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Practical Formulas for the Refraction Coefficient 1 
 2 
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 4 
Abstract: Knowledge of the actual refraction coefficient is essential in leveling surveys and 5 

precise electromagnetic distance measurement reduction. The most common method followed 6 

by the surveyor for its determination is based on the use of simultaneous reciprocal zenith 7 

observations. Given that the commonly used formula is only an approximation valid for 8 

approximately horizontal sightings, in a recent work the exact geometric solution was 9 

obtained. However, the closed form expression for the solution turned out to be very 10 

complicated so that an iterative computation procedure was suggested instead. In the present 11 

paper, we want to derive from the complete solution a compact formula that is easy to 12 

implement and retains the necessary accuracy for horizontal and slanted sightings. In addition, 13 

we will also focus on the common situation for the surveyor where isolated observations have 14 

to be done and no partially compensating procedures – e.g. leap-frog or middle point – are 15 

possible. If temperature vertical profiles are unknown then the refraction coefficient cannot be 16 

reliably determined. Some surveyors may customarily use then an average value, e.g. 17 

130.k  , perhaps being unaware of the risks involved in such simplistic assumption. In the 18 

present paper, we also want to present a useful and simple formula for approximately 19 

estimating the refraction coefficient in terms of easily accessible parameters in order to 20 

correct the bulk of the refraction effect in single observations, always bearing in mind that 21 

determination of the refraction coefficient by means of a model may turn out to be some 22 

inaccurate, but still better than the blind use of a universal k. 23 

CE Database subject headings: Refraction; Leveling; Geodetic surveys. 24 
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 26 
Introduction 27 
 28 
The study and characterization of the light path through the lower atmosphere commonly 29 

involved in the near-ground geodetic measurements, usually referred to as geodetic refraction, 30 

has occupied scientists for centuries. In the 19th century adoption of a spherical 31 

approximation for the actual ray path was proposed and subsequently applied in common 32 

geodetic practice. The refraction coefficient k  was then defined as the ratio between a mean 33 

radius of the earth R  and the light path curvature radius r  34 

r

R
k         (1) 35 

and an approximate value of 130.k   was found and extensively used by Gauss in his 36 

computation of the Hanover geodetic network (Brunner 1984). The use of a standard value for 37 

the refraction coefficient, however, has proven to be a very limited approximation since it 38 

corresponds only to average adiabatic conditions which are particularly not representative of 39 

most engineering type measurements made close to the ground where heating effects 40 

predominate (Dodson and Zaher, 1985). The use of the actual refraction coefficient is 41 

therefore a crucial need not only for leveling but also for applying the necessary reductions in 42 

precise electromagnetic distance measurements (EDM). Apart from some more recent 43 

proposals, e.g. turbulence determination and dispersometry (Ingensand 2008), the surveyor 44 

has classically followed one of two approaches: determination by means of simultaneous 45 

reciprocal observations and determination by means of a model for the lower atmosphere. 46 

Observation of simultaneous reciprocal zenith observations is the easiest and most precise 47 

method at hand for the surveyor. However, the formula traditionally used is only an 48 

approximation valid for approximately horizontal sightings; therefore a rigorous expression 49 

shall be preferred in general. Tsoulis et al. (2008) obtained the exact geometric solution for 50 

the refraction coefficient by simultaneous reciprocal zenith observations. As the direct 51 
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computation of the exact solution was found to be rather complicated they also derived a 52 

more handy iterative procedure. In the present paper, we also want to contribute to this theory 53 

by deriving from their complete geometric solution a compact formula that is easy to 54 

implement and successfully retains the necessary accuracy for both horizontal and slanted 55 

sightings. 56 

On the other hand, determination of the refraction coefficient by means of a model for the 57 

lower atmosphere was found to be possible after the work of Kukkamäki (1938). He found 58 

that refraction was mainly due to the temperature vertical gradient and proposed a temperature 59 

