
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1613/jair.4126

http://hdl.handle.net/10251/61602

Association for the Advancement of Artificial Intelligence

Climent Aunes, LI.; Wallace, R.; Salido Gregorio, MA.; Barber Sanchís, F. (2014).
Robustness and Stability in Constraint Programming under Dynamism and Uncertainty.
Journal of Artificial Intelligence Research. 49(1):49-78. doi:10.1613/jair.4126.



Robustness and Stability in Constraint Programming under
Dynamism and Uncertainty

Laura Climent LCLIMENT@DSIC.UPV.ES
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Abstract
Many real life problems that can be solved by constraint programming, come from uncertain

and dynamic environments. Because of this, the original problem may change over time, and thus
the solution found for the original problem may become invalid. For this reason, dealing with
such problems has become an important issue in the fields of constraint programming. In some
cases, there is extant knowledge about the uncertain and dynamic environment. In other cases, this
information is fragmentary or unknown. In this paper, we extend the concept of robustness and
stability for Constraint Satisfaction Problems (CSPs) with ordered domains, where only limited
assumptions need to be made as to possible changes. We present a search algorithm that searches
for both robust and stable solutions for CSPs of this nature. It is well-known that meeting both
criteria simultaneously is a desirable objective for constraint solving in uncertain and dynamic
environments. We also present compelling evidence that our search algorithm outperforms other
general-purpose algorithms for dynamic CSPs using random instances and benchmarks derived
from real-life problems.

1. Introduction

Constraint programming is a powerful tool for solving many artificial intelligence problems that
can be modeled as CSPs. Much effort has been spent on increasing the efficiency of algorithms
for solving CSPs, as reflected in the literature. However, most of these techniques assume that
the set of variables, domains and constraints involved in the CSP are known and fixed when the
problem is modeled. This is a strong limitation when we deal with real-life situations because these
may come from uncertain and dynamic environments. Therefore, both the original problem and its
corresponding modeled CSP may evolve over time because of changes in the environment, in the



ROBUSTNESS AND STABILITY IN CONSTRAINT PROGRAMMING UNDER DYNAMISM AND UNCERTAINTY

user or in other agents. In such situations, a solution that holds for the original model can become
invalid after changes in the original problem.

There are two main approaches for dealing with these situations: (i) reactive approaches, whose
main objective is to obtain a new solution as similar as possible to the previous solution (the solution
found before the changes occurred) in a efficient way, and (ii) proactive approaches, which use
knowledge about possible future changes in order to avoid or minimize their effects (see (Verfaillie
& Jussien, 2005) for a survey). Thus, proactive approaches are applied before the changes occur,
while reactive approaches are only applied when the changes invalidate the original solution.

Reactive approaches re-solve the CSP after each solution loss, which consumes computational
time. That is a clear disadvantage, especially when we deal with short-term changes, where solution
loss is very frequent. In addition, in many applications, such as online planning and scheduling, the
time required to calculate a new solution may be too long for actions to be taken to redress the sit-
uation. In addition, the loss of a solution can have several negative effects in the modeled situation.
For example, in a task assignment of a production system with several machines, it could cause
the shutdown of the production system, the breakage of machines, the loss of the material/object
in production, etc. In a transport timetabling problem, a solution loss, due to some disruption at a
point, may produce a delay that propagates through the entire schedule. All these negative effects
will probably entail an economic loss as well.

Proactive approaches try to avoid the drawbacks just stated and, therefore, they are highly val-
ued for dealing with problems in uncertain and dynamic environments. Given the advantages that
proactive approaches potentially offer, in this paper we restrict ourselves to this approach. Hereto-
fore two main types of proactive approaches have been considered, which can be distinguished on
the basis of the characteristics of the solutions that they obtain, which are called robust and flexible
(see Section 2). In an important survey on constraint solving in uncertain and dynamic environments
(Verfaillie & Jussien, 2005), the authors mention the possibility of developing proactive strategies
that combine the solution features of robustness and flexibility. They state: “The production of
solutions that are at the same time robust and flexible, that have every chance to resist changes and
can be easily adapted when they did not resist, is obviously a desirable objective.” In this paper, we
present an algorithm that meets the objective of combining solution robustness and stability. The
solution feature of stability is a special case of flexibility.

Many proactive approaches proposed in the literature assume the existence of knowledge about
the uncertain and dynamic environment (see Section 3). In these cases it is difficult to character-
ize the robustness of the solutions when detailed information about possible future changes is not
available. We consider situations where there is an added difficulty stemming from the fact that
the only limited assumptions about changes can be made. Our discussion focuses on CSPs with
ordered and discrete domains that model problems for which the order over the elements of the
domain is significant. In these cases, a common type of change that the problems may undergo is
restrictive modifications over the bounds of the solution space. The motivation for these limited
assumptions can be found in (Climent, Wallace, Salido, & Barber, 2013). Examples of real-life
problems that exhibit this type of change are: temporal reasoning-based problems (time delays),
spatial and geometric reasoning problems (measurement errors), and design problems (uncertainty
in the data).

In this paper, we present an algorithm that searches for solutions to CSPs with ordered domains,
which are robust and are also stable because they can often be repaired using a value of similar
magnitude if they undergo a value loss.
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The next section recalls some general definitions. Section 3 gives a brief account of earlier
proactive procedures. Section 4 presents a new conception of robustness and stability when there
exists an order over the elements of the domain. Sections 5 and 6 describe the main objective for
finding solutions that meet the stability and robustness criteria simultaneously. Then, in Section 7
the search algorithm that meets these objectives is explained. Section 8 presents a case study of
scheduling problems. Section 9 describes experiments with various types of CSPs, showing the
effectiveness of the present approach for finding solutions that are both stable and robust. Section
10 gives conclusions.

2. Technical Background

In this section we give some basic definitions that are used in the rest of the paper, following standard
notations and definitions in the literature.

