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EXTENDING AND FACTORIZING BOUNDED BILINEAR MAPS

DEFINED ON ORDER CONTINUOUS BANACH FUNCTION

SPACES

J.M. CALABUIG, M. FERNÁNDEZ UNZUETA, F. GALAZ-FONTES,

AND E.A. SÁNCHEZ-PÉREZ

Abstract. We consider the problem of extending or factorizing a bounded

bilinear map defined on a couple of order continuous Banach function spaces to

its optimal domain, i.e. the biggest couple of Banach function spaces to which

the bilinear map can be extended. As in the case of linear operators, we use

vector measure techniques to find this space, and we show that this procedure

cannot be always successfully used for bilinear maps. We also present some

applications to find optimal factorizations of linear operators between Banach

function spaces.

1. Introduction

Let X(µ) be an order continuous Banach function space on the measure space

(Ω,Σ, µ), containing the set of all the characteristic functions. Take E to be a

Banach space, and consider a (linear and bounded) operator T : X(µ) → E, with

associated vector measure mT , that is, mT (A) := T (χA), A ∈ Σ. Then it is known

that it is possible to factorize the operator T through the space L1(mT ) of integrable

functions with respect to mT , i.e., the following diagram commutes

X(µ)
T //

j $$

E

L1(mT )

ImT

<< .

Here, ImT
is the integration operator and j is a natural operator that coincides with

the inclusion map i in case any mT -null set has µ-measure zero. In this case, T is
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called µ-determined (see for instance [12, Ch.4], and [2] for non-µ-determined oper-

ators). The space L1(mT ) that appears above is always optimal, in the sense that

it contains any order continuous µ-Banach function space to which the operator T

can be extended. This result –called the Optimal Domain Theorem for operators

on Banach function spaces– has been used in a series of papers as a tool for describ-

ing the optimal domain for relevant operators, mainly in harmonic analysis (see for

instance [4, 5, 8, 7, 12]).

Similar arguments have also been applied for obtaining the Optimal Domain

of an operator that satisfies a particular domination property; the requirement is

that the extension must also satisfy the same domination property. In this case,

the optimal domain is given by a Banach function subspace of L1(mT ). Important

examples of such construction has been recently obtained in [1, 12] and [2].

In this paper we study such kind of factorization through spaces of integrable

functions in the case when we have a bounded bilinear map B : X(µ)× Y (ν)→ Z

instead of a linear one. In other words, we are interested in finding a factorization

for B as

X(µ)× Y (ν)
B //

j ((

Z

L1(m1)× L1(m2)

B0

88 ,

for suitable vector measures m1 and m2 and to analyze its optimality properties.

Our first step is to use vector measures with values in the Banach space L(Y,Z) of

all operators going from the Banach space Y to the Banach space Z. In order to

factorize B we introduce the bounded linear map SB : X(µ)→ L(Y,Z) given by

SB(f)(y) = B(f, y), for all f ∈ X(µ) and y ∈ Y.

As in the case of µ-determined operators, the separation property

if A ∈ Σ and µ(A) > 0, then B(χC , y) 6= 0, for some C ∈ Σ, C ⊂ A, y ∈ Y,

assures that any mSB
-null set is µ-null and so the factorization obtained is indeed

an extension. From the bounded linear map SB : X(µ) → L(Y, Z) we obtain

the space L1(mSB
), which provides the optimal extension of SB. If B does not

have the property above, then the method we develop in Section 3 still gives a

factorization for B through the product space L1(mSB
) × Y (µ) and, when B also

has the corresponding property (3.2), we obtain a factorization through a product

space of the form L1(m1)×L1(m2). Theorem 3.4 establishes when this factorization

is optimal.

On the other hand, given y ∈ Y we can also consider the bounded linear map

SB,y : X(µ)→ Z defined by

SB,y(f) = B(f, y) = SB(f)(y), for all f ∈ X(µ).
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As before we can factorize each operator SB,y through L1(mSB,y
). In Section

4 we relate the space of scalarly integrable functions L1
w(mSB

) with the spaces

L1
w(mSB,y

), and the space L1(mSB
) with the spaces L1(mSB,y

), in order to give a

description of our main factorization space L1(mSB
). Finally, we show in Section 5

some applications, providing under some restrictions the optimal factorization of an

operator T between Banach function spaces by applying our results to the bilinear

form B(·, ·) := 〈T (·), ·〉. Namely, our results can give the conditions under which it

is possible to find a factorization diagram as

X(µ)
T //

i

��

Y (ν)

X0

T0 // Y0

i

OO

that extends in the left hand side to the biggest space in a class of B.f.s. and

restricts the range to the smallest B.f.s. in other class of spaces.

2. Notation and preliminaries

Given a Banach space E we denote by E′ its topological dual and by BE its

closed unit ball. By P(A) we will represent the set of partitions π of A ∈ Σ, where

π has a finite number of disjoint measurable sets. If 1 ≤ p ≤ ∞ then p′ ∈ [1,∞] is

given by 1/p+ 1/p′ = 1.

Throughout this work (Ω,Σ, µ) will always be a finite measure space. By L0(Σ)

we will denote the space of all measurable real functions defined on Ω and by L0(µ)

the space of all equivalence classes of µ-a.e. equal functions belonging to L0(Σ).

