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Abstract Cloud infrastructures are becoming an appropriate solution to address
the computational needs of scientific applications. However, the use of public or on-
premises Infrastructure as a Service (IaaS) clouds requires users to have non-trivial
system administration skills. Resource provisioning systems provide facilities to
choose the most suitable Virtual Machine Images (VMI) and basic configuration
of multiple instances and subnetworks. Other tasks such as the configuration of
cluster services, computational frameworks or specific applications are not trivial
on the cloud, and normally users have to manually select the VMI that best fits,
including undesired additional services and software packages. This paper presents
a set of components that ease the access and the usability of IaaS clouds by au-
tomating the VMI selection, deployment, configuration, software installation, mon-
itoring and update of Virtual Appliances. It supports APIs from a large number
of virtual platforms, making user applications cloud-agnostic. In addition it inte-
grates a contextualization system to enable the installation and configuration of
all the user required applications providing the user with a fully functional infras-
tructure. Therefore, golden VMIs and configuration recipes can be easily reused
across different deployments. Moreover, the contextualization agent included in
the framework supports horizontal (increase/decrease the number of resources)
and vertical (increase/decrease resources within a running Virtual Machine) by
properly reconfiguring the software installed, considering the configuration of the
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multiple resources running. This paves the way for automatic virtual infrastructure
deployment, customization and elastic modification at runtime for IaaS clouds.

Keywords Cloud Computing · Virtual Infrastructures · Contextualization

1 Introduction

With the advent of virtualization technologies and cloud infrastructures, scientists
are exploring the usage of computational clouds for their research. Cloud comput-
ing technologies can offer: “ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources” [28]. Many scientific infrastruc-
ture providers are including IaaS as an added value [16] and [5] analyzes the use
cases that scientific cloud infrastructures should cover. One of the most important
features of cloud technologies and virtualization is that the software requirements
are defined by the user rather than by the infrastructure provider. Moreover, to
some extent, users can also define part of the hardware requirements. This is an
important point to ease the migration of scientific applications into the cloud.
However, the user is still required to prepare, deploy, configure and run the virtual
appliances and the applications inside, requiring in some cases non trivial sys-
tem administration skills. Nowadays there are different cloud providers, different
software packages to deploy cloud platforms, etc. which makes even more difficult
to integrate these technologies. Users need an easy way to define dependencies
and application restrictions and delegate on a platform to automatically deploy,
configure and monitor their virtual infrastructures.

This paper presents a set of components developed to simplify the automatic
deployment and configuration of virtual infrastructures. The platform developed
considers all the aspects related to the creation and management of virtual in-
frastructures: i) The software and hardware requirements specification for the
user applications, using a simple language defined to be easy to understand by
non-advanced users who just want to deploy a basic virtual infrastructure, but
with enough expressivity for advanced users to set all the configuration param-
eters needed to get the infrastructure fully configured. ii) The selection of the
most suitable Virtual Machine Images (VMI) based on the user expressed require-
ments. iii) The provision of Virtual Machines on the cloud providers available to
the user, including both public IaaS Clouds (Amazon Web Services, Windows
Azure IaaS, etc.) and on-premise resource provisioning systems (OpenNebula,
OpenStack, etc.). iv) The contextualization of the infrastructure at run-time by
installing and configuring all the required software that may not be available in
the golden images (VMIs) used and, finally, v) the elasticity management, both
horizontal (adding/removing nodes) and vertical (growing/shrinking the capacity
of nodes). Considering the highly dynamic Cloud landscape, the platform should
be extensible to future back-ends or standards.

In a previous work [1] an early prototype of the platform along with initial tests
cases was presented. This paper describes an evolution of the platform featuring the
following contributions: the contextualization phase, improving the functionality
by enabling the deployment of a fully functional configured infrastructure, and the
elasticity management. The automatic configuration and elasticity management at
runtime are key issues in Cloud infrastructures and represent a major step forward
with respect to our early prototype.
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The remainder of the paper is structured as follows. First, section 2 analyzes
the current tools for virtual infrastructure deployment. Then, section 3 describes
the software architecture of the Infrastructure Manager along with the underlying
components used. Then, section 4 describes a case study to test the suitability of
this platform for the deployment of virtual clusters. Finally, section 5 summarises
the paper and points to future work.

2 State of the art

There exist works in the literature and software tools that address the deployment
of virtual infrastructures. In the next paragraphs different approaches are analyzed,
detailing the achievement of the objectives described in the introduction. Finally
Table 1 shows a comparison of the features of all the analyzed works.

Several cloud providers, such as Amazon Web Services (AWS), provide tools
to deploy virtual infrastructures. In particular, CloudFormation [3] provides de-
velopers and systems administrators with an easy way to create and manage a
collection of related AWS resources, provisioning and updating them in an orderly
and predictable fashion. It provides tools to launch a set of VMs in a coordinated
fashion, and can also configure a set of Amazon services (Elastic Load Balancer,
Auto Scaling, etc.). AWS CloudFormation introduces two concepts: Template, a
JSON text-based file that describes all the AWS resources you need to deploy and
run your application; and Stack, the set of AWS resources that are created and
managed as a single unit when a template is instantiated by AWS CloudForma-
tion. The user must select the image of the VM from the Amazon Machine Image
(AMI) catalog. This catalog only provides very basic information about the AMIs
(architecture, O.S. and a free text field with a description), so the user must pre-
viously know the configuration and software installed in the image to use. This
is an important problem that hinders reusing existing VMIs. Other limitation of
this tool is that it can only be used in the Amazon EC2 infrastructure.

