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 3 
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 5 
Abstract: Methods based on integer ambiguity determination, such as the least squares 6 

ambiguity decorrelation adjustment (LAMBDA) method, are currently used for precise global 7 

navigation satellite systems (GNSS) differential positioning. In the present paper we propose 8 

an ambiguity-free method based on a dedicated mixed (stochastic/deterministic) optimization 9 

algorithm that unlike the LAMBDA method is capable of providing reliable and accurate 10 

results using few observation epochs (e.g. 1-cm accuracy with just two epochs) having the 11 

additional advantages of insensitiveness to cycle slips and impossibility of wrong ambiguity 12 

fixation. In addition, we will demonstrate that the application of the linear (deterministic) part 13 

of our algorithm yields the correct baseline results much easier and faster than methods 14 

requiring integer ambiguity determination provided the initial approximate coordinates are 15 

accurate to a few centimeters. However, the use of ambiguity-free methods requires that the 16 

integer character of the ambiguities be preserved so that they can be eliminated; therefore no 17 

ionosphere-free combination can be computed and the methods are valid only for short 18 

baselines (e.g. less than 10 km). 19 

CE Database subject headings: Global positioning systems; Optimization; Measurement. 20 
 21 
 22 
Introduction 23 
 24 
GNSS differential positioning in short baselines has the advantage of effective cancellation of 25 

common error sources. Precise GNSS positioning needs the use of carrier phase observables, 26 

which inevitably leads to the appearance of the integer-valued unknowns called ambiguities. 27 

Since the first days of GNSS positioning extensive research has been dedicated to the 28 

optimization of the process by which ambiguities are initially approximated, fixed to integer 29 
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values, the corresponding solution obtained – i.e. the real-valued coordinates and integer-30 

valued ambiguities – and the solution validated (Hatch 1990, Frei and Beutler 1990, Chen 31 

1993, Teunissen 1993, 1995; Kim and Langley 2000, Verhagen 2004, Li and Shen 2010, as 32 

examples in the abundant literature). 33 

There are also other methods based on eliminating ambiguities from the equations exploiting 34 

their integer character instead of obtaining their particular values (Counselman and 35 

Gourevitch 1981, Remondi 1991, Mader 1992, Wang et al 2007, Cellmer et al 2010, Cellmer 36 

2012). In theory, these methods have some clear advantages: they are unaffected by cycle 37 

slips, wrong ambiguity fixation is not possible – since no ambiguity estimation is done –, and 38 

they have much less unknowns to determine (three, instead of three plus all the integer 39 

ambiguities). However, their need for initial good approximate coordinates is a drawback that 40 

has prevented a higher degree of usefulness. This was remedied in Baselga (2010) by using an 41 

optimization procedure insensitive to the degree of accuracy of the initial coordinates. Its 42 

computational cost, however, still made it little competitive with the standard methods based 43 

on ambiguity determination (for example the popular LAMBDA method). 44 

In the present paper a more successful proposal will be developed: in the next section an 45 

ambiguity-free functional model will be derived and further solved by a dedicated mixed 46 

(stochastic/deterministic) optimization method. Beyond the obvious advantages of 47 

insensitiveness to cycle slips and impossibility of obtaining a wrong solution due to a wrong 48 

ambiguity fixation, the application section will show how the proposed procedure clearly 49 

overcomes the renowned LAMBDA method for short time-span baselines. 50 

In addition, it will also become evident that for a baseline with good approximate coordinates 51 

one does not need to consider ambiguities at all, since our ambiguity-free linear model let us 52 

                                                                                                                                                         
1 Dpto. Ingeniería Cartográfica, Geodesia y Fotogrametría, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain. 
Email: serbamo@cgf.upv.es. 



3 

obtain the correct solution reliably and much faster than the standard methods based on 53 

ambiguity determination. 54 

 55 

Functional model and proposed algorithm 56 
 57 

Let us write the double-differenced carrier phase observation equation as: 58 
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kl
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ij N        (1) 59 

where  is the carrier wavelength, kl
ij , kl

ij  and kl
ijN  are respectively the double-differenced 60 

carrier phase observation, range and integer ambiguity, for subtractions with the following 61 

order  62 
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where subscripts denote baseline stations i and j and superscripts denote satellites l and k. 64 

Finally, for a sufficiently short baseline kl
ij  is a zero-centered with standard deviation  65 

