0.295 0.095 0.000
ACS (acs-) -hco-7 -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13
- - - - - - - -
Semant (sem-) -hco-7 -hco-8 -hco-9 -hco-10 -hco-11 -hco-12 -hco-13
Z -23.938 -28.946 -28.437 -130.053 12.639 21.502 10.599
σ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Experiment 5: Hybrid approach 500k

The horizon problem has caused results in higher dimension worlds of the previous
test become unconverged due to the limitation on the number of iterations. We
decided to observe the behavior of the selected two algorithms in further stages,
only basing ourselves on the Hop per Hit measure. In order to do so we increased
the number of iterations from 105 to 5× 105, which was deemed sufficient.

The results are presented in Figure 2.8. It quickly became apparent that the limit
of 5× 105 iterations is enough to observe the convergence horizon. As in smaller-
degree optimized cases, both algorithms achieved comparable values. In this case
however the window of Semant’s superiority over ACS was so extended that both:
the graphical and statistical reasoning prove that Semant is in fact better in this
extreme case. As usual we applied the Freidman Test that concluded statistical
differences (see Table 2.11) with values χ2(3) = 16442, 921, σ = 0.00. Finally we
determine that Semant is better in both inter-comparisons: sem-hco-12 500k –
acs-hco-12 500k was ranked at −52.790, while sem-hco-13 500k – acs-hco-13 500k
at −75, 607, both with Asymp. Sig (2-tailed) below 0.0035.
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The comparison of the results in the previous section and the current ones raises
the important issue of the iteration impact yet again. The more effect a single
query has on the system (iteration impact, expressed as a ratio of nodes affected
by a single iteration of ACO, to all the nodes), the quicker the convergence occurs;
which might erroneously cause a conclusion of the superiority of Semant over
ACS in some large worlds in early phases of the test. The problem is the quality
rather than the speed – the mechanisms that cause the higher impacts in early
stages also cause an overhead in the later stages. Semant serves as a perfect
example: intensified search in recently initialized world causes a boost in Hop per
Hit measure, but the very same process penalizes the results just after that, since
additional ants are being sent aimlessly with no, or little chance of discovering any
new resources. Whether this can be of any benefit in a world that has a dynamic
resource distribution or structure will be the objective of future work.

What needs to be noted is that the introduction of hybrid path post processing
mechanism has had much higher influence on the convergence process than the
introduction of a multi–ant mechanism.

Table 2.11: Experiment Ranks, Friedman Test for hc-d world with hybrid path opti-
mization at 500k

Test acs-hco-12 500k acs-hco-13 500k sem-hco-12 500k sem-hco-13 500k
Mean Rank 2.14 3.75 1.48 2.64

2.4.6 Time-based analysis

In order to put the preceding results in perspective we chose to translate the
iteration-based results into time-based ones. The most crucial discussion in this
approach is the point in time at which ACS stats to score better results, in terms
of Hop per Hit, than Semant. In Table 2.12 we present the compiled results.
Iterations are grouped down to a unit of 1000, while time is measured with the
precision of 0.1 [s].

It can be observed that in the case of the hypercube topology ACS is competitive
against Semant even in early iterations. In the case of a toroidal network with long
distance connections ACS becomes even more so as the number of long distance
connections increases. Finally, in the case of a hybrid hypercube approach as
the size of the network increases, the number of iterations needed for ACS to
surpass Semant in terms of Hops per Hit increases. In this case ACS would be less
recommended for applications requiring real-time P2P resource searching.
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Figure 2.8: Hop per Hit in the world hc–12 and hc–13 with extended iteration horizon

2.5 Conclusions and Future Work

In this work we have proven several important facts about the use of ant–based
methods in the P2P environments. We limited the scope of possibilities by choosing
a set of reasonable prerequisites and picked two algorithms (in five variants) of eight
taken in consideration. Random behavior was selected as the background and the
base–line.

As underlying structures we have elected multidimensional hypercubes, toruses
and toruses with additional links – in every case the only factor impacting the
results was the average degree of the node, which translates directly into the
network’s link density. There was no perceptible difference between a hypercube
of average node degree 10 and torus of average node degree 10. This conclusion can
be taken a step further. As the average node degree has a highly disproportional
influence on the results, only very slightly demonstrating itself in extremes, we
state that unexploited underlying topology is irrelevant to the results. On the other
hand, the topology–aware hybrid route optimization makes a big difference, scoring
results unobtainable in other approaches. Therefore, exploiting the underlying
topology is relevant to the results and can have a very positive impact. Similar
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Table 2.12: Time-based analysis. Point in time, at which ACS surpasses SemAnt

Test Iteration Time
- [s]

ldc-100 40000 120.0
ldc-300 18000 59.4
ldc-600 10000 33.0
ldc-1200 8000 24.0
ldc-2400 2000 6.1
ldc-4800 0 0
Test Iteration Time

- [s]
hc-7 0 0
hc-8 0 0
hc-9 0 0
hc-10 0 0
hc-11 0 0
hc-12 0 0
hc-13 0 0
Test Iteration Time

- [s]
hco-7 0 0
hco-8 0 0
hco-9 7000 21.0
hco-10 21000 88.2
hco-11 39000 105.3
hco-12 81000 267.3
hco-13 >100000 >318.0

conclusions, with no empirical backup demonstrated, have been suggested in [15]
and [31].

Another conclusion to notice is that the addition of the hybrid path optimization
has by far more impact on the results than then original difference between ACS
and Semant. One can understand this as a confirmation of the superiority of
hybrid methods over slight tweaks in parameters of the classical algorithms. This
is a practical implication to the question of ant–based P2P search and must be
always taken into consideration when constructing a P2P search mechanism.

We have shown that the classical approach of ACS, extended with the Routing
Concept notion, scores better than the elaborate construction of Semant. Under
all circumstances it has achieved superior convergence and lower use of system
resources. The confrontation of a single ant (ACS) versus multi–ant (Semant)
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algorithms reveals a profound difference. Multi–ant algorithms, represented by
Semant, have the tendency to quickly penetrate the world and seed pheromone
values more rapidly. However, as was stated earlier, this process penalizes the
results in the long run because the multi–ant mechanism continues to emit addi-
tional agents even when there is no need. These unnecessary agents return to their
corresponding initial nodes and mostly find no new resources, therefore putting
an additional strain on the system for no benefit.

In summary, the above conclusions must be taken into account when attempting
the construction of a high quality ACO adaptation in the field of P2P.

It needs to be pointed out that the notion of quick convergence, as opposed to the
quality convergence, might prove to be more useful in dynamic systems. The rea-
soning is that, even though one algorithm might theoretically reach a better state
of convergence, it would never do so due to the environment changing constantly
and spoiling what was established; whereas the quick one – although not as good
– would keep the average convergence in a better state. This will form the bulk of
our future work: examining the behavior of the mentioned algorithms under the
strain of variability. It will include resources disappearing and reappearing, nodes
reattaching themselves to other points in the system, nodes disconnecting from
the system completely, etc.
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Abstract

The applicability of peer-to-peer (P2P) in the domain of grid computing has been
an important subject over the past years. Nevertheless, the sole merger between
P2P and the concept of grid is not sufficient to guarantee nontrivial efficiency.
Some claim that ant colony optimization (ACO) algorithms might provide a def-
inite answer to this question. However, the use of ACO in grid networks causes
several problems. The first and foremost stems out of the fact that ACO al-
gorithms usually perform well under the conditions of static networks, solving
predetermined problems in a known and bound space. The question that remains
to be answered is whether the evolutive component of these algorithms is able to
cope with changing conditions; and by those we mean changes both in the positive
sense, such as the appearance of new resources, but also in the negative sense, such

49



Chapter 3. Ant Colony Optimization for resource querying in dynamic peer-to-peer grids

as the disappearance or failure of fragments of the network. In this paper we study
these considerations in depth, bearing in mind the specificity of the peer-to-peer
nature.

3.1 Introduction

The idea of the grid originated in the early nineties as a new metaphore for dis-
tributed computing with resources that are heterogeneous and dynamic in nature.
The key idea behind it was to loosely couple computing nodes to allow them to
collaborate in order to achieve a common goal. Due to an apparent ambiguity
and similarity to other solutions such as parallel computing and computer clusters
a proper definition was provided in [56]. A checklist of requirements that define
grid computing consists of three primary attributes: computing resources are not
administered centrally, open standards are used, nontrivial quality of service is
achieved.

Over the past years many subgenres of grid computation have spawn. They include
many concepts, just to name a few: Software as a Service , DataGrids [57], CPU
scavenging – with its prime example SETI@Home [23]. The last mentioned is,
interestingly, also a very good example of peer-to-peer (P2P) cooperation and a
proof of these two computation architectures complementing each other. Trunfio
et al. [58] formalize the split between the technologies stating that the grid used
to be restricted to scientific and limited applications as opposed to P2P which was
much more wide scale and accessible.

The key point of the grid computing model is the question of the underlying pro-
tocol and node organization. One of the most prominent approaches is the use of
P2P architectures as a base building block (the communication layer) and authors
agree that it is a suitable platform for grid computing [59], sometimes seeing it as a
sister technology. This distributed infrastructure does fulfil automatically the first
two of the three required points: the distributed resources and open standards.
Also, it allows transferring all the knowledge developed in the field of P2P with all
its benefits to the grid computing. The third point, however, which is the question
of the efficient service remains to be answered; which becomes even more crucial
if we take into consideration the growing scope and highly dynamic nature of P2P
networks.

In this work we chose to examine the ant colony optimization metaheuristic as
a possible solution to the effective searching of resources in dynamic P2P grids.
ACO algorithms achieved very good results in problems that include routing and
resource discovery as shown in [17], and there were even attempts, of limited extent,
to apply them to the P2P grid itself [60], which proves the importance of this idea.
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However, no previous work has analyzed the suitability of this algorithmic strategy
under all the types of dynamism considered in our study.

In order to observe and analyze the applicability of ACO under those conditions
we have designed several experiments to isolate a set of real-life resembling forms
of variability that a network might experience and, consequently, subject selected
algorithms to tests based around those forms of variability. The direct objective is
to establish whether or not the algorithms designed to work in static environments
can cope with various forms of dynamism.

3.2 Related Work

The related works, to the question of resource discovery in general, might be
categorized as follows: the centric solutions, the Grid solutions, the P2P Grid
solutions and the P2P Grid solutions with ACO as the search algorithm.

The centric solutions are feasible only in small-scale due to a strong limitation
cap of processing power, storage space, etc. Another drawback is that servers
are single points of failure, creating potentially vulnerable systems. Consequently,
there have been steps taken in order to disperse the system among a grid of nodes,
following the metaphor of an electric power grid [56], with many challenges of its
own. Some try to achieve efficiency in such setups using proprietary or mixed
approaches [61] [62], some base themselves on the P2P paradigm [63], while other
use ACO algorithms or ACO-grid combinations [64] [65].

In the mixed approaches category it is worth pointing out the work of Brocco et
al. [62] presenting an interesting approach to the subject of resource discovery
in grid networks. They prepared a hybrid solution encompassing a wide range of
algorithms: ACO, local flooding with caching and replication based on gossiping
algorithms; they report satisfactory results, but limiting the size of the network
to 1281 nodes and analyzing their algorithm under just one type of dynamism -
defined in this paper as reconfiguration, which is just one of the types of dynamism
considered in our work. A purer approach is presented in [65], where an ACO-like
mechanism is the only one that governs the behaviour of search agents in a grid.
Here, similarly, the concept of data descriptors’ replication is present, which is
outside our objectives and, as it occurs in [62], only reconfiguration operations are
considered as a form of dynamism affecting the underlying network.

We must also mention here the work of Deng et al. [60]. They touched upon
the subject of ACO in P2P Grids, however with slightly different emphasis. In
our case the experimental study focus is placed on ACO; in their work it is on
P2P Grids. Also, while we examine various existing ACO algorithms and observe
their behaviour when applied to the question of P2P, they design a proprietary
ACO algorithm (roughly based on ACS [17]) along with P2P Grid and test its
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robustness against a non-ACO method, namely distributed hash table routing.
The scope of our experiments is also larger, extending to thousands of nodes and
tens of thousands of links over one hundred thousand iterations. Additionally,
they do not take in consideration the fundamental concept of dynamism in the
network as we do.

In summary, the main contribution of this work is twofold. First, it is a pure
ACO solution in the field of P2P Grids, without any kind of hybridization in
form of replication, flooding, etc. Second, we attempt to exhaust the subject of
structural dynamism and its impact on ACO in general, a subject that is very
seldom explored to this extent. We do so in networks, which are built to be as
close as possible approximations of real-life systems: they consist of thousands of
nodes and tens of thousands of links.

3.3 Ant Colony Optimization in P2P

Ant Colony Optimization [33] is a swarm intelligence approach to problem-solving
introduced by Marco Dorigo in his work on distributed optimization in 1991. The
core idea of ACO is twofold, firstly, as properly named, it uses a swarm of simple
and stochastic automaton to solve complex problems and, secondly, the commu-
nication between these is through stigmergy and therefore indirect. Such a com-
munication method has shown to provide interesting results, especially with the
emphasis on finding the shortest path [7], optimizing a given function [34] [66]
or in other graph-related problems, such as T-Colouring [67]. The automaton, or
agents, in ACO are called ants. Each ant has the simple task of finding the re-
quired resource (search phase) and bringing it back to its nest (returning phase);
without the loss of generality one can limit the world, in which ants live, to a
bidirectional graph G(V,E) of finite size with vertices v ∈ V representing possible
locations of resources and edges e ∈ E representing trails.

In order to consider ACO P2P-compliant we need to formulate additional requi-
sites. Every ACO-based query resolution algorithm in P2P environments must
conform to the below query-resource (q-r) principles:

1. Every node may have any amount of resources, including zero resources.

2. Every node may issue a query, that is, a request for a set of resources of any
nature; one that may be answered with resources residing in one or many
nodes within the network.

3. Every node must not be aware of the content of any other node but itself.
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4. Every node may be connected to a set of nodes via bidirectional links of
high traveling cost. A Degenerated (disconnected) node may be connected
to zero other nodes.

5. Every query is propagated among nodes, collecting resources that correspond
to the request issued.

6. The destination (the final) node of a query is never known a priori nor is it
deterministic.

7. The trail of a query is never known a priori nor is it deterministic.

ACO methods can be grouped into two broad groups, namely: single ant and
multi ant, with the distinction revolving around the amount of ants generated for
solving one act of search. For each group we chose a representative for our ex-
perimental evaluation: RC-ACS (Routing Concept ACS), our proposed semantic
extension of ACS [17] and Semant [15] for single- and multi- ant approaches re-
spectively. These two representatives have been selected after a prior examination
of ACO algorithms based on two factors: firstly, compliance with the previous
(q-r) principles (i.e., ACO strategies violating any of the previous q-r principles
were discarded because they would not be applicable in the P2P domain) and,
secondly, recognized performance under static conditions.

Our semantic extension of ACS, RC-ACS, which is based on the pheromone-per-
keyword heuristic as in [15], is designed taking into account that in a P2P network
there is a large quantity of traffic of very different natures. The pheromone left
by queries for certain resources must not influence the search of other, which may
be unrelated. In order to tackle this problem we introduce the notion of Routing
Concept, noted as ρ. It requires that every edge maintains, not a single pheromone
value τ(vu) between its source node v and each neighbor node u, but rather an
associative array τρ(vu), where ρ is obtained from the current request by means
of ρ = ρ(Q), where ρ(Q) is a function that extracts the Routing Concept based on
the Query Q issued. In our case we defined the function ρ(Q) as one that returns
the taxonomical label of the parent concept of the requested one.

Ants follow a simple and non-deterministic search algorithm that we summarized
in Fig 5

Algorithm 5: ACO-based query in graphs. ACS/SemAnt differences
1: let Request R be generated by the vertex v0 and routed by ant A. i = 0.
2: repeat
3: A attempts to satisfy R in the current vertex vi.
4: if R satisfied then
5: end loop
6: end if
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7: Choose randomly between exploration and exploitation
8: if exploitation then
9: Go to vertex vi+1:

vi+1 = argmaxu∈V {τρ(viu)× η(viu)β} (3.1)

where:

- τρ(viu) ∈ [0, 1] is the pheromone value on the edge viu, for the routing
concept ρ. τρ ∈ [0, 1],if viu ∈ E; τρ = 0,if viu /∈ E)

- η(viu) is the cost value on the edge viu
- β ∈ [0, 1] is a parameter

10: else if exploration then Evaluate

p(vi, u) =
τviu × ηβviu∑
z∈V τviz × η

β
viz

if viu ∈ E (3.2)

11: (*RC-ACS) Go to vertex vi+1, chosen from all u ∈ V with probability
p(vi, u)

12: (*SemAnt) Send a clone of the original ant A to every vertex z, each
with probability p(vi, z)

13: end if
14: Perform local pheromone update on the edge vi and vi+1:

τρ(vivi+1)← (1− ρ) · τρ(vivi+1) + ρ · γ ·max
z∈V

τviz (3.3)

where:

- ρ ∈ [0, 1] and γ ∈ [0, 1] are parameters

15: until R is not satisfied or A has not terminated
16: Perform global pheromone update for every edge vu in the solution S to the

request R
17: (*RC-ACS)

τρ(vu)← (1− α) · τρ(vu) + α× 1

|L| (3.4)

where:

- |L| is the amount of edges in the solution S
- α ∈ [0, 1] is a parameter

18: (*SemAnt)

τρ(vu)← τρ(vu) + wd ×
|S|
Smax

+ (1− wd)×
|L|

2Lmax
(3.5)

where:

- |S| is the amount of resources in the solution
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- Smax is the maximum amount of resources permitted
- Lmax is the maximum amount of edges in the solution permitted
- wd ∈ [0, 1] is a parameter

3.4 Experimental methodology

We define the graph topology as follows: the graph G(V,E) consists of |V | vertices,
where |V | is an even number. The edges E are organized in a fully connected grid
with a toroidal topology, where both dimensions d1,d2 of the creating rectangle
are chosen to fulfill |d2− d1| ∼= 0 to minimize the medium distance. Consequently,
we create the graph G′(V,E ∪ LDC), where LDC is a set of all long distance
connections (LDCij) in the graph G; every vertex vi has exactly one long distance
edge that connects it directly to a random vertex vj , with the pure toroidial
distance dE(vivj) > 2,∀(vivj) ∈ E.

LDC ⊂ vivj |(vivj) /∈ E ∧ dE(vivj) > 2 (3.6)

The probability of a node vi having LDCij of length dE(vivj) is proportional to
dE(vivj)

( − 1). The above explanation is a strict reformulation of the approach
from [15].

Although the execution of every experiment will begin with the G′ topology, this
topology will be subject to changes according to the type of dynamism studied in
each experiment. Therefore, each experiment will define two concepts:

1. The modification function of the given graph ∆ : G→ G, which transforms
the graph G.

2. The modification function period ∆ρ is an integer which expresses how often
∆ function is executed.

Each experiment will be evaluated according to a common quality measure called
Hop per Hit (HpH), which is a dimensionless ratio that has been effectively used
to measure performance in P2P systems in previous works [15] [18]. In this metric
hop is the total amount of steps taken by an agent and hit is the amount of
resources found.

See Table 3.1 for details on algorithm execution parameters.
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Table 3.1: Execution parameters

Parameter Interpretation Value Value
(RC-ACS) (SemAnt)

TTL Time to Live 25 25
q0 Weight of exploiting vs. explor-

ing strategy
0.80 0.85

Rmax Maximum number of resources
to fetch

10 10

Rmin Minimum number of resources to
fetch

5 5

α Weight of newly deposited phe-
romone

0.07 N/A

wd Weight of resource quantity vs.
link costs

N/A 0.5

β Weight of link costs 1 1
γ Factor in pheromone evaporation 0.02 N/A
ρ Weight of evaporation 0.10 0.07
phmin Minimum pheromone level 0.001 0.001
phmax Maximum pheromone level 1 10000
phinit Initial pheromone level 0.009 0.009

3.4.1 Test Setup

Every test will consist of an amount itmax of iterations. Iteration is defined as
a single act of querying, launched from a random node, routed according to the
given algorithm. For every query a set of data will be stored: the birth (creation)
nanosecond, the death nanosecond, the query as text, the number of hops made,
the number and the location of resources found. Due to the large amount of data
and its high variability, we chose to use simple rolling average of size 254 as an
impulse filter and plot the function HpH(it), where it is the iteration number.
The amount of queries will be fixed at itmax = 105.

Our testing platform is a highly configurable Java-based engine that supports all
the above algorithms. Tests will be run on Intel Pentium 4 630 at 3.00GHz with
4 GB of ram on a 32bit Windows 7 machine.
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Taxonomy and resource distribution

ACM Computing Classification System [53] will be the taxonomical vocabulary
used. Every resource in the network G′ is described by one, and only one leaf
taxonomical concept t of the ACM classification. A resource has therefore only
two properties: its owner vertex v and a taxonomical label t. It is written as
r(v, t). Note that v1 = v2 ∧ t1 = t2 6=⇒ r1(v1, t1) = r2(v2, t2). Such an approach
leads to valuing higher those nodes that provide many resources of the same t,
which is the objective.

The distribution of resources within the network follows strictly the approach by
the test setup [15]. The resources are evenly distributed among the nodes, as
well as among the entities in the taxonomy tree. Additionally, every node is a
designated expert in a given field (there can be multiple experts in each field)
which is expressed by the composition of resources in it. Of all the resource units
in a node, 60% is labeled with the field in which the node is considered an expert,
further 20% is labeled with another field that is closely related in the taxonomical
tree to the expert field, and the last 20% is purely random, but with the restriction
to be outside the expert field. This is said to resemble real–world distribution,
reflecting the fact that people have specific interests and hobbies [54].

Query and query resolution

Every query q will only carry one of the ACM classification leaf entities and it will
be fully defined by it. In this case, however, q1(t1) = q2(t2) ⇐⇒ t1 = t2. The
benefit of such an approach is to be able to compare results of two queries released
at different time points in the testing process and to show relative improvement
between them.

The resolution of a query qr(tr) in a vertex v consists of finding all the resources
that have been labeled with tr, that is, all the resources rr ∈ {r|∃r(v, tr)}. During
the evaluation process every node of the graph G of size |E| has a probability of
being chosen to generate a query q with the probability of 1

|E| .

3.4.2 Types of dynamism

We decided to focus on the most common types of dynamism a real-life P2P
network can experience. They are: expansion (the process of densification of the
network), contraction (the process of rarefaction of the network), enrichment (the
process of addition of new resources) and reconfiguration (the process of migration
of nodes within the network) as it is summarized in Table 3.2.

The network expansion is one of the most straightforward ways to improve the
robustness of algorithms within a P2P network. The subject of expanding the net-
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work by adding links in both uninformed and informed manner has been examined
many times; for instance, in the case of Overlay Networks [43] and Interest-Based
Locality [68], as well as Acquaintance Links [69]. Here we will show the effect of
random network growth specifically on ACO algorithms in order to express the fact
that users might be allowed to create direct links, or shortcuts, to their favorite
nodes, with the assumption that it is somewhat a random process.

The network contraction is a far less studied phenomenon. In this case the nodes
and their corresponding resources remain unchanged, but the interconnecting net-
work does shrink, leaving nodes disconnected and the system partitioned. Natu-
rally this must hinder the algorithms ability to obtain good results therefore the
response should be negative. This kind of behaviour might be seen as a situation
in which the communication between the nodes is progressively worsened by, for
instance, an on-going electrical storm.

By the network enrichment we understand the increase in the amount of resources
that every node provides. This clearly must enable the algorithms to gather more
resources, but the question of whether the newly provided resources can be effec-
tively discovered remains to be answered. Note that it is much more likely for
users to add resources than to remove them so the phenomenon of resources mas-
sively disappearing from the system is secondary. Hence the counter-part to this
dynamism, might we call it Network impoverishment, is not included. This is a
direct conclusion form a universal and long-lasting trend of ever-increasing traffic
over file sharing services and similar [70]. The process of network enrichment from
the perspective of the processing grids could be seen as an act of expanding the
computer capabilities to provide more services.

The more mobile the network’s users are, the more important the network recon-
figuration becomes. If a P2P network provides location based resources one would
suppose it would be beneficial to reattach the user to the nodes in the current
neighborhood. This directly implies a disappearance from the original location
and appearance in another. It is a very interesting concept to examine from the
ACO’s point of view, seeing how they take a period of time to stabilize a path and
then to remove it. If a key resource provider in a given neighborhood disappears,
it should lead to a sudden drop in the quality of results, therefore, we expect this
type of dynamism hinder results severely.
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Table 3.2: Comparison of dynamism types

Dynamism Experiments Expected impact Example of a real-
life analogue

Expansion NetGrow 10k Positive Users create direct
links to favorite
sources

Contraction NetShrink 10k Negative Communication
distortion due to
interference

Enrichment ResGrow 10k Positive Nodes are equipped
with new devices;
users share more files

Reconfiguration NodeMigrate 10k Negative Mobile users travel to
distant locations

3.5 Experimental study

In this section we present all the experimental results. In experiments 1 - 4 we
examine in detail all the types of dynamism mentioned in Section 3.4.2. In every
experiment the random behaviour (RandomWalks k2) is shown as the baseline and
the minimum HpH expectancy.

3.5.1 Experiment 1: NetGrow 10k

Table 3.3: NetGrow 10k experiments

Experiment Graph
size

Growth
Size

Initial
Edge
Set
Size

Final
Edge
Set
Size

Initial
Average
Vertex
Degree

Final
Average
Vertex
Degree

|V | ∆ |E|init |E|fin deg(v)init deg(v)fin

NetGrow10k 10links 1024 10 2560 2650 5.00 5.18
NetGrow10k 30links 1024 30 2560 2830 5.00 5.53
NetGrow10k 60links 1024 60 2560 3100 5.00 6.05
NetGrow10k 120links 1024 120 2560 3640 5.00 7.11
NetGrow10k 240links 1024 240 2560 4720 5.00 9.22
NetGrow10k 480links 1024 480 2560 6880 5.00 13.44

We have executed this experiment in 6 independent configurations; see Table 3.3
for the details. The most visible conclusion from the results presented in Figure
3.1 is that both algorithms struggle to appreciate the additional shortcuts added
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Figure 3.1: HpH in NetGrow 10k
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to the system. In case of multi-ant behaviour it is particularly striking, as there is
absolutely no improvement detected in terms of HpH. Moreover, SemAnt remains
better than random behaviour only by a slight margin. There is improvement
detected in case of RC-ACS, but not proportional to the amount of edges added,
as in the variant NetGrow10k 480links we increase the edge set from 2560 to 6880,
while the final average HpH reaches only 20% improvement.

3.5.2 Experiment 2: ResGrow 10k

Table 3.4: ResGrow 10k experiments

Experiment Graph
size

Growth
Size

Initial
Res.
Count

Final
Res.
Count

Initial
Avg.
Res.
Count

Final
Avg.
Res.
Count

|V | ∆ |Res|init |Res|fin
ResGrow10k 10res 1024 10 30720 30810 30 30.09
ResGrow10k 30res 1024 30 30720 30990 30 30.26
ResGrow10k 60res 1024 60 30720 31260 30 30.53
ResGrow10k 120res 1024 120 30720 31800 30 31.05
ResGrow10k 240res 1024 240 30720 32880 30 32.11
ResGrow10k 480res 1024 480 30720 35040 30 34.22

As in real life resources constantly appear and disappear from the system; if you
consider data grid systems, replication services may constantly add new files to the
distributed repositories. Therefore, the question to answer here is how effective
are the proposed algorithms in finding emerging resources, while the already found
ones are still in place. In order to simulate this dynamic we designed ResGrow
experiment. See Table 3.4 for the independent experiment configurations used.

This experiment was designed as the one with the most positive impact expected
and, also, the one that affects the given state of pheromone the least, as it only
manipulates the resources. Consequently, it was expected that, in the worst case,
the results obtained are at least as good as the alteration-free execution.

As it can be observed in Figure 3.2 this indeed was the case. Every algorithm
reported a significant improvement, disproportionately large, when compared to
the increase of the amount of resources per node. In the most extreme case the
improvement on HpH measure reaches 28% as a result of the growth of the resource
pool by only 13%. Note that in Figure 3.2 the HpH improves linearly with the
total amount of resources distributed, as well as with the amount of resources per
growth. This means that all the algorithms are capable of finding new resources;
much better than new routes, as shown in the Experiment 1. Note that even
the random baseline improves with time. Thanks to its multi-ant penetration
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capabilities, SemAnt is the most efficient in the HpH measure in terms of relative
improvement; still remains inferior in absolute terms, however.

3.5.3 Experiment 3: NodeMigrate 10k

Table 3.5: NodeMigrate 10k experiments

Experiment Graph
size

Migration
Size

Migrations
total

Migrations
per node

|V | ∆

NodeMigrate 10node 1024 5% (51 nodes) 459 0.45
NodeMigrate 30node 1024 10% (102 nodes) 918 0.90
NodeMigrate 60node 1024 20% (204 nodes) 1836 1.80
NodeMigrate 120node 1024 50% (512 nodes) 4608 4.50
NodeMigrate 240node 1024 70% (716 nodes) 6444 6.30
NodeMigrate 480node 1024 90% (921 nodes) 8289 8.10

This experiment tries to recreate the conditions of a live and dynamic network
of nodes. The real-life analogue of the NodeMigrate can be understood as, for
instance, mobile phone based P2P network where users constantly change location.
With the change of location comes the process of reattachment to the network,
yet the owner’s node will provide the same resources as before. Another example
of this situation would be the migration of files in a data grid replication service
as a consequence of changing QoS characteristics related to the network or certain
computing nodes. The question here is whether the evaluated algorithms are
capable of erasing the path that stopped providing resources.