model of the form 60 

cbzaT        (2) 61 

where T is the temperature, z is the height above the ground, and a , b  and c  are parameters 62 

to be experimentally deduced, which in practice implied the need for measuring temperatures 63 

at some different heights above ground. Webb (1969) was the first to introduce in geodesy the 64 

idea that temperature gradients could be successfully computed in terms of other 65 

meteorological parameters, mainly the upward heating flux, whereas recognizing the practical 66 

difficulty in estimating them with acceptable accuracy. Tens of proposals have been given 67 

ever since in terms of disparate parameters (intensity of the sun’s radiation, wind velocity, 68 

cloud cover, surface type and wetness, etc). At any rate, all of them yield a relatively low 69 

accuracy for the usual situation for the surveyor where single observations are taken and 70 

temperature vertical differences are not directly measured, so that normally it is simply 71 

recommended to avoid isolated leveling measurements (Kharaghani, 1987). Obviously, if 72 

simultaneous reciprocal observations are not possible one should try to resort to a procedure 73 

that cancels first order refraction effects, such as middle point geometric leveling or 74 

trigonometric leveling by the leap-frog method (Ceylan and Baykal, 2006), but since this is 75 

not always possible a handy formula estimating refraction effects may be welcome. In this 76 
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spirit, we also want to derive in the present paper a simple formula for estimating the 77 

refraction coefficient in terms of easily accessible parameters in order to approximately 78 

correct refraction in single leveling observations. 79 

 80 

Simultaneous reciprocal observations 81 
 82 

Following Tsoulis et al. (2008), the refraction coefficient can be obtained in terms of the 83 

refraction angle   by 84 

 sin
s

R
k

2
      (3) 85 

where R  is a mean radius of the earth, acting as a good approximation to the curvature radius 86 

of the equipotential surface, and s  is the distance along the straight line between the visual 87 

endpoints A and B (chord). Both astronomic verticals form an angle   that according to 88 

Tsoulis et al. (2008) derivation fulfills 89 

 





  'Z'Zsin

R

s
sin BA2

1
    (4) 90 

where 'Z A  and 'Z B  are the observed simultaneous reciprocal zenith angles (affected by 91 

refraction). 92 

Upon determination of  , refraction angle   and refraction coefficient k  can be obtained by 93 

 'Z'Z BA 
2

1
     (5) 94 

 





  'Z'Zsin

s

R
k BA2

12
    (6) 95 

However, Eq. (4) is a nonlinear equation with respect to the unknown   appearing in both 96 

sides of the equation. Tsoulis et al. (2008) showed that the exact solution can be obtained by 97 

solving a fourth degree equation whose numerical implementation is not simple to program 98 
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and proposed instead an iterative procedure that was shown to converge in a maximum of 99 

three iterations. 100 

Let us devise now a simple and compact formula. First, if we include in Eq. (6) the value   101 

given on the left side of recurrent Eq. (4) we have 102 

  
































  'Z'Z'Z'Zsin

R

s
arcsinsin

s

R
k BABA2

1

2

12
  (7) 103 

Second, we can easily see in Eq. (4) that we can substitute the sine of the angle   for the 104 

angle itself in the left side of the equation since it is a small angle, and use 
R

s
  as a fairly 105 

good approximation since the sine appearing in the right side of Eq. (4) tends to unity for 106 

small   and similar zenith angles.  107 

If we plug this approximation 
R

s
  into Eq. (7) and denote by f  the sine function that 108 

multiplies 
s

R2
 the expression can be rewritten as 109 









R

s
f

s

R
k

2
       (8) 110 

and since 
R

s
 is small enough  111 

   
R

s
'ff

R

s
f 00 








     (9) 112 

The resulting expression is 113 







 







 







 


2

2

22

'Z'Z
cos

s

R'Z'Z
sin

'Z'Z
cosk BABABA    (10) 114 

or alternatively 115 







 