Gaussian residual, expectably a few millimeters for a typical double-differenced carrier phase 66 

equation. 67 

Let us assume coordinates of station i to be known (more rigorously, let us say we assume 68 

them to be known for the mean epoch of observation in the ephemerides coordinate frame 69 

within, say, a few millimeters) and let us use some approximate coordinates for station j – 70 

000
,, jjj ZYX  – therefore we can expand kl

ij  around them and write 71 
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where the subscript 0 denotes the particular value obtained after using the approximate 73 

coordinates for station j and jjj dZdYdX ,,  are the corrections to the approximate coordinates 74 

(to be determined in the estimation process). 75 
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Let us now examine the case where the approximate j-coordinates are quite accurate (we will 76 

explicitly obtain the required degree of accuracy in a later section, for the moment we can 77 

think of 1 cm just to have a figure in mind). Dividing Eq. (3) by  we obtain 78 
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If, as said, the approximate j coordinates are quite accurate, the first three terms on the right 80 

side – and also the last one – are all much smaller than 1. Therefore the result on the left side 81 

will read something like e.g. 85.018 and we can assure the non-integer part 0.018 to be the 82 

sole contribution of the jjj dZdYdX ,,  and kl
ij  summands, whereas the integer part 85 has to 83 

be the kl
ijN  term. 84 

This leads to a rather straightforward ambiguity-free method though not useful unless we 85 

have accurate enough approximate coordinates: 86 
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Int denoting the rounding to next integer function. After reordering summands, the 88 

corresponding set of equations in matrix form reads 89 

νlAx       (6) 90 

with coefficient matrix A and vector of unknowns x, observations l and residuals , which can 91 

be easily solved by least squares.  92 

Evidently, having got rid of ambiguities in Eq. (5) has multiple advantages: the functional 93 

model is insensitive to possible cycle slips, incorrect ambiguity fixation and validation are not 94 

an issue now, and matrix formation and manipulation are much faster (since there are only 95 

three unknowns: jjj dZdYdX ,, ). The only drawback is the need for accurate enough 96 

approximate coordinates. 97 
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Now imagine the approximate j-coordinates were not only accurate but exact, then 98 

0 jjj dZdYdX  in Eq. (5) and we would obtain for this fortunate occasion 99 
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The interesting thing here is that these coordinates do exist, that is, there are coordinates for 101 

station j that make Eq. (7) hold with kl
ij  being purely Gaussian zero-centered residuals with 102 

standard deviation of a few millimeters. Our only task is finding them! 103 

We could try some brute-force approach consisting in iteratively plugging random j-104 

coordinates into Eq. (7) and evaluating the corresponding residuals. More properly, we should 105 

understand this as an optimization problem  106 
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    (8) 107 

and search for these coordinates by means of any global optimization method, e.g. simulated 108 

annealing (which, basically, puts some order into the random search). For our problem at 109 

hand, i.e. solving Eq. (8), this stochastic procedure is however very costly from the 110 

computational point of view. 111 

Observing the features of the search space we can design now an adapted mixed – half 112 

stochastic, half deterministic – optimization algorithm that dramatically reduces the 113 

computational burden. 114 

The search space can be symbolically depicted in Fig. 1. 115 

Figure 1 116 

It is a landscape composed of different attraction basins, pull-in regions (Verhagen 2004), or 117 

Voronoi cells (Cellmer 2012), having each of them a single local optimum. Each region 118 
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corresponds to a set of integer ambiguities, and among the points in a region (representing 119 

possible coordinate solutions) the local optimum is the best coordinate solution compatible 120 

with the set of ambiguities. There is a global optimum (the local optimum of a particular 121 

region): the correct solution for the baseline. 122 

In our problem – Eq. (8) – the search space retains this underlying structure, even if we do not 123 

use ambiguities explicitly. Therefore, we can understand why a blind random search is so 124 

ineffective therein. Conversely, we can design a mixed approach: first, we randomly select a 125 

point in the search space, and, second, with these approximate coordinates we apply Eq. (5) to 126 

obtain either the global optimum if we have been so fortunate as to have fallen in the 127 

corresponding pull-in region – since Eq. (5) is rigorously applicable – or just an 128 

approximation (more or less coarse) to the local optimum in the corresponding cell. Then we 129 

evaluate the function f at the obtained point and take it as the origin for the next iteration, or 130 

not, depending on the function value. 131 

In the appendix we give the pseudocode for a mixed algorithm using the simulated annealing 132 

method in the stochastic part, named part a (refer, e.g. to Baselga 2010 for details on the 133 

simulated annealing method) and the linear refinement Eq. (5) as the deterministic part 134 