The Nimbus project team group has developed a Context Broker [21]. This con-
text broker enables the contextualization of VMs to create the so-called “One-Click
Virtual Clusters”. A created set of VMs are configured according to some roles in-
side the cluster distribution. The VMs are launched using the Nimbus commands,
so it can only be used in Nimbus-based cloud providers, or Amazon EC2 using the
“IaaS Gateway” component. It also requires that the user chooses the required
VMI. In addition, the contextualization has some limitations, such as the use of
simple scripts that must be stored in the VMIs, so the images must be specially
customized for each application. Furthermore, the tool does not offer recontextu-
alization of the infrastructure if new nodes are added, thus hindering the elasticity
management. The same research group has developed other system [22, 26] that
enables extending a “real” cluster elastically adding new resources over a cloud
infrastructure (with cloud bursting techniques). In this case, to avoid the recon-
figuration limitations of the Context Broker they use a combination of Chef [19]
and a new developed component called Recontextualization Broker to perform the
initial configuration and later reconfiguration of the cluster when new nodes are
added or removed. This new component solves some of the problems of the previous
software but it cannot be used as a general solution since it focuses on the deploy-
ment of HPC clusters and cannot deploy other virtual infrastructures. In a further
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work, the same group has developed another tool called cloudinit.d [6] designed to
launch, control and monitor cloud applications. It automates the VM creation pro-
cess, the contextualization and the coordination of service deployment. It supports
multiple clouds and the synchronization of different “runlevels” to launch services
in a defined order. Furthermore it provides a system to monitor the services that
uses user-created scripts to ensure that they are running. This system checks for
service errors, re-launching failed services or launching new VMs. However, the
static selection of VMIs is still required. It enables the contextualization of VMs
using simple scripts, which are insufficient in scenarios with multiple VMs with
different Operating Systems.

Claudia [30, 37, 38] enables the deployment of a set of VMs in IaaS environ-
ments, using an extension of the Open Virtualization Format (OVF) [14] called
Service Description File (SDF). Static selection of VMIs are used in the deployment
stage, and no contextualization is made, so it is based in the software previously
installed in the VMIs. The SDF language includes an elasticity section adding rules
to manage the evolution of the size of the cluster using the defined “Key Perfor-
mance Indicators” (KPI). It has a modular design with a plug-in system which can
be used to add new deployment types. It currently supports only OpenNebula.

Apache Whirr [4] supports deploying clusters both on EC2 and Rackspace. The
user specifies the number of instances needed and the roles they must provide. It
has the same problem of the static selection of VMIs. It has been initially designed
to launch hadoop clusters, but it can be extended adding new Java classes to
implement the installation and contextualization of the new roles defined. It does
not enable elasticity management, so once the cluster is launched its size cannot
be modified by the user.

Wrangler [20] has a specific orientation to launch VMs in a general way. It
enables the users to define their requirements using an XML file. In this file the
user can also specify the scripts to be used to configure the VMs to adopt a
specific role within the virtual infrastructure. In this case the scripts are stored in
the wrangler coordinator node, so it does not need to be previously copied in the
VMIs. But the VMIs indeed require a prior step to prepare them by installing the
wrangler agent and configuring it to connect to the coordinator node.

SixSq SlipStream1 provides a web portal to deploy and configure a set of VMs.
The configuration of the nodes are made by means of a list of packages to install
and a script file that can be executed in each VM. Each script is completed with
a set of parameter values as “hostname” or “instanceid” to enable to create more
functional and customized scripts. It enables to access a large list of Cloud plat-
forms, both public and on-premise: EC2, Azure, OpenNebula, OpenStack, OCCI,
etc. The main limitation is the static selection of VMIs. In addition, it does not
enable elasticity management and, therefore, once the infrastructure is deployed
its size cannot be modified by the user.

Vagrant [18] was initially designed to launch VMs over the VirtualBox virtu-
alization platform but it has a modular design that enables new providers to be
added. Currently it has support to VirtualBox, VMware Fusion and EC2. It en-
ables the management of a set of VMs using the “multi-machine” environments. It
also supports the usage of provisioning tools such as shell scripts, Chef, or Puppet
to automatically install and configure software on the machines. As in the previous

1 https://slipstream.sixsq.com
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Table 1 Virtual Infrastructure deployment tools comparison.

Wrangler Whirr Claudia Cloudinit.d SlipStream Recont. Cloud Vagrant TOSCA
Broker Formation

Systems support EC2, EC2 OpenNebula EC2, EC2, EC2, EC2 VirtualBox, -
Eucalyptus, Nimbus OpenStack, Nimbus VMWare,
OpenNebula OpenNebula EC2

Azure, ... EC2

VMs Context. Yes Yes No Yes Yes Yes No Yes Yes

High level
Context. Lang.

No No - No No Yes - Yes No

VM pre-config. Yes Yes Yes Yes No No No Yes No

Simple deploy lang. Yes Yes No Yes Yes Yes Yes Yes No

Extensible Yes Yes Yes No No No No Yes Yes

Catalog of VMIs No No No No No No No No -

Elasticity Mgmt Yes No Yes No No Yes Yes1 Yes Yes

case to use any of these tools they must be installed previously in the VMIs to use.
It provides the “box” concept to encapsulate the VMIs for each provider. A “box”
is a tar file where all the files needed to encapsulate a VMI in the Vagrant envi-
ronment. In the case of VirtualBox and VMware this box file contains the image
itself. In the case of EC2, it contains a reference to the AMI. However, Vagrant
is designed to work in a single machine and, therefore, it does not support the
deployment of large virtual infrastructures.

Currently the are also some initiatives from standardization organizations, such
as OASIS with the Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) [31] to describe service templates across *aaS layers and connecting
them to the resource abstraction layer. It enables the description of a service with
a high level topology and plan for implementation and configuration. A service
specified with TOSCA typically describes virtual hardware, software, configura-
tion, and policies necessary to orchestrate the service. Currently it provides no
implementation, but some cloud software packages as OpenStack is studying the
possibility of the integration of TOSCA with their software stack. Although this
specification considers the contextualization of the VMs it does it using executable
files, and not using some high level contextualization language.

One common limitation in all the analyzed systems is the usage of manually
selected base images to launch the VMs. It is an important limitation because it
implies that users must create their own images or they must previously know
the details about software and configuration of the image selected. This limitation
affects the reutilization of the previously created VMIs, forcing the user to waste
time testing the existing images or creating new ones (as an example in Amazon
EC2 there are thousands of AMIs). Another issue is that most of them need
to use a VMI specifically prepared for their tools, requiring a specific software
installed, a set of scripts prepared, etc. Another important limitation is the usage
of simple scripts in the contextualization, instead of higher level languages such
as Puppet [35], Chef [33], Ansible [13], etc. which enable the creation of system
independent configurations. Only the Nimbus “Recontextualization Broker” uses
Chef to perform these tasks. This problem is exacerbated in some tools where the
configuration scripts must also be stored in the base image of the VM.