We will call µ-normed function space to any normed space X(µ) ⊆ L0(µ) having a

lattice norm ‖ · ‖X(µ) with respect to the µ-a.e. natural order, that is, if f ∈ L0(µ),

g ∈ X(µ) and |f | ≤ |g| µ-a.e., then f ∈ X(µ) and ‖f‖X(µ) ≤ ‖g‖X(µ). Sometimes

we write X instead of X(µ) when the measure is clear in the context. When X(µ)

is complete, we will say that X(µ) is a µ-Banach function space (µ-B.f.s., for short).

By a Banach function subspace of X(µ) we mean a µ-B.f.s. continuously included

in X(µ) (allowing different norms). A µ-B.f.s. is order continuous if order bounded

increasing sequences are convergent in norm. A µ-normed function space X(µ) is

said to have the Fatou property, if for any sequence (fn)n ⊂ X(µ) and f ∈ L0(µ)

such that 0 ≤ fn ↑ f and (‖fn‖X(µ))n is bounded, we have that f ∈ X(µ) and

‖fn‖X(µ) ↑ ‖f‖X(µ). Given two µ-B.f.s. X(µ) and Y (µ) we will denote by M(X,Y )

the set of multipliers from X(µ) into Y (µ), that is, a function h ∈ L0(µ) belongs

to M(X,Y ) if (and only if) hf ∈ Y (µ) for all f ∈ X(µ). Under the adequate

requirements, M(X,Y ) is again a Banach function space on µ when endowed with

the operator norm. The product X · Y of two Banach function spaces X(µ) and
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Y (µ) is defined as the pairwise pointwise product of functions in each space, that

is X · Y = {h ∈ L0(Σ) : h = fg, f ∈ X(µ), g ∈ Y (µ)}.
Let E be a Banach space and m : Σ → E be a (countably additive) vector

measure. The semivariation of m over A ∈ Σ is defined by

‖m‖(A) = sup
x′∈BE′

|〈m,x′〉|(A),

where |〈m,x′〉|(A) is the variation of the scalar measure given by

〈m,x′〉(A) = 〈m(A), x′〉, for each A ∈ Σ.

A set A ∈ Σ is called m-null if ‖m‖(A) = 0. A property which holds outside

an m-null set is said to hold m-almost everywhere (briefly, m-a.e.). A Rybakov

measure for m is a measure with the same null sets as m and that has the form∣∣〈m,x′〉∣∣, where x′ ∈ BE′ . It is well known that Rybakov measures always exist

(see [9, IX.2.2]). Finally, we define L0(m) := L0(η), where η is a Rybakov measure

for m.

Definition 2.1. A function f : Ω → R is said to be integrable with respect to the

measure m if

(a) f is scalarly integrable with respect to m, that is, for each x′ ∈ E′ we have

that f ∈ L1(〈m,x′〉),
(b) for each A ∈ Σ there exists xA ∈ E such that

〈xA, x′〉 =

∫
A

fd〈m,x′〉 for every x′ ∈ E′.

The vector xA is unique and will be denoted by
∫
A
fdm. The space of the

classes with respect to equality m-a.e. of these functions is denoted by L1(m). The

expression

(2.1) ‖f‖m = sup
x′∈BE′

∫
|f | d|〈m,x′〉|, for each f ∈ L1(m),

defines a lattice norm on L1(m), and so L1(m) is an order continuous m-B.f.s. (that

is, it is an η-B.f.s., where η is any Rybakov measure for the vector measure m; see

for instance [3]). The indefinite integral mf : Σ → E of a function f ∈ L1(m) is

defined by

mf (A) =

∫
A

fdm, A ∈ Σ.

We will write Im : L1(m) → E for the integration map Im(f) := mf (Ω). For

each integrable function f , the Orlicz-Pettis Theorem ensures that mf is again a

countably additive vector measure. An equivalent norm for L1(m) is given by

|||f |||m = sup
A∈Σ

∥∥∥∥∫
A

fdm

∥∥∥∥
E

, for each f ∈ L1(m),
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which satisfies

(2.2) |||f |||m ≤ ‖f‖m ≤ 2|||f |||m,

(see [9, I.1.11]). The space L1
w(m) is the space of the classes (with respect to

equality m-a.e.) of the scalarly integrable functions. The expression (2.1) also

defines a norm in L1
w(m) and so we obtain again an m-B.f.s. with the Fatou

property. Clearly L1(m) is a subspace of L1
w(m).

3. Extending Bounded Bilinear Maps

Let X(µ) be an order continuous µ-B.f.s. and Y and Z be Banach spaces. We

start this section by considering the problem of extending a given bounded bilinear

map B : X(µ)× Y → Z. In order to do this we introduce the bounded linear map

SB : X(µ)→ L(Y, Z) given by

(3.1) SB(f)(y) = B(f, y), for all f ∈ X(µ) and y ∈ Y.

We will also assume that B satisfies for every measurable set A

(3.2) if µ(A) > 0, then B(χC , y) 6= 0 for some C ∈ Σ, C ⊂ A and y ∈ Y.