(named part b) of every iteration. The solution evolution along iterations is shown in Fig. 2: 135 

the curved lines show the stochastic jumps – e.g. from step 0b to 1a – with statistically 136 

decreasing amplitudes (i.e. successive jumps are drawn from normal distributions having 137 

increasingly smaller standard deviations), while the straight segments – e.g. from 1a to 1b – 138 

show the deterministic refinement. The process converges to the optimum solution after not 139 

many iterations (depending them on the complexity of the problem), at any rate several 140 

degrees of order less than the sole application of simulated annealing, as in Baselga (2010).  141 

Figure 2 142 
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As it can be demonstrated based on Cellmer (2012) work, the necessary condition for the 143 

proposed method to succeed in finding the global optimum is that the algorithm falls at least 144 

once in the correct Voronoi cell. For a search space of volume L3 – with L the search space 145 

width – and assuming it to be made up of cubic Voronoi cells of diagonal  – and 146 

consequently, volume 
3









3

λ
– we have a number N of Voronoi cells 147 

3/2
3

3

3
λ

L
N           (9) 148 

If the algorithm consisted in visiting one after another all the cells in the search space then we 149 

would need N iterations to ensure success. Considering that the simulated annealing method 150 

has to considerably improve on that exhaustive procedure, but also that N in Eq. (9) is only a 151 

rough and low estimate due to the naive discretization we have made of the search space (e.g. 152 

any other type of parallelepiped-shaped cell of diagonal  would lead always to larger N 153 

values) we can take N as a conservative estimate for the required number of iterations in our 154 

algorithm. The experiments conducted in the following section corroborated that for design 155 

parameters – see appendix A – leading to some N or N/2 iterations succesful determination 156 

always occurred, whereas values of some N/3 or lower provided occassionally suboptimal 157 

solutions. 158 

 159 

Application 160 
 161 
BAY5 and BAY6 are two GPS stations separated some 29.98 m belonging to CORS network 162 

(Snay and Soler, 2008). They are taken as a reliable source of data for applying the before 163 

mentioned differential positioning method: they have stable monumentation, regular 164 

observations every 30 s and, in this case, even the same antennas and radomes. 165 

We will consider – for instance – a sample of consecutive observations starting on January 14, 166 

2011, 22:00 (GPS time). As said, we are aimed at showing the estimation abilities of the 167 
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proposed procedures compared with the standard approach of ambiguity determination, in 168 

particular with the LAMBDA method. The software used has been developed under MatlabTM 169 

by the author in what refers to generalities and the ambiguity-free methods, and by Borre 170 

(2009) the part of the LAMBDA method. 171 

In all the computations below we first process code observables in order to obtain the 172 

approximate coordinates to be used in all types of carrier phase processing: the LAMBDA 173 

method and two ambiguity-free methods: the (general) mixed optimization procedure in Eq. 174 

(8) and the straightforward linear procedure in Eq. (5) only devised for good approximate 175 

coordinates. Due to the short baseline length only the use of L1 carrier phases is advisable. 176 

With one hour of observations (121 epochs) the three solutions are coincident within 1 mm. 177 

We will take the solution obtained by the LAMBDA method as the reference solution for the 178 

rest of all computations (shown in Table 1). Computation times appearing in the table refer to 179 

a PC using an Intel Core2 Quad CPU at 2.33 GHz with 2.96GB RAM and are given for the 180 

sole purpose of providing a rough relative comparison among methods. Even so, we make a 181 

note of caution regarding the general ambiguity-free procedure (Eq. 8): times are strongly 182 

dependent on the  value used in the algorithm. Here we have used different  values: values 183 

quite close to unity (like  = 0.999) for assuring a correct solution with short observation 184 

spans (a few minutes) where the solution is “not much clear”, and faster values (like  = 0.9) 185 

for the longest observation spans. The usage of excessively close to unity values with large 186 

amount of data is too conservative and, correspondingly, makes computations unnecessarily 187 

costly. The usage of extremely relaxed or faster values (too far from 1) yields wrong 188 

solutions, their incorrectness being quite evident since the corresponding values for σ̂  and 189 