Definition 2.1 A Constraint Satisfaction Problem (CSP) is represented as a triple P = 〈X ,D, C〉
whereX is a finite set of variablesX = {x1, x2, ..., xn},D is a set of domainsD = {D1, D2, ..., Dn}
such that for each variable xi ∈ X there is a set of values that the variable can take, and C is a
finite set of constraints C = {C1, C2, ..., Cm} which restrict the values that the variables can simul-
taneously take. We denote by DC the set of unary constraints associated with D.

Definition 2.2 A tuple t is an assignment of values to a subset of variables Xt ⊆ X .

If a tuple t is feasible, we call it s and Xs is the subset of variables that are involved in s. Then
X\Xs is the set of unassigned variables in s. The value assigned to a variable x in s is denoted as
s(x). In addition, we denote Ds(x) ⊆ D(x) to the subset of domain values of the variable x that
are consistent with s.

The number of possible tuples of a constraint Ci ∈ C is composed of the elements of the
Cartesian product of the domains of var(Ci):

∏
xj∈var(Ci)

Dj , where var(Ci) ⊆ X .

Definition 2.3 The tightness of a constraint is the ratio of the number of forbidden tuples to the
number of possible tuples. Tightness is defined within the interval [0,1].

The following are definitions of solution properties of problems that come from dynamic envi-
ronments.

Definition 2.4 The most robust solution of a CSP within a set of solutions is the one with the highest
likelihood of remaining a solution after a given set of changes in the CSP.

Definition 2.5 A flexible solution is anything (a partial solution, complete solution, conditional
solution, set of solutions, etc.) that, in case of change, can be easily modified to produce a solution
to the new problem (Verfaillie & Jussien, 2005).

A more specific concept of flexibility is the stability concept.

Definition 2.6 A solution f is more stable than another solution g if and only if, in the event of a
change, a closer alternative to f than to g exists (Hebrard, 2006).

2
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3. Related Work: Proactive Approaches

Several approaches have been proposed in the past for handling this type of problem, which can
be classified based on the kind of solutions they obtain. Thus, there are techniques that search for
robust solutions and others that search for flexible solutions (see (Verfaillie & Jussien, 2005) for
a survey). In this section we describe some techniques that search for robust solutions and their
limitations. Then we discuss the super-solution technique, which searches for stable solutions.

3.1 Searching for robust solutions

Many earlier approaches that search for robust solutions use additional information about the un-
certain and dynamic environment in which the problem occurs, and most often this involves proba-
bilistic representations. In one example of this type, information is gathered in the form of penalties
when values have been invalidated after changes in the problem (Wallace & Freuder, 1998). On the
other hand, in the Probabilistic CSP model (PCSP) (Fargier & Lang, 1993), there exists information
associated with each constraint, expressing its probability of existence. Other techniques focus on
the dynamism of the variables of the CSP. For instance, the Mixed CSP model (MCSP) (Fargier,
Lang, & Schiex, 1996) and posterior Uncertain CSP model (UCSP) (Yorke-Smith & Gervet, 2009)
consider the dynamism of certain uncontrollable variables that can take on different values of their
uncertain domains. Furthermore, the uncertainty in soft temporal constraint problems was analyzed
by introducing the Simple Temporal Problems with Preferences and Uncertainty (STPPUs) (Rossi,
Venable, & Yorke-Smith, 2006). The Stochastic CSP model (SCSP) (Walsh, 2002) also considers
probability distributions associated with the uncontrollable variables. The Branching CSP model
(BCSP) considers the possible addition of variables (with a certain associated gain) to the current
problem (Fowler & Brown, 2000).

In most of these models, the form of the algorithm is dependent on detailed knowledge about the
dynamic environment. For this purpose, a list of possible changes is required or there is an explicit
representation of uncertainty, often in the form of an associated probability distribution. As a result,
these approaches cannot be used if the necessary information is unknown. In many real problems,
however, knowledge about possible further changes is either limited or non-existent. Hence, there
is an important need for techniques that find robust solutions in this kind of environment. For
instance, CSPs with ordered domains are modeled as Weighted Constraint Satisfaction Problems
(WCSPs) by computing coverings in (Climent et al., 2013). Instead of requiring extra detailed
dynamism information, the authors only make limited assumptions concerning the changes that
might occur, which is related to the nature of CSPs with ordered domains. Specifically, dynamism
is assumed to take the form of restrictions on the bounds of the solution space. In this paper, we
make the same assumptions about the dynamism. The previous WCSP modeling approach computes
robustness based on feasible neighbours that compose a covering that surrounds the analyzed value
with respect to each constraint boundary. Thus, in cases in which a neighbour is feasible with respect
to one bound but is not for another bound, this neighbour is not feasible in the solution space. For
this reason, this approach obtains robustness approximations in problems in which there is a high
relation between constraints. On the other hand, the algorithm described in this paper computes
feasible assignments with respect to the entire solution space, which avoids the weakness of the
WCSP modeling approach explained above. A comparison between these approaches is found in
Section 9.

3
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3.2 Searching for super-solutions

In (Hebrard, 2006) the author presents techniques that search for stable solutions of a certain type,
called super-solutions. The goal is to be able to repair an invalid solution after changes occur, with
minimal changes that can be specified in advance. Since this is another approach that does not
require detailed additional information about changes in a problem, we need to evaluate it along
with the search algorithm introduced in this paper.

Definition 3.1 A solution is an (a, b)-super-solution if the loss of values of a variables at most, can
be repaired by assigning other values to these variables, and changing the values of b variables at
most (Hebrard, 2006).

For CSPs, a major focus has been on finding (1,0)-super-solutions. This is because of the high
computational cost of computing b > 0 or a > 1. This is one of the reasons why we analyze
this particular super-solution case in this paper. The other reason is given by (Verfaillie & Jussien,
2005), where the authors state that a desirable objective is to “limit as much as possible changes in
the produced solution”, which motives the search of (a, 0)-super-solutions. In general, it is unusual
to find (1,0)-super-solutions where all variables can be repaired. For this reason, in (Hebrard, 2006)
the author also developed a branch and bound-based algorithm for finding solutions that are close
to (1,0)-super-solutions, i.e., where the number of repairable variables is maximized (also called
maximizing the (1-0)-repairability).