This property assures that any mSB
-null set is µ-null (see Lemma 4.6).

Applying the Optimal Domain Theorem for operators in Banach function spaces

we can extend SB to the space L1(mSB
). Hence the following diagram commutes

X(µ)
SB //

i $$

L(Y,Z)

L1(mSB
)

ImSB

99
.

We now define B1 : L1(mSB
)× Y → Z by

(3.3) B1(f, y) = (

∫
Ω

fdmSB
)(y).

Proposition 3.1. i) The function B1 is a bilinear and bounded extension of B.

ii) If W (µ) is an order continuous µ-B.f.s. such that X(µ) ⊂W (µ), C : W (µ)×
Y → Z is bilinear and bounded and C = B on X(µ) × Y , then W (µ) ⊂ L1(mSB

)

and B1 = C on W (µ)× Y .

Proof. i) It is clear that B1 is bilinear. Let f ∈ L1(mSB
) and y ∈ BY . Then

‖B1(f, y)‖Z =

∥∥∥∥(

∫
Ω

fdmSB
)(y)

∥∥∥∥
z

≤
∥∥∥∥∫

Ω

fdmSB

∥∥∥∥
L(Y,Z)

≤ ‖f‖L1(mSB
).

This shows that B1 is bounded.

ii) Let W (µ) and C be as in the hypothesis and consider the associated bounded

linear operator SC : W → L(Y, Z). Since X(µ) ⊂W (µ) and SC = SB on X(µ), by
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the Optimal Domain Theorem we have that W (µ) ⊂ L1(mSB
) and ImSB

= SC on

W . It follows that B1 = C on W (µ)× Y . �

In the above result we have fixed the second space, Y , and in doing so we were

able to apply the methods of the linear case. We now discuss the possibility of

varying X or Y . Hence we consider both X(µ) and Y (µ) to be order continuous

µ-B.f.s. We consider the same measure µ for both spaces for the aim of simplicity,

but the following construction also makes sense for a couple of Banach function

spaces X(µ) and Y (ν) on different measures. Take B : X(µ) × Y (µ) → Z to be

a bounded bilinear map having property (3.2) and also the following symmetric

property; for each measurable set A,

(3.4) if µ(A) > 0, then B(f, χC) 6= 0 for some C ∈ Σ, C ⊂ A and f ∈ X.

Applying the method we have introduced to the bounded linear map T1 : X(µ)→
L(Y (µ), Z) given by T1(f) = B(f, ·), we find a vector valued measure m1 : Σ →
L(Y (µ), Z) such that the following diagram commutes,

(3.5) X(µ)
T1 //

i $$

L(Y (µ), Z)

L1(m1)

Im1

88
,

where i is an inclusion map. Next we consider the bounded bilinear map B1 :

L1(m1)× Y (µ)→ Z as defined in (3.3).

We can also apply the procedure explained above by fixing the first space fac-

tor instead of the second one. So we factorize now the operator T12 : Y (µ) →
L(L1(m1), Z) given by T12(g) = B1(·, g), obtaining a vector valued measure m̃2 :

Σ→ L(L1(m1), Z) for which the following diagram commutes,

(3.6) Y (µ)
T12 //

i $$

L(L1(m1), Z)

L1(m̃2)

Im̃2

88
,

where i an inclusion map. Let us take now the bounded bilinear map B12 : L1(m1)×
L1(m̃2)→ Z given by B12(f, g) = (

∫
Ω
gdm̃2)(f). Hence we have that the following

diagram conmutes

(3.7) X(µ)× Y (µ)
B //

i ((

Z

L1(m1)× Y (µ)

B1

99

i // L1(m1)× L1(m̃2).

B12

ff
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In a similar way we can find two vector valued measures m2 : Σ → L(X(µ), Z)

and m̃1 : Σ→ L(L1(m2), Z) satisfying that the following diagram conmutes

(3.8) X(µ)× Y (µ)
B //

i ((

Z

X(µ)× L1(m2)

B2

99

i // L1(m̃1)× L1(m2).

B21

ff

Therefore, we obtain two “non symmetric” factorizations in a direct way. The

natural question that arises is: Is there an optimal factorization space?, if the answer

is positive, then the candidate is of course L1(m1)× L1(m2). The following result

shows that B can be extended bilinearly and continuously at most to the product

space L1(m1)× L1(m2), although this factorization does not hold in general.

Proposition 3.2. If X̃(µ) and Ỹ (µ) are order continuous Banach function spaces

such that:

• X(µ)× Y (µ) ⊆ X̃(µ)× Ỹ (µ),

• there is a bounded bilinear map Ĩ : X̃(µ)× Ỹ (µ)→ Z extending B,

then X̃(µ) ⊆ L1(m1) and Ỹ (µ) ⊆ L1(m2).

Proof. We preserve the notation used aboved. Take S : X̃(µ) → L(Y (µ), Z) given

by S(f) = Ĩ(f, ·). Take f ∈ X(µ) and g ∈ Y (µ). Then

S(f)(g) = Ĩ(f, g) = B(f, g) = T1(f)(g).