The results obtained from this experiment confirmed precisely our forecasts. In
this case the task before the algorithms was more difficult because in this situation
they had to, not only, find a new source of resources, but also forget the already
established paths. The alteration of the network is increasingly impacting until
nearly full network reboot in the case of 90% migration.

For multi-ant ACO 3.3b is a perfect depiction of the actual struggle. After the
transformation of the network there is an eruption of ants that try to seed new
pheromone trails and, naturally, the larger the migration, the more ants appear. In
terms of absolute efficiency (Figure 3.3) there is a noticeable drop, but interestingly,
it is higher in case of RC-ACS than in case of SemAnt. RC-ACS still obtains better
overall results: under 20 HpH, while SemAnt above 20 HpH. Due to the fact that
the overall structure was maintained, as there was no link removal or addition as
a result of the migration, the Random behaviour was largely unaffected by the
entire process.
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3.5.4 Experiment 4: NetShrink 10k

Table 3.6: NetShrink 10k experiments

Experiment Graph
size

Growth
Size

Initial
Edge
Set
Size

Final
Edge
Set
Size

Initial
Average
Vertex
Degree

Final
Average
Vertex
Degree

|V | ∆ |E|init |E|fin deg(v)init deg(v)fin

NetShrink10k 10links 1024 10 2560 2470 5.00 4.82
NetShrink10k 30links 1024 30 2560 2290 5.00 4.47
NetShrink10k 60links 1024 60 2560 2020 5.00 3.95
NetShrink10k 120links 1024 120 2560 1480 5.00 2.89
NetShrink10k 240links 1024 240 2560 400 5.00 0.78
NetShrink10k 480links 1024 480 2560 0 5.00 0.00

This experiment is the most impacting of the two negative experiments due to
the fact that here links, and consequently the resources, disappear irreversibly. In
Table 3.6 we placed all the execution variants, note how in the most extreme case,
NetShrink10k 480links, there will be no links in the system after the experiments
concludes. Bear in mind that we expected an increasingly large portion of queries
to become unresolved (hit = 0) in this setup which will simply result in lack of data
points and somewhat reduced possibilities of comparison of the HpH measure. To
address this issue we decided, instead of dropping the unresolved data point, to
penalize it with the value 25 HpH. This caused the HpH graph for this particular
experiment to be incomparable with the other, form the experiments 1 - 3.

The first observation that stands out is the relatively low impact the amount of
links has. Even though it has been stated on several occasions ([18] [31]) it still
is interesting to see that reaching deg(v) < 3.00 does not impair the HpH value
much. RC-ACS in the network with deg(v) = 0.78, which indicates isolated nodes,
is better than SemAnt with deg(v) = 4.82. Note that the final sections of the graph
for NetShrink10k 480links, when there are no links at all, still do not converge to
the value 25 due to node’s capability of answering themselves the asked query.

As shown in Figure 3.4 all the algorithms are mostly unaffected with the exception
of the two most impacting variants: NetShrink10k 240links and NetShrink10k
480links; the former however only slightly. As a result of this experiment we may
conclude that the design of a lean network structure is important, with shortcuts
added only in an educated way, in order to optimize the benefit. Moreover, links
can be dropped from the system with ongoing ACO convergence process without
much harm.
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3.6 Conclusions and future works

In the introduction we have stated a question in regard to the applicability of ACO
algorithms to the problem of effective resource searching in dynamic grid comput-
ing environments and the concept of peer-to-peer connectivity in general. Our
main focus was the dynamism of networks and its implications to the convergence
process of ACO algorithms.

In the NetGrow experiment our semantic extension of ACS, RC-ACS, behaved
the best, being able to use the newly added links most effectively. In the Res-
Grow experiment RC-ACS maintained the best overall effectiveness. In negative
impact experiments (NetShrink, NodeMigrate) RC-ACS lost the least of its ini-
tial effectiveness and came out ahead yet again. It is the most telling in case of
NodeMigrate, which is, at once, the most natural systems’ behaviour and the most
negatively impacting.

The main question asked here was whether ACO could be successfully applied in
the field of grid computing and P2P in general and the answer is: it can, but only
when chosen carefully while following several restrictions, as defined in section
3.3. Moreover, our proposed single ant semantic extension of ACS has exhibited
better performance than Semant, the existing multi-ant reference work in the
field of ACO semantic search. The future work will consist of further analysis of
various dimensions on the robustness and efficiency and the creation of a new ACO
algorithm, which would encompass all the desirable aspects to cope with different
forms of dynamism.
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Abstract

The Ant Colony Optimization (ACO) has been a very resourceful metaheuristic
over the past decade and it has been successfully used to approximately solve many
static NP-Hard problems. There is a limit, however, of its applicability in the field
of P2P networks; derived from the fact that such networks have the potential to
evolve constantly and at a high pace, rendering the already-established results
useless. In this paper we approach the problem by proposing a generic knowledge
diffusion mechanism that extends the classical ACO paradigm to better deal with
the P2P’s dynamic nature. Focusing initially on the appearance of new resources
in the network we have shown that it is possible to increase the efficiency of ant
routing by a significant margin.
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4.1 Introduction

Since the introduction of the ACO metaheuristic [36] it has been considered a
dynamic algorithm, one that is capable of successfully adapting in case a change
in the system occurs [71], very much resembling the actual behavior of ants. One
can indicate however a pace of the evolution of the underlying structure at which
the classical ACO will not be able to keep up and might achieve highly suboptimal
results during the entirety of its execution; we can view it as a certain level of
inertia of the system. Naturally, ACO thrives at solving static problems; both:
classical, such as the Traveling Salesman Problem [72] and the Assignment Problem
[73], but also more uncommon ones, as shown in our several works [35] [66] [34].
Nevertheless, the dynamic issue has remained largely unaddressed. In various
papers [12] [29] [15] it has also been shown that ACO-based algorithms are more
than an adequate base for a P2P search engine. However, P2P networks are
innately and unpredictably dynamic which makes the mentioned problem relevant.

As indicated in [8] the dynamism of a network can impair severally the quality
of the results obtained. The issue centers on the fact that ACO algorithms are
not capable of redirecting the established routes immediately; a problem to which
we refer as slow re-convergence. In a moderate size P2P network it can take up
to a few thousand execution iterations in order to accommodate the changes, in
this time an additional step of the system’s evolution might occur and make a full
convergence nearly impossible. In order to counteract this problem we introduce a
diffusion layer in P2P networks, within the scope of ACO’s pheromone paradigm,
designed to propagate the information quicker and more efficiently than a pure
ACO would. We named it the Diffusion Model Framework.

Classically the ants were considered the only intelligent element in the system,
while the rest was purely passive, only capable of receiving, resending and answer-
ing queries. In our case we let the nodes themselves take some of the responsibility,
by being able to analyze its own content and take decisions, thus redistributing
the focus more in the network.

In this paper we introduce a novelty in the field of P2P semantic search, namely
our Diffusion Model Framework as an entire platform that permits defining many
diffusion algorithms of diverse nature. The main idea behind it is to improve
the re-convergence of the system to a degree that allows an efficient P2P search,
regardless of the level of the system’s dynamism. In this respect, we propose
two diffusion strategies: in-width and in-depth diffusion, both built within the
mentioned framework and we perform an experimental study of these strategies to
evaluate their effectiveness. We chose the Ant Colony System (ACS) [36] as our
ACO implementation, seeing that it is considered the most classical of all, with
one crucial modification called the Routing Concept (RC), which was proposed,
in different aspects, by several authors [43] [8]. The results obtained by the above
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studies show that RC can significantly improve query routing in ACO-based P2P
systems [15].

The experimental data obtained demonstrate that, in terms of re-convergence
speed, the in-width strategy has proven to be a feasible solution in systems that
have a downtime period. Moreover, in the case of the in-depth diffusion, the
overall strain on the system is minimal and the effectiveness of the search process
is improved up to 30% with respect to a non-diffusion-based search process.

The paper is structured as follows. In section 4.2 we summarize the related work
in the field of P2P and ACO with respect to information diffusion. In section III
we introduce some of the ACS basis and expand on the subject of the Routing
Concept. In section IV we describe in detail the Diffusion Model Framework and
the concrete implementations we chose to experiment with. In section 0 we present
our experimental setup, formalize all the concepts and propose a quality measure;
section VI shows the results obtained and in section 0 we conclude and summarize
our main findings.

4.2 Related Work

To the best of our knowledge the subject, as we define it, has not been explored.
There are several works that focus on the diffusion of the resources in the system,
but in all the cases it is solely a study of how it occurs naturally in various systems
[74] [75], regardless whether they include ACO concepts or not. Never is it an
induced diffusion, with the objective of improving a specific quality measure nor
is it an extension of the ACO paradigm.

The most similar subject is the publish/feed paradigm where a particular node
is the generator of content while a certain subset of the network consumes the
resources [76]. However the main focus in those works is the efficiency and scal-
ability, not an ACO-based method nor a resource-query mechanism. We might
qualify it as a deterministic and complete point-to-point resource propagation, in
contrast to our dynamic resource Diffusion Model Framework.

4.3 Formal Basis

4.3.1 ACS

Ant Colony System [29] is one of the most popular implementations of the ACO
metaheuristic. It is an extension and improvement over the Ant System (AS)
[33] that we chose as our main strategy for P2P search. The reasons for this
choice are twofold: firstly, we wanted to experiment with a fairly well known and
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pure ACO implementation, secondly, as shown in [8], many of the common ACO
implementations are not suitable for neither the query-resource paradigm, the
P2P environment nor the dynamic system setup. ACS performed well in all those
aspects.

We choose precisely the same mathematical basis of ACS as were presented in [8]
[29]. Having this ant strategy in place, we will formalize the semantic search in P2P
in a simple manner. Firstly we establish a network of homogeneous nodes. Each of
them may be in possession of a certain set of resources of any nature, but also each
is capable of generating a query – i.e. require resources of a given taxonomical
kind. An ant corresponding to the query is created and routed according to the
ACO algorithm of our choosing collecting resources labeled with the indicated
taxonomical entity from the nodes it visits. Once the algorithm is complete the
ant evaluates its findings and returns to its emitting node, performing pheromone-
related tasks along the way.

4.3.2 Routing Concept

In most ACO algorithms there is just a single value of pheromone per outgoing link
in each node. The Routing Concept, however, introduces an additional dimension
(a layer), giving each link a full table of pheromones, each corresponding to a
class of queries that might appear in a given node. Therefore a single ant, at its
creation, is given a Routing Concept value and only manages pheromone that has
been deposited in that particular layer of the system. Hence, it is closely related
to the Taxonomy Based Routing, presented in [15] [77].

The technical basis is as follows (see [8] for a detailed formal description). Every
node N keeps a 2–dimensional matrix ΩN : LN × CN , with real, positive values,
where LN is the space of outgoing links from the node N and CN is the space of
Routing Concepts maintained by this particular node N . This matrix is referred
to as routing table, or routing matrix. The l–th, c–th element of ΩN corresponds
to the pheromone value of the l–th outgoing link for the c–th routing concept,
which can be written as ΩN (l, c) = τ .

4.4 Diffusion Model Framework

The diffusion is an additional source of pheromone trail creation in the system,
which is managed by the nodes themselves and can be performed at will, usually
as a response to a node’s internal event, such as resource addition. It is achieved
through the introduction of a new type of ant that exists alongside the classical
Forward Ants (FA) and Backward Ants (BA), namely a Diffusion Ant (DA). Every
node of the system is given the ability to analyze its own content’s evolution and
generate a DA at any moment it sees fit. It can also be externally forced to do so.
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Table 4.1: Global Diffusion Parameters

Name (symbol) Comment Constraint
Diffusion Ant
Max TTL
(TTLmax)

The maximum distance from
the origin node the DA can
reach

TTLmax > 0

Diffusion Delta
(Dδ)

The effect of a DA on the
node’s pheromone

Dδ ∈ [0, 1]

Diffusion Random
Spread Chance
(Dρ)

Chance to continue spreading
pheromone to uninitialized re-
gions of the system

Dδ ∈ [0, 1]

Diffusion Mini-
mum Link Spread
(MINρ)

The minimum amount of links
to spread to, at each step

MINρ ∈ {−1, 0, 1, . . . },
-1 means all available

Diffusion Maxi-
mum Link Spread
(MAXρ)

The maximum amount of links
to spread to, at each step

MAXρ ∈ {−1, 0, 1, . . . },
-1 means all available

Each DA carries two values: Diffusion Power and Diffusion Routing Concept. See
Table 4.2 for details on both of these values; they are established by the emitting
node at DA’s creation.

The DA behavior is governed by the below algorithm.

Algorithm 6: DA behavior
1: assume DA arrives in node N, DA’s Time To Live is DATTL
2: if ΩN matrix contains pheromone for the Diffusion Routing Concept carried

by DA then
3: go to 10

Table 4.2: Local Diffusion Parameters

Name (symbol) Comment Constraint
Diffusion Ant
Time To Live
(DATTL)

The current time to live of a
given DA, decreases as an ant
continues

DATTL ∈ [0, TTLmax]

Diffusion Power
(DAp)

The scaling parameter of a
given DA, affects the phero-
mone deposition

DAp > 0

Diffusion Routing
Concept (DAc)

The Diffusion objective of a
given DA, affects the phero-
mone deposition

One of the Routing Con-
cepts present in the sys-
tem
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4: else
5: generate a random real value s ∈ [0, 1]
6: if s < Dp then For Dp see Table 4.1
7: go to 10
8: else
9: end algorithm

10: end if
11: end if
12: Perform Diffusion Pheromone Update (see next algorithm) in N , unless N is

the emitting node of DA
13: Let aLinks be the set of all the outgoing links from N , to nodes not visited pre-

viously by the DA nor its clones; let gLinks be a random subset of the aLinks
set, of size m, where m is a random integer value, and m ∈ [MINρ,MAXρ]

14: Decrement DATTL and send a clone of DA to every link in gLinks.

Algorithm 7: Diffusion Pheromone Update in Node N
1: let

δτ(N,Nin) = DAρ ×
DATTL + 1

TTLmax + 1
(4.1)

where N is the current node, Nin is the node from which DA arrived to N and
DAp is the diffusion power.

2: if ΩN matrix contains pheromone for the Diffusion Routing Concept carried
by DA then

3: go to 10
4: else
5: Add the DAc to ΩN
6: end if
7: Set the DAc pheromone value, for the link from which DA arrived:

τ(N,Nin)← δτ(N,Nin) (4.2)

8: In N set the pheromone value corresponding to DAc for the link from which
DA arrived in N :

τ(N,Nin)← Dδ × (δτ(N,Nin) + pinit) + (1−Dδ)× τ(N,Nin) (4.3)

where pinit is the default value of the pheromone and Dδ is the Diffusion Delta

In Table 4.2 we summarize the parameters that define the character of the diffusion
in question; they remain unchanged during the entire execution of the algorithm.
In Table 4.1 we summarize parameters attached to a particular act of diffusion,
all of which may be variable during a single execution. This choice of parameters
allows us to create an abundant amount of types of diffusion. In order to make
the analysis more focused we decided to extract two diffusion families with a
manageable set of independent variables to examine.
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Table 4.3: In-width diffusion parameters

Parameter Name (symbol) Value
Diffusion Ant Max TTL (TTLmax) Subject to test: 1, 2, 3, 4
Diffusion Delta (Dδ) 0.1
Diffusion Random Spread Chance (Dρ) 1
Diffusion Minimum Link Spread (MINρ) -1
Diffusion Maximum Link Spread (MAXρ) -1

Table 4.4: In-depth diffusion parameters

Parameter Name (symbol) Value
Diffusion Ant Max TTL (TTLmax) Subject to test: 5, 10, 15, 20
Diffusion Delta (Dδ) 0.1
Diffusion Random Spread Chance (Dρ) 1
Diffusion Minimum Link Spread (MINρ) 1
Diffusion Maximum Link Spread (MAXρ) 1

4.4.1 In-width diffusion

The most straightforward diffusion is a k-flood diffusion. In simple words it can
be understood as unconditionally notifying all the nodes up to the distance k from
the initiating node [41]. The k is simply the TTLmax in our setup, and therefore
the, so called, diffusion depth, would be TTLmax as well. Table 4.3 presents the
values of the diffusion parameters that are necessary to achieve a proper k-flood.
See Figure 4.1 for a graphical representation of the in-width diffusion and how
it affects its neighbors. It creates an area in the P2P network with increasingly
attractive force to the emitter, somewhat similar to a gravity field.

4.4.2 In-depth diffusion

The opposite approach is the in-depth diffusion. Here we do not permit the cloning
of the DA, by establishing MINρ = MAXρ = 1, which, in combination with the
prohibition of the reentry, creates long chains of diffused pheromone, rather than
areas. The effect DAs have on the system is much lower and more distributed in
time, but it is not as strong as the previous method, due to the fact that there
might be an ant that misses the chain. As it can be seen in Figure 4.2 Ant B
behaves identically, regardless of the state of the diffusion. In spite of the given
counter-example we suspect that this lightweight mode of diffusion might prove
better in terms of the ratio: nodes affected by diffusion to ants attracted; especially
so if one chooses to release several independent DA instead of one. Consult Table
4.4 for parameter values necessary to achieve in-depth diffusion in our model.
Again, the TTLmax will be referred to as the Diffusion Depth later on.
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Figure 4.1: In-width diffusion, DATTL = 2

4.5 Experimental Setup

In this section we provide an exhaustive overview of all the decisions and assump-
tions we took in order to formalize the experiments.

4.5.1 Resource distribution and labeling

As in [15], the ACM Computing Classification System [53] will be the taxonomical
vocabulary used. Every resource in the network is described by one, and only
one leaf taxonomical concept t (referred to as the taxonomical entity) of the ACM
classification. A resource has therefore only two properties: its owner node N and
a taxonomical label t. It is depicted as r(N, t). It must be pointed out that two
resources r1(N1, t1) and r2(N2, t2), unless explicitly r1 = r2, are not considered
equal, even if N1 = N2 and t1 = t2. The consequence of such an approach leads
to valuing higher those nodes that provide many resources of the same t.
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Figure 4.2: In-depth diffusion, DATTL > 3

The distribution of resources within the network follows strictly the approach by
the test setup [15]. The resources are evenly distributed among the nodes, as
well as among the entities in the taxonomy tree. Additionally, every node is a
designated expert in a given field (there can be multiple experts in each field)
which is expressed by the composition of resources in it. Of all the resource units
in a node, 60% is labeled with the field in which the node is considered an expert,
further 20% is labeled with another field that is closely related in the taxonomical
tree to the expert field, and the last 20% is purely random, but with the restriction
to be outside the expert field. This is said to resemble real–world distribution,
reflecting the fact that people have specific interests and hobbies [54].
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Table 4.5: P2p worlds present in the experiments

World edge size World total size Initial resources per node Nodes affected
N N ×N - M
32 1024 30 48
40 1600 30 75
48 2304 30 108
56 3136 30 147
64 4096 30 192

4.5.2 Query and query resolution

Every non-diffusion ant is connected to a query q and will only carry one of the
ACM classification leaf entities and it will be fully defined by it. In this case,
however, q1(t1) = q2(t2) iff t1 = t2; the benefit of such an approach is to be able
to compare results of two queries released at different time points in the testing
process and to show relative improvement between them. The resolution of a query
q(t) in a node Ni consists of finding the resources that have been labeled with t,
that is, all the resources {r|∃r(Ni, t)}.

4.5.3 P2P network setup

Every P2P network in our tests is a fully connected toroidal world of N × N
nodes, with the resource distribution that obeys the rules explained in previous
sections. See Table 4.5 for all the world variants. In order to follow a coherent
approach with our previous works we chose to present a minor alteration to the
pure toroid topology. Namely: every node will additionally have one long distance
connection between itself and a node randomly selected of all those not directly
neighboring. The probability of linking two nodes is inversely proportional to the
distance between them.

4.5.4 Quality measure

As many works before [12] [15] [31] we decided to adopt the Hop per Hit (HpH,
dimensionless) measure. It can be read as: how many steps a single ant must take
to obtain a single resource during a given iteration. The graphical analysis of many
plotted evolutions of HpH in function of iterations led us to confirm that it gets
fairly stable after a certain point, called the convergence point [8]. Therefore we
chose our final measure to be the arithmetical average of exactly 1000 last values
of HpH in a given experiment; we expect it to be characterized by low standard
deviation.
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Additionally we decided to distinguish between two separate interpretations of
the data. It is obvious that every act of diffusion consumes a portion of system
resources, whether it is bandwidth, processing time or any other. One might argue,
however, that the entire diffusion process can be executed when the system is in
its downtime, when there is no or very little real usage. A good example is forcing
all the diffusion at night, reducing the probability of a conflict with a user-released
ant to a minimum. Hence, in that case the diffusion would not interfere with
system’s functionality and it could be omitted in the calculations. Therefore the
two interpretations are:

non-strained results where the resources consumed by diffusion ants are not
taken in consideration, and are treated as neutral to the system. The non-
strained average of HpH Diffusion Depth d will be symbolized by µ̃d

strained results where every diffusion ant is treated as inseparable from the
system and included in the results. The strained average of HpH of the
Diffusion Depth d will be symbolized by µd

A way to include the diffusion strain in the calculations is based around the fact
that it does not evolve with the system. We can infer from this that the density of
resources consumed by diffusion in the function of iterations remains constant as
well. Consequently we sum the total diffusion strain over all the iterations, divide
it over the number of iterations and add the resulting value to all the HpH results
obtained the classical way, might it be a single iteration or an average of a given
period.

4.5.5 Experimental methodology

In its most general form the execution of every experiment will be as follows:

Algorithm 8: Single Experiment in world N ×N

1: for imax do
2: Choose a random node N1 of all available in N ×N and select a random

resource r of its repository.
3: Choose a random node N2 of all available in N ×N and generate in it an

Ant whose objective is the discovery of the resource r.
4: After its completion the query will report the amount of resources obtained

and the amount of steps taken. Data will be used to calculate the HpH measure
for that particular iteration.

5: Every nMod iterations initiate the Resource Distribution procedure (see
Algorithm 9).

6: end for

Algorithm 9: Resource Distribution in world N ×N
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1: Choose a set M of random nodes of available in N ×N .
2: for all m ∈M do
3: select one random resource from all the ones it possesses and generate a

set of 10 resources within its category.
4: Add all generated resources to the node m; the process referred to as node

enrichment.
5: Force the node m to release a diffusion ant into the system that informs

about its newly acquired content.
6: end for

See Table 4.5 for sizes ofM ; it was adjusted to the scale linearly with the total size
of the world. The amount of iterations per execution was chosen to be imax = 105.
This particular value permits us to see the full evolution of the system while still
presenting us with a manageable amount of data. The period between consecutive
resource distributions is set at nMod = 103, therefore the resource distribution
will be executed 99 times within a single experiment. The two above statements
are concluded from [12].

For each combination of any set of the parameters chosen to test, we will execute
the Single Experiment algorithm three times and, after confirming consistency of
the results, proceed to work with the average of the three for further analysis.

4.6 Experimental Study

We decided to formulate the statistical analysis in the following way. Our null
hypothesis H0 is such that the averages of HpH, grouped by a particular Diffu-
sion Depth, in all experiments are equal: H0:µ∗1 = µ∗2 = · · · = µ∗k, where µ

∗
d is

the normalized average of HpH values within the Diffusion Depth d. The nor-
malization is with regard to the Diffusion Depth d = 0; a way to express the
relative improvement. The alternative hypothesis H1 assumes differences between
the means: H1:µ∗1 6= µ∗2 6= · · · 6= µ∗k. The significance levels we aim for are at
α1 = 0.1 and α2 = 0.05. Before each test we apply the Shapiro-Wilk test to es-
tablish the fact of data normality; it is the most adequate test for such an amount
of data [78].

A good omnibus test, when the normality of the data cannot be guaranteed, is
the Kruskal-Wallis test [79] which even in cases of near-normality can prove to
be more sensitive than ANOVA. In the event of detecting significant differences
between diffusion levels we will perform the Dunn’s Pairwise Comparison method
[80], the results of which should provide us with knowledge on the relations between
different Diffusion Depths d. We also must take into account the amount of data
groups present in the test by applying the necessary Bonferroni correction. To
achieve the agreed significance of α1 = 0.1 and α2 = 0.05 we must confirm results
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only at the significance αb1 = 0.1 and αb2 = 0.005 respectively, which is a very
strong requirement.

All the experiments will be run on our proprietary software, written by us in the
Java programming language. It was designed specifically for the simulation of
the accelerated evolution of ACO algorithms in various settings. The machine
used in testing is a PC Intel Pentium 4 630 at 3.00GHz with 4 GB of RAM on a
32bit Windows 7. Typically a single experiment might take up to 15 minutes of
processing time.

4.6.1 In-width diffusion experiment

With the configuration presented in Table 4.3 we attempted the recreation of the
most basic, flood-like behavior in our system. The independent variable d is the
TTL of Diffusion Ants, taking values d | 0, d | 1, d | 2, d | 3 and d | 4. Each test is
repeated three times and the data will be presented as strained and non-strained.

The full dataset of the results is presented in Table 4.6. The normality was not
achieved here due to a priori selection of the depth values; the Shapiro-Wilk test
does not allow the assumption of normality with high certainty, see Table 4.7.

Kruskal-Wallis test (Table 4.8) has proven beyond any doubt that groups formed by
different diffusion settings are significantly different and are disjointed populations
of data points with respect to the HpH measure. The most interesting conclusions
stem out of Table 4.9 and Table 4.10. For instance, in Table 4.9 we see that
the difference between non-str. d | 2 and d | 0 is of 12.100 ranks; from the
corresponding field in the Table 4.10 we conclude that it is significant at α = 0.01.
In case of the non-strain values we confirm that even an algorithm as crude as
k–flood is significantly better than the lack of diffusion for depths of diffusion
equal or larger than d | 2, which are d | 2, d | 3 and d | 4. The strained data are
less promising as there is no statistically significant benefit from the diffusion and
therefore more elaborate algorithms are in place, if one cannot pinpoint system’s
downtimes to perform the diffusion and treat it as non-straining. We feel we need
to point out however that the diffusion of size d | 2 was very nearly accepted as
better than no diffusion, with p − value = 0.036. A simple look at the graphical
representation of the strained results (Fig. 4.3a) suggests that around the diffusion
d | 2 there is a local minimum of net benefit at about 15% HpH. In case of the
non-strained results (Fig. 4.3b) no such minimum is observed and we assume that
it is located outside the examined scope; the best value is 23% lower than the
diffusion-less system.
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Table 4.6: In-width experiment, Full results

N d Size HpH HpH HpH HpH
strain strain non-strain non-strain

- - - µd µ∗d µ̃d µ̃d
∗

1024 0 0 20.52 1.00 20.52 1.00
1024 1 4 17.74 0.87 17.58 0.86
1024 2 12 17.98 0.88 17.61 0.86
1024 3 24 19.07 0.93 17.30 0.84
1024 4 40 21.19 1.04 16.34 0.80
1600 0 0 21.78 1.00 21.78 1.00
1600 1 4 19.63 0.90 19.34 0.89
1600 2 12 18.81 0.86 17.89 0.82
1600 3 24 19.68 0.90 16.97 0.78
1600 4 40 26.64 1.22 18.22 0.84
2304 0 0 21.53 1.00 21.53 1.00
2304 1 4 20.38 0.95 19.96 0.93
2304 2 12 19.75 0.92 18.38 0.85
2304 3 24 22.53 1.05 18.32 0.85
2304 4 40 27.92 1.30 16.77 0.78
3136 0 0 21.56 1.00 21.56 1.00
3136 1 4 21.10 0.98 20.49 0.95
3136 2 12 19.37 0.90 17.59 0.82
3136 3 24 22.92 1.06 17.43 0.81
3136 4 40 33.05 1.53 17.31 0.80
4096 0 0 22.41 1.00 22.41 1.00
4096 1 4 21.30 0.95 20.51 0.92
4096 2 12 20.19 0.90 17.84 0.80
4096 3 24 25.95 1.16 18.38 0.82
4096 4 40 37.52 1.67 17.21 0.77

Table 4.7: In-width experiment, Normality tests

Shapiro-Wilk Statistic df p-value
In-Width strain 0.749 25 0.000
In-Width non-strain 0.874 25 0.005
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Table 4.8: In-width experiment, Kruskal Wallis Test

Kruskal-Wallis test In-Width non-strain In-Width strain
K (Observed value) 18.604 16.896
K (Critical value) 7.779 7.779
Df 4 4
p-value (Two-tailed) 0.001 0.002
Alpha 0.01 0.01

Table 4.9: In-width experiment, Dunn’s comparison, Ranks

d | 0 d | 1 d | 2 d | 3 d | 4

n
on

st
ra

in d | 0 0 4.600 12.100 13.800 17.500
d | 1 -4.600 0 7.500 9.200 12.900
d | 2 -12.100 -7.500 0 1.700 5.400
d | 3 -13.800 -9.200 -1.700 0 3.700
d | 4 -17.500 -12.900 -5.400 -3.700 0

st
ra

in

d | 0 0 6.400 9.900 0.200 -6.900
d | 1 -6.400 0 3.500 -6.200 -13.300
d | 2 -9.900 -3.500 0 -9.700 -16.800
d | 3 -0.200 6.200 9.700 0 -7.100
d | 4 6.900 13.300 16.800 7.100 0

Table 4.10: In-width experiment, Dunn’s comparison, p-values

d | 0 d | 1 d | 2 d | 3 d | 4

n
on

st
ra

in d | 0 1 0.330 0.010 a 0.003 ab 0.000 ab

d | 1 0.330 1 0.092 0.039 0.004 ab

d | 2 0.010 a 0.092 1 0.702 0.225
d | 3 0.003 ab 0.039 0.702 1 0.406
d | 4 0.000 ab 0.004 ab 0.225 0.406 1

st
ra

in

d | 0 1 0.175 0.036 0.966 0.144
d | 1 0.175 1 0.432 0.164 0.003 ab

d | 2 0.036 0.432 1 0.029 0.000 ab

d | 3 0.966 0.164 0.029 1 0.111
d | 4 0.144 0.003 ab 0.000 ab 0.111 1
Bonferroni corrected significance levels: a αb1 = 0.01 b αb2 = 0.005
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Figure 4.3: In-width diffusion
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4.6.2 In-depth diffusion experiment

The in-depth diffusion experiment was executed according to the parameters es-
tablished in Table 4.4. We manipulated the degree of diffusion by changing the
TTL of Diffusion Ants over 5 values: d | 0, d | 5, d | 10, d | 15 and d | 20, it will
be our independent variable d. Each test is repeated three times and the data will
be presented as strained and non-strained.