̂  are far from the expected ones: typically a few millimeters for the double differences 190 

residuals, and no significant deviation from zero millimeters for the mean; it might also be 191 

pertinent to perform a statistical test for those hypotheses, although the values obtained in the 192 
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example are clearly reasonable. As a rule of thumb, the user may resort to the previous Eq. (9) 193 

in order to obtain a reasonable number of iterations to be done. 194 

It can be seen that the general ambiguity-free procedure – Eq. (8) – performs successfully, at 195 

worse, with computational times around 1 s. 196 

Table 1 197 

If approximate coordinates are good enough (all below 6 cm in this example), which is 198 

achieved for at least 45 min of observations, all three methods perform successfully, with the 199 

linear ambiguity free method clearly faster than LAMBDA and general ambiguity-free 200 

methods. 201 

For observation times ranging from 5 to 40 min the approximate coordinates computed by 202 

processing code observations are not so good. Therefore the linear ambiguity free method 203 

fails as expected, while the LAMBDA and the general ambiguity-free method are successful. 204 

It has been checked – though not included in the table – that if we use for these time spans 205 

good approximate coordinates – all below 6 cm as before – the linear ambiguity free method 206 

gives results compatible with those of LAMBDA and the general ambiguity-free method 207 

albeit much faster (the times being similar to those appearing now in the table for the 208 

incorrect results). 209 

Finally, it is shown that for short observation times, four minutes and below, and approximate 210 

coordinates of a bad quality, the LAMBDA method fails while the general ambiguity-free 211 

method is still able to retain millimetre accuracy or 1.0 cm at worse for time spans as short as 212 

2 epochs (21:00:00 to 21:00:30). 213 

No meaningful results were obtained for just a single epoch (the LAMBDA method was even 214 

underdetermined). 215 

 216 

Coda: with good coordinates never mind ambiguities (solution is straightforward!) 217 
 218 
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There are occasions where the initial approximate coordinates are known within a few 219 

centimeters, e.g. we can imagine a surveying network for deformation monitoring. 220 

For those cases, all methods based on ambiguity determination have inexcusably to be 221 

abandoned in favor of the linear ambiguity-free method given in Eq. (5) which not only has 222 

the before mentioned advantages of insensitiveness to cycle slips and impossibility of wrong 223 

ambiguity fixation, but it is also much simpler and faster. Going back again to Fig. 2 our 224 

problem now reduces to simply going from 7a to 7b, since we are in the correct pull-in region 225 

from the very beginning. 226 

As it was said before, it has been experienced (results shown in Table 1, and also others not 227 

displayed) that the linear ambiguity-free method succeeds for the preceding baseline if the 228 

approximate coordinates are more accurate than some 6 cm. 229 

Now, we want to rigorously obtain the bound for the correct application – even in the worst 230 

cases – of this linear ambiguity-free method. 231 

Let us go back to Eq. (5) and analyze the first doubtful case, i.e. when the fraction 
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Since jjj dZdYdX ,,  are of the order centimeters and kl
ij  a few millimeters it can be neglected 235 

with no significant error. Developing partial derivatives we can write 236 
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Simple variable changes let us write 238 

      jrsjrsjrs dZzzdYyydXxx 5.0       (12) 239 

where 1222  rrr zyx  and 1222  sss zyx . 240 
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We are interested in the least coordinate deviation from its exact value, say , that makes the 241 

solution to be doubtful. For a given , it is clear that the worst case is when all coordinates are 242 

this far from the exact solution  jjj dZdYdX . Without loss of generality for 243 

assuming positive signs  jjj dZdYdX  we can rewrite Eq. (12) as 244 

  rsrsrs zzyyxx 5.0        (13) 245 

and obtain 246 

 rrrsss zyxzyx 


 5.0
       (14) 247 

For  to be minimum in Eq. (14) – since we are interested in the least  that makes the 248 

equation to be doubtful – we need the denominator to be maximum. A little calculus shows 249 

that this happens for 
3

1
 sss zyx  and 

3

1
 rrr zyx  (reversing signs is also 250 

possible but note it is also possible for the doubtful numerator to be -0.5). Upon substitution 251 

in Eq. (14) we obtain the worst case value 252 

34

           (15) 253 

This represents 2.75 cm for L1 carrier phase observations. Evidently this is a too conservative 254 

estimate (we succeeded in the previous example with coordinates approximated to 5 cm): 255 