Hence T1 is the restriction of S to X(µ) and thus the optimality of L1(m1) in

diagram (3.5) gives X̃(µ) ⊆ L1(m1). In a similar way we obtain that Ỹ (µ) ⊆
L1(m2). �

Next, we show that it may not be possible to extend B to the cartesian product

L1(m1)× L1(m2).

Example 3.3. Let λ be the Lebesgue measure on the interval [0, 1] and consider

the order continuous λ-B.f.s. X(λ) = L2[0, 1] and Y (λ) = L3[0, 1] and the Banach

space Z = L1[0, 1]. Consider the bounded bilinear map

B0 : L2[0, 1]× L3[0, 1]→ L1[0, 1], B0(f, g) = fg.

Notice B0 has properties (3.2) and (3.4). Using that the space of multipliers

M(Lp[0, 1], L1[0, 1]) equals Lp
′
[0, 1] for all 1 < p <∞ (see for instance [12, Propo-

sitions 3.43, 3.66]), we have

L1(m1) = M(L3[0, 1], L1[0, 1]) = L3/2[0, 1].

On the other hand

L1(m2) = M(L2[0, 1], L1[0, 1]) = L2[0, 1].
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Notice that the pointwise product L1(m1) · L1(m2) gives L3/2[0, 1] · L2[0, 1] =

L6/7[0, 1] and L1[0, 1] ( L6/7[0, 1], we can find functions f ∈ L1(m1) and g ∈
L1(m2) such that fg /∈ L1[0, 1]. Thus B0 cannot be extended to L1(m1)×L1(m2).

In our next result we characterize when the bilinear map B can be extended to

the cartesian product L1(m1)× L1(m2).

Theorem 3.4. The following assertions are equivalent.

(1) The bilinear map B can be extended continuously and as a bilinear map I to

the cartesian product L1(m1)× L1(m2).

(2) The equalities L1(m1) = L1(m̃1) and L1(m2) = L1(m̃2) hold.

(3) The bounded bilinear maps B12 and B21 coincide.

Proof. Let us start by showing that (1) implies (2). We have established in (3.8)

that B has a bilinear and continuous extension to L1(m̃1)×L1(m2). By Proposition

3.2 this implies that L1(m̃1) ⊆ L1(m1).

We will show now that L1(m2) ⊆ L1(m̃2). Take the operator S : L1(m2) →
L(L1(m1), Z) given by S(g) = I(·, g). For each g ∈ Y (µ) and A ∈ Σ we have that

T12(g)(χA) = B(χA, g) = S(g)(χA),

so T12(g)(φ) = S(g)(φ) for all g ∈ Y (µ) and each simple function φ. Hence the

density of the simple functions in L1(m1) gives that T12(g) = S(g) for all g ∈
Y (µ). Therefore T12 is the restriction of S to Y (µ) so the optimality of diagram

(3.6) provides that L1(m2) ⊆ L1(m̃2). Proceeding in a similar way we prove that

L1(m1) ⊆ L1(m̃1) and L1(m̃2) ⊆ L1(m2), which gives (2).

We continue by proving that (2) implies (3). Note that (2) implies that the

domains of B12 and B21 coincide. On the other hand since for all A,C ∈ Σ we have

that B12(χA, χC) = B(χA, χC) = B21(χA, χC) then again the density of the simple

functions both in L1(m1) and L1(m2) together with the continuity of B give (3).

If we assume now (3) then just take I = B12 = B21 and consider the scheme (3.7)

—or (3.8)— to obtain (1). �

4. The spaces Ew(mSB
) and E(mSB

)

In this section we provide a description of our main factorization space L1(mSB
).

Let us return to the beginning of Section 3 and consider an order continuous µ-B.f.s.

X(µ), Banach spaces Y and Z and a bounded bilinear map B : X(µ)×Y → Z with

property (3.4). Then, for the bounded linear map SB : X(µ)→ L(Y,Z) defined in

(3.1) we obtained a factorization through the space L1(mSB
). We proceed in this

section in a different way. For each y ∈ Y , we can also consider the bounded linear

map SB,y : X(µ)→ Z given by

SB,y(f) = B(f, y) = SB(f)(y), for all f ∈ X(µ).
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As in Section 3 we can factorize each operator SB,y through the space L1(mSB,y
)

as

X(µ)
SB,y //

[i] %%

Z

L1(mSB,y
)

ImSB,y

;; ,

where [i] is the (continuous) inclusion/quotient map that identifies each function

in X(µ) with it class of mSB,y
-a.e. equal functions. This map is not necessarily

injective; the reader can find more information on these operators in [11]. In this

section we will relate the space L1
w(mSB

) with the spaces L1
w(mSB,y

), and the space

L1(mSB
) with the spaces L1(mSB,y

). Our aim is to give a description of the space

L1(mSB
) that was shown to be central in Section 3. Our first goal is to prove that

L1
w(mSB

) = Ew(mSB
), where

Ew(mSB
) = {f ∈ L0(mSB

) : f ∈ L1
w(mSB,y

), for all y ∈ Y }.

Recall that the separation property given in (3.4) is assumed for B. Let f ∈
L1
w(mSB

) and y ∈ Y . For each z′ ∈ Z ′ we can consider the bounded linear map

Hy,z′ : L(Y,Z)→ R, Hy,z′(T ) = 〈T (y), z′〉.