Similarly to the previous experiment the data cannot be considered normal, as
it is shown in TABLE 4.12. We therefore must again run the statistical analysis
with the Kruskal-Wallis test. With near perfect certainty (>99.99%, see Table
4.13) it was confirmed that there are different populations of points within our
results in terms of HpH measure. In case of In-Depth diffusion the strain put on
the results is marginally low, from Table 4.11 we conclude that even at the d |
20 Diffusion Depth the difference between strain and non-strain results is below
0.8 HpH. It comes as no surprise that strained and non-strained results are very
much alike, see Table 4.14 and Table 4.15 for Dunn’s pairwise comparison. We can
conclude that the Diffusion Depths of d | 15 and higher are significantly better
than no diffusion at all. It is also worth pointing out that the minute Diffusion
Depth of d | 10 may be nearly considered appropriate as well. In these cases the
improvement reaches quite an impressive value of 32% in the non-strained variant
and up to 29% in the strained one. Both of these can be seen on Fig. 4.4b and Fig.
4.4a respectively. No clear local minimum was detected so pushing the Diffusion
Depth to even higher values may be justified.

4.7 Conclusions/Future Work

In this work we have shown clearly that the introduction of our idea of the Diffusion
Model Framework, with the objective of improving the re-convergence speed in a
P2P environment managed by ACO algorithm, is beneficial. Even the crudest
variant provided a certain net improvement to the system, in terms of HpH, and
was helpful in combating the slow re-convergence.

The in-width version has proven to be a feasible solution in systems that have a
downtime period. As mentioned before, those including day/night cycles, week-
day/weekend cycles, etc. In this situation one might disregard the strain that
the Diffusion Ant has on the system and successfully apply the in-width diffusion
depth d | 3 or d | 4. To some extent the in-width diffusion depth d | 2 is nearly
applicable to the strained system as well.

In the case of our in-depth strategy the results were much stronger. Not only
the overall strain on the system was minimal, but also the improvement reached
values as high as 30%. Regardless of whether we used strained or non-strained
results we come to the conclusion that in-depth diffusion depths d | 15 and d |
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Table 4.11: In-depth experiment, Full results

N d Size HpH HpH HpH HpH
strain strain non-strain non-strain

- - - µd µ∗d µ̃d µ̃d
∗

1024 0 0 19.46 1.00 19.46 1.00
1024 1 4 18.02 0.93 17.85 0.92
1024 2 12 15.89 0.82 15.59 0.80
1024 3 24 14.57 0.75 14.16 0.73
1024 4 40 14.04 0.72 13.52 0.70
1600 0 0 22.05 1.00 22.05 1.00
1600 1 4 19.42 0.88 19.13 0.87
1600 2 12 17.21 0.78 16.71 0.75
1600 3 24 15.82 0.72 15.14 0.69
1600 4 40 15.55 0.71 14.68 0.67
2304 0 0 21.99 1.00 21.99 1.00
2304 1 4 18.38 0.84 17.99 0.82
2304 2 12 18.91 0.86 16.69 0.76
2304 3 24 18.12 0.82 16.33 0.75
2304 4 40 16.50 0.75 15.20 0.69
3136 0 0 22.02 1.00 22.02 1.00
3136 1 4 20.18 0.92 19.60 0.89
3136 2 12 19.12 0.87 18.05 0.82
3136 3 24 18.29 0.83 16.80 0.76
3136 4 40 17.99 0.82 16.13 0.73
4096 0 0 21.91 1.00 21.91 1.00
4096 1 4 19.45 0.89 18.73 0.86
4096 2 12 18.21 0.83 16.90 0.78
4096 3 24 16.92 0.77 15.17 0.70
4096 4 40 18.27 0.84 15.86 0.73

Table 4.12: In-depth experiment, Normality tests

Shapiro-Wilk Statistic df p-value
In-depth strain 0.926 25 0.069
In-depth non-strain 0.885 25 0.009
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Figure 4.4: In-depth diffusion
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Table 4.13: In-depth experiment, Kruskal Wallis Test

Kruskal-Wallis test In-depth non-strain In-depth strain
K (Observed value) 20.677 18.16
K (Critical value) 7.779 7.779
Df 4 4
p-value (Two-tailed) 0.000 0.001
Alpha 0.01 0.01

Table 4.14: In-depth experiment, Dunn’s comparison, Ranks

d | 0 d | 1 d | 2 d | 3 d | 4

n
on

st
ra

in d | 0 0 4.600 9.800 15.500 18.100
d | 1 -4.600 0 5.200 10.900 13.500
d | 2 -9.800 -5.200 0 5.700 8.300
d | 3 -15.500 -10.900 -5.700 0 2.600
d | 4 -18.100 -13.500 -8.300 -2.600 0

st
ra

in

d | 0 0 5.000 10.800 15.800 16.400
d | 1 -5.000 0 5.800 10.800 11.400
d | 2 -10.800 -5.800 0 5.000 5.600
d | 3 -15.800 -10.800 -5.000 0 0.600
d | 4 -16.400 -11.400 -5.600 -0.600 0

Table 4.15: In-depth experiment, Dunn’s comparison, p-values

d | 0 d | 1 d | 2 d | 3 d | 4

n
on

st
ra

in d | 0 1 0.330 0.038 0.001ab 0.000ab

d | 1 0.330 1 0.243 0.014 0.002ab

d | 2 0.038 0.243 1 0.201 0.062
d | 3 0.001 ab 0.014 0.201 1 0.559
d | 4 0.000 ab 0.002 ab 0.062 0.559 1

st
ra

in

d | 0 1 0.290 0.022 0.001 ab 0.001 ab

d | 1 0.290 1 0.193 0.015 0.010 a

d | 2 0.022 0.193 1 0.262 0.209
d | 3 0.001 ab 0.015 0.262 1 0.893
d | 4 0.001 ab 0.010 a 0.209 0.893 1

Bonferroni corrected significance levels: a αb1 = 0.01 b αb2 = 0.005
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20 are significantly better than no diffusion at all. This permits us to say that
any system, that follows our prerequisites even loosely, would benefit from such
an extension.

This paper focused on some basic ideas of the applicability of the diffusion. We
want to take the subject further and test it in a much more general environment,
where resources appear, disappear and modify. Our next step will also consist of
applying the concept of diffusion to real-life networks, with where the dynamism
is not limited to the nodes’ content, but also to the nodes themselves which attach
and detach from the system, creating breaks in the pheromone trail’s continuity.
We also intent to work on more elaborate and sophisticated diffusion algorithms,
which revolve around the concept of the directed diffusion achieved through ex-
ploiting the topology of the network. This will lead to the creation of a lightweight
diffusion algorithm that complements efficiently the classical ACO paradigm in
P2P environments.
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Abstract

The ever-increasing cases of acquired brain injury (ABI), especially among young
people, have prompted a rapid progress in research involving neurological disor-
ders. One important path is the concept of relearning, which attempts to help
people regain basic motor and cognitive skills lost due to illness or accident. The
goals of relearning are twofold. First, there must exist a way to properly assess
the necessities of an affected person, leading to a diagnosis, followed by a recom-
mendation regarding the exercises, tests and tasks to perform; and second, there
must be a way to confirm the results obtained from these recommendations in or-
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der to fine-tune and personalize the relearning process. This presents a challenge,
as there is a deeply-rooted duality between the personalized and the generalized
approach. In this work we propose a personalization algorithm based on the Ant
Colony Optimization (ACO), which is a bio-inspired meta-heuristic. As we show,
the stochastic nature of ants has certain similarities to the human learning process.
We combine the adaptive and exploratory capabilities of ACO systems to respond
to rapidly changing environments and the ubiquitous human factor. Finally, we
test the proposed solution extensively in various scenarios, achieving high quality
results.

5.1 Introduction

Computer-aided recommendation, which is now extensively used, ranges from con-
tent recommendation for ad-related issues to music and video suggestions. A
particular niche of the subject is the learning unit recommendation, which usu-
ally consists of suggesting to a student the next learning unit to complete with
e-learning software. The computation techniques behind these problems are plen-
tiful, ranging from fuzzy logic, neural networks to ant colony optimization (ACO).
Due to its nature, ACO is very well suited for establishing paths in a discrete
space, which can be seen as a metaphor for progressing through a given set of
study material. An interesting case is one where the search over the space of
learning units is not limited to a sequence, but rather centers on finding the most
suitable unit for a given user at a given time.

One particular use of the learning schema is the relearning process, which is, as
the name suggests, the process of learning abilities that have been lost. Relearn-
ing is especially important in the context of people with Acquired Brain Injury
(ABI). The World Health Organization states that people with ABI have suffered
“Damage to the brain, which occurs after birth and is not related to a congenital
or a degenerative disease. These impairments may be temporary or permanent
and cause partial or functional disability or psychosocial maladjustment.” [81].
The causes of ABI vary; they include, but are not limited to skull-brain trauma,
degeneration of the blood vessels, meningitis and brain tumors. ABI affects many
people every year; in the United States alone 1.7 million people suffer brain injury
each year [82]. The impact of ABI is wide-ranging, from a multitude of physical
effects, such as muscle spasticity, paralysis or weakness, to cognitive abilities, such
as memory, thinking skills or concentration, and organization or planning abilities.

There is a general consensus that an automatized relearning process has a high
impact on the individuals affected by ABI. However, this process must be carefully
customized to individual abilities/disabilities, since no two people can expect to
have the same outcome or problem, even after a seemingly similar brain injury.
Proposing a relearning model is more complex than the straightforward learning
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unit recommendation or progressing through a sequence of tasks. For people with
ABI there is no recognized path through the space of relearning activities to suc-
cess. Instead the most appropriate activities must be found for each new situation.
In addition, the software must take into account the user’s cognitive and motor
skills to an extent that is simply unnecessary for classical learning software.

In this work we present an ACO-based recommendation technique that incorpo-
rates the above assumptions and concerns. This technique suggests activities to
individuals with ABI, starting with those that have proven to be the most gener-
ally successful, and then progressing towards more personalized recommendations,
at all times taking into account the user’s mental and physical state.

The remainder of this paper is structured as follows. Section 5.2 discusses related
works and highlights the novelty of the present work. Section 5.3 presents the
problem domain in more detail. Section 5.4 presents the mathematical definition
of our ACO algorithm for personalized learning. Section 5.5 describes the experi-
ments performed with their results and a discussion. Finally, Section 5.6 presents
our main conclusions and areas of future work.

5.2 Related Work

E-learning systems are powerful tools that complement or even replace regular
teaching/learning activities. As mentioned, the relearning process for individuals
with ABI is also a learning/teaching process that they must go through to recover
their lost abilities. The reasons for the adoption of e-learning systems are many,
but the fact that it is available at all times and places is one of its most attractive
aspects. However, despite undeniable advantages, their use can be frustrating
for educators, as they can find it difficult and time consuming to define the paths
each learner has to follow [83]. For this reason, the introduction of recommendation
systems [84] meant a meaningful step forward for both, educators and learners.
These systems have taken advantage of different techniques, such as Collaborative
Filtering [85], Ant Colony Optimization [86], Data mining [87], particle swarm
optimization [88] or combinations of different techniques [89].

Unfortunately, most of the recommendation systems simply exploit learner prefer-
ences, interests and browsing behaviors as input to recommend learning activities.
As stated in [90], these approaches miss an important point, which is taking into
account the abilities of the learner, in order to truly equip e-learning systems with
personalized learning mechanisms. De Maio et al. [91] encourage the exploitation
of personalized e-learning as the way to become “more effective and efficient when
a great number of educational content requires to be dynamically filtered and as-
sembled with respect to learners’ preferences and cognitive states.” The user’s
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cognitive state thus becomes the cornerstone of the recommendation systems in
the personalization process.

The development of personalized e-learning systems has received a great deal of
attention from the Artificial Intelligence community. Some studies have promoted
the use of artificial neural networks to implement the aforementioned aspects of
intelligence. For instance, Baylari and Montazer [92] developed a multi-agent
system able to estimate the learners’ abilities in order to provide them with tests
personalized and adapted to those abilities. One of the main strengths of this
work is the exploitation of an artificial neural network to discover users’ learning
problems when using the system and then recommend them appropriate learning
material. Another interesting proposal is called MASACAD [93], a multi-agent
e-learning system able to provide students with academic assistance by using an
artificial neural network based on their preferences to infer such advice.

Fuzzy systems have also been used in the development of personalized e-learning
systems. Lu et al. [89] applied this approach in a system that provides learners
with learning objects by analyzing both, the course difficulty of the material and
the abilities of the learner. They employ a fuzzy set clustering algorithm to create
clusters of similar learners and assign them learning objects.

The introduction of evolutionary algorithms has also been exploited in the con-
text of personalized e-learning systems. For instance, Maio et al. [91] developed
a system, named Intelligent Web Teacher (IWT). IWT builds the user’s learning
context (current needs, cognitive abilities and preferences) in an automatized way,
personalizing the learning experience through ad-hoc educational paths. One of
the main foundations of IWT is that the generation of learning paths for a spe-
cific learner, or a class of learners, is transformed into an optimization problem.
Authors combine global and local searches to perform the exploration of the set of
learning objects to find the most appropriate learning path that includes the target
concepts. Another interesting work is that presented by Acampora et al. [94], who
propose the definition of sequences of learning objects in terms of competencies
and transform the problem of finding the proper sequence of learning objects into
a classical Constraint Satisfaction Problem (CSP). They chose, however, to use a
particle swarm optimization algorithm in their solution.

Other interesting proposals have also been developed by employing ACO algo-
rithms. Sharma et al. present in [95] an ACO based algorithm, named Adaptive
Content Sequencing in eLearning (ACSeL), that uses ant colonies to evaluate the
learning paths and the learners’ profiles to recommend suitable content. It is worth
noting the dynamic nature of the proposal, as it takes into account the varying
(most likely increasing) knowledge levels of the learners in order to tune the strat-
egy to produce a recommendation. Wang [96] [26] also used an ACO model to
analyze past learning experiences to discover new learning paths. Although this
proposal also uses previous learning experiences to update the pheromone trails
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in a similar way to that presented by ACSeL, it only considers the best solution
to avoid long convergence times. An interesting aspect here is the introduction of
a training strategy that promotes the division of learning goals into sub-goals to
fit the time available for the learning session.

Similarly to some of the aforementioned authors, in our proposal we opted for
an evolutionary algorithm (ACO). A desirable feature of our solution is that it
takes into account the state of the individuals with ABI to drive the optimization
search. It is also dynamic and able to adapt the recommendation according to
the recent behavior of not only the user in question, but a cluster of users of
similar characteristics or even the system as a whole. However, its most remarkable
feature is that it does not focus on actually finding a learning path, as in all the
cited proposals, but on the selection of a ranked set of learning activities. It
also takes into consideration the cognitive state of the user as the set of deficits
(deductive reasoning, sustained attention, short-term memory, etc.) that is treated
as a characteristic unrelated to the knowledge levels, which is a unique property.
To the best of the authors’ knowledge no similar proposals have previously been
defined for ABI sufferers.

5.3 Problem Domain

ABI, as defined in the Introduction, may result from a number of different causes,
either internal or external. Internal causes are the most frequent in the elderly,
usually due to vascular disorders, such as strokes or hemorrhages. External causes,
generally known as traumatic brain injury (TBI), are usually due to traffic acci-
dents, falls, etc. As it can be seen from these examples, every one of us is exposed
to this problem at any point in our lives. This explains why the number of people
with ABI is growing every year and is currently one of the most frequent health
problems. For instance, according to the Brain Injury Center [97] TBI is more
common than breast cancer, spinal cord injury, HIV/AIDS, and multiple sclero-
sis (MS) combined. In the United Kingdom alone it is estimated that at least 1
million people live with the long-term effects of brain injury [98]. In fact, ABI is
recognized throughout the world as a problem of epidemic proportions, known as
“the Silent Epidemic”.

Brain damage can result in different long-term deficits, depending on the area
injured and the level of damage. These deficits can be classified into four categories:
i) physical deficits that limit the control of a part of the body, such as paralysis
or motor coordination; ii) cognitive deficits that impair intellectual performance,
such as memory problems; iii) emotional problems that limit or change the control
of the feelings, such as depression or anxiety; iv) behavioral deficits that negatively
affect the interaction with the environment, such as irritability and restlessness.
Although physical deficits are difficult for people to adapt to [99], the cognitive
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ones are highly disabling, as they interfere with the rehabilitation process and have
the most negative effect on the quality of life [93].

The following impairment types are usually related to cognitive deficits [100]:

- Executive function impairments: problems in controlling and regulating ac-
tivities or behaviors that include abstraction, categorization (the ability to
recognize objects and actions), cognitive flexibility (the ability to adapt cog-
nitive processing to new and unexpected situations), deductive reasoning,
planning and problem solving.

- Attention impairments. These can be detected when a person with ABI ex-
hibits problems with abilities [101] such as sustained attention (to direct and
focus a cognitive activity, given a specific series of stimuli), divided attention
(to be able to simultaneously respond to multiple stimuli), or selective at-
tention (to be able to identify the relevant stimulus while several distracting
stimuli are generated).

- Memory impairments: including short-term memory, semantic memory, re-
lated to the ability to collect information and knowledge about the world
without considering previous experiences, episodic memory of personal events,
such as places and emotions, which can be explicitly stated and procedural
memory, based on implicit learning, mainly for motor skills.

- Language deficits: detected when a person has difficulties in understanding
or communicating, reading or understanding a document.

- Spatial perception deficits: people with these deficits exhibit difficulties with
construction activities that require spatial abilities.

There is increasing evidence that individuals with ABI should be provided with
proper treatment as soon as possible [102]. This treatment is often carried out in
a center where they perform a number of supervised activities, usually employing
a board game or learning cards. However, this alternative has several drawbacks,
especially in terms of the time available for the relearning process, since it is
highly dependent on the number of specialists available. In addition, Christiansen
et al. [103] confirmed that the use of computers in the relearning process helps to
encourage and stimulate cognitive behavior and allows the disabled to reinstate
damaged functions.

The concept of using e-learning systems for their treatment thus emerges in a
natural way. One of these systems is called HABITAT [104, 105] and has been
developed by the authors of this work in collaboration with the ABI Association
of Castilla-La Mancha (ADACE). For its development, researchers from the Uni-
versity of Castilla-La Mancha carried out continuous tracking of the relearning
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Figure 5.1: ReAP catalog with 23 cognitive activity patterns.

process of the handicapped over a period of two years. This study was designed
to determine how the relearning process could be supported by software, what
different kinds of relearning activities should be provided by an e-learning system
and how they could be created and parameterized by specialists.

All this experience was documented as a catalog of relearning activity patterns
(ReAP) [106]. Twenty-three cognitive activity patterns were identified and their
names are shown graphically in Fig. 5.1. It is worth noting that these patterns are
classified according to the main cognitive area they are designed to treat. Within
the scope of the activity patterns specialists create new relearning activities, such
as the one illustrated in Fig. 5.2, customized according to the specific needs of the
individual subjects.

One of the most demanding tasks that specialists have to carry out is the design
of the relearning process of each individual. They have to select learning activities
taking into account a range of different characteristics, such as age, damage level,
stress, etc. of the person being treated. Due to the success of the e-learning
software, we can claim that this step can be largely simplified or even eliminated
by the proper use of dynamic e-learning models. The definition and development
of such a recommendation technique would be a valuable asset for both specialists
and people affected by ABI alike. The former could devote more time to the
treatment and the latter would benefit from a relearning process specially adapted
to their needs.

97



Chapter 5. An ACO-based personalized learning technique in support of people with ABI

Figure 5.2: Divided Attention Relearning Activity.

5.4 An ACO Algorithm for ABI Rehabilitation Tests
Recommendation

5.4.1 Ant Colony Optimization

ACO [29] is a non-deterministic evolutionary algorithm based on the use of simple
and stochastic automata to perform complex optimization tasks. The automata
in question are like ants in a colony searching for food and resources. The math-
ematical model behind ACO is simple, yet powerful; each ant may find itself in
two states - either searching for food randomly, the so-called exploration phase,
or following the established paths, the exploitation phase. Without the loss of
generality, the worlds in which the ants live are limited to bidirectional graphs
rather than continuous open spaces.

Every search for resources must begin and conclude in one of the nodes of the
system. Once an ant is brought to life, it is given an objective and end conditions;
as soon as they are fulfilled the ant returns to the emitting node and reports its
findings. In each node it visits, it collects resources corresponding to the goal
associated. Pheromones are the essence of inter-ant communication; ants either

98



5.4 An ACO Algorithm for ABI Rehabilitation Tests Recommendation

State

-character

-number

Acquired Injury

-id

-label

-description

-children

0..*

-parent0..1

User

-id

-name

-age

-gender

-profession
* *

Test Pattern

-id

-name

-interaction type

-explanation

-solution comment

-implementation comment

1

*

Test

-id

* 1-end1

*

-end2 *

Test Solution

-id

-date

-score

* 1

*

1

1

*

Benefit

1 *

*

*

Figure 5.3: Conceptual Model.

follow or deposit the pheromone according to the quality of their findings and the
mode of behavior they choose.

In short, the basic components of the ACO model are: i) graphs, composed
of nodes; ii) links between nodes, with assigned values of pheromone and cost;
iii) the resources in each node, representing goods of various types; iv) ants, the
search automata. Each of these elements finds its corresponding metaphor in our
conceptual model, as explained in Subsection 5.4.2.

5.4.2 Problem space conceptual model

In Fig. 5.3 we present the conceptual model of the problem space. The two main
components are: i) user, which represents a person, with its basic data and ii) test
pattern, or a relearning activity pattern p in the ABI domain (see Section 5.3),
which is an abstraction of a group of tests t. An example of a test pattern would
be the Association test pattern, under which specialists create tests containing a
particularized set of images and texts to match, depending on the specific abilities
to treat.

Each user u is described by i) an impairment state eu which is denoted A, B, C, D
or E. From A to D the degree of cognitive impairment increases, and E indicates
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a person in coma who does not receive any treatment as explained in [106]; ii) the
list of acquired injuries dcu = [dc1, dc2, dc3, . . . ], in order of importance. The first
acquired injury is referred to as main acquired injury; iii) additional metadata
that are taken into account, such as the user’s age wu (integer value) and gender
gu (boolean value, 1 for female, 0 for male), as well as the profession ju, drawn
from the hierarchical structure provided by [107]. The full description of a user is
written as: u = (eu, dcu, ju, wu, gu).

On the other hand, each test pattern p provides a set of benefits dcp for users in
given states ei and acquired injuries dci, written as: dcp = {(e1, {dc11, dc12, . . . }),
(e2, {dc21, dc22, . . . }), (e3, {. . . }), . . . }. The dcp notation can be read as: for users
in the state e1 the test will be beneficial in case of the acquired injuries dc1, dc2, . . . ,
etc. Note that each state corresponds to a set of acquired injuries rather than a list,
therefore the order of acquired injuries does not reflect the increase or decrease of
efficiency of the test pattern. In addition, not all possible states must be benefited
by a given p. For instance, state E is never benefited, as it is the comatose state,
which means user-system interaction is impossible. All the test patterns available
in the system are organized in a tree-like structure that reflects dependencies and
relates them to each other.

We argue that this approach, alongside underlying ACO strategy, is sufficient to
model the user–system interactions. The key algorithmic problem is to propose a
measure that would be capable of reflecting the satisfaction level of a user u with
a test pattern p that goes beyond a simple scoring system. Our proposal bases
the measure on the performance history of all the users, as well as the potential
match between the list of user’s acquired injuries and test pattern’s benefits. We
elaborate on the subject in detail in Subsection 5.4.3.

The modeling of the problem space with the concepts offered by the ACO domain
is as follows: i) tests t are represented by nodes N ; ii) tests t are organized
in a graph structure K, which is the aggregate of all the tests available; iii) the
action of querying tests for a user u is implemented as a release of a number of
virtual ACO ants onto K; iv) the action of solving tests produces a test solution
Ts object, which is related the test in question t and the user involved u, as well as
the completion date d and score s and written as Ts = (t, u, d, s); v) test solutions
Ts are the resources of the model. They are evaluated and collected by ants and
stored in nodes N of K.

The graph K has a toroidal topology with random distribution. In the work [12]
we demonstrate that the topology has only a minor impact on the efficiency. We
therefore decided not to take this property as a factor in our study.

As mentioned, each ant models the action of searching for a test pattern suitable
for a given user. The ants are routed following a well-known ACO algorithm,
the Ant Colony System (ACS) [17]. For each visited test in the node ni the ant
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generates an evaluation response resi = (ni, si), where si is the score of the node
for the given query. See Algorithm 15 for details on how the responses resi are
obtained. The algorithmic mechanics behind the process of querying is explained
in Subsection 5.4.3.

It is important to point out here our approach to the pheromone concept. Tra-
ditionally, there is one layer of pheromone on top of the underlying graph. This
means that each ant reads and writes the same values. In some studies, how-
ever, various levels of pheromone per graph have been introduced [12, 13]. This
matches our situation, as in our problem-space there are many diverse users with
unrelated disabilities. Therefore, we use one pheromone level per disability. As a
consequence, the ants are introduced only to the level corresponding to the main
disability of the user related to the query.

5.4.3 Algorithmic Design

Our algorithmic design allows users to query for tests at any moment, requiring
as input the minimum and a maximum normalized score of tests to solve, smin
and smax respectively. The higher the smin the higher the match quality required
to present the test found to the user. The lower the smax the more diverse and
unexpected the suggestions become. The narrower the gap between the smin and
the smax the smaller the number of results becomes.

High level recommendation querying is governed by Algorithm 10. Once the query
is launched, the system releases a series of ants in search of tests. During the
querying process, the ants evaluate nodes along the way. The ants are routed
according to the traditional ACS rules, as mentioned in Section 5.4.1, with the
exception of the pheromone, which has been divided into layers. Each pheromone
layer corresponds to an acquired injury dc.

Algorithm 10: High level query execution
1: assume

- user u with main acquired injury dcu
- minimum smin ∈ R1

0 and maximum smax ∈ R1
0 desired score

- a subset of the nodes of the graph K, called injection points Ip
2: for each injection point ip ∈ Ip produce an ant Aip and release it into the

pheromone layer corresponding to dcu
3: while all Aip not finished do in parallel Aip builds a proposal of a solution
aResip (ant response set): a response resi = (ni, si) for every node ni visited

4: end while
5: let pRes (partial response set) be the aggregate of the aResip. pRes contains

repetitions with respect to the ni value, as various ants might have evaluated
the same node.
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Figure 5.4: Graphical description of Algorithm 10.

6: obtain total response set tRes, by removing the repetitions from the partial
response set as shown in (5.1)

tRes =
⋃
i

ni,∑
j

sj |(ni, sj) ∈ pRes

 (5.1)

7: obtain the total (5.2) and top (5.3) quality of tRes:
Q(tRes) =

∑
i

si|(ni, si) ∈ tRes (5.2)
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Qmax(tRes) = arg max
s

(ni, si) ∈ tRes (5.3)

8: Update pheromone values on links that participated in the solution:
τ(dcu, nr, ns)← (1− α) · τ(dcu, nr, ns) + α ·Q(tRes) (5.4)

where:

- τ(dcu, nr, ns) is the pheromone value, in the pheromone layer dcu, be-
tween the tests (nodes) nr and ns

- α ∈ R1
0 regulates the influence of the new pheromone

9: The final result consists of tests t associated with nodes ni that fulfill (5.5){ni|(ni, si) ∈ tRes ∧Qmax · smin ≤ si ≤ Qmax · smax} (5.5)

Our algorithmic design, as described, is based on the definition of similarity func-
tions between users (Algorithm 11), between acquired injuries (Algorithm 12) and
between user states (Algorithm 13). Fig. 5.4 offers a graphical description of
Algorithm 10 to illustrate how the different subsequent algorithms are used.

The ability to compare different users is essential. It enables us to extrapolate the
behavior of one user to recommend tests to users without performance history.
In (5.6) we obtain a user-to-user distance d(u1, u2) as a weighted linear combi-
nation of several subdistances that have been deemed the most relevant. Apart
from the natural distances of disability and physical state we chose to distinguish
users of different professional backgrounds. The gender- and age- distribution is
based on the fact that the same disabilities acquired at different moments and
situations in life can have different sources and, therefore, must not be considered
completely identical. With (5.7), we obtain a smooth and normalized similarity
function simu−u with the softest and most gradual curve around the mean of
the population. The function used for the transformation of the unbound distance
value into a bound similarity level must have the following properties: i) domain of
R; ii) upper- and lower-bound codomain, limits approached asymptotically; iii) be
antisymmetric and monotonically growing. We chose arctan, as it fulfills the above
properties. We transformed arctan to center on the (0, 0) point and normalized it
with π−1 factor.