4. Extending Robustness and Stability to CSPs with Ordered Domains

In this section we extend the original definition of solution robustness (Definition 2.4) and solution
stability (Definition 2.6) to consider CSPs with ordered domains, where only limited assumptions
are made about changes in the problem that are derived from their inherent structure. Given this
framework and therefore the existence of a significant order over the values in the domains, it is
reasonable to assume that the original bounds of the solution space can only be restricted or relaxed,
even if this does not cover all possible changes. The bounds of the solution space are delimited by
the domains and constraints of the CSP. Note that the possibility of solution loss only exists when
changes over the original bounds of the solution space are restrictive. Given these assumptions
and considering also that there is no further detailed information about changes over the CSPs, we
extend the Definition 2.4 for this framework as follows.

Definition 4.1 The most robust solution to a CSP with ordered domains without extra detailed
dynamism data is the solution that is located as far away as possible from the bounds of the solution
space.

Furthermore, the definition of stable solution for CSPs with ordered domains can be made more
precise because it is possible to define a more specific notion of “closeness” between two solutions
due to the existent order over the domain values. In (Hebrard, 2006), the author measures the level of
dissimilarity of two solutions by counting the number of variables that take different values in both
solutions, i.e. the Hamming distance (

∑
i(s1i 6= s2i)). Later, in (Hebrard, O’Sullivan, & Walsh,

2007), the authors consider another similarity measure: the Manhattan distance. This measure uses
the sum of the absolute difference of values (of each variable) for both solutions (

∑
i |s1i − s2i|).

4
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Note that unlike Hamming distance, Manhattan distance requires an order over the elements in order
to calculate the absolute difference of the values.

In this paper, we apply the Manhattan distance to the notion of stable solutions for CSPs with
ordered domains. Specifically, we assume that a solution f is more stable than another solution g if
and only if, in the event of a change, an alternative solution to f exists and, either (i) the Manhattan
distance between f and this solution is lower than any of the Manhattan distances between g and
any of its alternative solutions, or (ii) g does not have an alternative solution. In the following,
when we use the term distance between values we refer to the Manhattan distance. Furthermore,
we will present an extension of Definition 3.1 for CSPs with ordered domains by fixing a maximum
value distance desired, called c.

Definition 4.2 A solution is an (a, b, c)-super-solution if the loss of values of a variables at most,
can be repaired by assigning other values to these variables whose value difference with respect
the previous corresponding values is lower or equal to c, and this involves changing the values of b
variables at most.

Therefore, the above definition also holds for (1, 0, c)-super-solutions and for maximizing (1, 0,
c)-repairability, which is the main focus of stability analysis in this paper.

5. Searching for robust and stable solutions: general main objective

In order to find robust and stable solutions for CSPs with ordered domains under our assumptions,
we combine the robustness and stability criteria presented in Section 4.

As mentioned, a distance function is required for the search of robust solutions in this frame-
work. However, a measure of the distance from the dynamic bounds of the solution space is not
always obvious or easy to derive, since the bounds are delimited by the domains and the constraints
of the CSP, and the latter may be extensionally expressed. However, some deductions about mini-
mum distances to the bounds can be made based on the feasibility of the neighbours of a solution.
This idea is first motivated with a very simple example and then it is formalized.

Example 5.1 Figure 1 shows two solution spaces (one convex and the other non-convex) whose
dynamic bounds are marked by contiguous lines. The most robust solutions are highlighted. Note
that for the most robust solutions (located as far as possible from the dynamic bounds), there are
two contiguous feasible neighbours on both sides of each assignment (discontinuous lines).

From this example, we can conclude that we can only ensure that a solution s is located at a
distance d from a bound in a certain direction of the n-dimensional space if all the tuples at distances
lower or equal to d from s in this direction are feasible. Therefore, the number of feasible contiguous
surrounding neighbours of the solution is a measure of the robustness of the solution in the face of
restrictive changes that affect the original bounds of the solution space. In addition to fulfilling the
main objective of finding solutions whose values have a high number of feasible neighbours close to
each assignment, this criterion can be used to obtain solutions with high stability. This is because if
the value assigned to a variable has at least one of these feasible neighbour values, then this variable
is repairable. That is, if its assigned value is lost, it can easily be repaired by assigning the neighbour
value (since this value is consistent with the rest of the values of the assignment). Regarding the
similarity notion referred to in Section 4 and Definition 4.2, note that the difference between the lost

5
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(a) Convex Solution Space (b) Non-convex Solution Space

Figure 1: Most Robust solutions for different solution spaces.

value and the repairable value is very low, since they are immediate neighbours. In fact, their value
difference is one, which is the minimum possible.

We denote by Nk(x, v, s,⊕) the set of feasible contiguous neighbour values of the value v that
have differences not greater than k (k ∈ N) with respect v in increasing, or decreasing, or both
directions with respect to the order relationship. Value v is a feasible value for variable x in the
feasible partial assignment s. Here, when we say that other values are feasible, we mean that they
are also feasible with respect to s. (Recall that we use Ds(x) ⊆ D(x) the subset of domain values
that are consistent with the feasible partial assignment s.) The list of operators ⊕ is composed of a
set of paired elements, or operator pairs. Each operator pair is denoted as ⊕i ∈ {{>,+}, {<,−}}.
The operator pairs fix the order directions to analyze. Thus, the set {>,+} refers to values greater
than v (increasing direction) and the set {<,−} refers to values lower than v (decreasing direction).
For each operator pair, the operator in position j is referenced as ⊕ij . For instance, if the list of
operators is ⊕ = {{>,+}, {<,−}}, the operator pair ⊕1 references {>,+} and the operator ⊕12

references the operator +. Given this notation, we define Nk(x, v, s,⊕) as:

Nk(x, v, s,⊕)= {∃⊕i, w ∈ Ds(x) : w ⊕i1 v ∧ |v − w| ≤ k ∧ (1)

∀ ⊕z ∀j ∈ [1 . . . (|v − w| − 1)], (v ⊕z2 j) ∈ Ds(x)}

The first condition of Equation 1 ensures that the value w is greater or lower than v according
to the operator ⊕i1 ∈ {>,<} and that the distance between these values is less or equal to k. The
second condition ensures that all values that are closer to v than w are also feasible values for s. If
at least one of them is not, the value w cannot belong to Nk(x, v, s,⊕). As mentioned previously,
the set of feasible neighbours of a value has to be contiguous. Otherwise, there is an infeasible
space between this value and another feasible value. For instance, in Figure 1(b) the value 5 does
not belong to Nk(y, 2, {x = 2},⊕) for any ⊕ or k because the value 4 is not a feasible value and
therefore it is outside the bounds of the solution space.