1 Using the Auto Scaling service from Amazon.
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3 Architecture

In order to support all the functionality issues addressed in Table 1, an architecture
has been developed, which is depicted in Figure 1. The different components are
described.

The first component of the architecture is the language describing the require-
ments of the virtual infrastructure, called the Resource and Application Descrip-
tion Language (RADL). This language has been designed to be simple for non-
advanced users, who can deploy infrastructures by specifying very basic informa-
tion. Additionally, savvy users can access more advanced functionality. The Vir-
tual Machine Image Repository & Catalog (VMRC) enables indexing and storing
the VMIs including all the relevant information about them, including the soft-
ware applications installed. The Infrastructure Manager (IM) implements a service
that provides APIs, using standard connection methods (XML-RCP, and REST),
with a relatively simple set of functions to provide the functionality required in
the management of VMs. It is also in charge of orchestrating the deployment of
virtual infrastructures using the rest of components. The last component is the
contextualization system, which installs and configures all the software not yet
available in the VMIs from the VMRC and described in the RADL. It also deals
with the reconfiguration in the case of adding or removing nodes. This system uses
Ansible [13] integrated with a set of developed tools to build up the contextualiza-
tion system. Finally, client tools (command line and web application) have been
developed to ease the access to the functionality of this platform for the user.

Infrastructure Manager

Cloud
Selector

VMRC

Cloud Connector

Conf.
Manager

Conf & CTX Files

XMLRPC API REST API

Web Interface CLI Interface

VM

VM

VM

...

RADL

Master VM

Cntxt.
Agent

Ansible

Fig. 1 Infrastructure Manager Architecture
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The following subsections describe the aforementioned components.

3.1 Resource and Application description Language (RADL)

The main purpose of the Resource and Application description Language (RADL)
is to specify the requirements of the resources where the scientific applications
will be executed. It must address not only hardware (CPU number, CPU architec-
ture, RAM size, etc.) but also software requirements (applications, libraries, data
base systems, etc.). It should include all the configuration details needed to get
a fully functional and configured VM (a Virtual Appliance or VA). It merges the
definitions of specifications, such as OVF, but using a declarative scheme, with
contextualization languages such as Ansible. It also allows describing the under-
lying network capabilities required.

The initial scheme of the RADL language is described in [1], where a minimal
example is shown in Figure 2. This section presents a brief description of the
RADL scheme focusing on the new contributions. A typical RADL file includes
the following sections:

– Environment features. This includes devices, services, etc. not provided by
the VMs, but requiring some interaction from the VMs. Some examples are
networks, Windows Active Directory Service, Storage Area Networks, etc. Cur-
rently only networks are implemented and they are assumed to be Local Area
Networks (LAN) that the VMs can use to connect to the other VMs and to
other external networks. This part is defined with the reserved word “network”.

– Type of nodes definition: The reserved word “system” is used to specify the
section to describe all the features (hardware and software) of one type or role
of nodes in the infrastructure. A role describes a group of nodes that have the
same features.

– Deploy instructions: A set of deploy instructions to specify the number of
instances of the defined “system” types to effectively launch. Two additional
parameters can by specified (not shown in the example): The first one enables
specifying the cloud platform on which to deploy the VMs. The valued specified
must be one of the IDs defined in the authorization data (see section 3.3.1).
The second one enables specifying a deployment priority. The instances with
a higher number will be deployed later to the nodes with a lower number, to
create an ordered deployment. It enables, for example the deployment of a
database server before deploying an application server that needs to have the
connection to the database active to start functioning.

– Configuration section: The reserved word “configure” is used to specify the
section where the user can specify (using Ansible’s language) the necessary
recipes to configure the VMs. Each “configure” section is defined with a name
and can include as many configure sections as needed. In addition, one configure
section can “include” another, enabling to reuse existing configure sections.
Finally, for each instance of type defined in the “system” section, only the
instructions of the corresponding configuration section will be applied. These
features will be clarified in the examples.

These last two features described (ordered deployment and configuration sec-
tion) have been added in the new release of the RADL language.
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system nodeS (
memory.size>=1024M and
disk.0.applications contains (name=’tomcat’)

)

deploy nodeS 2

Fig. 2 Example of a simple RADL file

network red (outbound = yes)

system nodeB (
system=’kvm’ and
cpu.count>=1 and cpu.arch=’i686’ and
memory.size>=1024M and
net_interface.0.connection=’red’ and
net_interface.0.dns_name=’node-#N#’ and
disk.0.os.name=’linux’ and
disk.0.os.flavour=’ubuntu’ and
disk.0.os.version>=’9.10’ and
disk.0.applications contains (name=’tomcat’)
)

configure common (
@begin
---

- tasks:
- user: name=user1 password=a7ae2ax1k0a

@end
)

configure nodeB (
@begin
---

- tasks:
- include: common.yml
- yum: pkg=${item} state=installed

with_items:
- torque-client
- torque-server

@end
)

deploy nodeB 10

Fig. 3 Example of a extended RADL file

The RADL sample in Figure 2 shows how a non-advanced user can define a
virtual infrastructure only by specifying the application relevant data. In particular
the example requires two VMs with at least 1GB of RAM with the Apache Tomcat
application server installed. The rest of parameters required to finally deploy the
VM are generated by the platform, using default values (i.e. one 32-bit CPU, one
network connection with outbound connectivity, etc.).

Figure 3 shows another example of a complete RADL document that includes
most of the advanced features of the RADL language. In the top of the example the
basic VM characteristics are shown: An x86 32-bit CPU with 1 GB of RAM and
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an outbound network connection, Ubuntu 9.10 (or higher) as the OS and Apache
Tomcat installed. The “dns name” field has been added to the network interfaces
enabling the user to specify the DNS name to the interface. The name used in the
interface with the id “0” will be used as the name of the host. It is important to
notice that all the DNS names will only be visible for the nodes included in the
infrastructure. This field must be carefully used in case of deploying a set of VMs
using the same “system” definition, because all the VMs will have the same DNS
name. The substitution string “#N#” has been added to deal with this issue. This
string will be replaced with the number of the instance inside the infrastructure.
For example if a DNS name like “node-#N#” is used, the name of the VMs will
be node-0, node-1, etc.