first, because in practice not all coordinates are inaccurate by the same amount – an 256 

assumption that brought our Eq. (12) into Eq. (13) – and second because two visible satellites 257 

cannot be diametrically opposed (with one of them just above the horizon we would have the 258 

other in the opposite direction slightly below the horizon), which is implied by our worst-case 259 

solution to Eq. (14). All in all we have determined a conservative bound for the approximate 260 

coordinate accuracy below which the linear ambiguity-free method given in Eq. (5) is always 261 

successful. 262 

 263 
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Conclusions 264 
 265 
Methods based on ambiguity fixing, such as the LAMBDA method, deal with a complex 266 

search space. Not only there are more unknowns than the three coordinates, but also those 267 

extra unknowns have to be reliably fixed to integers. Therefore, the use of a method based on 268 

ambiguity determination has the certain drawback of high computational cost, plus the 269 

possible problems derived from its sensitiveness to cycle slips and possible wrong ambiguity 270 

fixation, which is a critical issue. 271 

The general ambiguity-free method derived in this paper, in addition to its insensitiveness to 272 

cycle slips and impossible wrong ambiguity fixation, allows for an accurate and reliable 273 

baseline determination with the use of much less epochs than the LAMBDA method: for 274 

instance, in the example baseline we obtained a 1 cm accuracy with only two epochs. 275 

In addition, for the particular case of initial approximate coordinates with accuracies of a few 276 

centimeters, we devised a reliable linear ambiguity-free method much faster than LAMBDA 277 

and exempt from their drawbacks. 278 
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Appendix. Mixed optimization method pseudocode 323 

Input parameters 324 

Satellite coordinates Xk, Yk, Zk, Xl, Yl, Zl 325 
Fixed station coordinates Xi, Yi, Zi 326 
Search space (wide as desired): [Xj-min, Xj-max], [Yj-min, Yj-max], [Zj-min, Zj-max] 327 

 Double-differenced observations: kl
ij  328 

 Carrier wavelength:  329 
(optional) Approximate station coordinates Xj, Yj, Zj. It is sensible to use them at least for defining the 330 
search space boundaries as Xj ± , Yj ± , Zj ±  331 
 332 

Design parameters 333 

Initial standard jump amplitude (advisably 1/10 to 1/3 of search space width): o 334 
Final standard jump amplitude (for the global optimum to have been reached): f = 0.03 m 335 
Coefficient for exponential decay of standard jump amplitudes:  (e.g.  = 0.999) 336 
Probability of accepting worse solutions (small, helps avoid local minima): p (e.g. p = 0.01) 337 

 338 

Pseudocode algorithm 339 

// Iteration 0 340 

 // Part a (stochastic) (only if we do not have initial approximate coordinates) 341 

  Select any coordinates (Xj, Yj, Zj)0_a belonging to the search space (even at random) 342 

 // Part b (deterministic) 343 

Compose matrix A following Eq. (5)-(6) using (Xj, Yj, Zj)0_a 344 
Compose vector l following Eq. (5)-(6) using (Xj, Yj, Zj)0_a 345 
Solve the least squares problem in Eq. (6) to obtain (dXj, dYj, dZj)0 346 
// Refine coordinates:  347 
(Xj, Yj, Zj)0_b = (Xj, Yj, Zj)0_a + (dXj, dYj, dZj)0 348 
f0 = Evaluate cost function f by using (Xj, Yj, Zj)0_b in Eq. (8) 349 
fbest = f0 350 
xbest = (Xj, Yj, Zj)0_b 351 