Algorithm 11: simu−u, user-to-user similarity measure
1: assume

- users u1 = (e1, dc1, j1, w1, g1) and u2 = (e2, dc2, j2, w2, g2), where: ei is
the physical state, dci is the main acquired injury, ji is the profession, wi
is the age and gi is the gender of the i-th user, for i = 1 and i = 2.

2: obtain

d(u1, u2) = 1+αdc×d(dc1, dc2)+αj×d(j1, j2)+αw|w1−w2|+αg|g1−g2| (5.6)

where
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- d(dc1, dc2) and d(w1, w2) are the shortest distances in the corresponding
hierarchical structure between the values in question

- the parameter values: αdc = 0.7, αj = 0.1, αw = 0.1, αg = 0.1, and serve
as weights in the equation. The most important component was given
a dominating value, the rest is evenly distributed among the remaining
factors.

3: obtain
simu−u(u1, u2) =

1

2
− 1

π
× arctan

(
d(u1, u2)− µd

σd

)
(5.7)

where

- µd and σd are the mean and the standard deviation of the user population

Algorithm 12 calculates the similarity between acquired injuries, simd−d. As the
acquired injuries are provided in a hierarchical structure [106] we derive the simi-
larity from the in-structure distance d(dc1, dc2). Note that here we obtain a bound
and normalized value, based on an unbound distance measure. The Type Score
Penalty parameter in (5.8) is used to express how the absolute distance between
two concepts translates into a normalized value.

Algorithm 12: simd−d, acquired injury-to-acquired injury similarity measure
1: assume

- two acquired injuries dc1 and dc2
2: if d(dc1, dc2) =∞ then simd−d(dc1, dc2) = 0.
3: else

simd−d(dc1, dc2) = δd(dc1,dc2) (5.8)

where:

- d(dc1, dc2) is defined in Algorithm 11
- δ ∈ R1

0 is a parameter called Type Score Penalty

4: end if

Algorithm 13 produces a compensation factor cs−s between users in different
states. One must expect that users in identical states behave similarly. How-
ever, it is also possible to draw some limited conclusions from similar users in
different states. We designed the compensation factor with diminishing values
according to the distance between the states to highlight this property.

When calculating the compensation factor between states e1 and e2 we distinguish
the first state (the input state) and the second (the base state). The naming
convention was established as we tend to iterate the input state, which is bound to
the current user, over all the possible states in order to obtain a list of factors, which
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later serve as weights in the final similarity calculation. Due to this distinction,
the compensation factor is not symmetric:

cs−s(e1, e2) 6= cs−s(e2, e1) (5.9)

The complexity of the Algorithm 13 is a consequence of the most crucial require-
ment imposed on cs−s. Namely, the sum of all the factors must be constant when
iterating one input value over all the possible base values. This condition allows us
to use the calculated factors as weights in (5.12). In addition, the coefficients must
decrease in the function of state-to-state distance. Factors linearly dependent on
the distance would cause central states to receive higher quality measures than
extreme states, simply due to lower average distance. For instance, in the case of
three states, the middle one has an average distance of 1 to all the others, while
the extreme ones are exactly at a distance of 1.5. Therefore, the use of linear
compensation as weights is not recommended, as it favors the central state. The
same can be said for all polynomially-dependent coefficients. With our approach
we obtain an unbiased coefficient matrix of an exponential nature (see Table 5.1
for an example) that permits us to take into account diminishing impacts of some
states over others. Algorithm 13 takes 2 as the base of the exponential dependency,
but it can be easily reformulated for other values.

Algorithm 13: cs−s, state-to-state compensation factor
1: assume

- states ei (input state) and eb (base state) with numerical values of |ei|
and |eb|

- E the number of possible states

2: if |ei| = |eb| then cs−s(ei, eb) = 1
3: else
4: if |eb| > 1

2 (E − 1) then x1 = E − |eb|
5: else x1 = |eb|
6: end if
7: x2 = E − x1
8: C = (2− 2−x1 − 2−x2)−1

9: obtain
cs−s(ei, eb) = C × 2−||ei|−|eb|| (5.10)

10: end if

With the above algorithms in place we may now define a measure for the user-to-
test similarity (Algorithm 14) that summarizes all the properties of a test pattern
and a user. The value obtained from the algorithm is used as the static component
in the posterior quality analysis.
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Table 5.1: Example of Algorithm 13.

Base
SumState e1 e2 e3 e4 e5

Value 0 1 2 3 4

In
p
u
t

e1 0 1.00 0.53 0.27 0.13 0.07 2.00
e2 1 0.36 1.00 0.36 0.18 0.09 2.00
e3 2 0.17 0.33 1.00 0.33 0.17 2.00
e4 3 0.09 0.18 0.36 1.00 0.36 2.00
e5 4 0.07 0.13 0.27 0.53 1.00 2.00

Algorithm 14: simu−t, user-to-test similarity measure
1: assume

- user u in the state eu with the acquired injuries: dcu = [dcu1, dcu2, . . . ]
- test t, created under the scope of the test pattern p, with sets of benefits:
dcp = {(e1, {dc11, dc12, . . . }), (e2, {dc21, dc22, . . . }), (e3, {. . . }), . . . }.

2: for each (ek, Dk) ∈ dcp, obtain the partial similarity component psimu−t:
psimu−t(dcu, Dk) =

∑
dci∈dcu

∑
dcj∈Dk

γi−1 × simd−d(dci, dcj) (5.11)

where:
- γ ∈ R1

0 is a parameter named Benefit Score Penalty
- i iterates over all the acquired injuries of the user u in the order provided
- j iterates over all the benefits the test pattern p provides for users in the
state ek

- simd−d is the acquired injury-to-acquired injury similarity measure (see
Algorithm 12)

3: obtain
simu−t(u, t) =

∑
(ek,Dk)∈dcp

psimu−t(dcu, Dk)× cs−s(ek, eu) (5.12)

Equation 5.12 should be understood as a weighted sum of all the partial similarity
components psimu−t, where the state-to-state compensation factor cs−s serves as
a weight. The partial similarity components (5.11) are the total effect of all the
possible cross-combinations of the user’s acquired injuries and the test pattern’s
benefits, with adequate weights in form of γ. We propose the following example
for clarification. Assume i) user u in the state e1 and acquired brain injuries dcu =
[dc1, dc2, dc3, dc4, dc5]; ii) test pattern p, with benefits dcp = {(e1, D1), (e2, D2)} =
{(e1, {dc1, dc3, dc4}), (e2, {dc2, dc4})}; iii) sims−s(e1, e2) = 0.85

Based on these assumptions, in Table 5.2 we perform a step-by-step calculation
of the two possible partial similarity components. With the psimu−t values ob-
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Table 5.2: Example of Algorithm 14.

dcu
dc1 dc2 dc3 dc4 dc5

D1

dc1 1 0* 0* 0* 0*
dc3 0* 0* 1 0.1* 0.3*
dc4 0* 0* 0.1* 1 0.3*

Sum 1 0 1.1 1.1 0.6
Weight γ0 γ1 γ2 γ3 γ4

Weighted Sum 1 0 1.1γ2 1.1γ3 0.6γ4

psimu−t(dcu, D1) 0.6γ4 + .1γ3 + 1.1γ2 + 1

D2
dc2 0* 1 0* 0.1* 0.2*
dc4 0* 0* 0.1* 1 0.3*

Sum 0 1 0.1 1.1 0.5
Weight γ0 γ1 γ2 γ3 γ4

Weighted Sum 0 γ 0.1γ2 1.1γ3 0.5γ4

psimu−t(dcu, D2) 0.5γ4 + 1.1γ3 + 0.1γ2 + γ
* example value

tained there, and taking γ = 0.5, we can calculate simu−t(u, t) as: simu−t(u, t) =
(0.6γ4 + 1.1γ3 + 1.1γ2 + 1) × sims−s(e1, e1) + (0.5γ4 + 1.1γ3 + 0.1γ2 + γ) ×
sims−s(e2, e1) = 1.45× 1 + 0.675× 0.85 = 2.05, which is considered a close simi-
larity.

The final algorithm (Algorithm 15) is the evaluation that ants perform in each
node ni. First note that we divide the components of the evaluation into two
groups: the static components sstat(u, t) and the variable components svar(u, Ts).
As the name suggests the static components hardly ever evolve in time, they are
based on the invariants of the users and the test patterns. The age of the user,
their profession or other parameters are not absolutely fixed, and, therefore, even
this component may change. The variable component, however, is highly dynamic.
It is based on the test solutions Ts present at a given moment in the node ni.

The equations (5.14) and, especially, (5.15) require additional comment. First
note that (5.14) is the static score component multiplied by a geometric average
of all the variable components. We opted for the geometric average rather than
arithmetic average due to the fact that the data in this case is of multiplicative,
not additive nature. In (5.15) we single out two clauses. The clause (a) increases
the impact of users similar to the user u. The second component of this equation
is (b) which acts as a score normalizer. It smoothens and softens the linear score
dependency and emphasizes higher scores. The 2π−1 factors convert the value
range of the subcomponents to (−1, 1) from (−π/2, π/2). The final +1 brings the
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value to the (0, 2) range. As we are not dealing with probabilities, there is no need
to normalize the value to the range (0, 1).

Algorithm 15: Query Evaluation in Node ni

1: assume

- ant A searches for tests for the user u
- node ni corresponds to the test ti, within the test pattern p
- set of test solutions Ts = {(ti, u1, d1, s1), (ti, u2, d2, s2), . . . , (ti, uj , dj , sj), ...},
of size |Ts| which encompasses the performance history of all the past
solving of test ti.

2: let

sstat(u, ti) = simu−t(u, ti) (5.13)

where simu−t(u, ti) is the static score component, defined in Algorithm 14
3: obtain score si(u, ti) of the test ti for the user u:

si(u, ti) = sstat(u, ti)× |Ts|

√ ∏
Tsj∈Ts

svar(u, Tsj) (5.14)

where svar(u, Tsj) is the variable score component, calculated for every test
solution Tsj = (ti, uj , dj , sj) available for the test ti:

svar(u, Tsj) =
(
2π−1simu−u(u, uj)

)3︸ ︷︷ ︸
(a)

×
(
2π−1 tan (2sj − 1)

)︸ ︷︷ ︸
(b)

+1 (5.15)

4: let the evaluation of the node ni be the tuple resi = (ni, si(u, ti))

5.5 Experimental Study

5.5.1 Experimental Procedure

In order to make mass experiments economically feasible we decided to generate
the sets of tests and sets of users in a predetermined and probabilistic manner.
The set of users is created according to the strictest rules provided by [108]. Both
age-wise, gender-wise and injury-wise distributions are drawn from the mentioned
source, which is the most complete we were able to locate. The professions are
drawn from the classification [107]. In this way, we argue, one might obtain a
statically justifiable set of users. The test patterns are taken directly from our
previous work in [106]. Each time we require a set of tests of a given size we
generate them maintaining even distribution among the test patterns, i.e. we
must expect approximately similar amounts of tests in each test pattern. For
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Table 5.3: ACS Execution parameters.

ACO
Parameter Interpretation Value
q0 Weight of exploiting vs. exploring strategy 0.80
α Pheromone deposition parameter 0.07
ρ Pheromone evaporation parameter 0.10
β Weight of link costs 1.00
γ Weight of evaporation 0.02
τmin Minimum pheromone level 0.001
τmax Maximum pheromone level 1.000
τ0 Initial pheromone level 0.009

instance, in a test graph of 104 tests, with 23 test patterns, we have about 430
tests per test pattern, which fulfills the requirements of small-world network.

In Table 5.3 we summarize the ACO-related execution parameters. All of them
have been taken from the literature and are at their standard values.

5.5.2 Experiment 1: Zero-knowledge correctness

The first experiment was designed to confirm the correctness of the model and its
implementation. In its uninitialized and uninformed state (zero-knowledge state),
without pheromone trails or stored test solutions, the system must behave in a
fairly straightforward manner, namely, it should be able to find and positively
evaluate the theoretically optimal test patterns in a large number of queries. Any
deviations from this are only allowed once the system has stored enough informa-
tion to incorporate additional factors.

This experiment was designed in the following way: 1) generate a test world
of n tests and 40 users; 2) select a random user along with his 3 theoretically
most adequate test patterns; 3) perform 100 queries; in each recommendation list
obtained, save the best position of any of the 3 most adequate test pattern. No
test solving takes place.

The steps 1− 3 were repeated 200 times, 100 for n = 5× 103 and 100 for n = 104.
The experiment-wide average of test recommendations is presented in Fig. 5.5.
The theoretically best test patterns was nearly always placed on top 10 (∼ 97% of
the cases) and, in a majority of cases, it was evaluated as the best one (83%−89%).
From these results we can conclude that it is highly improbable that a new user
will fail to receive optimal suggestions. The suggestions are, naturally, subject to
change according to the performance history of the user and the behavior of others.
All the aforementioned phenomena are examined in subsequent experiments.
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Figure 5.5: Zero knowledge state correctness.

5.5.3 DNA Graphs

From the user’s perspective each query is a simple input-output operation. As
input we take the querying characteristics of the user and as output a list of
test patterns in descending order of quality. An adequate representation of the
system’s evolution presented us with a challenge, seeing how the results are mul-
tidimensional and change over time. Traditional line graphs were illegible due to
the amount of dimensions in question, which in our case surpasses 40. Faced with
these challenges we opted for a novel way of representing the evolution that cap-
italizes on the two dimensions available, in combination with gray-scale intensity.
This way we created a visual tool to represent any d-dimensional value evolving
over nmax discrete time units.

We refer to this type of graphs as dna-graphs (see Fig. 5.6)), as they resemble quite
closely dna test results. Reading the dna-graphs is straightforward. First, the time
axis runs, traditionally, left to right; n = 0 is the leftmost edge, while the rightmost
one is the end of the experiment. Each vertical cut is the set of recommendations
in the n-th time unit, also referred to as the n-th iteration. Each horizontal cut
represents the evolution of a single test pattern. Finally, the gray-scale intensity
represents the position of the test pattern in the recommendation list - the brighter
it is, the higher on the list. Black areas represent test patterns absent from the list.
In order to facilitate the graph reading we transferred the idea of rolling average
into the visual representation as motion blur, which runs left to right, along the
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Figure 5.6: Dna-Graph example. The parallel evolution of the rank (gray-scale inten-
sity) of 46 test patterns (vertical axis) in function of time (horizontal axis).

time axis. Note the black rectangle on the left side. On some occasions we use it
to mark a test pattern of special significance, the rest will be left in gray.

5.5.4 Experiment 2: Inter-user Similarity

In this experiment we analyze the correctness of the user-to-user (simu−u) simi-
larity measure. Two similar users must receive approximately the same response
from an uninitialized system, i.e. before any tests have been solved or pheromone
spread and additional profiling could take place.

We generate the test world with 103 tests and 10 users, with the prerequisite that
the similarity between each pair of users must not be inferior to 0.85, and we have
each user performs 100 queries. There is no test solving involved, similarly to
Experiment 1, we only observe the responses of the system.

As can be clearly seen in the series of 10 dna-grahps in Fig. 5.7a, users have re-
ceived a very similar set of test patterns, with only minor deviations. For instance,
User 6 receives some additional test patterns, whereas the rest do not. These dif-
ferences confirm that the system is capable of distinguishing between even very
similar users, yet maintaining the cohesion of results to a high degree. On the
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(a) Similar Users

(b) Random Users

Figure 5.7: User Groups. System outputs for different groups of users.

contrary, Fig. 5.7b is an example of a group of random users with their different
test pattern recommendation.

Statistical Analysis

Goal. Demonstrate that the User-to-User similarity corresponds to an actual sim-
ilarity of the recommendations. We chose the Pearson Correlation, which is
commonly used in such cases.

Procedure. First we generate a pool of 100 users with random pairwise simi-
larities, next we let each user perform 100 queries in order to obtain for
each one a stable dna-graph of responses, as in Fig. 5.7. Then we process
our data crosswise obtaining 105 pairs of (User-to-User similarity, Result-to-
Result similarity), where the Result-to-Result similarity is the pixel-by-pixel
overlap measures of two dna-graphs. Note that it is an inverse scale, which
means that the perfect similarity between graphs is evaluated as 0.

Results. Our results show that there is a strong Pearson Correlation (Pc =
−0.423, Sig < 0.01) between the two types of similarity, which in turn tells
us that the user-to-user similarity measure is correct; i.e. similar users will
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(a) Unexpected bad (b) Unexpected Good

Figure 5.8: Unexpected Behavior. Reinforcement or removal of test patterns.

receive similar recommendations, while different users will receive increas-
ingly different recommendations.

5.5.5 Experiment 3: Unexpected Good and Unexpected Bad

In Experiments 1 and 2 we have shown that users are initially given a reasonable
set of tests and similar users receive similar recommendations. In this experiment
we chose to see how the system reacts to unorthodox behavior, i.e. one that
contradicts the base profile of a user. The design of the experiment was the
following:

1. Take a single user.

2. Perform 50 queries, no test solving (Fig. 5.8, Phase 1).

3. (Unexpected Bad variant) Select one of the top evaluated test patterns and
solve it very badly 50 times. Score 10% of the maximum score. (Fig. 5.8a,
Phase 2).

4. (Unexpected Good variant) Select one of the bottom evaluated test patterns
and solve it very well 50 times. Score 95% of the maximum score. (Fig.
5.8b, Phase 2).

What we observe is that the system quickly corrects the recommendation lists,
incorporating the newly gained, user-related knowledge.

In the Fig. 5.8a we can see that, starting from the halfway point, the test pattern
in question immediately drops from the top position to one of the last, eventually
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disappearing from the results completely. The opposite behavior is witnessed in
Fig. 5.8b where one of the worst of the top ten test patterns is suddenly elevated,
after being solved well several times. Note the black rectangle on the left side of
both subfigures in Fig. 5.8 that indicates the test pattern in question.

Statistical Analysis

Goal. Demonstrate that the unexpected behavior results in significant changes in
the recommendation lists. We chose the Mann Whitney U test, as it is the
most commonly used in non-parametric tests with two populations.

Procedure. We decided to construct the test focusing on the recommended test
pattern relative rank shift. This rank shift was calculated as a difference
between the mean rank of the test pattern during the first 50 iterations and
the last 50 iterations, i.e. if a test pattern was 2nd on the recommendation
list and it changed with time to the 6th position, then we would consider
RankShift = −4.0; if it changed from the 5th position to the 3rd position,
then RankShift = 2.0, and so on. In both variants, we tracked the evolu-
tion of 10 test pattern recommendations, 90% of which were left unsolved
(Mode = Unaffected) and 10% solved in an unexpected manner (Mode =
Unexpected), all repeated 100 times.

Hypothesis. Mann-Whitney U test.

Dependent Variable. RankShift is defined as RankShift = Rank51−100−
Rank1−50, where Rankj−i is the average rank of the given test pattern
between iterations i and j.

Independent Variables. Mode is defined as Unaffected for unaffected test
patterns and Unexpected for tests solved in either unexpectedly well or
unexpectedly badly.

Null Hypotheses. H0 the Mode variable does not influence theRankShift,
H1 the Mode variable does influence the RankShift.

Results. In the Unexpected Good variant we observed the mean RankShift of
0.27 for unaffected tests and −4.1 for tests solved well, with test statistics
U = 5.5, Sig < 0.001. Similarly, in the Unexpected Bad variant we observed
the RankShift of −0.22 and 4.25 for unaffected tests and test solved badly,
respectively, with test statistics U = 1.0, Sig < 0.001. In both variants we
must reject the null hypothesis and assume that the fact of solving tests
in an unexpected manner affects the test ordering in a significant way and,
therefore, that the system is capable of adjusting itself to the user’s progress.
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Figure 5.9: Inter-user influence. Indirect influence of User 1 on Users 2 - 4.

5.5.6 Experiment 4: Indirect Inter-user Influence

In this experiment we intended to show how the behavior of one user can affect a
whole cluster of similar users in an indirect manner. A test world with 103 tests
and 4 users, with high degree of pairwise similarity (> 0.85) was generated. We
choose a central user, with the highest average similarity to other users and label
him user 1; others become user 2, user 3 and user 4. The experiment consists of
the following steps:

1. Users 2 - 4 perform 100 queries, without solving tests (Fig. 5.9, Phase 1).

2. User 1 performs 100 queries without solving tests (Fig. 5.9, Phase 2).

3. The best common test pattern for all the Users is chosen.

4. User 1 performs 100 queries, each time solving badly the previously chosen
pattern (Fig. 5.9, Phase 3).

5. Users 2 - 4 repeat the 100 queries, without solving tests (Fig. 5.9, Phase 4).

Note that during the run of this experiment only user 1 solves tests.

Fig. 5.9 shows the responses of the system. We can see how the test pattern
marked with a black rectangle on the left side was completely removed from the
suggested list of all the users after only one member of the user group solved it
badly.
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Statistical Analysis

Goal. Demonstrate that unexpected behavior of a user significantly affects the
recommendation lists of closely similar users. We chose the Mann Whitney
U test, as in Experiment 3.

Procedure. The statistical analysis in this experiment was similar to the one in
Experiment 3. We generated 20 groups of 4 users and performed the full
experiment 20 times. To every test pattern for every user we assigned the
RankShift value, which is the difference between the average rank of the
test pattern in Phase 1 and Phase 4 and the Mode value. The Mode takes
two values: Affected in case of the test pattern in question and Unaffected
in every other case.

Hypothesis. Mann-Whitney U test.

Dependent Variable. RankShift is defined as RankShift = Rankphase4−
Rankphase1, where RankphaseN is the average rank of the given test
pattern in the phase n.

Independent Variables. Mode is defined as Unaffected for unaffected test
patterns and Affected for tests solved by the User 1.

Null Hypotheses. H0 the Mode variable does not influence theRankShift,
H1 the Mode variable does influence the RankShift.

Results. Using the Mann-Whitney U test we concluded that there was a statis-
tically significant difference in rank changes between the Mode of the two
groups, U = 8.0, Sig < 0.01. The average RankShift was −0.08 and 3.91 for
the Unaffected and Affected group, respectively. We therefore must reject
the null hypothesis and assume that the recommendation for test patterns
solved by the central user was affected significantly for all the users involved
in the experiment.

It is now obvious that similar users affect each other. However, this could cause
unwanted results, if the behavior of the user constantly becomes dominated by the
behavior of others. In order to examine this question we proposed Experiment 5.

5.5.7 Experiment 5: Fine-scale user clustering

The previous experiment answers the question about what happens if a subset of
a group of similar users acts in an unexpected manner. Here we try to show a
more difficult case when similar users act in contradictory ways. In other words, we
explore to what degree the system can distinguish between users if their calculated
similarity measure does not coincide with their actual behavior.
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We assume that 10 similar users exist (pairwise similarity > 0.80), but behave in
two distinct ways. First, there is a group of Good Users that solve the queried tests
as expected, i.e. theoretically suitable tests are solved well and the unsuitable ones
badly; second, there is a group of Bad Users that do the exact opposite. These
are the phases in the experiment:

1. All users query test patterns, without solving, for the first half of the exper-
iment.

2. The best common test pattern is chosen.

3. Good Users start solving well the test within the chosen test pattern, while
Bad Users start solving them badly.

Fig. 5.10 is a visualization of the responses for: A) 1 Good User and 9 Bad Users;
B) 3 Good Users and 7 Bad Users. As we can see, in spite of the high level of
similarity, the system was capable of modifying its behavior in two opposite ways.
All Good Users still receive the test pattern in question, while all Bad Users have
it pushed off the first place on the list to a point at which it almost disappears.
In both figures the test patterns affected are marked with a black rectangle on
the left. This fine level split proves that the system can detect subgroups of users
based on their behavior as well as static characteristics.

5.5.8 Experiment 6: Global Experiment

After analyzing the system in a series of isolated situations, in which the outputs
were foreseeable and the inputs had direct consequences, we proceed to a global
experiment. In this final experiment we would like to examine the performance
of the system under a more realistic situation of a mixture of the aforementioned
behaviors. We also allow users to evolve, change their behavior modes and atti-
tudes, and we incorporate several physiological components such as boredom and
curiosity.

There is an inherent difficulty in performing a global, realistically simulated ex-
periment. The more effort that is put into modeling natural user behavior, the
more difficult it is to predict the outputs of the system, which, in turn, makes the
statistical analysis less straightforward.

In order to accurately model the users, we need to introduce a new concept, User
Mentality, which in our model has the following values: Passive, Neutral, Unex-
pectedGood, UnexpectedBad and Random. They can be understood as follows:

Passive. Users with this mentality are only querying for tests, but never solve
them. It should be perceived as initial curiosity in the system, combined
with a certain degree of timidity. Every user starts with Passive mentality.
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(a) 1 Good User, 9 Bad Users

(b) 3 Good Users, 7 Bad Users

Figure 5.10: Fine-scale clustering. Subclustering of similar users under the condition
of contradictory behavior

Neutral. These users solve all the tests according to the quality provided by the
model. This means that they should have a neutral impact on the evolution
of the system. Having said that, as we show in the Experiment 4, they can be
influenced by other users. When a User chooses to evolve from the Passive
mentality, it always changes first to Neutral.

UnexpectedGood and UnexpectedBad. These two mentalities are identical
to those in Experiment 3. With a certain probability users with Neutral
mentality can choose one Test Pattern as the objective of their unexpected
behavior. A test from the recommendation rank 5 - 10 can be selected as the
objective of UnexpectedGood mentality, and one from rank 1 - 3 can become
the objective of an UnexpectedBad mentality. Each time a test is solved in
an unexpected manner we increase or decrease the accumulated Impact the
users had on it (+1 for UnexpectedGood solution, −1 for UnexpectedBad
solution).

Random. The last mentality is random behavior. Neutral, UnexpectedGood
and UnexpectedBad users can start and behave irrationally, solving tests in
a random manner. This sort of mentality corresponds to bored or annoyed

118



5.5 Experimental Study

users, as well as input errors. It serves as a way of establishing how well the
system copes with input noise. Random users can return to behaving in a
Neutral way.

The transitions between states are probabilistic and expressed in the evolution
matrix EM , (5.16). The probability of the transition from mentalitym1 tom2 is in
the the m1-st row and m2-nd column, EM [m1][m2]. For instance: the probability
for Neutral (2) to convert to UGood (3) is EM [2][3] = 0.01.

EM =



Passive Neutral UGood UBad Random

Passive − 0.03 0 0 0.002
Neutral 0 − 0.01 0.01 0.002
UGood 0 0 − 0 0.0001
UBad 0 0 0 − 0.0001
Random 0 0.008 0 0 −

 (5.16)

Statistical Analysis

As the results of this experiment are too complex to visualize by the dna-graphs,
we therefore only perform a statistical analysis.

Goal. Demonstrate that in a non-isolated, global experiment the recommendation
list ranks are correlated with the behavior of users. We chose the Pearson
Correlation Pc, as in Experiment 3.

Procedure. For each experiment run we generate a pool of 103 tests under 46
tests patterns and U users grouped in C clusters. Users from within a cluster
have pairwise similarity > 0.8, users from different clusters have pairwise
similarity of < 0.6. In addition, we take the evolution matrix as EM/R,
where R is referred to as Randomness decrease, i.e. the higher the R, the
less probable the evolution, the less users behave in an unexpected manner
and the lower the Impact value for each test pattern.

We have split this experiment into two variants. Variant i) uniform, in which
the evolution of the entire population is uniform and determined byR; ii) per-
cluster in which the evolution of each cluster of the population is determined
by a different RC . One experiment run consists of 103 iterations. A full
iteration is composed of: i) selecting a random user from U ; ii) performing
a query for tests for the selected user; iii) handling the query results according
to the selected user’s mentality; iv) evolving all users in U with probabilities
given by EM/R (uniform variant) or EM/RC (per-cluster variant) v) saving
the ranks of all the test patterns queries and updating the impacts, if the
solution was performed in an unexpected manner.

119



Chapter 5. An ACO-based personalized learning technique in support of people with ABI

Each experiment run is repeated five times for the same U , C and R.
In our experiment we took U = {10, 25, 50, 100}, C = {1, 2, 3, 5}, R =
{1, 10, 50, 100} and RC ∈ {1, 10, 50, 100}, which resulted in 64 combina-
tions, 5× 64 = 320 experimental runs for each variant and 640 experimental
runs total. The statistical analysis is reported for all the aggregated results
Pc, as well as, grouped for each R: Pc[R = 1], Pc[R = 10], Pc[R = 50],
Pc[R = 100] for both variants.

Hypothesis. Pearson Correlation Pc test.

Dependent Variable. RankShift is defined as RankShift = Rank0−50 −
Rank950−1000. It is the difference in average rank of a given test pattern
in the first 5% and the last 5% iterations.

Independent Variables. Impact is calculated as an absolute sum of all
the unexpected solutions, tracked independently for each test pattern.

Null Hypotheses. H0 the Impact variable does not influence the RankShift,
H1 the Impact variable does influence the RankShift.

Results. In the uniform variant the aggregated results, as well as each of the re-
sults grouped by Randomness decrease, have been shown significant, see
Table 5.4. We must therefore conclude that Impact variable influences
RankShift in an expected manner in the uniform execution variant, con-
firming Experiments 3 and 4 in the global setup. In addition, we see that
the Impact is inversely proportional to RankShift and decreasing with R.