The initial version of the language [1] had limited functionality because it did
not include support to define the tasks that can be automated to configure a virtual
infrastructure. The new “configure” section uses Ansible’s language to specify all
the configuration details. In the example two “configure” sections appear: common
and nodeB. The former does not match with any “system” defined, so it will not
be applied, but it will be available to be used by the nodes using the Ansible
“include” statement. The latter will be applied to all the VMs of the “nodeB”
type. As this one includes the “common configure”, all the nodeB VMs will create
a user named “user1” and then install the torque client and server packages, as is
defined in the configure section.

The Infrastructure Manager (IM) creates a set of variables to enable some
information of the RADL language to be accessible from Ansible. These variables
are very useful to perform some configuration tasks, as using IM MASTER FQDN
to set the name of the front-end node in the configuration process of any client-
server system, identifying the current node ID or HOSTNAME to download the
correct files to a specific VM, etc.

– IM NODE HOSTNAME: Hostname of the node being processed (without the
domain).

– IM NODE FQDN: Complete FQDN of the node being processed.
– IM NODE DOMAIN: Domain of the node being processed.
– IM NODE NUM: Number of the instance of the node being processed.
– IM MASTER HOSTNAME: Hostname of the master node (without the do-

main).
– IM MASTER FQDN: Complete FQDN of the master node.
– IM MASTER DOMAIN: Domain of the master node.

For each of the applications pre-installed, and added as metadata in the VMRC,
in the VMI used, the IM also provides the following variables:

– IM [application name] VERSION: Version of the application [application name].
– IM [application name] PATH: Install path of the application [application name].

3.2 Virtual Machine image Repository and Catalog (VMRC)

The VMRC (Virtual Machine image Repository and Catalog) [11] is used to find a
suitable Virtual Machine Image (VMI) that satisfies the requirements of the user
(in terms of Operating System, CPU architecture, applications installed, etc.), and
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it is compatible with the hypervisor available in the Cloud system. This compo-
nent is used to index the VMIs that are typically stored in the different Cloud
deployments, so that they can be reused in multiple contexts. It also implements
matchmaking algorithms to obtain a ranked list of VMIs that satisfy the aforemen-
tioned given set of requirements. Depending on the scenario, the VMI descriptions
can be created only by the administrator of the VMRC, with curated and tested
images, or by a set of users responsible for creating and maintaining the virtual
machines required for specific virtual organizations, or sites.

An URI naming convention has been defined to enable the registration of VMIs
in the VMRC when the VMIs are stored in the cloud providers. This URIs enable
the IM to know their location and how to access them. The protocol field of the
URI is used to specify the cloud provider type: one (OpenNebula), ec2 (Amazon
EC2) and ost (OpenStack). In the case of OpenNebula and OpenStack, the address
and port fields have their default function and the path is used to specify the ID
of the images, an integer number for OpenNebula and a string for OpenStack. In
the case of EC2, the address field is used to specify the region where the image is
stored and the path to store the name of the AMI.

– one://server:port/image-id
– ost://server:port/ami-id
– ec2://region/ami-id

3.3 Infrastructure Manager - IM

The main goal of the Infrastructure Manager is to provide a set of functions for the
effective deployment of all the required virtual infrastructures needed to launch an
application in a cloud environment and then managing them on demand during
all the execution time.

The IM provides two sets of APIs to enable high-level components to access
the functionality. The first APIs uses the XML-RCP protocol, that can be called
the “native” API. Second, a REST API has been implemented, given its increasing
popularity. There are also secured versions of both APIs using Secure Sockets Layer
(SSL) to encrypt the communications. These APIs provide a set of simple functions
for clients to create, destroy, and get information about the infrastructures. The
RADL language is used both to create and to get the information about the
infrastructures. The IM also provides functions to add and remove resources and
modify the features of the existing ones, both hardware and software at run-time.

Figure 1 shows the architecture of the Infrastructure Manager. On the top, the
client interfaces currently available for users are depicted. The IM in the center
of the figure provides the upper layers with the functionality through the APIs
provided. The IM uses the “Cloud Selector” component to query the VMRC service
for the list of VMIs that best fit the user requirements (expressed in the RADL
document) and merge this information with the list of available cloud providers for
the user, in order to get the best option. The “Cloud Connector” layer is used to
provision the VMs in the cloud providers. It provides an homogeneous interface to
connect with the different cloud middlewares. Finally, once the VMs are deployed
and in the running state, the “Configuration Manager” is in charge of managing
the contextualization of all the VMs of the infrastructures using the Ansible tool.
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id = one; type = OpenNebula; host = server:2633; username = user; password = pass
id = one2; type = OpenNebula; host = server2:2633; username = user2; password = pass2
id = libvirt; type = LibVirt; host = server; username = user; password = pass
type = InfrastructureManager; username = user; password = pass
type = VMRC; username = user; password = pass
id = ec2; type = EC2; user = id; password = key
id = ost; type = OpenStack; host = server:8773; username = id; password = key
id = occi; type = OCCI; host = server:4567; username = user; password = pass

Fig. 4 Authorization data examples

3.3.1 Authorization Data

The authorization data is used to validate access to the components in the infras-
tructure. Therefore, it must be included in all the calls to the APIs. The native
API requires including this authorization data as the last parameter in every call.
The REST API requires these data to be placed inside the “AUTHORIZATION”
HTTP header. This parameter is composed of a set of “key - value” pairs, where
the user specifies the authorization data for all the components and cloud providers
available. Figure 4 shows examples of authorization data.

The list of “key” values that must be specified for each component are:

– id: An optional field used to identify the virtual deployment. It must be unique
in the authorization data.

– type: The type of the component. It can be any of the components of the
architecture, such as the “InfrastructureManager”, “VMRC” or any of the
cloud providers currently supported by the IM: OpenNebula, EC2, OpenStack,
OCCI or LibVirt.