2

2

2

1

2

1 'Z'Z
cos

s

R
'Zsin'Zsink BA

BA     (11) 116 
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where we can see that usage of the following equality and approximation 117 

222









 







  'Z'Z'Z'Z

sin
'Z'Z

cos BABABA  in the last term of the right side, and 118 

2


 'Z'Z BA  in the first and second term of the right side, leads to the commonly used 119 

approximate expression 120 

  'Z'Z
s

R
k BA1      (12) 121 

Table 1 compares the results obtained after application of the different formulas. As it was 122 

done in Tsoulis et al. (2008) only for the purpose of facilitating comparisons with respect to a 123 

round k-value, given a selected zenith angle at station A and a distance chord, the zenith angle 124 

at station B is assigned a value so as to produce the desired k-value (we will focus here only 125 

on two representative extreme k-values: -0.15 and 0.40).  126 

Table 1 127 

As it can be seen, the commonly used Eq. (12) performs unsuccessfully for sufficiently 128 

slanted sightings whereas our proposed closed expression Eq. (11) provides results with 129 

sufficient accuracy and considerably less effort than the rigorous iterative or exact procedure 130 

given in Tsoulis et al (2008), which involves Eq. (4) and Eq. (6). 131 

 132 

Single observations 133 
 134 

For those situations in which isolated observations are mandatory, both for leveling works and 135 

EDM measurements, some recommendations may be welcome – short observations, typically 136 

of a maximum of 50 m, with a minimum clearance above ground of typically 50 cm, etc. – 137 

but there still remains the need for applying a correction model (Brunner 1984). 138 

The curvature of vertical refraction, r/1  in Eq. (1), can be substituted by minus the vertical 139 

gradient of the refraction index n  yielding 140 
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dz

dn
Rk        (13) 141 

Adoption of the expression for the refraction index recommended in the IAG resolution, Gen. 142 

Ass. Birmingham 1999, leads to  143 
















  

dz

de

Tdz

dT
.

T

p
Rk

11
03407810

2
6     (14) 144 

for visible and infrared light with temperature T in K, and atmospheric pressure p and water 145 

vapour pressure e in hPa for height z in m (Torge 2001). After neglecting the last term and 146 

substituting a suitable mean radius it is common to use the following expression (e.g. Hirt et 147 

al 2010) 148 







 

dz

dT
.

T

p
k 0340503

2
     (15) 149 

where the actual temperature vertical gradient needs to be measured (preferably) or estimated. 150 

Standard conditions, including the average temperature gradient in the troposphere 151 

K/m00650.dz/dT  , may enable us to compute a mean value for k. This value, however, 152 

often happens to be very inaccurate, inasmuch as existing conditions for a sufficiently close to 153 

the ground sighting may differ considerably from the troposphere average conditions. 154 

Therefore, for the common situation for the surveyor where measured temperature vertical 155 

profiles are not available the use of a suitable temperature vertical gradient model is strongly 156 

recommended. 157 

After the work of Kukkamäki (1938), Webb and Angus-Leppan advanced research – 158 

subsequently extended by Brunner – to find a relationship between the temperature gradient 159 

and the upward heat flux H (Brunner 1984) 160 

34320270 // zH.
dz

dT       (16) 161 
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The main difficulty was to estimate this heat flux H to a reasonable accuracy without 162 

involving expensive instruments and too delicate measurements.  163 

Holdahl (1981) used historical records of solar radiation, precipitation, cloud cover and 164 

ground reflectivity from hundreds of stations in the conterminous United States to develop a 165 

season and location complete model for the temperature gradient (in the form of Kukkamäki 166 

Eq. (2) with exponent 31 /c  ) and compute precise refraction corrections. Holdahl’s model 167 

has ever since been used by the National Geodetic Survey (NGS) to compute refraction 168 

corrections for historic levelling data for which temperature differences were not observed. Its 169 

use, however, is limited to the area were historic data was collected (conterminous United 170 