6
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For the general case of CSPs with ordered domains in which we assume that all the bounds
are dynamic, the desirable objective is to find contiguous surrounding feasible neighbours on both
sides. For this reason ⊕ = {{>,+}, {<,−}}. For this list of operator pairs, the last condition of
Equation 1 checks that all the values in both directions that are closer to v than w, are also feasible
values for s. For instance, in Figure 1(b), Nk(y, 2, {x = 2}, {{>,+}, {<,−}}) = {1, 3} for any k
value. Note that these neighbours are on both sides the value 2 with respect to the y axis. In Section
8, we will show a specific case for which it is desirable to apply only one operator pair due to the
nature of the problem.

To apply Equation 1 to domains that are not ordered in Z, a monotonic function has to be
applied in order to map the elements (it must also be an order preserving function). For instance, if
we consider D = {freezing, cold, mild, warm, hot, boiling}, a monotonic function that assigns
greater values to values with higher temperatures could be defined. For example, f(freezing) =
1, f(cold) = 2, f(mild) = 3, f(warm) = 4, f(hot) = 5 and f(boiling) = 6.

6. Objective Function

In Section 5 we stated that the main desirable objective for a selected value is to have as many
contiguous feasible neighbours in a certain direction, because they determine the minimum distance
of this value from the bound in this direction. For approximating the distance of several values
assigned (partial or complete assignment), we compute the sum of the number neighbours of each
value. Therefore, we define an objective function of our search algorithm, as the sum of the size of
Nk(x, v, s,⊕) (denoted |Nk(x, v, s,⊕)|) for each variable x ∈ X . If s is an incomplete assignment,
we calculate the maximum |Nk(x, v, s,⊕)| for each v ∈ Ds(x) of each unassigned variable x ∈
X\Xs (upper bound). Note that the maximum size of the set of neighbour values for each variable is
|⊕ | ∗k, where |⊕ | is the number of pair operators. Thus, the maximum size of the set of neighbour
values is 2k if ⊕ is composed of two operator pairs or k if ⊕ is composed of only one operator pair.
Note also that it is not necessary to check all the values ofDs(x) if, for at least one of them, the size
of the set is the maximum possible. In the following equation, we formalize the objective function
that is used by our search algorithm.

f(s, k,⊕) = {
∑

x∈X\Xs

max{|Nk(x, v, s,⊕)|,∀v ∈ Ds(x)}+
∑
y∈Xs

|Nk(y, s(y), s,⊕)|} (2)

For Example 5.1, for the most robust solutions of both Figures 1(a) and 1(b) (highlighted solu-
tions) f(s, k, {{>,+}, {<,−}}) = 4, for k >= 1, since every value assigned to each solution has
two contiguous neighbours on both sides.

Next, we give a formal rationale for using the total number of neighbours of the solution (sum
of feasible surrounding neighbours of each value of the solution) as a measure of robustness.

For k = 1, in a convex solution space, each value has either zero, one or two feasible neigh-
bours. Here we can discount the case of zero neighbours because if an assignment has zero feasible
neighbours, then it must be part of a singleton domain, and it will be part of all solutions. So we
need only consider values with one or two feasible neighbours.

In this case, a solution with a greater sum is one whose assignments have more feasible neigh-
bour pairs. This can be easily seen if we consider the difference between a solution all of whose
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values have only one feasible neighbour and any other solution; this difference will be equal to the
number of feasible neighbour pairs associated with the latter’s assignments.

Proposition 1. If we assume that having two feasible neighbours confers greater robustness
than having one and that the probabilities of single changes are independent, then a solution with a
greater feasible neighbour-sum than another will also be more robust, and vice versa.

In the non-convex case, it is unfortunately possible for one assignment to have zero feasible
neighbours, while other assignments to the same variable have one or two. In this case, we cannot
assume Proposition 1. However, as the number of variables in the problem increases, it becomes
increasingly unlikely that a variable with an assignment having zero feasible neighbours will be
associated with the largest neighbour-sum for the remaining variables.

Regarding the measure of stability according to Definition 4.2 for a = 1 and b = 0, finding
solutions that maximize (1, 0, k)-repairability means maximizing the number of variables that can
be repaired without modifying any other variable and whose repairable value is a neighbour at a
distance less or equal to k. However, to obtain robust solutions we maximize the sum of neighbours
of each value of the solution. Note that even if this robustness maximization criterion is not identical
to the optimum one for maximizing the number of repairable variables, as mentioned, when the
number of variables in the problem increases, it becomes increasingly unlikely that a non-repairable
variable will be associated with the largest neighbour-sum for the remaining variables. So in this
work we will use the same technique for finding robust and stable solutions for CSPs with ordered
domains. Nevertheless, the basic units of measure for both criteria are different in this framework.

7. Search Algorithm

In this section we present an algorithm for finding robust and stable solutions according to the main
objective described in Section 6. For this purpose, we have incorporated this optimization criterion
into a Branch & Bound algorithm (Algorithm 1) that maximizes the objective function f(s, k,⊕)
(see Equation 2). As mentioned, this function sums |Nk| of each assigned variable and the maximum
possible |Nk| of each unassigned variable. Note that this computation is an upper bound of the final
total number of feasible contiguous neighbours of the solution.