– username: The name of the user for the authentication. In the EC2 and Open-
Stack cases it refers to the Access Key ID value.

– password: The password for the authentication. In the EC2 and OpenStack
cases it refers to the Secret Access Key value.

– host: The address to the server in format “address:port” to specify the cloud
provider to access. In the EC2 and in the system components (IM and VMRC)
this field is not used.

Using the authentication data the “Cloud Selector” will get the list of available
cloud providers for the user. This list may be different in each system call. It
provides more flexibility to the system, thus avoiding the maintenance of a list of
fixed cloud providers.

3.3.2 Cloud Selector

The Cloud Selector (CS) is the central component of the IM. It will select the best
combination of the available VMIs and cloud providers. To perform this task, it
must contact the VMRC to select the VMIs that best fits the user’s requirements,
in terms of operating systems and software installed. Then, it will use the user
credentials to get list of available cloud providers. The CS must select the cloud
providers compatible with the VMIs obtained from the catalog. Reciprocally, it
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must select the VMIs with the appropriate format to be launched in the cloud
provider selected, to finally combine the information to get the best “cloud - VMI”
pair.

The selection of the “best” provider is not trivial. There are many factors to
consider like the number of total and available resources, performance of the VMs,
price, location, etc. Moreover, most of the cloud providers do not provide infor-
mation about the underlying infrastructure such as the total number of resources,
available resources, etc. This case is even more complicated, since the IM can ac-
cess not only cloud providers like Amazon EC2, where you know the theoretical
performance of the VMs, but also OpenNebula deployments or LibVirt virtualiza-
tion platforms, which do not provide this information. For public Cloud platform
selection there are some interesting works: STRATOS [34] facilitates the deploy-
ment of Cloud application topologies from multiple Cloud providers using cost as
the main objective, by means of multi-criteria optimization algorithms. Compati-
bleOne [41] considers not only the user specified cloud provider constraints but also
a wide range of objectives as financial, energetic, geographic or operator contrac-
tual preferences to select the best cloud provider. Other works as [8, 12,24,36,39]
describe several solutions to select the best cloud provider using SLAs or K-nearest
neighbour algorithms. Other simple solution is to select the cheapest provider, but
this cannot be applied in private or on-premise providers.

In our case, the CS will first select the most suitable VMI located in the cloud
providers specified in the authentication data. It will use the Suitability Value (SV)
returned by the VMRC [11] that considers the soft weights specified by the user in
the RADL applications requirements. This means that the VMI that best satisfies
the requirements and preferences of the user will receive a higher SV. Then it will
select the cloud provider where the image is located to launch the VM. If some
images obtain the same SV, the CS uses the order specified by the user in the
authentication data to select the image - cloud provider pair.

VM co-location dependencies that force a set of them to be launched in the
same cloud deployment (infrastructure) must also be considered. The most com-
mon one is that a set of VMs has a common private network. In this case the CS
will select the pair image - cloud provider for this group forcing that all of them
are in the same cloud provider. The usage of VPNs will be studied in the future
to remove this restriction.

3.3.3 Cloud Connector

Currently, a lot of different cloud providers are available. Most of them are using
different and non-standard connection protocols. Although the proprietary proto-
cols used by Amazon Web Services, being a pioneer and the largest IaaS provider,
are becoming “de facto” standards, it is difficult to find an open standard to
homogeneously access IaaS cloud infrastructures.

There are many works in the literature [7,23,25] regarding cloud interoperabil-
ity or federation, because only through federation and interoperability can cloud
providers take advantage of their aggregated capabilities to provide a seemingly
infinite service computing utility. But these solutions are based on the usage of
open standards.

Different initiatives have appeared in the last years to create an open standard
API to access IaaS clouds to provide this vision of federated clouds: Open Cloud
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Computing Interface (OCCI) [32] is an Open Grid Forum recommendation of a
protocol and a REST API designed to access IaaS clouds. Cloud Infrastructure
Management Interface (CIMI) [15] is a standard proposed by the Distributed Man-
agement Task Force (DMTF) to simplify the cloud infrastructures management.
TCloud API Specification [40] is a cloud API proposed by Telefonica based in
the vCloud 0.8 API published by VMware. Although OCCI is the most extended
standard with the largest number of implementations, not all the implementations
of OCCI are fully compatible, thus making the interoperability difficult.

To address these incompatibility issues, some “aggregation APIs” have ap-
peared. Apache Libcloud3 and Deltacloud4 are the most widely used. Although
these tools are very useful in some scenarios, there are some issues that complicate
their usage. For example, Libcloud does not have all the basic functionality (launch
and terminate VMs) for all of its “drivers”. Moreover, the support of OpenNeb-
ula (the main cloud software used in our private cloud) is very restricted through
the OCCI interface, and the native interface is not supported. Deltacloud has the
same problems accessing OpenNebula deployments. In addition, in order to use
the REST API, you should launch as many servers as the number of different
cloud providers, which complicates their deployment and usage.

Due to the difficulty to find an homogeneous way to access the different cloud
providers, the IM has added a new abstraction layer to enable the interoperability
with different IaaS clouds, until a real open standard is defined and used widely.
This layer has been designed with a simple API with 6 functions to provide the
basic functionality needed by the IM:

– Launch a VM: Create and run a VM following the requirements defined in the
RADL.

– Terminate a VM: Completely terminate the VM.
– Get VM information: Get the VM information in RADL format.
– Stop a VM: Stop (but not destroy) a VM.
– Resume a VM: Start a previously stopped VM.
– Modify VM: Modify the properties of a running VM, to provide vertical elas-

ticity functionality where the underlying platform supports this feature.

This layer has been designed using a plug-in scheme to ease its extension. We
currently provide plug-ins for: OpenNebula, OCCI, Amazon EC2, OpenStack and
libvirt. This set of plug-ins enables access to a large number of cloud providers
and virtualization platforms, thus enabling the user to start using a simple virtu-
alization system and then transparently migrate to the cloud.

3.3.4 Configuration Manager

The management of the contextualization process in the infrastructure is orches-
trated by the Configuration Manager (CM) component. It is in charge of managing
all the steps to perform the configuration tasks needed for a fully functional in-
frastructure, considering the user requirements and using the appropriate tools.