States).  171 

On the other hand, micrometeorologist Tait (1949) found a temperature model for the lower 172 

atmosphere in terms of the height ratio logarithm. 173 

 211021 440 z/zlog)I.(TT      (17) 174 

where I is the horizontal component of total insolation.  175 

Recently, Georgakis et al (2010) applied the model to urban canyons and found a useful 176 

relationship for heights above ground in the range of 2 to 15 m introducing the angle of sun 177 

elevation a and a value N representing the absence of cloudiness (from N = 0 for a completely 178 

covered sky to N = 1 for a completely clear sky) 179 

 211021 8621 z/zlog)asin..(NTT     (18) 180 

Beyond its ease of use, this formula effectively introduces insolation contribution by 181 

consideration of the cloud cover percentage and the sun elevation (obviously dependent on 182 

location and year season). Our proposal in this paper is to adapt this formula to the low 183 

heights above ground usually encountered in surveying practice. We can denote by A and B 184 

the coefficients to be experimentally determined and write 185 

 211021 z/zlog)asinBA(NTT     (19) 186 
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Using the direct temperature determinations obtained by Kharaghani (1987) for different 187 

heights over different surfaces we found A values to be not significant (close to zero and 188 

considerably smaller than their respective uncertainties) and B values to be significant and 189 

quite similar: 1.70 ( 110. ) over gravel, 1.91 ( 110. ) over grass, and 1.65 ( 110. ) 190 

over asphalt. Even a single adjustment for all surfaces gave a significant value: 191 

 0.06  701  .B  with an average temperature residual of 0.26 ºC. 192 

The model results in 193 

 211021 z/zlogasinBNTT      (20) 194 

Substitution of dzzz 1  (for dTTT 1 ) and zz 2  (for TT 2 ), and first order 195 

expansion of the logarithm around unity yields 196 

z

dz
.asinBN

z

dz
logasinBNdT 43430110 






     (21) 197 

asin
z

BN.
dz

dT 1
43430      (22) 198 

Eq. (15) can now be rewritten as 199 







  asin

z
BN..

T

p
k

1
434300340503

2
    (23) 200 

where a value  701.B  was empirically found. 201 

Eq. (23) is meant to be only a simple correction accounting for the main bulk of the refraction 202 

effect for the unfavourable cases where neither reciprocal simultaneous observations nor 203 

partially compensating observation procedures (leap-frog method in trigonometric levelling or 204 

middle point in geometric levelling) are available. The extent of its validity has to be further 205 

tested. As an application example we give now the results for a 24-h observation campaign 206 

were reciprocal simultaneous zenith angles were measured every half an hour with a pair of 207 

Kern DKM 3 theodolites along with meteorological parameters (including a record of cloud 208 

cover ratio) for a line of 4385.06 m with an average clearance above ground of 7 m. Fig. 1 209 
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shows the refraction coefficient variation obtained by reciprocal simultaneous angles Eq. (11) 210 

in comparison with the values derived by the model Eq. (23) with  701.B  . As it can be seen 211 

the model serves the desired purpose of coarsely capturing the main refraction trend. On the 212 

other hand, any average value like 130.k   results, as expected, completely insufficient. 213 

 Figure 1 214 

 215 
Conclusions 216 
 217 
A compact formula for computation of the refraction coefficient after reciprocal simultaneous 218 

observations was given and shown to be coincident in practice with the exact solution that has 219 

to be computed by a complicated algebraic method or an iterative procedure. In addition, for 220 

the frequent cases of single observations where refraction effects cannot be partially 221 

compensated or accurately computed (since e.g. temperature vertical gradients are not 222 

measured) a simple formula has been derived and shown to successfully approximate the bulk 223 

of the refraction effect. Further research has to be conducted, however, in order to thoroughly 224 

determine the extent of its validity as well as the suitability of the experimentally obtained 225 

value for the temperature gradient coefficient. 226 
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Figure captions 264 