If the evolution of the system is not uniform (per-cluster) we also obtain
statistically significant results, see Table 5.4. This means that even if the
evolution, and consequently the behavior of the users of the system, varies
from cluster to cluster we still obtain statistically significant recommendation
list changes, confirming Experiments 3 and 5 in the global setup. The Impact
variable is again inversely proportional to RankShift and decreasing with R

We therefore conclude that our recommendation system works as expected
under all conditions.

Aside from the main statistical study we performed an analysis of the distribution
of the Impact variable, grouped by R (Fig. 5.11). We chose R as the grouping
variable, as it is the main factor in the generation of User Mentalities. We can
clearly see the mean in all the cases remains very close to 0, which is desirable
and expected. The user pool must behave unexpectedly in a small portion of the
iterations, rather than a majority. The User population generated with R = 1
(Fig. 5.11a) is the most quickly evolving and, in consequence, generates the most
impacts. The standard deviation of the Impact variable distribution is 33.126. As
we proceed towards slowly evolving populations, the standard deviation decreases,
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Table 5.4: Experiment 6. Pearson Correlation results.

Uniform Per-cluster
Parameter Pc Sig Pc Sig
Pc −0.469∗∗ < 0.00 −0.352∗∗ < 0.00
Pc[R = 1] −0.652∗∗ < 0.00 −0.503∗∗ < 0.00
Pc[R = 10] −0.451∗∗ < 0.00 −0.290∗∗ < 0.00
Pc[R = 50] −0.146∗∗ < 0.00 −0.168∗∗ < 0.00
Pc[R = 100] −0.094∗∗ < 0.00 −0.143∗∗ < 0.00

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

reaching 2.014 in the Fig. 5.11d. This suggests that our model of user and user
mentality generation is reasonable and realistic.

5.6 Conclusions and Future Work

In this work we have shown that our proposal proved to be appropriate for the
problem in question. ACO-based suggestion building is efficient starting from the
zero-knowledge stage, achieving precision of 80% - 90%. This indicates that any
user approaching the system would immediately receive quality suggestions, as
demonstrated in Experiment 5.5.2. In later experiments we have shown conclu-
sively that the precision only improves from that point.

The inter-user indirect influence is akin to ant communication in ACO models
and is, therefore, deemed the most suitable metaphor. An important property of
ACO is the ability to reconverge if the desired conditions arise. Naturally, the
users’ behavior can evolve gradually, but it can also change abruptly at any point
in time. Such an event causes a quick response in the form of a reevaluation
and reconvergence with system-wide consequences. Experiment 3 demonstrates
precisely this situation. In addition, Experiment 4 shows the wider consequences
of such an event. Here a group of users starts receiving significantly different
suggestions based purely on the actions of others.

Apart from its adaptability the suggested model has the potential to distinguish
fine differences between apparently similar users. This means that any groups
that may have formed over the evolution of the system can be very quickly split
into sub-groups if the conditions so dictate. Our proposed distinction between
the static and dynamic score components facilitates this process. This fine scale
similarity reevaluation was shown in Experiment 5.

Finally, we performed a global experiment (Experiment 6), the largest in terms
of iterations and user-pools, which was designed to integrate all the partial views
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(a) (b)

(c) (d)

Figure 5.11: The distribution of the Impact. Grouped by R

provided by Experiments 1 - 5. In this experiment we maintain a dynamic, evolving
user population with different behaviors, ranging from Passive to Random, with
the full range of disabilities, and in all possible physical states. We consider that
in this way we achieve an acceptably accurate representation of a set of real-life
users. From Experiment 6 we conclude that our model reacts as expected to user
actions and generates statistically relevant recommendation lists.

Several challenges constitute our future work. Currently, we are working on the
integration of the solution here presented into HABITAT, the application devel-
oped for the treatment of individuals with ABI in order to enable them to take full
advantage of our findings. This would involve a step forward in their treatment
and reduce the need for specialist attention. This integration must be carefully
planned, not because of technological issues, but to control its impact on the evo-
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lution of system users. Therefore, a careful deployment plan must be designed to
maximize the acceptability of the proposal in clinical terms.

In addition, from a purely technological point of view, several issues must be
resolved to enable interaction with these individuals. For instance, it would be
necessary to design proper facilities to guide them in the query processes, so that
they know the real meaning of the minimum and maximum scores. It would also
be interesting to model additional factors, such as daily progress and fatigue levels,
so that the system can encourage the users to either continue with additional tests
or to rest.

Finally, in relation to the algorithm presented here, we are evaluating new meta-
heuristics that take into account the stress of the person with ABI while they are
using the system. These heuristics are oriented towards providing full support for
the personal part of the relearning process. They would also consider additional
inputs, not only about the users’ cognitive state, but also about their physical
conditions while solving the tests.
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Abstract

Ant Colony Optimization has proven to be an important optimization technique.
It has provided a solid base for solving classical computational problems, net-
works routing problems and many others. Nonetheless, algorithms within the Ant
Colony metaheuristic have been shown to struggle to reach the global optimum
of the search space, with only a few select ones guaranteed to reach it at all. On
the other hand, Ant Colony-based hybrid solutions that address this issue suffer
from either severely decreased efficiency or low scalability and are usually static
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and custom-made, with only one particular use. In this paper we present a generic
and robust solution to this problem, restricted rigorously to the Ant Colony Op-
timization paradigm, named Angry Ant Framework. It adds a new dimension
— a dynamic, biologically-inspired pheromone stratification, which we hope can
become the objective of further state-of-the-art research. We present a series of
experiments to enable a discussion on the benefits provided by this new framework.
In particular, we show that Angry Ant Framework increases the efficiency, while at
the same time improving the flexibility, the adaptability and the scalability with
a very low computational investment.

6.1 Introduction

The mimicking of nature has often led to important discoveries in science and tech-
nology. This is especially true in the field of computation, where an entire branch
of research is focused on translating animal behavior into mathematical models,
which later serve as basis for computational frameworks. One fruitful approach
employs these concepts is the notion of a swarm of animals and consequently, the
emerging swarm intelligence [109]. It shifts the complexity of the model from
the behavior of a single animal, which in this case is treated very simplistically,
sometimes even trivially, to the intra-animal interaction. An example of swarm
intelligence is the Ant Colony Optimization (ACO) metaheuristic.

ACO is a computational technique for finding shortest paths in graphs, that is
inspired by the behavior of ants [6] [7]. It has allowed some very efficient solutions
to classical problems, such as the Traveling Salesman Problem or the Quadratic
Assignment Problem, as well as other that can be represented as graphs with edge
traveling cost and resources in nodes.

Although much effort has been dedicated to the topic of empirical and experimen-
tal studies of ACO, the theoretical analysis of convergence and optimality is yet
lacking [110] [111]. Of the many ACO algorithms, only two (Ant Colony System,
ACS [17] andMax-Min Ant System, MMAS [112]) have been proven to converge on
a global optimum [113] [114], although even in these cases the convergence prop-
erty is weak [111]. In practice, even though ACS and MMAS are guaranteed to
eventually reach a global optimum, their convergence period may be impractically
long.

Attempts at fine-tuning ACO have not provided any solution because of the ex-
cessive parametric sensitivity of ACO. An overly strong convergence process leads
to stagnation in suboptimal solutions, while a weak one might not conclude, as
the random component of the algorithm dominates. The survey [110] discusses in
high detail the aforementioned problem. A step towards a possible solution has
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been the hybridization of ACO with other methods, [115], resulting in what is
collectively known as Hybrid Ant Systems or HAS.

HAS algorithms tend to produce high quality results, oftentimes outperforming
their non-hybrid counterparts. However, they entail strict limitations, on which we
elaborate in section 6.2, and tend to be custom-made for only one predetermined
use. Even more importantly, within the spirit of the No Free Lunch Theorem [116]
[117], they almost always sacrifice the strongest advantage of ACO metaheuristic
— the decentralized nature and, in consequence, the scalability and the potential
to work in distributed environments, such as P2P networks.

For these reasons we attempt to improve the convergence quality of ACO with
a non-hybrid approach, strictly within the frames of the ACO paradigm. We
opted for a non-hybrid approach to assure a dual benefit. First and foremost, we
preserve all the qualities of ACO. We guarantee that our model can be applied
to any problem ACO is applicable to. Second, if the restrictions on scalability
or centralization are relaxed or waived our non–hybrid ACO can be hybridized,
stacking the benefits and, possibly, improving the overall quality further.

Of the two known optimal ACO algorithms ACS is arguably the more popular. It
has been used in countless derived hybrid systems and it has nearly become syn-
onymous with the ACO metaheuristic. Thus, we choose it as the conceptual base
algorithm for our algorithm. We claim that our model, which we refer to as Angry
Ant Framework (AAF), helps with the convergence quality of ACS unconditionally.
Moreover, AAF provides a new dimension to the ACO metaheuristic by extending
the classical, single-value pheromone model with a dynamic multi-pheromone ca-
pability. We enable the pheromone model to adapt to a given problem space with
more precision and flexibility and to reconverge out of local minima at any point
in the evolution of the system. Even though our solution is based on ACS, AAF
is designed with generality in mind. It can be transfered onto any non-hybrid
ACO algorithm on one hand, and take part in any hybrid setup, on the other.
Therefore our framework should be perceived as a complementary rather than
competing approach.

The remainder of the paper is structured as follows. In section 6.2 we elaborate on
HAS algorithms, their uses and drawbacks. In section 6.3 we present the mathe-
matical formalization of the Angry Ant Framework. In section 6.4 we provide the
results of the empirical research phase. We conclude with section 6.5, where we
summarize the results obtained and outline the possible hybridizations of AAF.
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6.2 Hybrid Ant Systems

ACS, alongside MMAS, have remained a de facto state-of-the-art of ACO. ACS,
since it was proposed by Dorigo [17], served as a backbone for many hybrid models,
all of which could be positively influenced by AAF. As we discussed in the previous
section, a more efficient non-hybrid ACO algorithm is more widely beneficial than
a custom-made hybrid algorithm.

There exist numerous hybridization techniques [118]. However, in the domain of
HAS the spectrum of approaches narrows down to three families:

1. ACO with selective evolution

2. ACO with local search

3. ACO coupled with another heuristic

The most lightweight in terms of affecting the underlying ACO metaheristic is
the idea of selective evolution. The overall algorithm is two-phase. In the first
phase ACO is used to generate a number of independent solutions, while in the
second phase another mechanism analyses the solutions and chooses a subset of
them for the pheromone reinforcement. There is always a global overseer capable
of radically switching the evolution of the system as soon as it encounters a better
solution than the current minimum. Careful implementation of this idea has such
a low impact on ACO that it could be argued that these techniques are, in fact, not
an example of hybridization, but rather are at the core of ACO. Examples include
k-Elitist Ant System [119], in which only the k-top solutions are reinforced, and
the Rank Based Ant System [120], in which the reinforcement is weighted by the
rank of the quality of the solution.

ACO has the ability to quickly find and explore promising regions in the search
spaces, yet it tends to slow down the nearer it finds itself to the optimum. To aid
this, a more disruptive variant of HAS was proposed [115]: ACO coupled with local
search. The results produced by ACO are not only filtered but also postprocessed
with a local search algorithm, thus improving the convergence rate. The drawback
to this method is a great loss of generality and increased centralization. It is the
most numerous family of HAS algorithms, used for problems such as Sequential
Ordering Problem [121] and Quadratic Assignment Problem [122].

ACO can also be coupled with another heuristic, which can be done a multitude
of ways. The most elaborate ones include parallel execution of two or more algo-
rithms of distinct metaheuristics over the same search space, later proceeding to
compare and contrast the results and perform result crossovers. These algorithms
always require global daemons and are incompatible with the principal paradigm
of ACO. However some simple preprocessing-postprocessing setups, such as in-
ward processing are more relaxed. In the work [123] ACO selects the region of
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the search space and another algorithm continues with fine-tuning. An interesting
algorithm of this kind is Recursive ACO [124], in which different instances of ACO
algorithms are executed recursively over smaller and smaller search spaces.

On the other hand our solution (AAF) is a non-hybrid one. We postulate that it
surpasses the non-hybrid ACO algorithms in terms of and convergence quality at
a cost of increased memory usage. It could help to advance the reported results
of all the aforementioned works. Additionally, it perseveres the full scope of the
applicability of ACO.

6.3 Angry Ant Framework

6.3.1 Overview

Traditional ACS uses a single pheromone value for trail marking. However, it has
been shown that using multiple pheromone types benefits ACO [125] [44] [126] [77]
and it also reflects more closely the actual behavior of real-life ants [127]. In the
common vocabulary pheromone types are often referred to as pheromone levels.

The roles of multiple pheromone levels differ among algorithms. Two predominat-
ing approaches are: using two types of pheromone (attractive and repulsive, [125])
or pheromone-per-problem-class [44] [126] [77]. Such multi-pheromone solutions
impose limitations: the number of pheromone levels must be established a pri-
ori, they require custom-made pheromone deposition and evaporation strategies
as well as the state transition technique. In our approach we enable AAF to grow
the number of pheromone levels L as needed, starting at L = 1 in each node. We
argue that allowing this form of dynamism preserves versatility of the algorithm,
as there is no more need to externally establish the number of pheromone levels.

Rather than have preassigned roles, the pheromone levels are created with the sole
purpose of improving efficiency and preventing ACO stagnation in local minima
[110]. They enable independent ant explorations to take place, including cases
in which ants in newly created level travel against the pheromone indications of
the lower levels. The non-zero chance of generating a new pheromone levels is
preserved during the execution of the algorithm, thus, the stagnation period is
always finite. To the best of the authors’ knowledge this form of dynamism in
ACO has remained unexplored.

The dynamic level creation is limited to situations where the entropy of the phero-
mone information provided by existing pheromone is too high. The decision to tie
the level creation with an entropic measure is based on biological and psychological
grounds. If we think about one single node r it is expected that, after a period
of time, one edge dominates others in terms of pheromone value. However, in
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sensitive regions of the search space or when the algorithm approaches a minimum
there might be no strongly dominating edge, or the strongest pheromone might
change back and forth. The lack of a clear–cut path is a state of high entropy, or
chaos, which causes irritation in living beings. Accordingly, our model has been
named Angry Ant Framework.

AAF builds upon the model provided by ACS. In place of the one τrs pheromone
value per directed edge AAF uses an array of τ (`)rs values, of size L. The levels are
contiguous, from ` = 1 to ` = L. For a node r, the τ (`)rs must be defined for every
outgoing edge s in its neighborhood, NG(r) and for every level ` present in r. The
size of the pheromone array can change as needed. The equations that govern the
pheromone arrays are presented in subsection 6.3.2.

At any given time, an ant is assigned a unique pheromone level. Ant a(`), that
is being routed within the level `, uses its corresponding level pheromone values
only (Fig 6.1, step D∗). The pairing between ant and level happens with the help
of the level assignment matrix L(r) (Fig 6.1, step A∗) at the ant generation. L(r)
is stored and maintained in every node r as explained in the subsection 6.3.3.
Ants are permitted to change their level and to create new levels under certain
conditions, explained in subsection 6.3.4 (Fig 6.1, step B∗).

6.3.2 State Transition and Pheromone Evolution

The state transition and pheromone evolution models are almost identical to those
in the ACS model. As in ACS the initial pheromone value is τ0 ∈ R+

0 , the minimum
is τmin ∈ R+

0 and the maximum is τmax ∈ R+
0 . With the inclusion of the pheromone

level concept the classical equations must be rewritten with τ (`) in place of τ . The
use of various levels in the state transition is reflected in the step (D∗) of Fig 6.1.
Note that the cost η is level-independent, as it is tied to the physical properties of
the edge.

s = argmaxu∈NG(r) {τ (`)ru × ηβru} (6.1)

prs =


τ(`)
rs ×ηβrs∑

z∈NG(r) τ
(`)
rz ×ηβrz

if s ∈ NG(r)

0 otherwise
(6.2)

Similarly, the pheromone deposition and evaporation are limited to the pheromone
level used by the ant a(`)q , as below:

τ (`)ru ← (1− α) · τ (`)ru + α · δτ (6.3)
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Figure 6.1: Angry Ant Framework high level pseudocode

1: initialize()
2: while i ≤ agent_max do
3: i_node← select_node()
4: level← select_level(L(i_node)) . (A∗)
5: launch_agent(i_node, level)
6: pheromone_evaporate()
7: i← i+ 1
8: end while
9: for all agent do

10: solution←get_solution(i_node, query, level)
11: goodness←evaluate_solution(solution)
12: pheromone_deposit(solution, goodness)
13: end for

14: function get_solution(i_node, query, level)
15: res← empty_set
16: node← i_node
17: path← empty_list
18: while not stop_condition do
19: res ∪ query_resources(node, query)
20: if agent_is_irritated then . (B∗)
21: level← level + 1 . with prob. ι (C∗)
22: end if
23: node←state_transition(node, level) . (D∗)
24: path ∪ node
25: end while
26: return solution(path, res)
27: end function

τ (`)ru ← (1− ρ) · τ (`)ru + ρ · γ · max
z∈NG(r)

τ (`)rz (6.4)

The number of ants depositing pheromone is always identical to ACS. As long as
there is just one pheromone level, L = 1, the behavior of this model is indistin-
guishable from ACS.
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6.3.3 Level Assignment Matrix

The assigning of ants to pheromone levels is performed at the ant generation, with
the help of level assignment matrix L(r). Every node r stores a matrix LL×Q(r)
of dimensions L × Q. The rows of L(r) correspond to the levels of pheromone
present in r, while the columns of L (written as Lq) correspond to all the queries
q that originated at the node r. The matrix is initialized as 1× 1: L1×1(r) = I0,
and can grow dynamically as needed.

When a query q is launched from a node r one generic ant aq is created. Based on
the information present in L(r) the node decides to which level should the ant be
assigned (Fig 6.1, step (A∗)). The probability of assigning the ant aq to any level
` is given by:

p[aq → a(`)q ] =
L`q(r)∑

`′∈{1..L} L`′q(r)
(6.5)

Equation 6.5 is evaluated for every level present in r. It is possible to choose
more than one level or to choose none. In the first case multiple ants are sent to
the chosen levels independently and the final response to the query is the sum of
all the partial responses. This approach causes the number of ants per query to
fluctuate.

The probability of not selecting any level is equal to:

∏
`∈{1..L}

(1− p[aq → a(`)q ]) (6.6)

In such a case the best possible level is chosen:

` = argmax`′∈{1..L}{L`′q(r)} (6.7)

The information stored in L(r) is updated by returning ants. When an ant a(`)q
returns to its emitting node r, yielding results evaluated at goodness δτ , it updates
L(r) by first applying (6.8), followed by (6.9):

L`q(r)← (1− α∗) · L`q(r) + α∗ · δτ (6.8)

Lq(r)← (1− ρ∗) · Lq(r) (6.9)

where:
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α∗ ∈ R1
0 is the deposition parameter, analogous to the α parameter of the classical

equation.

ρ∗ ∈ R1
0 is the evaporation parameter, analogous to the ρ parameter of the classical
equation.

If at any point either ` > L (the returning ant has raised a level during its life
span) or q > Q (the first time a query is launched in the node), then L is expanded
with rows and columns of zeros to accommodate the required new concepts:

L`×q = (I`×L × LL×Q)× IQ×q (6.10)

where:

Im×n is a binary matrix of dimensions m×n, with ones on its main diagonal and
zeros elsewhere

6.3.4 Ant irritation

An ant a(`)q in the node r will become irritated with the probability of p(`)irr(r) (Fig
6.1, step (B∗)). The value p(`)irr(r) is the central element of the pheromone-level
dynamism, it allows the creation of new levels. If p(`)irr(r) = 0 is assumed AAF is
reduced to ACS.

In order to easily explain how p
(`)
irr(r) is calculated we first define a preliminary

concept, namely the pheromone sum, the sum of all the pheromone values of all
the outgoing edges on the level ` from the node r. It is written as τ (`)sum(r):

τ (`)sum(r) =
∑

s∈NG(r)

τ (`)rs (6.11)

With that:

p
(`)
irr(r) = ι× 1

τmax︸ ︷︷ ︸
(a)

× τ
(`)
sum(r)

deg(r)︸ ︷︷ ︸
(b)

×

×
∑

z∈NG(r)

τ
(`)
rz

τ
(`)
sum(r)

ln
τ
(`)
sum(r)

τ
(`)
rz︸ ︷︷ ︸

(c)

(6.12)
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where:

ι ∈ R1
0 is a parameter that can be used to regulate the strength of the irritation.
If ι = 0 then p(`)irr(r) = 0 (Fig. 6.1, step (C∗)). We can express explicitly the
value of ι by naming the algorithm ι−AAF.

The components of the (6.12) are the following:

(a) is the normalization factor based on the maximum pheromone value τmax; to
guarantee p(`)irr(r) ∈ R1

0.

(b) is the average pheromone per link in the node r. The higher the average
amount of pheromone, the more mature the node should be considered. This
reduces greatly the ants’ irritation with fresh nodes that have very high
entropy, due to identical pheromone value, τ0 on all the edges, but very low
maturity.

(c) is the entropy of the pheromone distribution in the node r on the level `

We include two versions of the same equation. (6.12) is the clearest form, which
serves for explanations, while (6.13) is its simplified version. We use in our im-
plementation for experimental purposes. Note the symmetry between the τ (`)sum(r)

and τ (`)rz .

p
(`)
irr(r) =

ι

τmax × deg(r)
× τ (`)sum(r)× ln(τ (`)sum(r)−

− ι

τmax × deg(r)
×

∑
z∈NG(r)

τ (`)rz × ln(τ (`)rz ) (6.13)

In the search phase of the ant, the probability p(`)irr(r) is checked against a uniform
random variable P upon transitioning into a node. If P > p

(`)
irr(r) the ant ascends

one pheromone level:

a(`)q →
{
a
(`+1)
q if P > p

(`)
irr(r)

a
(`)
q otherwise

(6.14)

If at any point of the routing process the ant a(`)q finds itself in a node that does
not contain the pheromone level `, the required level will be created and all the
outgoing links within it will be initialized with the value τ0. This will be referred to
as pheromone split. At the same time the level assignment matrix is appropriately
extended, as in (6.10).
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6.4 Experimental results

In our experiments we attempt to demonstrate three main points. First, we analyze
the convergence rate of the each respective algorithm. Second, we show that our
algorithm performs better than ACS in terms of the ability to find minima and
finally, we take a look at the computational cost of As long as there is just one
pheromone level, L = 1, the behavior of this model is indistinguishable from ACS. .
In order to preserve maximum generality and validity of our experiments we focus
in study on the generic problem of resource querying in graphs. Good performance
in resource querying is an indication that the algorithm should have the same effect
on different classical problems, as many of them can be modeled as graphs with
resources.

6.4.1 Experimental procedure

In the following experiments we generate a number of resources, distribute them
in a graph G (a 2-dimensional toroid) of N = 32× 32 = 1024 nodes and perform
4× 106 resource queries (1× 106 in the computational cost experiments).

The quality measure will be Hop per HitHpH: the ratio of steps taken to resources
obtained. It should be seen as the average cost in terms of transitions between
nodes of obtaining one resource. In case of not finding any resources, Hit = 0,
we take HpH = 2 × TTL. The values of parameters used in the execution and
experimentation are summarized in table 6.1. ACO parameters are at standard
values. The parameters α∗ and ρ∗ have been set to match the analogous values
of α and ρ. The initial state of the Level Assignment Matrix I0 is by definition a
1× 1 matrix, we chose a small value to easily avoid division by zero in (6.5).

The parameters of the experiments reflect our hardware and time limitations.
The workstation used in the experiment execution is a 64bit, Intel Core i5 540m,
8Gb Ram. A single execution generates about 70MB of raw data. Each plot is
an average of 10 independent executions over different datasets, three of which
(kry1024c1a, kry1024c1b and kry1024c1c) we make available at [128], for anyone
to use. The remaining seven are named rand: from rand a∗ to rand g∗. We plot
5 graphs for each figure.
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Table 6.1: Execution parameters

ACO
Parameter Interpretation Value
q0 Weight of exploiting vs. exploring strategy 0.80
α Pheromone deposition parameter 0.07
ρ Pheromone evaporation parameter 0.10
β Weight of link costs 1.00
γ Weight of evaporation 0.02
τmin Minimum pheromone level 0.001
τmax Maximum pheromone level 1.000
τ0 Initial pheromone level 0.009

AAF
Parameter Interpretation Value
I0 L(r) initial value [0.01]
α∗ L(r) deposition parameter 0.07
ρ∗ L(r) evaporation parameter 0.10

Experiments
Parameter Interpretation Value
TTL Hop-based stop condition, Time to Live 10
Rmax Hit-based stop condition 10
Rmin Minimum Hit to consider a query successful 5
N Amount of the nodes 1024

6.4.2 Resource distribution

The distribution of the resource queries is uniform: the probability that the node
n in launches a resource query is 1/N .

Every node n can hold nr resources. The exact distribution of resources is not
crucial. It affects such outcomes as the final convergence value, but the relative
position of the algorithms remains unaffected, as we conclude in [12]. We create a
setup in which, following the suggestions of [54], there are relatively rare resource-
rich nodes (nr = 10), somewhat common normal nodes (nr = 1) and a great
majority of nodes without resources (nr = 0). The distribution of nr, follows a
probabilistic model:

p[nr = 0] =
44

50
, p[nr = 1] =

5

50
, p[nr = 10] =

1

50

We execute the algorithm with the ι parameter ranging from ι = 0.00 (equivalent to
ACS) to ι = 1.00, over three intermediate values: ι = 0.25, ι = 0.50 and ι = 0.75.
Our goal is to show that increasing values of ι provide increasing benefits, that is:
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Figure 6.2: Convergence Rate. Average from datasets kry1024c1a, kry1024c1b,
kry1024c1c and rand a∗ - rand g∗. More is better.

ι1 > ι2 ⇐⇒ ι1−AAF is better, in terms of HpH, than ι2−AAF. Most crucially,
that 1.00−AAF is better that 0.00−AAF (ACS).

6.4.3 Results

First we take a look at the evolution of the algorithms’ convergence rate, expressed
as the ratio of the change of the chosen quality measure (HpH) and the iteration
span in which the change occurred, written as HpH × Iteration−1. In Fig. 6.2
we present the full evolution of the convergence rate. There is low variability
among the execution variants, yet ι = 0.00 tends to be slower ι = 1.00. We can
also conclude that regardless of the variant the convergence rate starts oscillating
around 0 at the iteration 1.5 × 106. This is the definition of arriving at the
convergence point (CP ). We can, therefore, conclude that AAF and ACS do not
differ in terms of convergence rate.

The most important measure for any graph search is its effectiveness, or conver-
gence quality, which is the value of the chosen quality metric (HpH in our case)
after the convergence point (CP ). The full results are presented in Tables 6.2
and 6.3. The graphical representation Fig 6.3 we can observe the evolution of the
HpH value for the five variants of the execution of the algorithm. From there
we conclude that the higher the irritation value (ι) the lower the overall HpH.
Moreover, having demonstrated that the all algorithms converged successfully, we
claim that 0.00−AAF (ACS) variant finds local minima worse than 1.00−AAF
(0.65 HpH to 0.59 HpH respectively). From this analysis we cannot assume that
the global minimum was reached, yet the AAF with ι = 1.00 is on average 11%
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Figure 6.3: Convergence Quality. Average from datasets kry1024c1a, kry1024c1b,
kry1024c1c and rand a∗ - rand g∗. Less is better.

better. In the three standard datasets (kry1024c1a, kry1024c1b and kry1024c1c)
AAF surpasses ACS by 5.3%, 14.5% and 22.3% respectively. The ι = 1.00 (AAF)
variant achieves the best average convergence in terms of HpH (0.59), the shortest
paths in terms of Hop (5.8) as well as the best relative improvement in both of the
aforementioned metrics. The ι = 0.75 (AAF) variant scores the highest in terms
of Hit (11.3). On the other hand, ι = 0.00 (ACS) scores, on average, the worst in
terms of HpH and Hit as well as it improves the least throughout the experiment.

It is interesting to note AAF continues improving throughout the totality of the
experiment, even though the convergence rate drops to a near zero. This is caused
by the fact that it retains both: a non-zero chance of performing a random level
creation and the capacity to reconverge quickly if a newly found path yield better
results. This suggests that AAF is much more efficient in avoiding stagnation in
local minima.

Having shown that AAF surpasses ACS in terms of convergence quality, we take
a look at the computation- and memory-related costs of this benefit.

One way of comparing the computational cost is by means of the Ant per Query
(ApQ) factor. ACS always uses a fixed number of ants per query, typically ApQ =
1. In case of AAF this value fluctuates, as shown in Fig 6.4. The irritation
value ι is proportional to the ApQ of each respective AAF variant. 1.00−AAF
reaches ApQ = 1.16 and then slowly continues towards ApQ = 1.14. This suggests
that we experienced from 14% to 16% increase in ant traffic with respect to ACS
(ApQ = 1.00), which should sublineally impact the computational cost, depending
heavily on the hardware and implementation details. In our experiments: 1%−2%
CPU time increase.
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Finally, in order to conveniently estimate the memory usage overhead we employ
the concept of average Top Level (LT ) used. LT is the graph-wide average of the
maximum level used by any ant in a given iteration. From Fig. 6.5 (ι = 0.00
and ι = 1.00 only, for clarity) we conclude that in the initial, exploration-heavy
phase of AAF the average level reaches LT = 1.38. It then begins to decrease
and oscillates above LT = 1.3, which reflects the pruning of unused paths. This
translates to a slightly increased memory usage. In our Java 7 implementation:
250.04Mb for ACS and 254.03Mb for AAF on average, measured with VisualVM
1.3.6.
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6.5 Discussion and future works

In this paper we have shown that our Angry Ant Framework, with its dynamic
multilevel approach, is an effective and novel solution in the field Ant Colony
Optimization. We have demonstrated in section 6.4 that we surpass ACS in the
metric of HpH without the need for any hybrid approach. Worth mentioning is
the fact that AAF with ι = 1.00 achieves the shortest paths, which is an interesting
property to explore. The overall cost of the AAF algorithms is always sublinealy
proportional to the results obtained.