  1 = o // standard jump amplitude is reduced 352 

// Iteration t 353 

while t < f  // until the standard jump amplitude reaches the final size 354 

 // Part a (stochastic) 355 

  Generate Gaussian random displacements XtN(0,t), YtN(0,t), ZtN(0,t) 356 

  // Obtain new coordinates by displacing the ones in the last iteration: 357 

  (Xj, Yj, Zj)t_a = (Xj, Yj, Zj)t-1_b + (Xt, Yt, Zt) 358 

// Part b (deterministic) 359 

Compose matrix A following Eq. (5)-(6) using (Xj, Yj, Zj)t_a 360 
Compose vector l following Eq. (5)-(6) using (Xj, Yj, Zj)t_a 361 
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Solve the least squares problem in Eq. (6) to obtain (dXj, dYj, dZj)t 362 
// Refine coordinates:  363 
(Xj, Yj, Zj)t_b = (Xj, Yj, Zj)t_a + (dXj, dYj, dZj)t 364 
ft = Evaluate cost function f by using (Xj, Yj, Zj)t_b in Eq. (8) 365 
// Accept or discard as origin for the next iteration jump 366 
if ft < ft-1 367 
 (Xj, Yj, Zj)t_b = (Xj, Yj, Zj)t_b   // i.e. do nothing but retain this as origin for next iteration 368 
 if ft < fbest 369 
  fbest = ft 370 
  xbest = xt 371 
 end 372 
else 373 
 if random_number_from_uniform_distribution_[0,1] < p 374 
  (Xj, Yj, Zj)t_b = (Xj, Yj, Zj)t_b   // i.e. accept worse solutions with low probab. p 375 
 else 376 
  (Xj, Yj, Zj)t_b = (Xj, Yj, Zj)t-1_b  // do not accept as origin for next iteration  377 
 end 378 
end 379 

  t+1 = t // standard jump amplitude is reduced 380 
end 381 

 382 

// The solution is xbest, almost always coincident with xt being t the last iteration 383 

// The mean quadratic residual in Eq. (6) must be a few mm, the average residual statistically compatible with 0. 384 

// Repeated executions must provide the same result (sufficient, though not necessary condition, of having  385 

// attained the global optimum) 386 
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Figure captions 387 

Fig. 1. Figurative representation of the search space. 388 

Fig. 2. Course of iterations (part a stochastic, part b deterministic) 389 
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Tables 390 

Table 1. Coordinate accuracy results using the LAMBDA method, the general Ambiguity-391 
Free method – Eq. (8) – and the Linear Ambiguity-Free method – Eq (5). 392 
 393 

Data 
span 

(mm:ss) 

Approx. cords. 
accuracy 

(X Y Z) (mm) 

LAMBDA 
accuracy  

(X Y Z) (mm) 

tLAMBDA 
(s) 

General amb-free
accuracy. Eq. (8) 
(X Y Z) (mm) 

tamb-free 
(s)** ̂  

(mm)
̂  

(mm) 

Linear amb-free 
accuracy. Eq. (5) 
(X Y Z) (mm) 

tLinear-

amb-free 
(s) 

                
60:00 -12 8 39 Ref. solution* 0.030 0 0 -1 0.046 -0.2 3.8 -1 0 1 0.013 
55:00 -21 8 51 1 0 -1 0.030 1 0 -1 0.040 -0.1 3.7 0 0 0 0.011 
50:00 -31 21 53 1 0 -1 0.027 1 0 -1 0.038 -0.1 3.7 0 0 1 0.008 
45:00 -54 14 24 1 0 -1 0.025 1 0 -1 0.035 -0.1 3.8 0 0 1 0.007 

                  
40:00 -75 38 85 1 0 -1 0.025 2 0 -2 1.780 0.0 3.8 -30 3 53 0.006 
30:00 -115 57 130 0 0 0 0.019 1 0 -2 1.135 -0.1 3.5 -101 57 196 0.003 
20:00 -79 9 91 -1 0 -2 0.018 0 0 -3 1.698 -0.2 3.3 -58 7 115 0.001 
10:00 -105 -109 32 1 -1 -3 0.018 0 -1 -3 1.209 -0.2 3.0 -67 -125 74 0.0005
5:00 -226 -98 12 0 -1 -3 0.019 0 -1 -3 0.971 -0.2 2.7 -210 -108 45 0.0003

                  
4:00 -274 -133 176 -361 -143 337 0.018 1 -2 -4 1.084 -0.2 2.9 -352 -155 307 0.0003
3:00 -351 -16 278 -385 -112 395 0.016 2 -3 -6 1.018 -0.1 2.5 -330 -37 315 0.0002
2:00 -438 -18 535 -386 -111  397 0.016 3 -3 -9 1.714 0.2 2.3 -386 -111 393 0.0001
1:00 -282 -255 21 -335 -343 154 0.015 3 -4 -10 1.885 0.4 2.6 -318 -265 135 0.0001
0:30 -178 77 -334 -200 34 -401 0.013 3 -2 -9 1.746 0.1 3.1 -207 39 -394 0.0001

*Reference solution (in m): X = 20.261; Y = -20.033; Z = 9.315 394 
**Time strongly depend on the choice of  395 
 396 
 397 