There are two options when it comes to perform the contextualization. The first
one is to require the VMIs to have the contextualizator (or configuration agent)

3 http://libcloud.apache.org/about.html
4 http://deltacloud.apache.org/about.html
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pre-installed. This option eases the complexity of the CM, but it complicates
the reutilization of the VMIs since they must be previously customized to the
deployment environment. Moreover, as these tools usually uses a pull scheme, using
a client-server approach, it is necessary to configure the clients with a fixed address
to connect to the server. These kind of solutions are widely extended in platforms
such as EC25 and other deployments with the same interface as OpenStack6 (using
the 169.254.169.254 IP)

The second option is to use a set of basic scripts to install and configure the
contextualizator during the infrastructure launch process. This second option is
more flexible since the VMIs do not require a proper customization beforehand,
but notice that this involves an extra step in the infrastructure deployment process.
This has been chosen for the proposed platform. One of the steps performed by the
CM is the installation and configuration of the contextualizator in the deployed
infrastructure, thus being able to interact with any VMI.

As stated in previous sections, there are many contextualization tools such as
Puppet [35], Chef [33], or Ansible [13]. The latter has been selected over other
contextualization tools since it only requires SSH-based access on the machines
being configured (thus avoiding to have pre-packaged VMIs). In addition, it uses
a “push” approach, enabling one node to have the control of the contextualization
process and precisely know when a certain configuration has been applied to a
given machine.

The CM is launched by the IM once the infrastructure has been created in
the cloud provider. Then the steps performed by the CM to contextualize the
infrastructure are the following:

1. Get the list of applications to install from the user RADL and compare them
with the list of pre-installed applications in the VMIs, obtained from the
VMRC. This will determine the list of applications to install.

2. Choose one of the VMs with public IP and wait until it is running and can be
accessed via SSH. The credentials obtained from the VMRC are used to access
the VMs. This VM is named as the “master” node and it is used to bootstrap
the configuration of the other VMs.

3. Configure the “master” VM. This process implies installing and configuring
Ansible, including copying all the necessary recipes to install the applications
selected by the user and the configuration recipes included in the RADL.

4. The CM launches a contextualization agent that is in charge of coordinating all
the contextualization tasks using the Ansible API. The fist step is to wait for
all the VMs to have the SSH access active to finally call Ansible to configure
all the VMs of the infrastructure (including the master VM itself).

3.3.5 Elasticity management

The elasticity management, as one of the key features of the cloud infrastructures,
is an important task enabling the virtual infrastructures to adapt their resources
to the dynamic requirements of the applications.

5 http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
AESDG-chapter-instancedata.html

6 http://docs.openstack.org/trunk/openstack-compute/admin/content/
metadata-service.html
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Fig. 5 Configuration Manager Steps

The IM provides functions in its API to support two models of elasticity man-
agement. On the one hand, horizontal elasticity enables adding or removing VMs
to an infrastructure. On the other hand, the vertical elasticity enables an individ-
ual VM to adapt its features to the application requirements (mainly in terms of
CPUs and RAM) [17]. The IM exposes this features to higher-layer frameworks
which provide with the needed monitoring and decision-making systems to trigger
the elasticity. As shown in the section on Use Cases 4, the EC3 layer [10] provides
IM with this functionality.

Currently the horizontal elasticity management is easier as it is supported
intrinsically in all the Virtual Machine Management (VMM) systems. The man-
agement of the vertical elasticity is more complex since it must be supported by
all the virtualization elements: the VMM the hypervisor and the operating system
of the VM. Most of the current operating systems (Windows, Linux, etc.) support
this kind of feature using “memory ballooning” techniques. In addition, most of
the hypervisors provide support (KVM, XEN, Hyper-V, VMWare, etc.). But there
are no VMM that provides native support to this kind of features. A work to ex-
tend the OpenNebula API to support vertical elasticity on top of KVM platforms
was developed by the authors as a proof of concept [29]. Furthermore it must be
considered that, in some cases, adding new resources to a VM may trigger a VM
migration to another physical node with enough resources. This process is done
with the “live migration” process to avoid interruptions in the VM functionality.

The IM provides support to both elasticity techniques to enable other soft-
ware layers that provide monitoring functions (as in [29]) to manage the elas-
ticity of the infrastructures. Although the IM does not provide monitoring func-
tions, it has been integrated with the Ganglia monitoring system [27] to show
the monitoring information of the infrastructure merged with the common infor-
mation provided by the IM in RADL format, adding new properties such as as:
“disk.free”, “cpu.usage”, “memory.free”, etc. If the deployed virtual infrastructure
has installed and configured Ganglia this information will be shown in the IM
information system. The IM provides contextualization facilities to enable the in-
stallation and configuration of Ganglia in the virtual infrastructure thus enabling
non advanced users to get the monitoring information. In that case the user must
add Ganglia as an application requirement in the RADL. In the “master” node
adding the “gmetad” application and “ganglia” in the other nodes.
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4 Use Cases

In this section two different use cases will be shown to demonstrate the function-
ality of the system as well as to show the time required for the infrastructure
deployment using different types and sizes showing the versatility and scalability
of the proposed system. Initially it will be shown a use case of the platform, from
the point of view of a user that access directly to the functionality of the IM service
to launch his virtual infrastructure. Then other services will be shown that use
the IM API to create a more complex system with enhanced functionality.

4.1 Scientific infrastructure deployment - EMI Cluster

A representative use case is the set-up of a grid node based on the EMI-27 dis-
tribution. The use case will consist of deploying and configuring an EMI-2 cluster
with Torque batch system. Grid nodes share their resources in the frame of the
EGI initiative8. The workload in EGI is unpredictable and the capability to de-
ploy and undeploy nodes of a cluster will be very effective. A virtual cluster will be
launched expressing all the requirements in a RADL document (Figure 6). Then,
the process of adding or removing nodes is analysed, measuring the time needed
for each step, to show the elasticity capabilities of the platform.

The steps described in the “configure” sections of the RADL are the standard
of the EMI software10. The user should create all the configuration files needed
to configure the EMI software: site-info.def, groups.conf, users.conf and put them
in an accessible URL. Or they can be also included in the recipe. In this case the
first solution has been selected to create a shorter RADL document.