Clearly

(4.1) 〈mSB,y
, z′〉 = 〈mSB

, Hy,z′〉,

and if y ∈ BY and z′ ∈ BZ′ , then Hy,z′ ∈ BL(Y,Z)′ . Hence, for y ∈ BY we have

‖f‖mSB,y
= sup
z′∈BZ′

∫
Ω

|f |d|〈mSB,y
, z′〉| = sup

z′∈BZ′

∫
Ω

|f |d|〈mSB
, Hy,z′〉| ≤ ‖f‖mSB

<∞.

It follows that

(4.2) L1
w(mSB

) ⊆ Ew(mSB
) and sup

y∈BY

‖f‖mSB,y
≤ ‖f‖mSB

, for all f ∈ L1
w(mSB

).

Motivated by (4.2), we define

(4.3) ‖f‖Ew(mSB
) = sup

y∈BY

‖f‖mSB,y
, f ∈ Ew(mSB

).

In our next results we assume a requirement for the bilinear map that allows to

assure that the function (4.3) takes real values and defines a norm on Ew(mSB
).

Definition 4.1. A map B : X(µ)× Y → Z is said to be right order bounded if:

(a) X(µ) is an order continuous µ-B.f.s. and Y and Z are Banach lattices,

(b) B is bilinear and bounded, and

(c) B(χA, y1) ≤ B(χA, y2) for all A ∈ Σ and y1 ≤ y2 ∈ Y.
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Easy examples of right order bounded bilinear maps are the positive bilinear

maps between Banach lattices. Indeed, when X and Y are Banach lattices then

the cartesian product X ×Y is also a Banach lattice with the norm ‖(x, y)‖X×Y =

max(‖x‖X , ‖y‖Y ) and the order (x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 and

y1 ≤ y2. Take now a Banach lattice Z. A bilinear map B : X × Y → Z is said to

be positive if

0 ≤ B(x1, y1) ≤ B(x2, y2), for all 0 ≤ (x1, y1) ≤ (x2, y2) ∈ X × Y.

It is easy to check that since B is positive then

(4.4) |B(x, y)| ≤ B(|(x, y)|),

for all (x, y) ∈ X × Y . In the other hand it is well-known that positive linear maps

between Banach lattices are always bounded (see, for instance [10]). A similar

argument allows us to prove that the same result is also true for bilinear maps.

Lemma 4.2. Let X,Y and Z be Banach lattices and let B : X ×Y → Z a positive

bilinear map. Then B is continuous.

Proof. Assume that B is not continuous. Then there exist (xn, yn)n ∈ X × Y and

δ > 0 satisfying that for all n ∈ N

‖(xn, yn)‖X×Y <
1

2n
and ‖B(xn, yn)‖Z > δ .

Note that the series
∑
i≥1 i|(xi, yi)| is convergent in X × Y , since for all p ∈ N one

has ∥∥∥ p∑
i=n

i|(xi, yi)|
∥∥∥
X×Y

≤
p∑
i=n

i‖(xi, yi)‖X×Y ≤
p∑
i=n

i

2i
.

Denote (a, b) =
∑
i≥1 i|(xi, yi)| ∈ X × Y . Since 0 ≤ n|(xn, yn)| ≤ (a, b) and B is

positive, we have 0 ≤ B
(
n|(xn, yn)|

)
≤ B(a, b). Then, using (4.4),

Z 3 B(a, b) ≥ B
(
n|(xn, yn)|

)
= n2B

(
|(xn, yn)|

)
≥ n2|B(xn, yn)|,

and so

‖B(a, b)‖Z ≥ n2‖B(xn, yn)‖ ≥ n2δ,

for all n ∈ N. This produces a contradiction, so B is continuous. �

Example 4.3. Let X(µ) be an order continuous µ-B.f.s. and let Y and Z be

Banach lattices. Then every positive bilinear map B : X(µ)×Y → Z is right order

bounded.

Example 4.4. Take X(µ) and Y (µ) two µ-B.f.s. such that the pointwise product

X(µ)·Y (µ) is contained in L1(m) and consider the bilinear map B : X(µ)×Y (µ)→
L1(m), given by B(f, g) = fg, for all f ∈ X(µ) and g ∈ Y (µ). Then B is right

order bounded.
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Let us show that, as we said before, for a B in the class of right order bounded

bilinear maps, formula (4.3) defines a norm on Ew(mSB
).

Lemma 4.5. Let B be a right order bounded bilinear map. Then ‖f‖Ew(mSB
) <∞

for every function f ∈ Ew(mSB
).

Proof. Take f ∈ Ew(mSB
) and let us consider the function

A : Y × Z ′ → [0,∞), A(y, z′) =

∫
Ω

|f |d〈mSB,y
, z′〉.