Algorithm 1 (B&B-Nk) is an ‘anytime’ algorithm that uses an inference process and prunes
the branches whose objective function value is lower or equal to the current maximum function
value obtained, referred to as ub (upper bound). The process stops when all the branches have been
explored or pruned, providing the solution s with the maximum f(s, k,⊕). On the other hand, we
can limit the search time and therefore the quality of the best solution found by fixing a time cutoff.
Of course, the more time Algorithm 1 spends searching, the more robust and stable the solution
provided can be. In addition, we compute the maximum possible objective function value, which
is the maximum number of neighbours for each variable multiplied by the number of variables of
the CSP, denoted as fMax. Thus, if the objective function value of a new solution found is equal to
fMax, the algorithm stops, since this solution is optimal.

We have implemented the Branch & Bound algorithm using a Geometric restart strategy (Walsh,
1999) in order to reduce the repetition of fails in the search due to very early wrong assignments
(thrashing). Thus, each time the number of failures (referenced as nbF ) reaches the number-of-
fails cutoff value condition (C) that is checked in Algorithm 3, the algorithm restarts the search
from scratch, except for the constraint weights stored by the dom/wdeg heuristic variable selec-
tion (Boussemart, Hemery, Lecoutre, & Sais, 2004). The value of the number of fails cutoff is

8
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Algorithm 1: B&B-Nk: Branch & Bound anytime algorithm
Data: P = 〈X ,D, C〉,⊕, k, scale,m, time cutoff (optional)
Result: s, Nk, ub
s← ∅; // Partial assignment
Xs ← ∅; // Set of variables assigned
Nk ← ∅; // Set of contiguous surrounding neighbours
ub← 0; // Maximum f(s, k,⊕) for the solutions
fMax ← | ⊕ | ∗ k ∗ |X |;
i← 1;
GAC3-Nk(P, s,Xs,Nk,⊕, k, ub);
repeat

if restarting-scratch ∧ new solution found then
i← 1;

C ← scale ∗mi; //number of fails cutoff
i← i+ 1;

until time cutoff ∨ not MGAC3-Nk(P, s,Xs,Nk,⊕, k, ub, 0, C, fMax) ;

increased geometrically in Algorithm 1 according to the scale factor (referred to as scale) and the
multiplicative factor (referred to as m). We have implemented two different options to carry out
after a solution is found. In the first, called restarting-completion, when the first solution is found,
the algorithm continues to search until completion (this is done by assigning a huge number repre-
senting∞ to the number of fails cutoff). In the second option, called restarting-scratch, after each
solution found, the algorithm restarts the search from scratch and also restarts the number of fails
cutoff computation (the constraint weighs remain the same). For instances with very large domain
sizes, this restarting option can be effective because it avoids spending a large amount of time in
a specific branch. The latter happens when Algorithm 1 checks many domain values of variables
located at low levels of the search tree, because the objective function of the partial assignment is
better than the current maximum, ub. In this case, if there exists a time cutoff, Algorithm 1 could
not analyze other branches of the tree that may contain solutions of better quality.

The inference process is carried out by Algorithm 2 (GAC3-Nk), which is an extension of the
well-known GAC3 (Mackworth, 1977). Some specific notation has been included, as V ar(c), which
is the scope of c ∈ C. The original seekSupport function of GAC3 searches for a support for each
domain value. We have modified this function slightly by providing the set of values to be analysed
as a parameter of the function. Thus, if any of these values is deleted because there does not exist any
consistent support with respect the partial assignment, seekSupport returns False. This function
is first called with the values of the domain of the variables (for checking if the partial assignment
s is GAC3) and later with Nk just for assigned variables (for checking if each Nk(x, s(x), S) is
GAC3 with respect s). In order to ensure the contiguity of the values inNk, Algorithm 2 checks the
consistency of subsets of Ni ⊆ Nk, where i is equal to one initially, and is increased by one unit
until at least one of the values of Ni is inconsistent or i reaches the value of k. After composing
the set of contiguous neighbour values that are GAC3 with respect s, Algorithm 2 analyzes if the
objective function f(s, k,⊕) is greater than ub. If it is not, or s is not GAC3, returns false.

Algorithm 3 (MGAC3-Nk) performs a Maintaining GAC3 procedure by assigning to each vari-
able x ∈ X a new value v ∈ D(x), until the value selected is GAC3-Nk with respect s. We have
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Algorithm 2: GAC3-Nk: Global Arc Consistency algorithm
Data: P, s,Xs,Nk,⊕, k, ub, nbF
Result: D,Nk, nbF
Q← {(x, c),∀c ∈ C,∀x ∈ V ar(c)} // V ar(c) is the scope of c
while Q 6= ∅ do

(x, c)← takeElement(Q);
seekD ← seekSupport(x,D(x), c); // Found any D(xi) after GAC3 for c?
if |D(x)| = ∅ then

nbF ← nbF + 1; // number of failures
return False

if not seekD then
Q← Q ∪ {(y, c′),∀c′ ∈ C ∧ c′ 6= c ∧ ∀x, y ∈ V ar(c′) ∧ x 6= y}

if x ∈ Xs then
i← 1;
repeat

update Ni(x, s(x), s,⊕) applying Equation 1;
seekN ← seekSupport(x,Ni(x, s(x), s,⊕), c);
i← i+ 1;

until seekN = False ∨ i > k ;
Nk(x, s(x), s,⊕)← Ni(x, s(x), s,⊕)

return f(s, k,⊕) > ub // See Equation 2

implemented two value selection heuristics: lexicographical order and selection of the value that
maximizes |Nk(x, v, s,⊕)|, starting from intermediate values. There are some real life problems
for which the lexicographical selection order is effective in finding feasible solutions quickly. An
example is scheduling problems, whose domain values represent time units; hence the importance
of selecting low values in order not to exceed the maximum fixed makespan. However, if it is not
important to select low values, the heuristic that starts with intermediate values may offer better
results because it is selecting values that maximize the objective function at the current node of the
search tree. Furthermore, since search starts with intermediate values, the likelihood of selecting
values located far from the domain bounds is higher.