Fig. 1. Refraction coefficient variation along the day: values computed from reciprocal 265 

simultaneous observations Eq. (11) (solid line) versus values obtained by model Eq. (23) 266 

(curved dotted line). The standard value 130.k   is also represented (horizontal dotted line). 267 
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Tables 268 

Table 1. Refraction coefficients k and refraction angles  for different zenith angles at station 269 
A, chord lengths and reference refraction values (k = -0.15 and k = 0.40) using: (1) Tsoulis et 270 
al (2008) iterative method, (2) compact Eq. (11), and (3) the commonly used approximate 271 
expression in Eq. (12). 272 
 273 

ZA angle Length k (1) k (2) k (3)  (1)  (2)  (3)  (1)  (2)  (3) k (1) k (2) k (3)  (1)  (2)  (3)  (1)  (2)  (3) 
(gon) (deg) (m)    (cc) (cc) (cc) (‘’) (‘’) (‘’)    (cc) (cc) (cc) (‘’) (‘’) (‘’) 

55 49.5 2000 -0.1500 -0.1499 0.0898 -15.0 -15.0 9.0 -4.9 -4.9 2.9 0.4000 0.4001 0.6397 40.0 40.0 63.9 13.0 13.0 20.7

55 49.5 4000 -0.1500 -0.1498 0.0899 -30.0 -30.0 18.0 -9.7 -9.7 5.8 0.4000 0.4002 0.6398 80.0 80.0 127.9 25.9 25.9 41.4

55 49.5 6000 -0.1500 -0.1498 0.0901 -45.0 -44.9 27.0 -14.6 -14.5 8.8 0.4000 0.4002 0.6399 119.9 120.0 191.9 38.9 38.9 62.2

55 49.5 8000 -0.1500 -0.1497 0.0903 -60.0 -59.8 36.1 -19.4 -19.4 11.7 0.4000 0.4003 0.6401 159.9 160.0 255.9 51.8 51.8 82.9

70 63 2000 -0.1500 -0.1499 -0.0409 -15.0 -15.0 -4.1 -4.9 -4.9 -1.3 0.4000 0.4001 0.5091 40.0 40.0 50.9 13.0 13.0 16.5

70 63 4000 -0.1500 -0.1499 -0.0407 -30.0 -30.0 -8.1 -9.7 -9.7 -2.6 0.4000 0.4001 0.5092 80.0 80.0 101.8 25.9 25.9 33.0

70 63 6000 -0.1500 -0.1498 -0.0406 -45.0 -44.9 -12.2 -14.6 -14.6 -3.9 0.4000 0.4002 0.5093 119.9 120.0 152.7 38.9 38.9 49.5

70 63 8000 -0.1500 -0.1497 -0.0405 -60.0 -59.9 -16.2 -19.4 -19.4 -5.2 0.4000 0.4003 0.5094 159.9 160.0 203.6 51.8 51.8 66.0

85 76.5 2000 -0.1500 -0.1500 -0.1223 -15.0 -15.0 -12.2 -4.9 -4.9 -4.0 0.4000 0.4000 0.4277 40.0 40.0 42.7 13.0 13.0 13.8

85 76.5 4000 -0.1500 -0.1499 -0.1222 -30.0 -30.0 -24.4 -9.7 -9.7 -7.9 0.4000 0.4001 0.4277 80.0 80.0 85.5 25.9 25.9 27.7

85 76.5 6000 -0.1500 -0.1499 -0.1221 -45.0 -44.9 -36.6 -14.6 -14.6 -11.9 0.4000 0.4001 0.4278 119.9 120.0 128.3 38.9 38.9 41.6

85 76.5 8000 -0.1500 -0.1499 -0.1221 -60.0 -59.9 -48.8 -19.4 -19.4 -15.8 0.4000 0.4001 0.4279 159.9 160.0 171.0 51.8 51.8 55.4