Since f ∈ Ew(mSB
) then A is a well defined bilinear map that is separately

continuous so continuous. Recall that, in particular, this means that ‖A‖ =

supy∈BY
supz′∈BZ′ |A(y, z′)| must be finite. On the other hand condition (3) in

the definition of right order bounded map gives that for all A ∈ Σ, y ∈ Y and

z′ ∈ Z ′

|〈mSB,y
, z′〉|(A) = sup

π∈P(A)

∑
C∈π

∣∣〈mSB,y
, z′〉(C)

∣∣ = sup
π∈P(A)

∑
C∈π

∣∣〈B(χC , y), z′〉
∣∣

≤ sup
π∈P(A)

∑
C∈π
〈|B(χC , y)|, |z′|〉 ≤ sup

π∈P(A)

∑
C∈π
〈B(χC , |y|), |z′|〉

= 〈B(χA, |y|), |z′|〉 = 〈mSB,|y| , |z
′|〉(A).

Therefore

‖f‖Ew(mSB
) = sup

y∈BY

‖f‖mSB,y
= sup
y∈BY

sup
z′∈BZ′

∫
Ω

|f |d|〈mSB,y
, z′〉|

≤ sup
y∈BY

sup
z′∈BZ′

∫
Ω

|f |d〈mSB,|y| , |z
′|〉 = sup

y∈BY

sup
z′∈BZ′

A(|y|, |z′|)

≤ ‖A‖ <∞.

�

Next, by simple calculations we obtain that, if φ is a simple function,

(4.5) |||φ|||mSB
= sup
y∈BY

|||φ|||mSB,y
.

Lemma 4.6. For each A ∈ Σ we have

sup
y∈BY

‖mSB,y
‖(A) ≤ ‖mSB

‖(A) ≤ 2 sup
y∈BY

‖mSB,y
‖(A).

Proof. For the first inequality just use (4.1). Indeed, for each y ∈ BY

‖mSB,y
‖(A) = sup

z′∈BZ′

sup
π∈P(A)

∑
C∈π
|〈mSB,y

(C), z′〉|

= sup
z′∈BZ′

sup
π∈P(A)

∑
C∈π
|〈mSB

(C), Hy,z′〉|

≤ ‖mSB
‖(A).
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To establish the other inequality we use (2.2) and (4.5) to find that

‖mSB
‖(A) = ‖χA‖mSB

≤ 2|||χA|||mSB
= 2 sup

y∈BY

|||χA|||mSB,y
≤ 2 sup

y∈BY

‖χA‖mSB,y
.

�

Theorem 4.7. Let B be a right order bounded map. The function ‖ · ‖Ew(mSB
) is

a norm on the vector space Ew(mSB
). With this norm Ew(mSB

) is a mSB
-B.f.s.

with the Fatou property.

Proof. Since the remaining properties are clear, in order to see that the function

‖ · ‖Ew(mSB
) defines a norm (with respect to ‖mSB

‖-a.e. equality), we will only

prove that ‖f‖Ew(mSB
) = 0 if and only if f = 0, ‖mSB

‖-a.e. If f = 0, ‖mSB
‖–a.e.,

then by using Lemma 4.6 we have that ‖f‖Ew(mSB
) = 0. For the reverse implication

take f ∈ Ew(mSB
) with ‖f‖Ew(mSB

) = 0 and let A = {w ∈ Ω : f(w) 6= 0}. Then

A ∈ Σ and mSB,y
(A) = 0, for each y ∈ BY . By Lemma 4.6 this implies that

mB(A) = 0. Hence |f | = 0, ‖mSB
‖-a.e..

Since normed function spaces with the Fatou property are always complete, we

only need to establish that Ew(mSB
) has this property. Take (fn)n ⊆ Ew(mSB

)

and 0 6= f ∈ L0(Σ) such that 0 ≤ fn ↑ |f | and ‖fn‖Ew(mSB
) ≤ k for all n ∈ N. We

have to see that f ∈ Ew(mSB
) and ‖fn‖Ew(mSB

) ↑ ‖f‖Ew(mSB
). Fix y ∈ BY . Since

L1
w(mSB,y

) has the Fatou property and ‖fn‖Ew(mSB
) = supy∈BY

‖fn‖mSB,y
≤ k,

then f ∈ L1
w(mSB,y

). Take now 0 < r < ‖f‖Ew(mSB
). Hence there is y0 ∈ BY

such that r < ‖f‖mSB,y0
≤ ‖f‖Ew(mSB

). Since ‖fn‖mSB,y0
↑ ‖f‖mSB,y0

we can find

N ∈ N such that r < ‖fN‖mSB,y0
. Therefore

‖fN‖Ew(mSB
) = sup

y∈BY

‖fN‖mSB,y
≥ ‖fN‖mSB,y0

> r.

It follows that ‖fn‖Ew(mSB
) ↑ ‖f‖Ew(mSB

). �

Corollary 4.8. Let B be a right order bounded map. The equality Ew(mSB
) =

L1
w(mSB

) holds, and

(4.6) ‖f‖Ew(mSB
) ≤ ‖f‖mSB

≤ 2‖f‖Ew(mSB
), f ∈ Ew(mSB

).