One of the advantages of the proposed system is that it enables the addition
and removal of nodes with a simple call to the IM. It will reconfigure the whole
infrastructure to continue working properly. The IM makes the management of
clusters easier by adding or removing nodes on demand.

Three different tests has been made using two cloud providers. The first cloud
provider is an on-premise cloud with OpenNebula composed of a set of three Dell
blades (M600 and M610), each one with two Quad-Core processors and 16 GB
of RAM. The second one uses the public cloud infrastructure of Amazon EC2.
Initially a cluster with 6 nodes will be launched both in the OpenNebula and EC2
platforms. Finally a larger cluster with 32 nodes will be launched in the EC2 cloud.
It is worth mentioning that the RADL document used in the two first cases is the
same. The only change resides in the user credentials and in the last case only the
number in the “deploy” instruction was changed.

The time needed to deploy the infrastructure can be decomposed into the
following steps:

– VM Running: Time needed to have the master VM in the running state. This
time is quite short in both cases. In the OpenNebula case the base VMI selected
is relatively small thus requiring short time to transfer. In the EC2 case the
AMI uses an EBS (Elastic Block Store) volume.

7 http://www.eu-emi.eu/
8 http://www.egi.eu/

10 https://twiki.cern.ch/twiki/bin/view/EMI/GenericInstallationConfigurationEMI2
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network publica (outbound = ’yes’)

network privada

system front (

cpu.arch=’x86_64’ and

cpu.count>=1 and

memory.size>=1024m and

net_interfaces.count = 2 and

net_interface.0.connection = ’publica’ and

net_interface.0.dns_name = ’pbsserver.i3m.upv.es’ and

net_interface.1.connection = ’privada’ and

disk.0.os.name=’linux’ and

disk.0.os.flavour=’scientific’ and

disk.0.os.version=’6.3’

)

system wn (

cpu.arch=’x86_64’ and

cpu.count>=1 and

memory.size>=1024m and

net_interfaces.count = 1 and

net_interface.0.connection = ’privada’ and

net_interface.0.dns_name = ’wn-#N#’ and

disk.0.os.name=’linux’ and

disk.0.os.flavour=’scientific’ and

disk.0.os.version=’6.3’

)

configure common (

@begin

- template: src=utils/templates/hosts.conf dest=/root/wn-list.conf

- get_url: url=http://.../EGI-trustanchors.repo dest=/etc/yum.repos.d/EGI-trustanchors.repo

- command: yum -y install http://.../epel-release-6-8.noarch.rpm creates=/etc/yum.repos.d/epel.repo

- command: yum -y install http://.../emi-release-2.0.0-1.sl6.noarch.rpm creates=/etc/yum.repos.d/emi2-base.repo

- yum: pkg=${item} state=installed

with_items:

- ca-policy-egi-core

- emi-torque-client

- emi-wn

- get_url: url=$RSCF/$item dest=/root/$item

with_items:

- site-info.def

- groups.conf

- users.conf

@end

)

configure front (

@begin

- vars:

ntp_server: ntp.upv.es

RSCF: http://web.i3m.upv.es/RSCF/UMD

tasks:

- include: conf_common.yml

- include: ntp/tasks/ntp.yml

- yum: pkg=emi-torque-server state=installed

- command: /usr/sbin/create-munge-key creates=/etc/munge/munge.key

- file: path=/etc/munge/munge.key owner=munge group=munge mode=0400

- service: name=munge state=started

- command: /opt/glite/yaim/bin/yaim -c -s site-info.def -n TORQUE_client -n WN -n TORQUE_server chdir=/root

@end

)

configure wn (

@begin

- vars:

ntp_server: ntp.upv.es

RSCF: http://web.i3m.upv.es/RSCF/UMD

tasks:

- include: conf_common.yml

- include: ntp/tasks/ntp.yml

- copy: src=/etc/munge/munge.key dest=/etc/munge/munge.key owner=munge group=munge mode=0400

- service: name=munge state=started

- command: /opt/glite/yaim/bin/yaim -c -s site-info.def -n TORQUE_client -n WN chdir=/root

@end

)

deploy front 1

deploy wn 1

Fig. 6 RADL document of the Use Case. Notice that long URLs have been shortened for the
sake of clarity. Machine names have been anonymized

– VMs Accessible: Time needed to have the SSH port accessible in the master
VM. This time depends on the time used by the Operating System (OS) of the
VMs to boot and launch the SSH server.



18 Miguel Caballer et al.

Table 2 Virtual Infrastructure creation times

6 node 6 nodes 32 nodes

(ONE) (EC2) (EC2)

VM Running 0:31 1:02 0:33

VMs Accessible 2:12 0:52 0:56

Ansible Configured 2:49 3:39 3:09

System Configured 31:21 17:53 20:34

Total Creation 36:53 23:26 25:12

New VM running 0:40 0:50 1:01

Reconfiguration 25:02 12:09 12:35

Total Addition 25:42 12:59 13:36

VM Removed 0:03 0:03 0:04

Reconfiguration 2:20 2:11 2:15

– Ansible Configured: Time needed to install and configure the Ansible contex-
tualization software in the master node. This is a relatively simple process that
implies to download the software and a small list of requirements, install them
and copy all the “recipes” needed to configure the infrastructure.

– System Configured: This process implies the installation of all the needed pack-
ages to install the EMI software in all the nodes and the whole configuration
process. Since the image base selected is very lightweight a large number of
software packages must be installed (254 packages and 112 MB). This process
is made simultaneously in all the nodes, so it may cause some bottlenecks in
the network or in the disk access.

In the node addition test and the following reconfiguration of the infrastructure
the steps are the following:

– VM Running: As stated before, using a small image and EBS this time is quite
short.

– System Reconfigured: This step includes the time needed for the VM to boot
and have the SSH server active, and the configuration of the added node and
the reconfiguration of the rest of the nodes.