Algorithm 3 is also responsible for updating the set of assigned variables Xs, the partial assign-
ment s and the maximum objective function value ub (for each solution found). Furthermore, it
stores the domains and the set of neighbours of all the variables before making an assignment. Note
that after a variable x is assigned, D(x) contains a single value that is the value assigned to x. If
Algorithm 2 (GAC3-Nk) returns false, then Algorithm 3 (MGAC3-Nk) carries out the backtracking
process and also restores the domains and set of neighbours of all the variables.

To reduce computational time when we deal with CSPs with convex domains, we have im-
plemented Bounds Arc Consistency for discrete CSPs (Lhomme, 1993). The main feature of this
consistency technique is that the arc consistency is restricted with respect to the bounds of each
convex domain. Thus, including it in the search algorithm only affects to the seekSupport func-
tion, which instead of seeking for a support for all the set of values, just checks the minimum and
maximum bounds. Note that this implementation is not necessary for the search of robust and sta-
ble solutions; however it allows a significant reduction of the search time. We only apply bounds
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Algorithm 3: MGAC3-Nk: Maintaining Global Arc Consistency
Data: P, s,Xs,Nk,⊕, k, ub, nbF,C, fMax

Result: s,Nk, ub
select x ∈ X\Xs; // dom/wdeg heuristic
Xs ← Xs ∪ x;
save D and Nk;
while |D(x)| 6= ∅ ∧ nbF < C do

select min(v) ∈ D(x); // Heuristic 1: lexicographical value order
select v ∈ D(x),max{|Nk(x, v, s,⊕)|} starting by intermediate values; // Heuristic 2
s← s ∪ {x = v} D(x)← v;
if GAC3-Nk(P, s,Xs,Nk, k, ub, nbF ) then

if Xs = X then
// New solution found
ub← f(s, k,⊕);
if ub = fMax then

return True // Best possible sum achieved
C ←∞; // restarting-completion
return False // restarting-scratch

if MGAC3-Nk(P, s,Xs,Nk, k, ub, nbF,C, uB) then
return True

restore D and Nk;
s← s\{x = v};

Xs ← Xs\x;
return False

consistency to the tentative values of the assignment but not to their set of neighbours, since they
require a complete consistency check. Otherwise there could exist infeasible gaps, which would
break the contiguity requirement that ensures minimum distances to the bounds.

8. Case Study: Searching for robust and stable schedules

There are some types of real life problems whose structure can provide us with specific information
about their dynamism. In this section we analyze a well known type of problem from the literature:
scheduling problems. These problems can be converted into satisfiability problems by fixing a
maximum makespan, and they can then be modeled as CSPs. The CSP modeling usually consists
of associating the start or end time of each task with a particular variable (in this paper we use the
start time). The domain associated with a variable represents the possible time units, and by means
of them it is possible to fix a maximum desired makespan. Finally, the duration of the tasks and
their order (if it exists) can be fixed by means of CSP constraints.

In this section, we will first explain some robustness scheduling measurement units, and then
we describe the objective function for CSPs that model scheduling problems and give an example
of its application.

11
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8.1 Robustness Measurement in Scheduling

In this section, we introduce several criteria for measuring the scheduling robustness. There are two
main factors that enhance the capability of a schedule to absorb unexpected delays in its activities:
the number of buffers and their duration. Ideally, the slack should be as large as possible because the
larger the buffers are, the longer the delays that they are able to absorb. For this reason a straight-
forward measure of robustness, proposed in (Leon, Wu, & Robert, 1994), is the slack average in the
schedule. The combination of the duration of the buffers and their distribution along the schedule
provides another robustness measure denoted as Rs

slack. It is a slight variant of a measure introduced
in (Surico, Kaymak, Naso, & Dekker, 2008) that consists in maximizing the slack average (avg)
and minimizing the standard deviation (std) for a schedule s. For adjusting the contribution of the
standard deviation term to the overall measure, the authors use the parameter α ∈ [0.2, 0.25].

Rs
slack = avg(slack)− α std(slack) (3)

Another means of measuring the robustness of a system, defined in (Kitano, 2007) is related
to its resistance to perturbations having a certain probability of occurrence. This approach was
extended by (Escamilla, Rodriguez-Molins, Salido, Sierra, Mencı́a, & Barber, 2012) to scheduling
problems in which the probabilities of task delays are unknown. The robustness measure is denoted
as Rs

F,Z , where Z is the discrete set of unexpected delays in the duration of tasks, F measures if the
schedule s is still feasible after the disruption (F (z) = 1 when is satisfiable, otherwise F (z) = 0)
and p(z) = 1

|z| ,∀z ∈ Z is the probability for an instance z ∈ Z (i.e. all delays are considered to
have the same probability of occurrence).

Rs
F,Z =

∑
Z

p(z) ∗ F (z) (4)

8.2 Objective Function for Scheduling

In scheduling problems, the fact that domain values represent time units has implications with re-
spect to measures of robustness and stability. For these problems, lower neighbour values cannot
be used for replacing a lost value due to schedule because the time units represented have already
happened. Thus, if there is an incident, and the time point t is not available, neither are the values
lower than t. Therefore, having lower feasible neighbours does not improve the robustness nor the
stability of a solution of a CSP that models a scheduling problem (since they cannot absorb delays
nor be used as repairable values). Given these characteristics, the main desirable objective is to
search for neighbours greater than the value assigned. To do this, we fix the set of operators to
⊕ = {{>,+}} for scheduling problems. This is illustrated below.

Example 8.1 We consider a toy scheduling problem with two tasks: T0 and T1. Both have a du-
ration of two time units and they must be executed in the order listed. The maximum makespan
allowed is six time units. In Figure 2 we can see the associated CSP model and its solution space.
The variables X0 and X1 represent the start times of tasks T0 and T1, respectively. The domain
of both variables (represented by discontinuous lines) is [0 . . . 4], which preserves the maximum
makespan of six time units (the maximum start time of a task is the maximum makespan minus the
duration of the aforesaid task). There is one constraint controlling the execution order of the tasks
(T0 must start before T1), which is C0 : X1 ≥ X0 + 2. The solution space is represented by a dark
gray area, where there are six solutions (black dots).
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Figure 2: CSP model associated with Example 8.1 and its solution space.