Proof. By (4.2) it remains to prove that every function f ∈ Ew(mSB
) belongs to

L1
w(mSB

) and to establish the inequality that appears on the right hand side of

(4.6). Hence take f ∈ Ew(mSB
) and apply Theorem 4.7 to obtain a sequence (φn)n

of simple functions such that 0 ≤ φn ↑ |f | and ‖φn‖Ew(mSB
) ↑ ‖f‖Ew(mSB

). Using

now (2.2) and (4.5) we obtain

‖φn‖mSB
≤ 2|||φn|||mSB

= 2 sup
y∈BY

|||φn|||mSB,y
≤ 2 sup

y∈BY

‖φn‖mSB,y
(4.7)

= 2‖φn‖Ew(mSB
) ≤ 2‖f‖Ew(mSB

).

Since L1
w(mSB

) has the Fatou property, then f ∈ L1
w(mSB

) and ‖φn‖mSB
↑ ‖f‖mSB

.

It follows now from (4.7) that ‖f‖mSB
≤ 2‖f‖Ew(mSB

). �
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Although the description of L1(mSB
) is given by Ew(mSB

) for the frequent cases

when L1(mSB
) = L1

w(mSB
) —for instance, when Z is a reflexive space, see Propo-

sition 3.38 in [12]—, it seems natural to consider now the space

E(mSB
) = {f ∈ L0(Σ) : f ∈ L1(mSB,y,), for all y ∈ Y } ⊆ Ew(mSB

),

and try to relate it with L1(mSB
). We start by proving the completeness of this

space endowed with the norm ‖ · ‖Ew(mSB
).

Proposition 4.9. Let B be a right order bounded map. Then (E(mSB
), ‖·‖Ew(mSB

))

is an mSB
-Banach function space.

Proof. We only have to prove the completeness. Therefore take (fn)n, a Cauchy

sequence in E(mSB
). Then, by Corollary 4.8 (fn)n is also a Cauchy sequence in

L1
w(mSB

). The completeness of this space allow us to find a function f ∈ L1
w(mSB

)

such that (fn)n converges to f in L1
w(mSB

). Let us show that f ∈ E(mSB
). Indeed,

fix y ∈ Y . By the definition of the norm ‖ · ‖Ew(mSB
) the sequence (fn)n converges

to f in L1
w(mSB,y

). But since (fn)n ⊆ L1(mSB,y
) and L1(mSB,y

) is closed in

L1
w(mSB,y

) then f ∈ L1(mSB,y
). Therefore f ∈ E(mSB

). �

Let us discuss now the equality E(mSB
) = L1(mSB

). First of all note that for

each y ∈ BY , since L1(mSB
) is a Banach function space that contains (continuously)

X(µ), then the optimality of the factorization

X(µ)
SB,y //

[i] %%

Z

L1(mSB,y
)

ImSB,y

;; ,

gives that [i](L1(mSB
)) ⊆ L1(mSB,y

) —where [i] is the inclusion/quotient map that

was explained in the Introduction, see [2, 11]— for all y ∈ BY . Therefore, always

under the assumption that B is a right order bounded map, taking into account that

E(mSB
) is an mSB

-B.f.s. and so the equivalence classes of functions in L1(mSB
)

and E(mSB
) coincide, we obtain

(4.8) L1(mSB
) ⊆ E(mSB

).

The following simple characterization will be used to give an example where

L1(mSB
) ( E(mSB

).

Proposition 4.10. Let B be a right order bounded map. The following assertions

are equivalent.

(a) E(mSB
) = L1(mSB

),

(b) E(mSB
) is order continuous.
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Proof. Clearly (a) implies (b). For the converse take f ∈ E(mSB
), f ≥ 0,mSB

-a.e.

and choose a sequence of simple function (φn)n such that 0 ≤ φn ↑ f . Since we

are assuming E(mSB
) is order continuous, it follows that φn → f in E(mSB

). By

Corollary 4.8, this implies that (φn)n is a Cauchy sequence in L1(mSB
). Hence, we

have that φn → g in L1(mSB
), for some g ∈ L1(mSB

). It follows that f = g,mSB
-

a.e., and thus f ∈ L1(mSB
). This implies that E(mSB

) ⊆ L1(mSB
). �

Example 4.11. Let 1 ≤ p < ∞ and consider the positive (and in particular right

order bounded) bilinear map

B : `1 × `p → `p, B(x, y) = xy.

Fix y ∈ `p. Hence, mSB,y
(A) = yχA, for each A ⊆ N. Then it is well-known

(cf. [12, Corollary 3.66]) that

L1(mSB,y
) = {x : xy ∈ `p}.

Moreover, ‖x‖mSB,y
= ‖xy‖`p , for all x ∈ L1(mSB,y

).

On the other hand since M(`p, `p) = `∞ (cf. [12, Lemma 2.80]), one has

E(mSB
) = {x : xy ∈ `p, for all y ∈ `p} = M(`p, `p) = `∞.

Moreover

‖x‖Ew(mSB
) = sup

y∈B`p

‖x‖mSB,y
= sup
y∈B`p

‖xy‖`p = ‖x‖`∞ .

Since E(mSB
) = `∞ is not order continuous, then Proposition 4.10 together with

(4.8) gives that L1(mSB
) ( E(mSB

).

However, there are many cases where the equality E(mSB
) = L1(mSB

) holds, as

our next example shows.

Example 4.12. Let us consider a right order bounded map B : X(µ) × Y → Z,

where 0 < dim Y <∞. We will show that E(mSB
) = L1(mSB

).