Moreover, we have enabled a new dimension of the ACO-based algorithms, namely
the irritation probability function p

(`)
irr(r). In our AAF implementation we at-

tempted to optimize the use of pheromone levels versus the quality of the results,
however there is a trade–off possibility: to sacrifice a percentage of quality to
achieve better scalability or, on the contrary, increase memory consumption to
push the quality even higher, depending on the current needs. We expect further
developments with AAF to include the usage of different irritation functions and
other ACO algorithms as a base.

In section 6.2 we presented three feasible hybridization techniques involving ACO
(HAS ): ACO with selective evolution, ACO with local search and ACO coupled
with another heuristic. AAF is fully compatible with the first two HAS methods.
In the third case the substitution of ACS with AAF should be subject to a careful
study, yet intuitively the improvement is to be expected.

AAF, because of its dynamic multilevel pheromone mechanism will also be useful
for the resolution of problems involving multiclass resource querying. The appli-
cation of AAF to this category of problems will be the focus of our future work.
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Table 6.2: Numerical results (1)

Hit Hop HpH
Dataset t0 tm t0 tm t0 tm

ι = 0.00

kry1024c100a 7.2 9.9 37% 6.1 5.6 -7% 0.84 0.57 -32%
kry1024c100b 6.6 9.8 48% 6.4 6.2 -4% 0.97 0.63 -35%
kry1024c100c 5.2 8.5 62% 6.4 6.1 -5% 1.23 0.72 -41%
rand c100a* 5.7 8.8 54% 6.5 6.2 -4% 1.14 0.71 -38%
rand c100b* 6.5 9.1 39% 6.1 5.7 -6% 0.93 0.63 -33%
rand c100c* 6.3 9.3 48% 6.3 6.0 -5% 1.01 0.65 -36%
rand c100d* 7.4 9.5 28% 6.1 6.0 -3% 0.83 0.63 -24%
rand c100e* 6.1 9.7 59% 6.6 6.2 -6% 1.08 0.64 -41%
rand c100f* 5.8 9.3 61% 6.3 6.1 -4% 1.10 0.66 -40%
rand c100g* 6.4 9.1 43% 6.4 6.2 -2% 1.00 0.68 -32%
Average 6.3 9.3 48% 6.3 6.0 -5% 1.01 0.65 -35%

ι = 0.25

kry1024c100a 8.0 10.8 34% 6.8 6.1 -10% 0.85 0.57 -33%
kry1024c100b 7.6 10.7 42% 6.8 6.1 -9% 0.90 0.57 -36%
kry1024c100c 6.1 10.6 73% 6.9 6.5 -6% 1.13 0.62 -45%
rand c100a* 5.6 9.4 67% 7.0 6.7 -4% 1.24 0.71 -43%
rand c100b* 6.2 10.0 61% 6.8 6.7 -1% 1.10 0.67 -39%
rand c100c* 6.5 10.5 60% 6.7 6.5 -3% 1.03 0.62 -39%
rand c100d* 6.1 10.2 66% 6.4 6.4 -1% 1.05 0.63 -40%
rand c100e* 6.7 10.4 56% 7.2 6.8 -6% 1.08 0.65 -40%
rand c100f* 6.4 10.5 64% 6.7 6.7 0% 1.06 0.64 -39%
rand c100g* 5.8 10.6 81% 7.1 6.7 -5% 1.21 0.64 -47%
Average 6.5 10.4 60% 6.8 6.5 -5% 1.06 0.63 -40%

ι = 0.50

kry1024c100a 8.3 11.5 39% 6.6 6.3 -4% 0.80 0.55 -31%
kry1024c100b 7.3 11.3 55% 6.5 6.4 -1% 0.89 0.57 -36%
kry1024c100c 6.9 11.1 62% 6.9 6.9 -1% 1.01 0.62 -38%
rand c100a* 6.4 11.0 72% 7.1 6.8 -4% 1.12 0.62 -44%
rand c100b* 6.9 11.1 61% 7.3 7.1 -3% 1.06 0.64 -40%
rand c100c* 7.6 11.4 49% 7.4 7.2 -3% 0.97 0.63 -35%
rand c100d* 5.7 11.0 91% 7.2 7.3 1% 1.27 0.67 -47%
rand c100e* 8.1 11.2 38% 6.9 6.5 -6% 0.85 0.58 -32%
rand c100f* 6.3 10.8 73% 7.2 7.2 0% 1.16 0.67 -42%
rand c100g* 6.1 10.5 72% 6.8 6.6 -3% 1.11 0.62 -44%
Average 7.0 11.1 61% 7.0 6.8 -2% 1.02 0.62 -39%

t0: average of the initial 104 iterations
tm: average of the final 104 iterations
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Table 6.3: Numerical results (2)

Hit Hop HpH
Dataset t0 tm t0 tm t0 tm

ι = 0.75

kry1024c100a 7.8 11.5 47% 6.9 6.5 -7% 0.89 0.56 -37%
kry1024c100b 8.1 11.4 42% 7.2 6.6 -9% 0.89 0.58 -36%
kry1024c100c 7.5 11.1 47% 6.5 6.5 0% 0.87 0.59 -32%
rand c100a* 7.5 11.3 51% 7.2 6.7 -6% 0.96 0.60 -38%
rand c100b* 7.9 11.5 46% 7.1 6.7 -6% 0.91 0.59 -35%
rand c100c* 6.8 10.8 59% 7.0 6.9 -1% 1.02 0.64 -38%
rand c100d* 6.4 11.2 73% 7.5 7.3 -2% 1.16 0.65 -44%
rand c100e* 6.8 11.5 70% 7.4 7.2 -2% 1.10 0.63 -42%
rand c100f* 7.0 11.2 58% 6.9 6.8 -2% 0.99 0.62 -38%
rand c100g* 7.7 11.5 48% 7.2 6.8 -6% 0.93 0.60 -36%
Average 7.3 11.3 54% 7.1 6.8 -4% 0.97 0.61 -38%

ι = 1.00

kry1024c100a 7.3 10.0 36% 6.5 5.4 -16% 0.89 0.54 -39%
kry1024c100b 7.5 9.9 32% 6.3 5.4 -14% 0.84 0.55 -35%
kry1024c100c 6.9 10.1 46% 6.4 5.6 -12% 0.94 0.56 -40%
rand c100a* 6.4 10.1 56% 6.9 5.9 -14% 1.08 0.59 -45%
rand c100b* 5.7 9.5 64% 7.2 6.4 -10% 1.25 0.68 -45%
rand c100c* 5.8 9.6 65% 6.9 6.0 -13% 1.20 0.63 -47%
rand c100d* 6.5 9.6 47% 7.0 6.0 -13% 1.07 0.63 -41%
rand c100e* 6.9 10.0 46% 6.7 5.8 -13% 0.98 0.58 -40%
rand c100f* 6.7 10.0 48% 6.5 5.7 -12% 0.96 0.57 -41%
rand c100g* 6.5 9.8 50% 6.7 5.9 -12% 1.03 0.60 -41%
Average 6.6 9.8 49% 6.7 5.8 -13% 1.02 0.59 -41%

t0: average of the initial 104 iterations
tm: average of the final 104 iterations
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Abstract

Ant Colony Optimization is a bio-inspired computational technique for establishing
optimal paths in graphs. It has been successfully adapted to solve many classical
computational problems, with considerable results. Nevertheless, the attempts to
apply ACO to the question of multidimensional problems and multi-class resource
querying have been somewhat limited. They suffer from either severely decreased
efficiency or low scalability, and are usually static, custom-made solutions with
only one particular use. In this paper we employ Angry Ant Framework, a multi-
pheromone variant of Ant Colony System that surpasses its predecessor in terms
of convergence quality, to the question of multi-class resource queries. To the best
of the authors knowledge it is the only algorithm capable of dynamically creating
and pruning pheromone levels, which we refer to as dynamic pheromone strati-
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fication. In a series of experiments we verify that, due to this pheromone level
flexibility, Angry Ant Framework, as well as our improvement of it called Entropic
Angry Ant Framework, have significantly more potential for handling multi-class
resource queries than their single pheromone counterpart. Most notably, the tight
coupling between pheromone and resource classes enables convergence that is both
better in quality and more stable, while maintaining a sublinear cost.

7.1 Introduction

The efficient resolution of resource queries in networks is an abstract mathematical
problem with a multitude of real-life interpretations and uses: from task dispatch-
ing in computer grids to document search in peer-to-peer networks and routing of
a parcel drop-off vans through an urban neighborhood. In mathematical terms a
resource query q in a graph is defined as an act of establishing a path linking a
network node r0, lacking resources, with a node or a chain of i nodes (r1, r2, . . , ri)
that provide them. Resources are transported back to the query emitting node
over this newly established path. The path can be reutilized in the future, when
a query of a similar nature is launched in the vicinity of r0. The collecting of
resources can be either destructive or not, meaning that it can consume the stock
or just simply clone it.

If the resources are indistinguishable between each other (in other words, they be-
long to one class) we speak of single resource class queries, or single class queries.
Such queries consist of simply gathering a number of resources at the highest pos-
sible goodness. A generalization of a query in a single resource class environment
is a query in a multiple resource class environment; multi-class query for short.
If we assume a number of |C| different resource classes, distinguishable between
each other, a multi-class query is defined as a resource query limited to a selected
resource class c, written q(c). In this case, the objective is to collect, as efficiently
as possible, resources belonging to c only.

Given the underlying graph structure of this problem, there have been attempts
in the past to solve it by using Ant Colony Optimization (ACO) [129]. ACO is a
computational technique for a broad class of algorithms that perform path searches
in graphs. This technique is based on observations in the field of entomology
revealing that a group of relatively simple organisms is often capable of completing
complex tasks in a surprisingly efficient manner. A broad, generic term for this
phenomenon is emergent or swarm intelligence [109] and the most prominent and
well-known examples of it include the social behavior of ants and bees.

Despite the unquestionable success of ACO, with its numerous and diverse applica-
tions [130] [131] [132], it is well-known that resource querying involving multi-class
resources [12], dynamic resource redistribution [11] and evolving graphs [8] have
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a less natural representation within its metaheurisitc, which manifests itself in re-
duced efficiency. The main reason behind the difficulties of modeling with ACO is
that it entails a strict limitation, which reflects the constrained nature of real-life
ants’ communication capabilities [33]. Ants leave trails of pheromone, connecting
the colony to locations of interest. The pheromone level can be seen only as a
general goodness of what is at the end of the trail, without specifying directly
what it is, nor the type of resource it might be. Therefore, ACO search agents
possess only a rough indication of a good direction to follow. A problem arises if
the model in question includes various types of objectives. Consider the example
of two ants in search for two different types of food. Each one aware of its task,
but limited in its search to following high pheromone trails. The trail is essentially
unable to guarantee that it leads towards precisely what the ant searches for. Ants
searching for the food type A might end up following trails that lead to good type
B-nodes (and vice versa); yielding a long search without results. A single phero-
mone value is not sufficient to guarantee efficient routing in models with ontology-
or taxonomy-based resource classifications.

In a multi-class query environment the basic ACO single pheromone model proves
insufficient. If there exist |C| > 1 resource classes, the probability that a generic
pheromone trail leads to a high quality node for all the possible classes decreases
rapidly. In such cases the pheromone values are likely to finish the convergence
in a suboptimal state (suboptimal convergence). The higher the value of |C| the
more probable it is that the full pheromone trail convergence is never achieved.
The system enters a state called pheromone thrashing, a situation in which agents
with different queries continually change the pheromone trails back and forth. No
coherent information can be concluded from the pheromone state and the model
falls back to a near-random walks.

To illustrate this problem, in Fig 7.1 we show the efficiency decline of multi-class
queries with the use of Ant Colony System (ACS) [17], a well-known and highly
acclaimed ACO implementation. If only one class of resources exists (|C| = 1) the
graph is smooth and the convergence is quick and stable. Already at |C| = 10 the
algorithm performs substantially worse. Even though convergence is achieved, it
is suboptimal: about 145% worse than with |C| = 1. With |C| = 100 the result
is only marginally better than the one obtained by the Random Walks algorithm,
which we include for comparison. At |C| = 100 the Hop-per-Hit (HpH) values
are 280% worse than the |C| = 1 baseline. In addition, the |C| = 100 is much
less smooth than the two other due to strong pheromone thrashing. The topic
of quality decline of the convergence of ACO algorithms in various scenarios is
explored in depth in [12] [8].

In order to efficiently solve the distributed multi-class resource querying problem,
we propose the application of a dynamic multipheromone approach Angry Ant
Framework (AAF). AAF algorithm has already proven its efficiency in the context
of single-resource class queries [20], surpassing ACS, one of the most popular ACO
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Figure 7.1: ACS quality loss in function of |C|.

implementations. AAF improves the path quality of ACS by a significant margin,
while at the same time decreasing the chance that the algorithm converges to a
local minimum. This previous work is extended here confirming that the AAF
is beneficial in a more general way by applying it to the resolution of multi-class
resource queries. Moreover, we propose an enhancement of AAF’s algorithmic
strategy based on entropic ant reassignments, which consists in finding the best
pheromone level for a given ant at each moment of the computation process. The
strongest suite of AAF is that it allows dynamic pheromone stratification, that is,
creating ad-hoc multipheromone models, which adapt themselves to the resource
ontology, ant traffic and query distribution. The results obtained open a new
area of research in which a computational model based on entropy levels of the
underlying pheromone state can be applied to the efficient resolution of multi-class
resource queries.

The remainder of this paper is organized as follows. In section 7.2 we expand on
the concepts of single class and multi-class queries in the context of ACO-based
queries in graphs and summarize the related works. Section 7.3 contains the outline
of the mathematical model of AAF. The experimental results are presented in 7.4.
We conclude with a discussion on our findings in section 7.5.
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7.2 Related Works

The problem of multi-class queries has only received a moderate attention. In
[31] Santillán et al. resolve a problem of a similar nature, which they refer to as
Semantic Query Routing problem (SQRP). As in multi-class queries, in SQRP the
class of the query impacts the routing of the search agent, which has the task of
determining the shortest path from the query issuing node to the node with ap-
propriate resources. Their single-pheromone algorithmic solution to SQRP, called
Neighboring-Ant Search (NAS), is reported as a order-of-magnitude improvement
over Random Walks, however no comparison with more elaborate techniques is
presented. Moreover, NAS uses lookahead techniques that are outside the well-
known ACO paradigm and, in consequence, not fully compatible with distributed
networks.

Various works, such as [133], [60] and [134] ignore the problem and focus on the
efficiency increase in this scope of single class queries exclusively. Oftentimes au-
thors contemplate the aforementioned multipheromone approach, i.e. modeling
the pheromone with (depending on the naming convention) scents, flavors or sim-
ply levels, however, they still apply their extended algorithms to single resource
queries only [110]. Alternatively, they label the classes in a prearranged, rather
than a dynamic, manner [126] [13]. In addition, in the majority of the cases the ad-
ditional pheromone levels are fixed, have predetermined semantical interpretations
and are statically incorporated in the classical equations [77].

Multi-class queries have a very natural representation in the multipheromone
model. The most trivial multipheromone approach to the multi-class query prob-
lem is to decompose it into |C| single class queries sub-problems. A solution of
this kind is presented in [44], where each resource class c ∈ C is statically assigned
an individual pheromone level ` ∈ L, alongside agents that operate exclusively
within that level. This type of solution is sufficient under certain circumstances
and for small |C|. Unsurprisingly however, a static setup, in which one pheromone
level is dedicated to ants handling just one resource class is suboptimal, redundant
and suffers from several serious drawbacks, especially as |C| gets large. Note that
here each pheromone level spans the entire graph, even nodes where there are no
resources corresponding to it. Resources hardly present in the system also require
a level of pheromone spanning the entire graph. We shall refer to this approach
as static multilevel.

There are other critical issues with the static multilevel model. First, the entire
taxonomy of resources must be known in advance and the knowledge of it must be
transferred onto ants. Second, it fails if the resource classes are added or removed
during the algorithm’s execution. Third, the evolution of the system is slowed
down by a factor of the number of levels |L|, due to the fact that, on average, only
1/|L| of all the ants contribute to each pheromone level. In addition, there is no
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intra-level knowledge transfer, even if certain types of resources always coincide.
From a purely computational point of view, maintaining data structures for all
the pheromone values is memory-demanding.

These disadvantages motivated the use of an alternative strategy, a middle ground
solution between the single pheromone level and the static multilevel: the dynamic
multilevel of AAF [20]. AAF was established as the first dynamic multilevel imple-
mentation of ACS that had the initial intention, like many of the aforementioned
works, of improving the efficiency of single class queries. In AAF multiple phero-
mone levels are allowed, but the number of levels |L| is not fixed at a one-to-one
ratio with the number of resource classes, instead it can grow as needed. The levels
can also be present locally and span a portion of the graph, where the choice of
path is crucial. In this work we demonstrate that AAF, with its dynamic multilevel
mechanism, is well suited for the multi-class queries problem as well.

7.3 Angry Ant Framework

7.3.1 Overview

Angry Ant Framework (AAF) is formally introduced in [20], with the full mathe-
matical explanation and the formal motivation. Here we present some of the main
ideas of AAF with our recent improvements of the original model.

AAF is an ACO strategy that builds upon the model provided by ACS, one of
the most popular ACO implementations. The high-level ACO paradigm has been
inspired by the behavior of real-life ants in search for food. The agents in ACO are
simple automata, they lack intelligence and they coordinate their efforts exclusively
via a stigmergic mechanism [135] - one that is indirect and relies on intermediate
means, such as updates to the environment [136]. In ACO this is achieved by
having agents interact with the stigmergic medium, referred to as the pheromone,
in two modalities: the search mode and the deposition mode. In search mode
agents attempt to establish a solution path, by building upon solutions marked by
past agents. In deposition mode they themselves mark the trace of the solution
path they obtained. Even though each individual in an ant nest makes simple,
stochastic decisions, based on the current pheromone state, the overall ant swarm
behavior can be perceived as intelligent, which is a phenomenon present in all of
the algorithms of the ACO metaheurisitcs.

Rather than operating in a contiguous world, like real-life ants, the agents of ACO
algorithms operate in environments that are modeled, without loss of generality,
as a symmetric directed graph G = (V,E). Nodes V of the graph represent the
possible locations of agents, while directed edges E define adjacency of nodes. The
set of nodes adjacent to a given node r is called the neighborhood of r, NG(r); of
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size deg(r). A directed edge between the pair of nodes r and u is written as ru.
An agent is permitted to travel between the nodes r and u if ru ∈ E. The edge
ru has a fixed transition cost ηru ∈ R+ and a pheromone value τru ∈ R+ that
serves as the stigmergic medium for agents. The initial value of τ on each edge
is τ0 ∈ R+ and the minimum and the maximum permitted are τmin ∈ R+ and
τmax ∈ R+, respectively.

Multipheromone approaches, including AAF, use an array of τ (`)ru values, of varying
sizes, instead of just one τru pheromone value per directed edge. The levels are
contiguous, from ` = 1 to ` = |L|. For node r, the τ (`)rs must be defined for all
its adjacent nodes NG(r), and for every level ` present in r; that is, every level
has fully defined pheromone values for all the outgoing links. The size of the
pheromone array can change as requested.

Ants are level-dependent, which means that, being routed within the level `, ant
a(`) will only use its corresponding level pheromone values. The equations that
govern the multipheromone update, evaporation and state transition are presented
in subsection 7.3.2 (Fig 7.2, stepD∗). The two main questions to address are: when
are new pheromone levels created and how are ants assigned a pheromone level to
resolve their query.

Pheromone level creation reflects the nature of the resources present in the system.
An additional level will be created as needed if the existing pheromone levels prove
ineffective, that is, when the entropy of the pheromone information provided by
them is high. This incremental process takes place without any prior knowledge
about the ontology of the resources or their distribution. In biological terms the
idea could be seen as measuring the ant irritation, explained in detail in subsection
7.3.4. Depending on the chaos or clarity of the pheromone state, ants may become
increasingly irritated with not having a clear-cut way of achieving the required
goal. When a particular ant reaches a certain irritation threshold (Fig 7.2, step
B∗), it abandons the work and resumes anew in another level, possibly creating
additional pheromone levels (Fig 7.2, step C∗).

The initial assigning of ants to pheromone levels is performed at the query gener-
ation, with the help of the level assignment matrix L(r) (Fig 7.2, step A∗), which
is stored and maintained in every node r, as explained in the subsection 7.3.3.
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Figure 7.2: Entropic Angry Ant Framework high level pseudocode

1: initialize()
2: while i ≤ agent_max do
3: i_node← select_node()
4: level← assign_level(L(i_node)) . (A∗)
5: launch_agent(i_node, level)
6: pheromone_evaporate()
7: i← i+ 1
8: end while
9: for all agent do

10: solution←get_solution(i_node, query, level)
11: goodness←evaluate_solution(solution)
12: pheromone_deposit(solution, goodness)
13: end for

14: function get_solution(i_node, query, level)
15: res← empty_set
16: node← i_node
17: path← empty_list
18: while not stop_condition do
19: res ∪ query_resources(node, query)
20: if agent_is_irritated then . (B∗)
21: reassign_level() . /not in original AAF/ (C∗)
22: end if
23: node←state_transition(node, level) . (D∗)
24: path ∪ node
25: end while
26: return solution(path, res)
27: end function

7.3.2 State Transition and Pheromone Evolution

With the inclusion of the pheromone level concept the classical state transition
equations of ACS need to be rewritten with τ (`) in place of τ . As in ACS the
initial pheromone value is τ0 ∈ R+, the minimum is τmin ∈ R+ and the maximum
is τmax ∈ R+. The use of various levels in the state transition is indicated in Fig
7.2, step D∗. Note that the cost η is level-independent.

s = argmaxu∈NG(r) {τ (`)ru × ηβru} (7.1)
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prs =


τ(`)
rs ×ηβrs∑

z∈NG(r) τ
(`)
rz ×ηβrz

if s ∈ NG(r)

0 otherwise
(7.2)

Similarly, the pheromone deposition and evaporation are limited to the pheromone
level used by the ant a(`)q , as below:

τ (`)ru ← (1− α) · τ (`)ru + α · δτ (7.3)

τ (`)ru ← (1− ρ) · τ (`)ru + ρ · γ · max
z∈NG(r)

τ (`)rz (7.4)

where:

α ∈ R1
0 expresses the weight of the laid pheromone when depositing

ρ ∈ R1
0, γ ∈ R1

0 express the weight of the maximum pheromone when evaporating

δτ ∈ R1 is the deposited pheromone value, related to the quality of the solution

As long as there is just one pheromone level, L = {`0}, |L| = 1 the behavior of
this model is indistinguishable from ACS.

7.3.3 Level Assignment Matrix

The aforementioned question of the assignment of ants to pheromone levels is
resolved via the level assignment matrix L(r). Every node r stores a matrix L(r)
of dimensions |L| × |Q|. The rows of L(r) correspond to the levels of pheromone
present in r, while the columns of L (written as Lq) correspond to all the query
types q(c) that originated at the node r. The matrix is initialized as 1×1: L(r) =
I0, and can grow dynamically as needed.

When a query q(c) is launched from a node r a generic ant aq is created. Based
on the information present in L(r) the node decides to which level should the ant
be assigned (Fig 7.2, step (A∗)). The probability of assigning the ant aq to any
level ` is given by:

p[aq → a(`)q ] =
L`q(r)∑

`′∈{1..L} L`′q(r)
(7.5)
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Equation (7.5) is evaluated for every level ` present in r. It is possible to select
more than one level or to select none. If multiple levels are selected, multiple ants
are sent out independently, one to each pheromone level and the final response to
the query is the sum of all the partial responses. If no level is selected, the ant is
assigned the best possible level (ˆ̀):

ˆ̀= argmax`′∈{1..L}{L`′q(r)} (7.6)

The information stored in L(r) is updated by returning ants. When an ant a(`)q
returns to its emitting node r, yielding results evaluated at goodness δτ , it updates
L(r) by first applying (7.7), followed by (7.8):

L`q(r)← (1− α∗) · L`q(r) + α∗ · δτ (7.7)

Lq(r)← (1− ρ∗) · Lq(r) (7.8)

where:

α∗ ∈ R1
0 is the L(r) deposition parameter, analogous to the α parameter of the

classical equation.

ρ∗ ∈ R1
0 is the L(r) evaporation parameter, analogous to the ρ parameter of the
classical equation.

If at any point either ` /∈ L (the returning ant has changed the level during its life
span) or q /∈ Q (the first time a query is launched in the node), then L is expanded
with rows and columns of zeros to accommodate the required new concepts:

L`×q = (I`×L × LL×Q)× IQ×q (7.9)

where:

Im×n is a binary matrix of dimensions m×n, with ones on its main diagonal and
zeros elsewhere
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7.3.4 Ant irritation

An ant a(`)q in the level ` of the node r can become irritated with probability
p
(`)
irr(r) (Fig 7.2, step (B∗)). In order to easily explain how p

(`)
irr(r) is calculated, we

first define a preliminary concept, namely the pheromone sum, the sum of all the
pheromone values of all the outgoing edges on the level ` of the node r, written as
τ
(`)
sum(r):

τ (`)sum(r) =
∑

s∈NG(r)

τ (`)rs (7.10)

With (7.10), the ant irritation in node r on the level ` is:

p
(`)
irr(r) = ι× 1

τmax︸ ︷︷ ︸
(a)

× τ
(`)
sum(r)

deg(r)︸ ︷︷ ︸
(b)

×
∑

z∈NG(r)

τ
(`)
rz

τ
(`)
sum(r)

ln
τ
(`)
sum(r)

τ
(`)
rz︸ ︷︷ ︸

(c)

(7.11)

where:

ι ∈ R1
0 is a parameter that can be used to regulate the strength of the irritation.
If ι = 0 then p(`)irr(r) = 0, while if ι = 1 the system uses the irritation model
to its full potential. (Alg 7.2, step (C∗))

(a) is the normalization factor based on the maximum pheromone value τmax; to
guarantee p(`)irr(r) ∈ R1

0.

(b) is the average pheromone per link in the node r on the level `. The higher
the average amount of pheromone, the more mature the level should be
considered. This reduces greatly the ants’ irritation with fresh levels that
have very high entropy, due to identical pheromone value, τ0 on all the edges,
but very low maturity.

(c) is the entropy of the pheromone distribution in the node r on the level `

In our original proposal [20] of AAF we employ the irritation value as a proba-
bilistic threshold. The probability p

(`)
irr(r) is checked against a uniform random

variable P upon an ant transitioning into a node r. If P > p
(`)
irr(r), the ant ascends

one pheromone level (7.12) and creates a new one, if needed:

a(`)q →
{
a
(`+1)
q if P > p

(`)
irr(r),

a
(`)
q otherwise,

(7.12)
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However, this simple ` → ` + 1 level ascension is an uninformed action, one that
underutilized the knowledge accumulated in level assignment matrix L. Since the
appearance of the original AAF algorithm we developed a more efficient approach,
called entropic ant reassignment.

Entropic ant reassignment is a complementary approach to the simple level ascen-
sion. The agents, rather than always increasing their level by 1 when the irritation
is positively evaluated, can either: i) ascend one level; or ii) be reassigned to the
best possible level among the existing ones. The reassigning of the agent aq to the
best possible level occurs only if the query q is present in the level reassignment
matrix L(r) of the current node (q ∈ Q), otherwise the simple level ascension is
always performed. A factor in choosing between the two modes of reassignment
is the quality of the information present in the column vector Lq that represents
the query q. The entropic ant reassignment rules are written as:

a(`)q →


a
(ˆ̀)
q if P > p

(`)
irr(r) and R ≥ H(Lq)

Hmax(|Q|) and q ∈ Q,
a
(`+1)
q if P > p

(`)
irr(r) and (R <

H(Lq)
Hmax(|Q|) or q /∈ Q),

a
(`)
q otherwise,

(7.13)

where:

ˆ̀ is the best possible level, calculated in (7.6).

H(Lq) is the Shannon entropy of the column vector Lq, calculated in (7.14), which
should be understood as the amount of information to conclude from con-
tained in the vector.

Hmax(|Q|) is the maximum Shannon entropy of a column vector Lq of size |Q|,
calculated in (7.15). It is the maximum possible amount of information that
could be contained in Lq.

P , R are uniform random variables in the [0, 1] range.

H(Lq) =
ln(
∑
`′∈Lq L`′q)∑
`′∈Lq L`′q

×
∑
`′∈Lq

L`′qln(L`′q) (7.14)

Hmax(|Q|) = ln(|Q|) (7.15)

Logically, this process should be understood as the following: if the agent is irri-
tated with its current level it tries to i) find a better level in an informed way, by
selecting the best available one; or ii) find a better level in an uninformed way, by
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selecting the next one. We argue that this allows the algorithm to use the informa-
tion stored in L in a more efficient manner and to reduce the random exploration
slightly.

In the remainder of the paper we will refer to the version of AAF with entropic
ant reassignment as EntropicAAF.