If no specific information is given about the dynamic environment, which schedule is the most
robust? As stated in Section 8.1, the greater the number of time buffers and the greater their du-
ration, the more robust the schedule is. But how can we determine which solution of the modeled
CSP meets these requirements? The answer is obtained by determining the feasible contiguous
neighbours with greater values, located at distances less or equal to k from the solution. However,
depending on the value of k, we will either prioritize the selection of schedules with a large number
of time buffers or we will prioritize the selection of schedules with slack times of longer duration.
The number of greater feasible neighbours associated with a value of a variable corresponds to the
total amount of slack that is located after the task represented by this variable. Thus, the slack is
able to absorb a delay in the previous task as long as itself, without modifying the other tasks of the
present schedule (robustness feature). Furthermore, if the slack following a task is not sufficient to
absorb a delay, the start of the following task can be delayed (after repairing the broken assigned
value) if there is a long enough buffer associated with this later task (stability feature).

For the above example, which is a two-dimensional CSP representing a scheduling problem
with two tasks, there are three schedules that are most robust according to the criteria stated above.
If we maximize the sum of distances for greater values located at distance one (k = 1) from each
value of the assignment, we obtain the solution shown in Figure 3(a), whose sum is f(s0, k = 1, {>
,+}) = 1 + 1. The first number is Nk(x0, v0, s, {>,+}) and second is Nk(x1, v1, s, {>,+}),
where v0 and v1 are the values assigned to the variables x0 and x1 respectively. Note that the
sums for the neighbours greater than the solution values and located at distance one from them are
f(s1, k = 1, {>,+}) = 1 + 0 and f(s2, k = 1, {>,+}) = 0 + 1, respectively. In the following (a)
figures, the greater neighbours are indicated by an elipse, with an arrow pointing to the solution (the
circled dot). In the associated (b) figures, the schedules equivalent to the solutions marked in (a)
are shown. Note that the greater neighbours indicated in the (a) figures correspond to the slack in
the (b) figures. For instance, in Figure 3(b) each task has an associated slack of duration one, which
corresponds to the existence of one greater neighbour for each value assignment in Figure 3(a).

On the other hand, if we maximize the sum of greater neighbors values that are located at
distance k > 1 from each value of the assignment, the three solutions represented in Figures 3(a),
4(a) and 5(a) are all classified as best solutions according to our objective function. The computation
of the sum of neighbours located at distance lower or equal to k, for k > 1 is: f(s0, k > 1, {>
,+}) = 1 + 1 (Figure 3(a)), f(s1, k > 1, {>,+}) = 2 + 0 (Figure 4(a)) and f(s2, k > 1, {>
,+}) = 0 + 2 (Figure 5(a)). Note that the schedules in Figures 4(b) and 5(b) each have only one
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time buffer, but its duration is two time units, unlike the schedule represented in Figure 3(b) that
has two time buffers of one unit each. Thus, by fixing k = 1 we prioritize the selection of a high
number of time buffers, while for greater k values, we prioritize the sum of the total slack duration
and in this case the distribution of the slack may not be optimal.
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X1

4

3

2

(a) Solution space.

T0

0        1          2          3           4           5          6                                                                   

Slack T1 Slack

(b) Schedule of the marked solution.

Figure 3: Robust schedule s0 = (x0 = 0, x1 = 3) for Example 8.1 and its greater neighbours for
k >= 1.
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Figure 4: Robust schedule s1 = (x0 = 0, x1 = 4) for Example 8.1 and its greater neighbours for
k > 1.
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Figure 5: Robust schedule s2 = (x0 = 0, x1 = 2) for Example 8.1 and its greater neighbours for
k > 1.

If we consider the stability of the solutions, small modifications in the solutions are always
preferred. In this case, by reassigning the start time of a task to a closer greater neighbour, we
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also maximize resistance to future changes. Therefore, the search for feasible greater neighbours
(which introduces slack into the schedule) serves to improve both the robustness and stability of the
obtained schedules.

The search of schedules with buffers that are up to k time units can also be achieved with model
reformulation techniques. This is achieved by adding two variables to each original variable (the
variables that represent the start time of the tasks). One variable represents the slack that is following
the task and the other variable represents the sum of the slack and the original starting time. For
instance, let pi be the starting time of the task xi. Thus, we would add the constraint p′i = pi + si,
where si represents the slack associated to task xi. In addition, depending on the maximum bound
of the slack desired, another constraint may be added, such as si ≤ k. In this case, the delay is up to
k time units. In addition, an objective function that express the goal of maximizing the total slack
must be defined.

The main advantage of the approach presented in this paper over these alternatives for schedul-
ing problems is that our approach can be applied when all slack-values require a consistency check.
This requirement is necessary in scheduling problems where intermediate non-valid slack values
are possible. Examples of this type of problem are scheduling problems with limited machine
availability (see for instance (Schmidt, 2000)). In these cases, some machines are unavailable in
certain time intervals; for this reason, tasks that require these resources cannot be executed in such
time units. The same happens with some scheduling with operators, where the workers have some
breaks during the day.

9. Experimental Results

In this section, we present results from experiments designed to evaluate the performance of Algo-
rithm 1. Solutions obtained by the restarting-completion procedure are referred to as “neighbour
solutions” in the graphs and tables throughout this section. Solutions obtained by restarting-scratch
are referred to as “neighbour solutions(R)”. Experiments were done with random problems and
benchmarks presented in the literature. The random instances generator (RBGenerator 2.0), the
benchmarks and the parser for the XCSP instances can be found on Christophe Lecoutre’s web
page 1.