Take a basis of Y , {y1, . . . , yn}. Given y ∈ BY then y =
∑n
j=1 ajyj. Clearly

mSB,y
=
∑n
j=1mSB,yj

and |〈mSB,y
, z′〉| ≤

∑n
j=1 |aj | · |〈mSB,yj

, z′〉| for all z′ ∈ BZ′ .

Therefore

(4.9) sup
y∈BY

‖f‖mSB,y
≤M · max

1≤j≤n
‖f‖mSB,yj

,

where M = n ·max{|aj | : 1 ≤ j ≤ n} <∞. Consider now f ∈ E(mSB
). Hence there

is a sequence 0 ≤ (fn)n ⊆ L0(Σ) such that 0 ≤ fn ↑ |f |. Since f ∈ L1(mSB,yj
) for

all 1 ≤ j ≤ n and L1(mSB,yj
) is order continuous then fn → |f | in L1(mSB,yj

) for

each 1 ≤ j ≤ n. By using (4.9) we conclude that fn → |f | in E(mSB
) and therefore

E(mSB
) is order continuous. So Proposition 4.10 gives the equality E(mSB

) =

L1(mSB
).
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5. Applications: Optimal factorizations for operators between

Banach function spaces

In this last section we apply the results presented in the previous ones to the

particular case of finding —if possible— the optimal factorization for an operator

between Banach function spaces. Let T : X(µ) → Y (µ) be an operator from an

order continuous space X(µ) to a space Y (µ). In the Introduction we explained

that in case T is µ-determined, factorization through the space L1(mT ) provides the

optimal extension, i.e. the extension of T to the biggest order continuous Banach

function space. In [11], the same kind of arguments have been used to obtain what

is called a factorization with an optimal range, i.e. finding a factorization for the

operator as

X(µ)
T //

T0 ""

Y (ν) ,

Z

i

<<

where Z is the smallest B.f.s. in a certain class and i is an inclusion map.

In this setting, our results can give the conditions under which it is possible

to find what we call an optimal factorization for such an operator, i.e. to find a

factorization diagram as

X(µ)
T //

i

��

Y (ν)

X0

T0 // Y0

i

OO

that extends in the left hand side to the biggest space in a class of B.f.s. and

restricts the range to the smallest B.f.s. in other class of spaces.

Assume that X(µ) and (Y (µ))′ are order continuous. Consider an operator

T : X(µ) → Y (µ) and define the bilinear map BT : X(µ) × (Y (µ))′ → R by

BT (f, y′) = 〈T (f), y′〉, f ∈ X(µ), y′ ∈ (Y (µ))′. Take also the vector measures

mT (A) = T (χA) ∈ Y (µ) and mT ′(C) = T ′(χC) ∈ (X(µ))′, being T ′ the adjoint

map of T . The construction in Section 3 provides two factorizations for BT through

L1(m1)×L1(m̃2) and L1(m̃1)×L1(m2), respectively. For the first one, in our case

it can be easily seen that m1 : Σ → L((Y (µ))′,R) = (Y (µ))′′ is given by m1(A) =

mT (A) = T (χA) ∈ Y (µ) ⊆ (Y (µ))′′, and m̃2(C) := (ImT
)′(χC) ∈ (L1(mT ))′.

This provides, under the adequate separation assumption for the vector mea-

sures, the following factorization for T ′.

(Y (µ))′
T ′

//

i

��

(X(µ))′

L1(m̃2)
Im̃2 // (L1(mT ))′

i′

OO
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For the second factorization of the bilinear form, notice thatm2 : Σ→ L(X(µ),R) =

(X(µ))′ is given by m2(C) := T ′(χC), and m̃1 : Σ → L(L1(mT ′),R) = (L1(mT ′))′

is defined by m̃1(A) := (ImT ′ )
′(χA). This gives the diagram

X(µ)
T //

i

��

(Y (µ))′′

L1(m̃1)
Im̃1 // (L1(mT ′))′

i′

OO

Notice that for each couple of measurable sets A and C,

〈m1(A), χC〉 = 〈T (χA), χC〉 = 〈χA, T ′(χC)〉 = 〈χA, (ImT
)′(χC)〉 = 〈χA, m̃2(C)〉

and also

〈m̃1(A), χC〉 = 〈χA, T ′(χC)〉 = 〈T (χA), χC〉 = 〈χA,m2(C)〉,

where the duality is computed in the corresponding spaces. These equalities give

in fact a rule for computing m̃1 and m̃2, which together with the factorizations

given above provides two canonical factorization schemes for T . Notice also that,

after Theorem 3.4, the equivalent conditions given by the possibility of extending

BT to L1(mT ) × L1(mT ′), the coincidence of the spaces L1(m1) = L1(m̃1) and

L1(m2) = L1(m̃2), and the coincidence of B12 and B21, implies the factorization of

T as

X(µ)
T //

i

��

(Y (µ))′′

L1(mT )
Im̃1 // (L1(mT ′))′

i′

OO

that holds when T is an isomorphism.
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Valencia, Camino de Vera s/n, 46022 Valencia, Spain

E-mail address: easancpe@mat.upv.es