7.4 Experimental results

7.4.1 Experimental procedure

In our experiments we attempt to demonstrate four main points. First, we perform
a brief comparative of AAF and EntropicAAF for single class queries (|C| = 1).
Second, having shown in our previous work [20] that AAF surpassed ACS in single
class queries (|C| = 1), we want to verify that it does so, as well as EntropicAAF,
in multi-class queries (|C| > 1). Third, we analyze the behavior of our algorithms
and ACS in a non-random distribution of resources to evaluate their effectiveness
in dealing with clustered resources. Finally, we examine the computational cost
of the efficiency increase in function of |C|.

For each experiment we generate R resources of |C| = 10 or |C| = 100 resource
classes, distribute them in a graph G (a 2-dimensional toroid) of N = 32 × 32 =
1024 nodes and perform 4×106 resource queries q(c) (1×106 in the computational
cost experiments).

The workstation used in the experiment execution is a 64bit, Intel Xeon X3430
(8MB Cache, 2.40 GHz), limited to 2 of the 4 physical cores and 2GB Ram. A
single execution takes about 45 - 60 seconds to complete and generates about 70Mb
of raw data. Each plot is an average of 10 independent executions over different
graphs, three of which are available for download at [128]. They are kry1024c10a,
kry1024c10b and kry1024c10c for the |C| = 10 experiment and kry1024c100a,
kry1024c100b and kry1024c100c for |C| = 100 experiment. The remaining seven
are randomly generated. We trace 3 plots for each figure: ACS (ι = 0.00), AAF
(ι = 1.00) and EntropicAAF (ι = 1.00).

The parameters used in the execution and experimentation are summarized in
Table 7.1. ACS parameters are at their standard values, taken from literature.
The parameters α∗ and ρ∗ have been set to match the analogous values of α and ρ.
The initial state of the Level Assignment Matrix I0 is, by definition, a 1×1 matrix,
we chose a small value to easily avoid division by zero in (7.5). The parameters of
the experiments reflect the hardware and time constraints.

The convergence quality metrics will be: i) the length of paths found (Hop);
ii) the amount of resources found (Hit); iii) the efficiency in terms of Hop per Hit
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Table 7.1: Execution parameters

ACS
Parameter Interpretation Value
q0 Weight of strategy selection 0.80
α Pheromone deposition parameter 0.07
ρ Pheromone evaporation parameter 0.10
β Weight of link costs 1.00
γ Weight of evaporation 0.02
τmin Minimum pheromone level 0.001
τmax Maximum pheromone level 1.000
τ0 Initial pheromone level 0.009

AAF
I0 L(r) initial value [0.01]
α∗ L(r) deposition parameter 0.07
ρ∗ L(r) evaporation parameter 0.10

Experiments
TTL Time to Live 10
Rmax Maximum resources to fetch 10
Rmin Minimum resources to fetch 5
N Amount of the nodes 1024
|C| Number of resource classes 10 – 100

(HpH); iv) the relative improvement of HpH in the experiment. If a query fails
(Hit = 0) we take HpH = 2× TTL in order to heavily penalize failing to provide
results.

7.4.2 Random multi-class queries

The distribution of the resource queries q(c) is random. The probability that the
node n launches a resource query at a given iteration is 1/N , while the probability
of selecting the resource class c is 1/|C|. Every node can hold r(c) resources of
class c. As shown in [12] the exact distribution of resources is not crucial, as it
affects the convergence quality equally, maintaining the relative position of the
algorithms. We create a setup in which, following the suggestions of [54], there are
relatively rare resource-rich nodes (r(c) = 10), somewhat common normal nodes
(r(c) = 1) and a great majority of nodes without resources (r(c) = 0) for each
resource class c. The distribution of r(c), follows a probabilistic model:

p[r(c) = 0] =
44

50
, p[r(c) = 1] =

5

50
, p[r(c) = 10] =

1

50
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Figure 7.3: Convergence Quality. |C| = 1. Average of datasets kry1024c1a - rand c1g*.
Less is better.

Note that the higher |C| the more total resources are to be distributed among
the nodes. In a graph of N nodes, with |C| resource classes the total amount of
resources R in the system is given by:

R = N × |C| ×
∑

i∈{0,1,10}
(i× p[r(c) = i]) (7.16)

First we would like to show the impact on convergence quality of AAF caused by
the substitution of the simple level ascension with the entropic ant reassignment.
In Fig. 7.3 we include the side-by-side comparison of ι = 0.00 (here as ACS) and
ι = 1.00 (here as AAF) taken from Fig. 3 of our previous work [20] with the new
|C| = 1 EntropicAFF. All the execution details, under which the EntropicAFF
plot was obtained, are identical to those from our previous work. We can see that
there is a substantial, 5.1% improvement of EntropicAAF over the older version,
which was already shown to outperform ACS. In the remainder of this section
we proceed to examine multi-class queries, where the difference becomes more
pronounced.

The first multi-class experiment is performed with |C| = 10 resource classes. In
Fig 7.4a we can see that, both AAF and EntropicAAF, are an important improve-
ment over single-pheromone ACS in this setup. In addition, EntropicAAF retains
a steady, positive gap over the older AAF. In numerical terms (Table 7.2): En-
tropicAAF (ι = 1.00) offers the highest amount of resources found (best 8.82 Hit,
average 8.63 Hit), the best overall improvement (best −73% HpH, average −70%
HpH), the shortest paths (best 6.32 Hop, average 6.46 Hop) and the best Con-
vergence Quality (best 0.72 HpH, average 0.75 HpH). On average we show that
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Figure 7.4: Convergence Quality for multi-class queries. |C| classes. Less is better.
Average of datasets kry1024c10a - rand c10g* (7.4a) and kry1024c100a - rand c100g*
(7.4b)

EntropicAAF (ι = 1.00) is 52% better than ACS (ι = 0.00) and 17% better than
AAF. It produces the shortest, most resource-yielding and most efficient paths.

In |C| = 100 variant (Fig 7.4b) ACS makes very little progress in terms of HpH
(−6%) and behaves nearly as Random Walks throughout the entirety of the ex-
periment. The random oscillations affect somewhat the AAF as well, but it still
reaches better convergence quality in terms of HpH. There is a characteristic
explosion of HpH in the initial stages of the experiment, due to increased explo-
ration of the search space, but it quickly returns to sub-ACS values. This tells
us that |C| = 100 is a rather demanding experiment and it is well beyond the
applicability range of ACS, as well as close to the limit of the AAF. The relative
difference between the algorithms is 18.9% in favor of AAF. Both AAF and ACS
demonstrate a stagnation phase in which no positive system evolution takes place.

These results motivated us to formulate the new algorithmic strategy of Entrop-
icAAF. EntropicAAF remains unaffected by pheromone trashing and quality os-
cillations, it is completely free from the HpH explosion in the initial stages of the
exploration and improves throughout the totality of the experiment.

The numerical results (Table 7.3) show that EntropicAAF (ι = 1.00) surpasses
ACS in terms of absolute Convergence Quality (best 0.97 HpH, average 0.99 HpH,
compared to 2.72 HpH and 2.79 HpH respectively), relative improvement (best
−66% HpH, average −67% HpH) and resources found (best 4.39 Hit, average
4.24 Hit). It obtains the best results in all of the tracked metrics. Based on these
observations we claim that EntropicAAF is an unconditional improvement over,
both AAF and ACS, and its usability limit lies well beyond the |C| = 100 point.
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7.4.3 Non-random multi-class queries

In this experiment we assume only two resource classes: C = {c1, c2} (|C| = 2).
Next we divide the graph G two-fold. First, we select two continuous subgraphs
of nodes Gc1 and Gc2, each of which contains only resources of class c1 or c2
respectively. Independently, we select two other continuous subgraphs: Gq1 and
Gq2 of nodes that will be allowed to query for either c1 or c2 only. The divisions are
not exclusive; a node can find itself belonging to both subgraphs of each division.

The division into Gc1 and Gc2 is constant. They are both the precise halves of
the initial 2-dimensional toroid of graph G, spanning 50% of G. For simplicity we
can assume that Gc1 is the left side of the toroid and Gc2 is the right side of the
toroid.

The division into Gq1 and Gq2 comes in three variants:

v0.5 Gq1 and Gq2 are identical to Gc1 and Gc2. There must be no query traffic be-
tween Gc1 and Gc2 as all the queries should be solved in their corresponding
section of the graph.

v0.7 Gq1 and Gq2 are of 70% of G, which means that there is a 40% overlap
between Gq1 and Gq2 in the center of the toroid. There should be moderate
query traffic between Gc1 and Gc2.

v1.0 Gq1 = Gq2 = G. All the nodes can query for both types of resources.

Intuitively this experiment can be understood as two toroidal domes of query-
generating nodes progressively overlapping each other, with complete disjoint at
v0.5 and full overlap at v1.0. Naturally, the bigger the overlap section the more
need there is for the ants to distinguish between both types of resources c1 and c2,
and therefore, the more necessary the irritation model becomes.

In Fig 7.5 we compare AAF (ι = 1.00) and ACS (ι = 0.00) in the three aforemen-
tioned execution variants. In the v0.5 variant there is no mismatch between the
distribution of resources and queries and, in consequence, no need for pheromone
splits to take place. We observe a very similar evolution for both versions of the
algorithm. However as soon as the overlap is introduced the AAF starts showing
its superiority, achieving a 13% HpH difference in the v0.7 case, and 22% HpH
difference in the v1.0 case.

This is an important observation that allows us to reaffirm the conclusions from
[20]. If there is no need for the irritation model it does not impair the convergence
quality. As soon as the search agents find themselves in a situation where distin-
guishing between resource classes becomes necessary, the irritation model benefits
the convergence quality.
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Figure 7.5: Convergence Quality. Non-random multi-class queries. Random datasets.
Less is better.

7.4.4 Computational cost

Seeing that the direct memory and CPU load depend highly on the implementation
details and the workstation used, we opted for two objective measures that express
the overhead added by the introduction of the multilevel pheromone.

In order to estimate the memory increase we analyze the graph-wide pheromone
level usage. As described EntropicAAF starts with just one pheromone level and
incorporates additional levels as needed. Naturally, the pheromone values of all
the pheromone levels are the dominating factor in the memory consumption of
the algorithm, as there is little more information stored. Therefore, we consider
this measure a strong indicator of the memory overhead multipheromone ACO-
algorithms introduce over the single pheromone ACO strategies.

An interesting discussion can be build around the Fig. 7.6a and Fig. 7.6b, where
we display the pheromone level utilization in the |C| = 10 and |C| = 100 variants
respectively (EntropicAAF only). The first conclusion is that the algorithm tends
to utilize significantly less pheromone levels than the number of classes of resources
present. A great majority of the traffic is routed in less than |L| = 0.5× |C| levels
for |C| = 10 and |L| = 0.2× |C| levels for |C| = 100. For the variant |C| = 100 a
secondary process becomes visible, namely the level pruning. At a midpoint of the
execution the level utilization reaches |L| = 0.7×|C|, it, nonetheless, only decreases
from that moment on. This observation suggests that the more resource classes
the more efficient each level becomes. In addition, taking in consideration that the
levels span only small portions of the overall graph G, rather than the totality, we
reported only a 10% - 19% memory consumption increase overall. Comparatively,
the classical |L| = |C| approach with each level spanning the entire graph requires
|C| times more memory.
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Figure 7.6: Traffic distribution among pheromone levels. EntropicAAF for |C| classes.
Average of datasets kry1024c10a - rand c10g* (7.6a) and kry1024c100a - rand c100g*
(7.6b)

The increase in terms of CPU load is rather accurately depicted by the Ant per
Query (ApQ) measure. Multipheromone ACO implementations oftentimes use
more than one ant per query. Assuming that each ant requires approximately the
same computational effort we can view ApQ as a multiplicative CPU cost increase
with respect to ACS (ι = 0.00), seeing that, for ACS, ApQ ≡ 1.

In Fig. 7.7a and Fig. 7.7b we can see that AAF reaches roughly ApQ = 1.15
steadily and quickly in both cases. For EntropicAAF, however, Fig 7.7a and 7.7b
reveal the cost of the efficiency improvements reported in previous sections. In
the early stages of the exploration there is a very intense stage of ant creation.
At its low-points EntropicAAF uses ApQ = 1.3 and ApQ = 15.9 for the variants
|C| = 10 and |C| = 100 respectively. Both values, especially the latter, are high.
Nevertheless, the ApQ value decreases rapidly from that point on, reaching the
final ApQ value only 1.078 in both cases, which is less than the corresponding
value of AAF (1.15), and only 0.078 (or 7.8%) more than ACS. This might suggest
that the algorithm requires about 8% more CPU time. However, in our carefully
designed, multithreaded implementation we experienced no such increase.
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Figure 7.7: Ant per Query. |C| classes. Average of datasets kry1024c10a - rand c10g*
(7.7a) and kry1024c100a - rand c100g* (7.7b)

7.5 Conclusions and future works

Angry Ant Framework was shown be a significant improvement in the field of
non-hybrid ACO for single class queries [20]. In this paper we have presented an
improved version of AAF (Entropic AAF) and we have shown that it surpasses
ACS in a more general manner by also efficiently solving multi-class queries.

We determined that, in terms of HpH measure in multi-class resource querying,
AAF and EntropicAAF achieved markedly better results than the static single
level ACO, represented by ACS. The improvement was of up to 68% in the random
resource distribution experiments (subsection 7.4.2) and 22% in the non-random
ones (subsection 7.4.3).

On the other hand we validate that both EntropicAAF and AAF require a similar
amount of computational effort as ACS. The growth of memory consumption in
function of |C| is strongly sublinear, possibly logarithmic, while at the same time
static multilevel solutions, such as SemAnt [13] offer a superlinear growth, unsuit-
able for |C| > 100. The scalability of our solution is, therefore, superior. The same
can be said about the computational complexity increase, which, with the correct
approach to the parallelization of tasks, we were able to neutralize completely,
rendering it negligible.

We have concluded a study centered on the query routing. A similar study should
follow with AAF in the packet-routing context. Therefore, as a future work, we
would like to examine how Angry Ant Framework compares to AntNet [38] and
AntHocNet [39], which are considered state-of-the-art in the field of ACO-based
packet routing.

162



7.6 Acknowledgments

7.6 Acknowledgments

Kamil Krynicki is a FPI fellow of Universitat Politècnica de València, number
3117. This work received support from the Spanish Ministry of Education under
the National Strategic Program of Research, Project TIN2014-60077-R and the
National Institute of Informatics, Tokyo, Japan.

163



Chapter 7. An Efficient ACO Strategy for the Resolution of Multi-Class Queries

Table 7.2: Multi-class queries for |C| = 10 classes. Numerical results

Hit Hop HpH
Dataset t0 tm t0 tm t0 tm

ACS (ι = 0.00)
kry1024c100a 2.90 4.60 +59% 8.15 7.52 -8% 2.81 1.63 -42%
kry1024c100b 3.26 4.83 +48% 7.81 7.29 -7% 2.40 1.51 -37%
kry1024c100c 3.12 4.72 +51% 7.93 7.42 -6% 2.54 1.57 -38%
rand c100a* 3.48 5.14 +48% 7.78 7.22 -7% 2.24 1.40 -37%
rand c100b* 3.01 4.70 +56% 7.99 7.54 -6% 2.65 1.60 -39%
rand c100c* 3.17 4.87 +54% 8.10 7.49 -8% 2.55 1.54 -40%
rand c100d* 3.08 4.63 +50% 8.05 7.52 -7% 2.62 1.63 -38%
rand c100e* 3.11 4.71 +51% 7.98 7.49 -6% 2.56 1.59 -38%
rand c100f* 3.30 4.58 +39% 7.93 7.47 -6% 2.40 1.63 -32%
rand c100g* 3.25 5.36 +65% 7.83 7.13 -9% 2.41 1.33 -45%
Average 3.17 4.81 +52% 7.96 7.41 -7% 2.52 1.54 -39%

AAF (ι = 1.00)
kry1024c100a 3.98 8.29 +108% 10.42 8.39 -20% 2.62 1.01 -61%
kry1024c100b 3.68 8.43 +129% 10.50 8.30 -21% 2.86 0.98 -66%
kry1024c100c 3.70 8.04 +117% 10.41 8.42 -19% 2.82 1.05 -63%
rand c100a* 4.08 8.11 +99% 10.64 8.36 -21% 2.61 1.03 -60%
rand c100b* 4.08 8.34 +104% 10.68 8.31 -22% 2.62 1.00 -62%
rand c100c* 3.90 8.58 +120% 10.69 8.31 -22% 2.74 0.97 -65%
rand c100d* 3.80 8.26 +118% 10.06 8.17 -19% 2.65 0.99 -63%
rand c100e* 4.06 8.12 +100% 10.71 8.39 -22% 2.64 1.03 -61%
rand c100f* 4.04 8.54 +111% 10.15 7.95 -22% 2.51 0.93 -63%
rand c100g* 4.07 8.28 +103% 10.46 8.34 -20% 2.57 1.01 -61%
Average 3.94 8.30 +111% 10.47 8.29 -21% 2.66 1.00 -62%

EntropicAAF (ι = 1.00)
kry1024c100a 3.93 8.78 +124% 10.04 6.38 -36% 2.56 0.73 -72%
kry1024c100b 4.14 8.56 +107% 10.25 6.32 -38% 2.48 0.74 -70%
kry1024c100c 4.30 8.59 +100% 10.38 6.36 -39% 2.41 0.74 -69%
rand c100a* 4.31 8.82 +105% 10.50 6.37 -39% 2.43 0.72 -70%
rand c100b* 4.02 8.54 +112% 10.60 6.54 -38% 2.64 0.77 -71%
rand c100c* 4.26 8.78 +106% 10.33 6.48 -37% 2.43 0.74 -70%
rand c100d* 3.97 8.77 +121% 10.54 6.53 -38% 2.65 0.74 -72%
rand c100e* 3.69 8.58 +132% 10.39 6.52 -37% 2.81 0.76 -73%
rand c100f* 3.93 8.34 +112% 10.45 6.58 -37% 2.66 0.79 -70%
rand c100g* 4.22 8.55 +103% 9.95 6.50 -35% 2.36 0.76 -68%
Average 4.08 8.63 +112% 10.34 6.46 -38% 2.54 0.75 -70%

t0: average of the initial 104 iterations
tm: average of the final 104 iterations
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Table 7.3: Multi-class queries for |C| = 100 classes. Numerical results

Hit Hop HpH
Dataset t0 tm t0 tm t0 tm

ACS (ι = 0.00)
kry1024c100a 2.80 2.94 +5% 8.18 8.05 -2% 2.93 2.74 -7%
kry1024c100b 2.76 2.88 +4% 8.14 8.13 0% 2.95 2.82 -4%
kry1024c100c 2.79 2.97 +7% 8.20 8.07 -2% 2.94 2.72 -8%
rand c100a* 2.68 2.89 +8% 8.21 8.14 -1% 3.07 2.82 -8%
rand c100b* 2.68 2.91 +9% 8.20 8.12 -1% 3.06 2.79 -9%
rand c100c* 2.77 2.97 +7% 8.14 8.09 -1% 2.94 2.72 -7%
rand c100d* 2.67 2.83 +6% 8.18 8.13 -1% 3.07 2.88 -6%
rand c100e* 2.70 2.78 +3% 8.21 8.16 -1% 3.05 2.93 -4%
rand c100f* 2.81 2.93 +4% 8.18 8.08 -1% 2.92 2.76 -5%
rand c100g* 2.78 2.95 +6% 8.20 8.13 -1% 2.95 2.75 -7%
Average 2.74 2.91 +6% 8.19 8.11 -1% 2.99 2.79 -6%

AAF (ι = 1.00)
kry1024c100a 4.11 4.24 +3% 13.81 9.62 -30% 3.36 2.27 -32%
kry1024c100b 3.92 4.07 +4% 12.45 9.57 -23% 3.17 2.35 -26%
kry1024c100c 4.20 4.16 -1% 13.29 9.64 -27% 3.17 2.32 -27%
rand c100a* 4.22 4.33 +3% 13.35 9.62 -28% 3.16 2.22 -30%
rand c100b* 4.01 4.35 +8% 13.27 9.50 -28% 3.31 2.19 -34%
rand c100c* 4.21 4.30 +2% 13.65 9.66 -29% 3.25 2.24 -31%
rand c100d* 4.27 4.23 -1% 13.67 9.55 -30% 3.20 2.26 -29%
rand c100e* 3.98 4.22 +6% 13.21 9.53 -28% 3.32 2.26 -32%
rand c100f* 4.14 4.40 +6% 13.22 9.51 -28% 3.19 2.16 -32%
rand c100g* 4.96 4.39 -12% 15.32 9.39 -39% 3.09 2.14 -31%
Average 4.20 4.27 +2% 13.52 9.56 -29% 3.22 2.24 -30%

EntropicAAF (ι = 1.00)
kry1024c100a 4.24 7.28 +72% 13.01 7.34 -44% 3.07 1.01 -67%
kry1024c100b 4.15 7.41 +79% 12.55 7.33 -42% 3.03 0.99 -67%
kry1024c100c 4.06 7.25 +79% 13.04 7.27 -44% 3.21 1.00 -69%
rand c100a* 4.27 7.34 +72% 12.94 7.34 -43% 3.03 1.00 -67%
rand c100b* 4.16 7.22 +74% 12.78 7.37 -42% 3.07 1.02 -67%
rand c100c* 4.47 7.40 +65% 13.26 7.23 -45% 2.97 0.98 -67%
rand c100d* 4.26 7.49 +76% 13.00 7.34 -44% 3.05 0.98 -68%
rand c100e* 4.29 7.45 +73% 12.83 7.25 -43% 2.99 0.97 -67%
rand c100f* 4.14 7.36 +78% 12.82 7.27 -43% 3.10 0.99 -68%
rand c100g* 4.39 7.30 +66% 12.74 7.22 -43% 2.90 0.99 -66%
Average 4.24 7.35 +73% 12.90 7.30 -43% 3.04 0.99 -67%

t0: average of the initial 104 iterations
tm: average of the final 104 iterations
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Abstract

Ant Colony Optimization (ACO) has become a popular metaheuristic approach
for solving hard combinatorial optimization problems. However, most existing
ACO software systems are domain-specific, dedicated to concrete problems or non-
extensible, non-portable and non-scalable solutions that have been evaluated for
problem spaces of limited size. In this context, we present AntElements (AntE), a
portable Java-based ACO middleware, designed and implemented with the high-
est consideration for versatility. The extensibility of the proposed middleware
allows its use in virtually any ACO deployment, ranging from experimental to
commercial. In this work, the overall object-oriented architecture and the soft-
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ware design patterns of AntE are explained, alongside the main concepts behind
them. Furthermore, AntE is analyzed with respect to the computational efficiency,
parallelization capacities and memory consumption, which allows to establish its
usability and scalability range. In its current implementation, on an average to
mid-high workstation, our middleware is capable of processing upwards of 105

agents per second, in graphs of the order of 105 nodes and sustain a stable, fully
logged experiment for over 12 hours. The proposed middleware has already been
deployed in several research projects that are outlined in this paper, illustrating
the range of possibilities it offers.

8.1 Introduction

Evolutionary computation is an area of intensive research that requires, due to the
internal complexity of the algorithms and the data structures involved, advanced
software solutions. This is especially true in the case of multiagent, swarm-related
or bio-inspired metaheurisitcs, such as Ant Colony Optimization (ACO) [129]. In
this specific case, non-trivial software is generally indispensable in order to validate
the soundness and effectiveness of the designed ACO strategies. Such implementa-
tions must incorporate, to name a few: advanced multithreading handling, software
design patterns, software modularity and low level efficiency optimization. Many
of these advanced computational techniques often need to be designed and coded
by software engineers, but writing a specialized piece of software anew for each
iteration of a problem entails considerable workload.

Software Engineering addresses this matter by introducing the concept of mid-
dleware. A middleware is a piece of software that provides a set of black-boxed
complex algorithms and encapsulated low-level concepts. It enables researchers
to work with higher-level concepts or even entire algorithms as atomic entities,
significantly shortening the preparation for the experimental phase and breech-
ing the gap between the theoretical computer science and the experimentation.
Standardized middlewares also help to make the experimental results more easily
comparable, eliminating the potential for an implementation-bound bias.

In this work we present AntElements (AntE ), an extensible and highly customiz-
able middleware that facilitates an Ant Colony Optimization (ACO) testbed. The
main rationale behind the development of AntE was the creation of a software in-
frastructure that could be used in three ways. First, for educational purposes, by
enabling easy interaction. Second, for experiment execution, due to the extensive
logging and configuration abilities. Finally, for software deployment, by achieving
very strong scalability, portability and compatibility with mobile devices.

The remainder of this paper is organized as follows. In Section 8.2 we provide an
overview of existing ACO middlewares and simulation environments. In Section
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8.3 we present the AntE middleware. Section 8.4 studies the efficiency and scala-
bility of the proposed software infrastructure and Section 8.5 discusses the specific
deployments that have been realized. We summarize our findings in Section 8.6.

8.2 Related Works

ACO has received only a moderate attention with respect to simulation environ-
ments and middlewares. The existing solutions tend to be devoted to one par-
ticular ACO implementation or even just one classical problem. An example of
this domain-specific implementation trend is ACOTSP [137], a high performing
software with C and Java versions, dedicated exclusively to the Traveling Sales-
man Problem. The configuration of ACOTSP is restricted to the command line
interface and experimental data are supplied in external files. On the upside,
ACOTSP incorporates a number of ACO algorithms, while most middlewares are
based on a single ACO strategy. This is the case of another domain-specific pack-
age, hc-mmas-ubqp [138] which is restricted to MAX-MIN Ant System (MMAS)
for Unconstrained Binary Quadratic Programming (UBQP) in Hypercubes. Simi-
lar in nature is AntClique [139], which was written for maximum clique problems.
The three aforementioned software packages are reasonably efficient implementa-
tions of ACO, but offer limited flexibility, as they focus on one specific problem. In
addition, the C code developed under Linux provides no guarantee to work in dif-
ferent environments, such as Windows, OSX or Android. No distributed versions
of the packages exist and adaptation is done mainly on the code-level.

Gui Ant-Miner [140] and Myra [141], are two portable, Java-based implementa-
tions of ACO. According to the authors, their implementation is reasonably well
performing in terms of CPU time and memory consumption, although only experi-
mental and educational uses should be considered. Again, these two packages work
exclusively with two concrete ACO algorithms - Ant Colony-based Data Miners,
called Ant-Miner and cAnt-Miner, used for extracting classification rules.

A more general-purpose middleware is JACSF [142]. The author presents a cen-
tralized, bare-bones ACO middleware and performs no study of efficiency or scala-
bility. Many details of the implementation, such as the results logging, are treated
simplistically or are completely absent. On the other hand JACSF is easily ex-
tensible and very versatile, it can be reprogrammed for any classical problem and
it supports any arbitrary ACO algorithm. The author advises to use his software
for experimental purposes only.

Another generic solution, AntLib v1.0 [143] is a promising C++ approach to hybrid
ACO middlewares. The authors focus on speed, efficiency and scalability, as well
as extensibility, with emphasis on the use of templates and object-orientation.
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Their solution is not bound to any algorithm nor a specific problem. However, the
code is for local and experimental use only. It is reported as a work in progress.

Finally, AntHill [144], is a very advanced ACO middleware, written in Java, that
provides full support for parallel and distributed execution. It operates with JXTA
P2P technology and is suited for both: experimental and deployment applications.
Even though the authors fail to comment on execution times, an experiment of
5 × 105 iterations is reported which indicates a moderately high scalability. This
promising work, however, has not been in development since 2001 and, as a conse-
quence, the structures and technologies it uses have become obsolete. In addition,
the customization of AntHill is questionable, as it seems to be strongly bound to
the topic of P2P query propagation.
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In Table 8.1 we summarize the results stemming from this brief discussion. Note
that in most cases it is not straightforward to establish the scalability and the
maximum working ranges of a given middleware. If the ranges are not explic-
itly specified by the authors we estimate them using the largest documented and
published execution of the software we were able to find. Some of the presented
middlewares have a fixed number of algorithms incorporated, in such cases a value
is provided in the column Algorithms. In the Problems column group, Open in-
dicates that a given middleware can be applied to any problem, rather than just
a preestablished one. Finally, Dynamic is a unique feature of our middleware. It
denotes middlewares that support the modification of the problem mid-execution.

In general, the middlewares are often not modular nor extensible and the dom-
inating programming language is C under Linux, which limits significantly the
deployment possibilities. Thus, the focus tends to be experimental or educational.
The authors hardly ever elaborate on the efficiency or the scalability of their soft-
ware and almost always neglect portability. The efficiency is usually obtained at
the cost of flexibility.

Most importantly, the execution environment is always static, i.e, the parameters
of the execution have to be provided before it commences and once the algorithm
is set in motion no parameters can be changed. Moreover, the evolution of the
problem space is universally not permitted.

8.3 AntE Overview

Our solution, AntElements, permits easy creation of complex and compound test-
ing facilities even with limited knowledge of software engineering. Our primary
concern, with respect to the software design, was to provide a modular architecture
in which each element could be extended and improved upon. It allows to model
virtually all ACO-based algorithms and to apply them to an arbitrary problem. In
this section we will discuss the high-level architecture of AntE, explain the range of
data-logging possibilities, demonstrate snippets of configuration, as well as reveal
some interesting low-level optimization techniques.

8.3.1 Architecture

A very common, practical and justifiable constraint of ACO mathematical models
is to represent the contiguous world, in which the real-life ants operate, with a
finite graph. To model the problem space in terms of graphs and nodes varies
in difficulty. For instance, in the case of the Traveling Salesman Problem the
matching between the domain of the problem and the graph is straightforward.
The nodes would model cities, while the edges - the possible transitions between
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Figure 8.1: AntE graph family

Figure 8.2: AntNode class diagram

them. Regardless of the complexity of the modeling process, this approach is
considered not to affect the generality of the solutions obtained.