100 90 2000 -0.1500 -0.1500 -0.1500 -15.0 -15.0 -15.0 -4.9 -4.9 -4.9 0.4000 0.4000 0.4000 40.0 40.0 40.0 13.0 13.0 13.0

100 90 4000 -0.1500 -0.1500 -0.1500 -30.0 -30.0 -30.0 -9.7 -9.7 -9.7 0.4000 0.4000 0.4000 80.0 80.0 80.0 25.9 25.9 25.9

100 90 6000 -0.1500 -0.1500 -0.1500 -45.0 -45.0 -45.0 -14.6 -14.6 -14.6 0.4000 0.4000 0.4000 119.9 119.9 119.9 38.9 38.9 38.9

100 90 8000 -0.1500 -0.1500 -0.1500 -60.0 -60.0 -60.0 -19.4 -19.4 -19.4 0.4000 0.4000 0.4000 159.9 159.9 159.9 51.8 51.8 51.8

115 103.5 2000 -0.1500 -0.1500 -0.1224 -15.0 -15.0 -12.2 -4.9 -4.9 -4.0 0.4000 0.4000 0.4276 40.0 40.0 42.7 13.0 13.0 13.8

115 103.5 4000 -0.1500 -0.1501 -0.1225 -30.0 -30.0 -24.5 -9.7 -9.7 -7.9 0.4000 0.3999 0.4275 80.0 79.9 85.5 25.9 25.9 27.7

115 103.5 6000 -0.1500 -0.1501 -0.1226 -45.0 -45.0 -36.8 -14.6 -14.6 -11.9 0.4000 0.3999 0.4275 119.9 119.9 128.2 38.9 38.8 41.5

115 103.5 8000 -0.1500 -0.1501 -0.1227 -60.0 -60.0 -49.0 -19.4 -19.4 -15.9 0.4000 0.3999 0.4274 159.9 159.8 170.9 51.8 51.8 55.4

130 117 2000 -0.1500 -0.1501 -0.0411 -15.0 -15.0 -4.1 -4.9 -4.9 -1.3 0.4000 0.3999 0.5089 40.0 40.0 50.9 13.0 13.0 16.5

130 117 4000 -0.1500 -0.1501 -0.0413 -30.0 -30.0 -8.3 -9.7 -9.7 -2.7 0.4000 0.3999 0.5088 80.0 79.9 101.7 25.9 25.9 33.0

130 117 6000 -0.1500 -0.1502 -0.0414 -45.0 -45.0 -12.4 -14.6 -14.6 -4.0 0.4000 0.3998 0.5087 119.9 119.9 152.5 38.9 38.8 49.4

130 117 8000 -0.1500 -0.1503 -0.0416 -60.0 -60.1 -16.6 -19.4 -19.5 -5.4 0.4000 0.3997 0.5086 159.9 159.8 203.3 51.8 51.8 65.9

145 130.5 2000 -0.1500 -0.1501 0.0894 -15.0 -15.0 8.9 -4.9 -4.9 2.9 0.4000 0.3999 0.6395 40.0 40.0 63.9 13.0 12.9 20.7

145 130.5 4000 -0.1500 -0.1502 0.0893 -30.0 -30.0 17.8 -9.7 -9.7 5.8 0.4000 0.3998 0.6394 80.0 79.9 127.8 25.9 25.9 41.4

145 130.5 6000 -0.1500 -0.1502 0.0891 -45.0 -45.0 26.7 -14.6 -14.6 8.7 0.4000 0.3998 0.6393 119.9 119.9 191.7 38.9 38.8 62.1

145 130.5 8000 -0.1500 -0.1503 0.0889 -60.0 -60.1 35.5 -19.4 -19.5 11.5 0.4000 0.3997 0.6391 159.9 159.8 255.5 51.8 51.8 82.8  

Note: 1 cc = 0.0001 gon 274 