Table 2 shows the time needed in each individual step and Figure 7 depicts the
accumulated time needed to perform all the steps. The shown times are the aver-
age values of three tests performed in each case. In the case of EC2 the measures
obtained slightly change for the different experiments and only depend on the
network performance with the different software repositories used. In the Open-
Nebula one, as a small Cloud platform the are many factors as the number of
VMs launched, the overload on the network or the disks of the physical nodes
etc. As shown in the results the average time needed to have a small or medium
sized fully functional EMI-2 cluster is about 20 or 30 minutes and the most time
consuming step is the configuration since the EMI software has to install a large
list of packages in every node. The time needed to add a new node is slightly lower
as only one machine must be totally configured and the other nodes just need to
add the new one to the configuration. Finally, the node removal is the quickest
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Fig. 7 Virtual Infrastructure Creation Times

operation since terminating a VM can be done very quickly and it only needs to
remove the node from the configuration of the other nodes.

In this last use case, the time needed to add a node to the virtual infrastructure
is reasonably long. In this case the system uses a basic Scientific Linux image as
VMI, so the contextualization process must install a large number of packages.
This is not a limitation of the IM since this use case fits many scenarios (dedicated
nodes for specific experiments, maintenance interventions, training infrastructures,
development environments, software verification, etc.). If deployment time is an
issue (e.g. dealing with an unpredicted workload), the configuration process could
be reduced by using a pre-configured VMI with some (or most) of the software
requirements.

4.2 Higher level services - EC3

In the EC3 work [9] the IM is used in conjunction with a energy management
software for clusters called CLUES [2] to enable the deployment of elastic clusters
on cloud platforms.

In this case it is used the IM functionality to launch virtual infrastructures on
cloud providers and the management of the cluster sizes automatically on demand
provided by CLUES.

CLUES and the IM interact at two levels: First in the initial launch of the
front-end VM of the elastic cluster. In this step the EC3 launcher starts an IM
that becomes responsible of deploying the cluster front-end. This is done by means
of the following steps:

1. Selecting the VMI for the front-end. The IM can take a particular user-specified
VMI, or it can contact the VMRC to choose the most appropriate VMI avail-
able, considering the requirements specified in the RADL.

2. Choosing the cloud provider according to the specification of the user (if there
are different providers).

3. Submitting an instance of the corresponding VMI and, once it is available,
installing and configuring all the required software that is not already prein-
stalled in the VM: The Local Resource Management System (LRMS) selected
by the user and CLUES configured to use this LRMS and the IM to manage
the virtual nodes.
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One of the main LRMS configuration steps is to set up the names of the cluster
nodes. This is done using a sysadmin-specified name pattern (e.g. vnode-*) so
that the LRMS considers a set of nodes such as vnode-1, vnode-2... vnode-
n, where n is the maximum cluster size. This procedure results in a fully
operational elastic cluster.

In the second level CLUES internally uses an IM to submit the VMs that will
be used as working nodes for the cluster. For that, it uses a RADL document
defined by the sysadmin, where the features of the working nodes are specified.
Once these nodes are available, they are automatically integrated in the cluster as
new available nodes for the LRMS. Thus, the process to deploy the working nodes
is similar to the one employed to deploy the front-end.

Notice that the ability to dynamically deploy, configure, monitor and re-configure
virtual infrastructures at runtime paves the way for a simplified usage of Cloud
resources for different computational activities.

5 Conclusion and Future Work

This paper shows a platform for the dynamic management of virtual infrastruc-
tures. The platform developed considers all the aspects related to the creation and
management of virtual infrastructures: the expression of the user requirements us-
ing the RADL language, the deployment of the VMs on the desired platform and
all the configuration (and reconfiguration) tasks to make the infrastructure work
properly.

One of the main goals of this platform is to enable the users to reuse the
existing VMIs created by themselves or by other users, thus avoiding the work
of creating new VMIs for each application to be launched in cloud environments.
For this purpose it has been used a catalog system to index the VMIs with all the
relevant metadata, including the list of software installed. This is combined with
a contextualization process, which enables the installation and configuration of all
the user requirements. This combination enables to contextualize in run-time all
the required applications where the installation and configuration process can be
done automatically in a reasonable time, and in the other cases have a prepared
VMI correctly registered in the catalog with the application with the complex
installation produce make by hand.

Another important feature is the possibility to access different cloud providers.
For this reason, a modular system has been developed to interact with both public
and on-premise cloud providers. It enables the management of virtual infrastruc-
tures in the same way as using any underling platform. Therefore, a user can define
an RADL and test it in a local virtualization platform or a private cloud, and then
without any modification deploy a replica of the same infrastructure using a public
cloud platform.

The elasticity management, as one of the key features of the cloud infrastruc-
tures, is also supported by the platform. Not only horizontal elasticity, by adding
or removing VMs to an infrastructure, but also the vertical one adapting the VM
capacities to the application requirements (by dynamic changing the VM memory
size).

Some use cases have been shown to demonstrate the functionality of the plat-
form using two different environments (Amazon EC2 and OpenNebula). The first



Dynamic management of virtual infrastructures 21

case study describes using the IM to launch an EMI-2 cluster with Torque. The
second one shows the integration of the IM in another software layer (EC3) to
elastically manage the size of a virtual cluster.

The IM relies on network connectivity to access all the components involved in
the virtual infrastructure deployment: cloud provider, VMs, software repositories,
etc. In case of network failures some of the steps of the infrastructure deployment
could fail. If the error is produced in the deployment step, the IM will retry it a
number of times (configurable), but if the error is produced in the contextualization
step, it will fail. In this case the IM will notify about the error, and the user or
higher level software will be able to capture it and use the IM recontextualization
function to start again the configuration process. Given that Ansible provides
idempotent functionality, only the steps that have failed will be made.

Future works will include the development of new plug-ins in the Cloud Con-
nector layer to access more cloud providers such as Microsoft Azure or Google
Compute, and to integrate other aggregation libraries as a gateway to additional
Cloud systems. Recently, Amazon has presented a new service called OpsWorks
(in beta version at the time of the work of this article) that provides a similar
functionality to the IM, which could be analysed once it becomes stable. Another
interesting issue is the selection of the “best” cloud provider. In this area further
research is required to enable cloud-bursting and to include performance/price
ratios or similar criteria.
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