The main component of our architecture is the problem graph (problem-space,
Figure 8.1) which is defined in our model by the AntGraph class. AntGraph pro-
vides a basic interface for manipulating a graph, the graph creation and a set
of useful additional methods. We produced a number of AntGraph implemen-
tations, such as ToroidalAntGraph, HyperCubeAntGraph, RandomAntGraph and
more. Furthermore, any custom graph is possible, as well as an extension of any
of the preexisting ones.

As shown in Figure 8.1 AntGraph is composed of problem nodes, represented by the
AntNode class (Figure 8.2), which are the backbone of the system. The AntNode
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Figure 8.3: Ant architecture

is divided into the SemanticAntNode and PhysicalAntNode, which correspond to
the semantic and the physical levels of the system.

The semantic level is in charge of controlling the pheromone values, as well as
maintaining local resources and resolving resource queries. The pheromone ma-
nipulation is performed via the PheromoneCollection interface. We provide two
implementations of the PheromoneCollection: HashMapPheromone and Multi-
Pheromone, which differ in efficiency, scalability and versatility. The choice of the
correct implementation of the PheromoneCollection is crucial for the performance
of the whole model.

The physical level is responsible for maintaining intra-node communication and the
cost thereof. AntE comes with two existing implementations: PhysicalAntNode,
which is optimized for local execution and P2PAntNode, which enables deploy-
ment in a P2P network. We based our P2P implementation on the PastryRing
middleware. If the cost of the communication is either not a factor or an invariant
the use of the NeutralCost class is recommended, in other cases the HashMapCost
is made available. The physical level must obligatorily enable access to methods
for linking and unlinking nodes and offer the possibility to obtain or modify the
costs of all the links present.

The central piece of any ACO-related middleware is the concept of an ant. In
AntE the abstraction of the ACO-ant is the Ant interface (see Figure 8.3), which
contains, according to the strategy software design pattern, three encapsulated and
self-explanatory behaviors: PheromoneUpdate, StateTransition and QualityMea-
sure. This approach allows the code to be hot-pluggable and the behavior to
be changed during the algorithm’s execution. All three come with a base null
implementation, as recommended by the nullobject design pattern.
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Figure 8.4: State transition implementations

1 public interface StateTransition
2 {
3 public SemanticId[] performStateTransition(SemanticId[] links, float[]

ph, float[] cs, RouteList visited);
4 }

Code Snippet 8.1: State Transition interface

1 public SemanticId[] performStateTransition(SemanticId[] links, float[] ph,
float[] cs, RouteList visited)

2 {
3 float[] weights = new float[links.length];
4 float sum = 0;
5
6 float weight;
7 for(int i = 0; i < links.length; i++)
8 {
9 weight = calculateWeight(ph[i], cs[i], beta);

10 sum += weight;
11 weights[i] = weight;
12 }
13
14 double f = this.sum * (new Random().nextFloat());
15
16 int i = -1;
17
18 do
19 {
20 f -= this.weights[++i];
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21 }
22 while (f > 0.00001d);
23
24 return links[i];
25 }

Code Snippet 8.2: Example State Transition (ACS)

The state transition interface (Code Snippet 8.1) takes in four parameters: links,
an array of links to choose from; ph and cs, arrays of pheromones and costs
corresponding to the links provided; and an optional visited parameter: the list of
visited nodes, which may or may not influence the state transition. The method
returns an array of links to travel to. We chose the return value to be an array,
rather than a single value to preserve maximum generality of the code. Some
algorithms, such as SemAnt [44], permit ant cloning and splitting, which requires
multiple results from a single state transition step. A family of existing state
transition rules is provided (Figure 8.4). See Code Snippet 8.2 for a simple example
of a state transition rule.

1 public interface PheromoneUpdate
2 {
3 float[] performLocalUpdate(float[] ph);
4 float[] performGlobalUpdate(float[] ph, int rewardedLink, float

solutionQuality);
5 }

Code Snippet 8.3: Pheromone Update interface

The pheromone update interface (Code Snippet 8.3) defines two methods: per-
formLocalUpdate and performGlobalUpdate, which represent pheromone evapora-
tion and deposition respectively. Both methods take a pheromone array as input,
however the deposition requires an additional specification of the link that partic-
ipates in the deposition process, as well as the quality of the solution obtained.

1 public interface QualityMeasure
2 {
3 public float getQuality(Ant a);
4 }

Code Snippet 8.4: Quality Measure interface

The quality measure interface (Code Snippet 8.4) is trivial. It is designed to enable
a simplified access to the quality of the solution the ant created. The quality must
be returned as a float value and should be positive.
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Figure 8.5: Logger structure

8.3.2 Output and data logging

One of the challenges of every middleware is an efficient data logging module. A
badly designed one can slow down the system beyond usability, even when it is
not in operation. Due to this reason we paid special attention to it, making sure
that it would not render our middleware non-responsive under any circumstances.

The most adequate approach for handling a detached process, such as the logger,
is the short-circuit design pattern. The short circuit pattern is a multithread
software design pattern, which consists of splitting the threads into two groups:
worker threads wt and handler threads ht. Worker threads produce results, which
are later processed by handler threads. Depending on the computation load, the
ratio of wt/ht must be adjusted. In our case the handler thread (the logger) is far
less CPU-consuming. Thus, we have only one ht and an adjustable amount of wt.
As we empirically established, in order to maximize CPU usage it is recommended
to have ht = 1 and wt = 2× cores−1, where cores is the amount of physical CPU
cores available.

The LogWriter interface (Figure 8.5), alongside its implementation of Abstract-
DataLogger, are the base elements of the logging module. They provide meth-
ods for logging all the primitive values, common Java collections, char strings
and numerals. In the current version of the middleware three implementations of
the LogWriter interface are provided: NullLogger (nullobject), ConsoleDataLogger
(on-screen data display) and StreamFileDataLogger (saving data via FileStream).

LogWriter enables to select what data is to be logged, while the LogFormatter
establishes the format of the data. Three classes of LogFormatter have been made
available by default: TxtFormatter, CsvFormatter and XlsFormatter, which gen-
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erate data compatible with .txt files, .csv files and .xls files respectively. This part
of the system is, again, fully customizable.

Another important aspect of the logging module is the data post-processing. Raw
data from long executions can attain very large sizes, measured in hundreds of
gigabytes. AntE offers an extensive spectrum of post-processing tools that include,
but are not limited to: data sorting, data compacting by rolling average, merging
independent executions, standard deviation extraction as well as lineal, non-lineal
and arbitrary data bucketing.

In Figure 8.6 we present some of the possible outputs our middleware can produce.
The linear plots (Figure 8.6a) are the most basic form of output. Upon indicating
the source of the x-axis from the raw data file we can plot the evolution of any of
the logged values or a combination thereof. In this case it is the classic hop per
hit (HpH ) measure in function of algorithm’s iteration.

If data of higher dimensionality need to be visualized, the use of heatmaps is recom-
mended (Figure 8.6b and Figure 8.6c). Our middleware can prepare the data for a
visualization with the TikZ LATEX package for traditional heatmaps (in the shown
case - ant traffic density per pheromone level in a multi-pheromone implementa-
tion as a function of algorithm’s iteration), or it can produce a custom evolving
heatmap, which we called DNA-heatmaps. DNA-heatmaps are a gray-scale 2D
variant of 3D plots, useful for plotting data comprised of several independent val-
ues that evolve in time. Figure 8.6c shows an evolution of the response quality
(color intensity) per problem (y-axis) in time (x-axis). The scripts that produce
DNA-heatmaps are bundled-in with our post-processing module.

8.3.3 Extensibility and Configuration

AntE achieves a high degree of customizability due to the widespread use of the
strategy design pattern. In Code Snippet 8.5 we present a fragment of a config-
uration of the algorithm. Note lines (1), (2) and (5), where a class-encapsulated
behavior is passed as parameter. In line (4) we establish a numerical parameter
and in line (7) a boolean parameter.

1 antConfig.setParameter(AntBehaviourConfig.ANT_ST,
AcsStateTransition.class);

2 antConfig.setParameter(AntBehaviourConfig.SOLUTION_QM,
AcsQualityMeasure.class);

3 antConfig.setParameter(AntBehaviourConfig.TTL_MAX, 8);
4
5 phConfig.setParameter(PheromoneConfig.PHEROMONE_COLLECTION,

HashMapPheromone.class);
6
7 logConfig.setParameter(Logger.LOG_ENABLED, true);
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Figure 8.6: Examples of AntE logging outputs
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Code Snippet 8.5: An example of configuration (1)

This configuration technique, coupled with the modular approach allows defining
arbitrary behaviors. Consider the following example (Code Snippet 8.6). Our
objective is to create a quality measure based on the square on the well-known hop
per hit (HpH) metric. First we create a behavior class (line 1) as an extension of
the predefined HpHQuality class, which encapsulates the calculation of the quality
measure. Next, we introduce it into the configuration as the chosen behavior of
the algorithm (line 12).

1 class SquareRootHpHQuality extends HpHQuality implements QualityMeasure
2 {
3 @Override
4 public float getQuality(Ant a)
5 {
6 float hphQuality = super.getQuality(a);
7 float squareRootHphQuality = Math.sqrt(hphQuality);
8 return squareRootHphQuality;
9 }

10 }
11
12 antConfig.setParameter(AntBehaviourConfig.SOLUTION_QM,

SquareRootHpHQuality.class);

Code Snippet 8.6: An example of configuration (2) - behavior class definition

Note that the change of configuration can be done during the execution of the
algorithm, allowing interesting and unusual observations and experiments.

8.3.4 Low Level Optimization Techniques

The choice between the programming languages in which to write the middleware
is a trade-off. The main benefits of Java are obvious: portability and hardware and
software abstraction. Java, however, produces slower code than the corresponding
solutions in C++. To counteract this we were forced to design and apply a series
of low level optimization techniques. Here we list some of the most notable ones.

The most basic step is not to permit Java to perform, so called, boxing and
unboxing of numerical values. In Java, numerical values are both object-based and
primitives. Boxing and unboxing are the names given to the conversions between
the two types. The conversions are, typically, transparent from the programmer’s
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point of view and unnoticeably quick. However, in our case they were very frequent
and consumed an important portion of the CPU time.

This prompted us to eliminate completely one of the two types of the numerals.
We decided to exclude the object-based numerical values from our code, which
benefited us thrice. First, objects are larger in terms of memory than their primi-
tive counterparts (64 bytes versus 2 - 8 bytes). Second, as mentioned, the unboxing
is avoided completely. And third, the creation and destruction of objects and, in
consequence, the garbage collector usage are reduced significantly.

As a result, we were forced to rewrite the generic Java collections, such as Ar-
rayList and HashSet (which use object-based numerals) into their correspond-
ing, primitive-based counterparts. This was an opportunity to incorporate in the
newly created classes (PrimitiveIntArrayList and PrimitiveFloatArrayList) low-
level methods, which accelerated common operations, such as max, min, sum etc.
This change alone helped to reduce the memory consumption by a margin of 75%
and the CPU consumption by 90%.

The biggest challenge in ACO related middlewares is the pheromone container. It
is very often accessed and it is read and updated with similar frequency, which
excludes a write- or read-focus optimization. Our solution, alongside the afore-
mentioned primitive-based computation, was to handle the pheromone writes and
reads in batches, via the low level method System.arraycopy (Code Snippet 8.7,
from HashMapPheromone class). In order to benefit from this technique, the code
must be redesigned with batch operations in mind. The difference of the execution
time of the batch-approach with respect to the value-by-value-approach is above
71% in favor of the former.

1 public void setAll(float[] pheromone)
2 {
3 System.arraycopy(pheromone, 0, elementData, 0, pheromone.length);
4 size = pheromone.length;
5 }
6
7 public float[] getAll()
8 {
9 float[] pheromone = new float[size];
10 System.arraycopy(elementData, 0, pheromone, 0, size);
11
12 return pheromone;
13 }

Code Snippet 8.7: Batch operations

Another common efficiency bottleneck is the method that establishes if a given
element is present or absent from a data collection, typically called .contains. It
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is, at best, of O(log(n)) complexity. Quite often however, as in the case of unsorted
lists, it is O(n). We designed a technique which guarantees a numerical complexity
of O(1). Our method is possible if the elements stored in the collection are labeled
with an index, and it is especially effective if the range of the values of the indices
is known, limited and relatively small.

First we instantiate a bit array of sizemax_index. Each time an element is inserted
into the collection, the field in the bit array that corresponds to the index of the
inserted element is set to true. The opposite happens when the last element of a
given index is removed. This way the .contains check is reduced to reading the
bit corresponding to the examined element. The memory increase is modest. For
max_index of 32768 the bit array only uses 4kB of memory. See Code Snippet 8.8
for a simplified example. This approach has reduced the overall execution time by
16.7%. We believe that this technique has a wide range of uses, well beyond our
middleware.

1 class MonitoredCollection<T> extends Collection<T>
2 {
3 private BitSet cMonitor = new BitSet(max_index);
4
5 (...)
6
7 @Override
8 public void add(int index, T data)
9 {

10 super.add(index, data);
11 cMonitor.set(index);
12 }
13
14 @Override
15 public void remove(int index)
16 {
17 super.remove(index);
18 cMonitor.clear(index);
19 }
20
21 @Override
22 public boolean contains(int index)
23 {
24 return cMonitor.get(index);
25 }
26
27 (...)

Code Snippet 8.8: contains operation
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Table 8.2: Execution Times, Intel Xeon X3430

Worker Threads 1 2 3 4 5 6 7
Logger Threads 1 1 1 1 1 1 1
Physical Cores 2 2 2 2 2 2 2
Time [s] 8.4 6.7 6.4 6.9 7.0 7.3 8.0
Ants×s−1 [×104] 11.9 14.9 15.6 14.3 14.3 13.6 12.5
Ant-steps×s−1 [×106] 2.4 2.9 3.1 2.8 2.8 2.7 2.4

Table 8.3: Memory Usage, Intel Core i5 540m

Graph size 256 1024 4096 16384 65536
Total memory [MB] 2.6 9.5 37.1 147.4 588.8
Memory per node [kB] 10.2 9.3 9.0 8.9 8.9

8.4 Efficiency and Scalability

Having described some of the most notable elements of our implementation we
proceed to the analysis of the efficiency and scalability. We start with, arguably,
the most crucial parameter, which is the overall execution time. We executed our
middleware under the following conditions: a graph with 1024 nodes with 106

ants released simultaneously onto it. Each ant performs a full search of TTL = 20
steps and saves the search results in a file. The hardware configuration is: Intel
Xeon X3430 (8MB Cache, 2.40 GHz), limited to 2 of the 4 physical cores and
2GB Ram. In Table 8.2 we present the execution times in function of processing
threads used. We conclude that in the best case of 3 worker threads, the task is
terminated in under 6.5 seconds. At the peak, the efficiency of ant processing was
about 15.6× 104 ants per second and 3.1× 106 ant-steps per second. By ant-step
we understand a full processing of one ant in one node. It includes: the resource
query, the pheromone read and write as well as the state transition.

The same experiment on a far slower Intel Core i5 540m takes roughly 43 seconds.
In both cases the CPU resources consumption reached 98% per core on average,
which demonstrates an above-average effectiveness of our short-circuit approach.
This suggests that the CPU-related scalability of AntE is high, allowing to benefit
from multicore processors in a satisfying degree.

Another common limitation of other existing middlewares is the size of the graph
they can produce and process. Classical graph-related problems tend to be rather
small, mostly under 104 nodes. This means that a trivial (non-memory efficient)
implementation would possibly suffice. Still, we attempted to reduce the memory
consumption to a relative minimum, keeping in mind that the shorter CPU time,
within reasonable bounds, is favored. In Table 8.3 we summarize the memory
consumption in function of graph size. It can be observed that the property is
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very weakly sublineal, and therefore, scalable. On average one node occupies
8.9kB of memory. Under these conditions, with a 32-bit version of Java the upper
limit of the graph size is situated at around 105 nodes, on a 64-bit version it is
virtually unlimited.

The stability of the middleware is also quite important. In our extensive exper-
iments we were able to sustain a constant, uninterrupted flow of ants during 12
hours, generating roughly 7GB of log files. We claim that, with AntE, experiments
of the order of magnitude of 1010 ants are feasible.

8.5 Existing Implementations

We have used our middleware in several experimental setups and one possible
commercial deployment.

The early versions of the software have been used to examine ACO algorithms
under the condition of the dynamism of the problem space [12]. This is a largely
unexplored area of ACO, however, it was essential in our study of the applicability
of ACO to P2P networks. The unique property of supporting modifications of the
graph while the algorithm is under execution allowed us to observe insufficiencies
of ACO in this regard [8].

After having defined and demonstrated the problem, a proposal of a P2P-compatible
ACO was deployed as an experimental module, formulated completely within AntE
[18]. We opted for counteracting the problems associated to the dynamism of the
graph by correcting the pheromone paths with the help of a new type of ants, the
graph structure diffusion ants. The coding effort involved in the aforementioned
line of research, albeit seemingly complex, was in fact minimal and could have
been completed by researchers with limited knowledge of programming. In this
line of research the graph sizes ranged between 1024 and 32768 and the experiment
lengths were of 105 iterations.

Our middleware has also been used to implement a deployable piece of software
that served as a recommendation service for rehabilitation tasks for people with
Acquired Brain Injuries [19]. This extensive software can be used as both: an
experimental module and a deployable application. In its essence it was an example
of a practical application of ACO algorithms. Here, we treated the graph nodes
as rehabilitation tasks, the pheromone as a similarity measure between them, and
the ants as a representation of a query issued for a patient. All of the changes
were possible strictly within what the configuration of our middleware permits.

Our most recent research is centered on the question of resolving multi-class queries
in P2P networks with ACO. We extended our software with multi-pheromone
capacities in order to experiment with the effects of multiple types of ants and
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how they impact the overall efficiency of ACO. We also increased the length of
the experiments to 4 × 106 iterations. Working with our middleware enabled us
to put the formulated ideas to a test quickly and obtain a very early experimental
validation, which, in turn, was a way to avoid or abandon unpromising concepts.

8.6 Conclusions and Future Works

In this paper we presented a customizable ACO middleware, AntE. We elaborated
on the novelty of our software, as well as outlined some of its more interesting
features. We discussed its performance and scalability, and described its architec-
tural design alongside some selected optimization techniques, which, we hope, will
benefit the ACO community.

In the direct future we will focus on the release of our software as open source and
we will bundle it with a documentation allowing users to use it to its full potential.
In addition, we continually rework and update our source code, improving safety,
stability, as well as the key aspects: scalability, speed and customizability. In
this respect, we are currently considering new and promising ACO-hibridization
techniques that will be included as optional components of the next release of the
AntE software infrastructure.

We would also like to compare the effectiveness of our approach with general pur-
pose environments, such as HeuristicLab [145]. HeuristicsLab has been in develop-
ment since 2002 and it has become a very extensive and configurable environment
for broadly understood algorithmic experimentation, with a modern GUI, visual
algorithm and experiment designers, as well as analytical tools. Due the scope of
the software, HeuristicsLab bares no characteristic of a middleware, but is, in fact,
a meta-level environment. Therefore, we argue that AntE should not be perceived
as a competing, but rather complementary approach.

A possible continuation of our work could focus on the conversion of AntE into
a plug-in of HeuristicsLab. This would enable us to benefit from the powerful
framework HeuristicsLab is. Such a plug-in, supporting multiple pheromone levels,
graph structure diffusion ants and resolution of multi-class queries in P2P networks
with ACO, has, to our best knowledge, not been implemented.
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Chapter 9

Discussion

The results stemming from our research are multiple. In order to coherently an-
alyze them we must recall the two global challenges we put forward in the initial
statement of this thesis.

1. Equip ACO metaheuristic with capability to efficiently carry out P2P re-
source queries, withstanding dynamism of the underlying network topology

2. Equip ACO metaheuristic with semantic/multiclass routing capabilities in
P2P networks in a non-trivial manner

Bearing in mind that any solution to the above challenges must not tread beyond
what the ACO metaheuristic offers in terms of decentralization, locality and ap-
plicability scope. These high-level objectives can be split and expressed as a list
of more easily manageable tasks:

1. Extract the desired and the undesired properties of algorithms for search in
P2P networks.

2. Experimentally analyze existing strategies against the extracted properties
and establish the most promising ones for further development

3. Address the challenge 1 (dynamic graphs). Incorporate new strategies into
the algorithms in question and perform an efficiency analysis.

4. Locate a real-life problem that could benefit from the newly created dynamic
graph ACO strategy and demonstrate its usefulness.

5. Address the challenge 2 (semantic/multiclass routing). Incorporate new
strategies into the algorithms in question and perform an efficiency anal-
ysis.
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6. Identify a real-life problem that could benefit from the newly created seman-
tic routing ACO strategy and demonstrate its usefulness.

A major part of our early work revolved around the tasks 1 and 2. In our paper On
the performance of ACO–based methods in P2P resource discovery we formulate
the query-resource (q-r) requirements for an effective P2P ACO-based query. In
addition, we present the first approximation of the semantic capacities of an ACO
algorithm - the Routing Concept, based on the work by Michlmayr [15]. We
also conclude that the topology of the underlying graph, unless exploited in a
predetermined way, is not of crucial importance. To demonstrate this fact we
design a topology-aware ACO extension, called TRO, and perform experiments
in various graph topologies with and without it active. The main contribution
stemming out from this research was a more formal look at some intuitive problems
with the use of ACO as a query routing algorithm in P2P environments.

Our following article (Ant Colony Optimization for resource querying in dynamic
peer-to-peer grids) is a direct continuation of the first one. Here we took on the
dynamic aspects of P2P networks: the variating number and location of nodes
as well as the amount of resources, put in the context of computer grids. The
discussion focused on the comparison of two techniques: single agent against multi
agent, and the impact the network dynamism has on the convergence quality and
speed of ACO algorithms. The results informed us that the idea of multi-agent
techniques, if used at all, must be very carefully designed and as lightweight as
possible; a conclusion, that has be taken into account in the global solution. In
this research we used, what had been determined the best candidate: the aptly
named Routing Concept Ant Colony System (RC-ACS ), which is a crossover of
classical Ant Colony System with the Routing Concept idea. We also coin a
new term: pheromone reconvergence. Reconvergence is used when the pheromone
convergence state of a network has been perturbed and invalidated, which causes
the convergence to occur anew. Reconvergence is a more difficult task, because
rather than starting from an uninitialized state, it must start from an incorrectly
initialized one.

Afterwards we continued with task 3 and designed a model that tackles the effects
of the dynamism of the network. The study A Diffusion-Based ACO Resource Dis-
covery Framework for Dynamic P2P Networks focuses on one of the dynamism
types extracted in the previous work: the growth and, more generally, the evolution
of the content and quality of resource repositories. We propose a novel solution
by extending the classical ACS and our RC-ACS with, what we refer to as, in-
formation diffusion ability. The information diffusion is a simple network events
notification system that allows nodes to correct their pheromone paths. It was
designed not to violate the q-r prerequisite through adding centralized knowledge
about the state of the network. We present two information diffusion strategies
and examine their impacts on the convergence and reconvergence of the system.
We determine that the model equipped with information diffusion is statistically
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superior to a one without it. We, therefore, provide an approximation of the so-
lution to the problem of the resource dynamism and the dynamism in general in
P2P networks.

Task 4 consisted of utilizing the to-date research in a real-life setting. We applied
RC-ACS with information diffusion the problem of learning unit recommendation
in the context of ability learning due to acquired brain injuries. The problem of
selecting optimal learning resources from a set of given ones was a good example
of one that can benefit from our improvements: routing concepts and the infor-
mation diffusion. In the paper An ACO-based personalized learning technique in
support of people with Acquired Brain Injury we present a fully functional learning
unit recommendation software centered exclusively on class-based routing achieved
through routing concepts. Due to the time limitations we were unable to examine
the impact of the network dynamism on our solution. Nevertheless, we showed,
with high statical significance, that our ACO-based model produces quality rec-
ommendations.

Next, in order to execute task 5, we combined partial solutions and transitioned to
a global solution to the problem of semantic routing. The thus far used solution,
RC-ACS, is largely sufficient for simple cases, but it fails when the number of
routing conceptsRC, or resource classes C grows beyond a certain threshold, which
was established to be located between C = 10 and C = 100. The authors of the
multipheromone, pheromone-per-concept approach [15], which was the motivation
for the RC idea, conclude their work with similar statements. The key notion
that guided the research from this point on was to allow natural emergence of
pheromone types in the system, rather than to establish the direct one pheromone
for one routing concept. This task was resolved in two substeps. First we proposed
a new mathematical model, fully in-tune with the q-r principles, and demonstrated
that it did not impair the efficiency of the algorithm when semantic search is not
used. Once this was complete we presented and analyzed it in the context of
semantic search.

Our global solution is called Angry Ant Framework (AAF ). In AAF the search
agents can create ad-hoc multipheromone models (stratify the pheromone in lay-
ers) depending on the satisfaction with the efficiency of the queries in the existing
layers. It is an important improvement over the static, preassigned pheromone-
per-concept idea. Surprisingly, the inclusion of the dynamic pheromone stratifi-
cation into the classical ACS improved its efficiency even when not theoretically
necessary, when maintaining efficiency was sufficient and expected. Such was our
conclusion from the article A non–Hybrid Ant Colony Optimization Heuristic for
Convergence Quality. This convinced us that AAF had a more profound benefit
on the search process in P2P networks, but we still cannot conclusively account
for the positive impact seen here. Having shown this we examined AAF with se-
mantic search, represented by the simple idea of multi-class queries (An Efficient
ACO Strategy for the Resolution of Multi-Class Queries). Between the two afore-
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mentioned publications we improved the original AAF mathematical design with
a process we named entropic ant reassignment. The entropic ant reassignment
allows the search agents, not only to dynamically create new pheromone types
as needed, but also to reassign themselves to other, existing ones, provided they
consider it beneficial. We called the resulting algorithm EntropicAAF.

Throughout our research we kept on evaluating ACO algorithms in increasingly
uncommon and difficult instances of P2P problems. Being unable to locate an ex-
isting middleware of sufficient capabilities we created our own, called AntElements.
It combined all the required properties, such as dynamism, routing concepts and
a high degree of flexibility, with an unprecedented stability and execution speed.
It allowed us to perform some of the longest (order of magnitude of 109 of agents),
most extensive (order of magnitude of 105 network nodes) and most precise (phe-
romone analysis after each agent release) ACO-related P2P experiments to date.
Upon the research competition our software solution was published as open-source
for the community to use.
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Chapter 10

Conclusions and Future Works

In this thesis we have shown approaches to efficient semantic searches in P2P
networks. We propose a number of solutions, that cover a major portion of the
possibilities:

• If the environment is structured, we propose RC-ACS algorithm with the
TRO extension (a static multipheromone model)

• If the environment is dynamic, but the semantic classification of the resources
is small, we propose the use of RC-ACS with information diffusion (a static
multipheromone model)

• If the resource classification is large, variable or unknown, we propose the
use of EntropicAAF (a dynamic multipheromone model)

See Table 10.1 for a short summary of our contributions.

Thus, the two challenges raised in chapter 1 have been achieved throughout the
course of the investigation under the scope of this thesis. However, of the six
tasks mentioned in chapter 9 the final one: Identify a real-life problem that could
benefit from the newly created semantic routing ACO strategy and demonstrate its
usefulness has not been addressed fully due to time limitations. As of today we
were able to locate a problem that could benefit immensely from the efficiency
offered by EntropicAAF: large-scale vehicle routing. This topic is our current
focus, due to the fact that, as it was noticed, large scale traffic can be modeled as
a graph with agents that carry class-based objectives.

With respect to the pure field of semantic searches in P2P, we would like to apply
our algorithms to existing problems. One example of such a problem is the widely
distributed multimedia content. Our multi-class algorithms find a very natural
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Table 10.1: Summary of algorithmic contributions

Contribution Description Source
RC-ACS A static multipheromone variant of ACS, usable in

semantic queries in static P2P networks
Chapter 2

TRO A path post-processing algorithm for any ACO al-
gorithm for P2P networks with hypercube topolo-
gies

Chapter 2

ACO Diffusion A P2P- and ACO-compatible algorithm that miti-
gates the effects of the network dynamism on ACO

Chapter 4

AAF A dynamic multipheromone variant of ACS with
ad-hoc pheromone stratification

Chapter 6

EntropicAAF An improvement over AAF, with more efficient
pheromone utilization

Chapter 7

representation in this problem, as the metadata of multimedia files can be viewed
as a semantical classification, which can be easily exploited with EntropicAAF.

As future works we would like to clearly explain the query efficiency increase
in single class queries with EntropicAAF. As mentioned in the chapter 9 this
improvement is not fully accounted for or understood. In addition, we would
like to perform a study on EntropicAAF with the information diffusion enabled.
Therefore allowing EntropicAAF to be executed in dynamic graphs.

To the best of our knowledge EntropicAAF is the only available dynamic multi-
pheromone ACO model and a substantial improvement over the static multiphe-
romone ACO models. Furthermore, EntropicAAF is in all likelihood the most
efficient ACO algorithm for semantic searches in P2P networks in general, and
therefore, the possible future state-of-the-art. We would like to promptly perform
a statistical study in order to check and prove the accuracy of this statement.

To conclude we would like to mention that the dynamic multipheromone approach
of AAF is, thus far, one of its kind and it would be of high importance to examine
its broader implications and perquisites, well outside the field of semantic searches
in P2P. It is, on its own, a novel idea that has the potential to benefit algorithmic
approaches different to ACO.
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