In addition to assessing search Algorithm 1, we also evaluated two other proactive methods
that do not require specific additional information about the dynamism. One of them is the WCSP
modeling technique (Climent et al., 2013), which is based on the same dynamism assumptions
as in the present work. The solutions obtained by this technique are referred to as “WCSP-mod
solutions”. We have not evaluated this approach with scheduling problems because it does not
consider the adaptation for scheduling problems that we have presented in Section 8.2 (neighbouring
values that are lower in magnitude are not considered). The other proactive approach maximizes
the (1,0)-repairability (number of repairable variables for (1,0)-super-solutions (Hebrard, 2006)).
To implement this technique, we have modified Algorithm 1 (B&B-Nk) by exchanging MGAC3-
Nk and GAC3-Nk algorithms for MAC+ and GAC+ (Hebrard, 2006), respectively. The solutions
obtained by this technique are referred to as “(1,0)-super-solutions”. In addition, simple solutions
(referred to as “simple solutions”) have been computed by a normal CSP solver, in order to detect
whether there are cases in which all solutions have similar robustness and/or stability. We would

1. http://www.cril.univ-artois.fr/ lecoutre/index.html
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like to mention that abbreviations of the names of these approaches are used in the tables due to
space limits.

In addition, we added the geometric restart (restarting-completion) and bounds consistency tech-
niques explained in Section 7 to the simple CSP solver and the super-solutions solver in order to
provide them with these computational advantages. For the approach that models CSPs as WCSP,
we have used the same solver as in (Climent et al., 2013): ToulBar22. It was necessary to use a
different solver for evaluation of this technique because this approach requires a WCSP solver. For
these other approaches evaluated, values were selected in lexicographical order and a time cutoff
was fixed to 100 seconds. Experiments were run on an Intel Core i5-650 Processor (3.20 Ghz). In
addition, for the geometric restart, the scale factor was fixed to 10 and the multiplicative factor to
1.5.

The evaluation is based on the two main features of solutions obtained by proactive approaches:
stability and robustness. In all the tables of this section, the best robustness/stability results obtained
are marked in bold. In accordance with the assumptions laid out in the previous sections, we use the
robustness and stability measures described in Section 4. Here, we note that the simple CSP solver
and super-solutions approaches do not consider the same dynamism assumptions as the WCSP
modeling technique and the approach presented in this paper. That is to say, they do not consider
possible future restrictive modifications over the bounds of the solution space of CSPs with ordered
domains. Regarding stability, only the technique that maximizes the (1,0)-repairability searches
for stable solutions according to Definition 3.1. However, as mentioned above, in this paper we
analyze a more precise stability concept for CSPs with ordered domains, the (1,0,c)-repairability
(see Definition 4.2).

9.1 Robustness Analysis with general CSPs

In this section we analyze the robustness and stability of solutions obtained over a wide range of
tightness values. For this purpose, random CSPs were generated by RBGenerator 2.0, which have
non-convex constraints represented extensionally. Because of the non-convexity of the domains, the
bounds consistency technique cannot be used. The CSPs generated have 25 variables with domain
size 30 and 200 binary constraints. Domain values are integer values in the interval [0, 29]. The
tightness values analyzed are 0.1, 0.2, and 0.3. (Note: 0.34 is the critical value of the tightness
of this CSP typology.) For each tightness we generated 10 random instances that were solved by
Algorithm 1 for k = 1. Because in this analysis we deal with the general case of CSPs with
ordered domains (see Section 5.1) we have fixed the set of operators for our search algorithm to
⊕ = {{>,+}, {<,−}} and the value selection is the heuristic 2, which maximizes |Nk(x, v, s,⊕)|
starting from intermediate values.

As mentioned previously, it is not usually feasible to compute the complete set of solutions
of a CSP. For this reason, in order to measure the robustness of the solutions obtained with the
four approaches, we have sampled the closest surrounding neighbours (k = 1). Thus, if a closest
surrounding neighbour is not a solution of the CSP, it means that the analyzed solution could be-
come infeasible after a change of magnitude 1 or greater to the original bound/s that invalidate such
neighbour. On the other hand, if the neighbour is a solution of the CSP, this means that this restric-
tive modification would not invalidate the analyzed solution. Therefore, satisfiability checking of a

2. http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
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random sample of the neighbours of the solutions provides an estimation of the likelihood that the
solutions will remain valid, that is to say, an estimation of their robustness.

In making a random sampling of the neighbourhood, we have made a certain number of modifi-
cations of magnitude k over the variable assignments. The number of variable assignments modified
in each sample is denoted as nbV arMod ∈ [1 . . . 10]. For each instance, we sampled 500 times,
checking the satisfiability in each case. The average results are shown in Table 1. It can be observed
that Algorithm 1 with either restarting option dramatically outperformed the simple CSP solver and
the technique that maximizes the (1,0)-repairability. It also outperformed the WCSP modeling ap-
proach for tightness 0.2 and 0.3. The weakness of the latter approach is that obtains robustness
approximations in problems in which there is a high relation between constraints, because it com-
putes feasible neighbours for each constraint boundary. Thus, the higher the tightness, the higher
the likelihood of the existence of neighbour tuples that are feasible for one constraint/domain but
not for another one. These conflicting situations are less frequent in very unconstrained instances.
For this reason, for tightness 0.1 the performance of the modeling approach is better. However, it
only obtains better robustness results than Algorithm 1 for highly unrestricted instances for high
nbV arMod values. In regard to our Algorithm 1, the restarting-completion option provides better
results than restarting-scratch (differentiated with “R”) for very unconstrained instances, while they
preform similarly for higher tightness values. In Figure 6(b) we selected the nbV arMod = 2 to
emphasize trends in robustness as a function of varying tightness.

Table 1: Robustness Analysis Based on the Tightness Parameter (< 2, 25, 30, 200, tightness >).
tightness = 0.1 tightness = 0.2 tightness = 0.3

nbV arMod

Approach 2 4 6 8 10 2 4 6 8 10 2 4 6

simple 7.2 0.6 0 0 0 0.2 0 0 0 0 0 0 0
super 8.8 0.6 0 0 0 1 0 0 0 0 0.4 0 0
WCSP-m 152.4 60.2 24.5 12.8 5.8 5.7 0.1 0 0 0 0.4 0.1 0
neigh 206.8 75 27.4 10.8 3.8 36.2 2.5 0 0 0 2.8 0.1 0
neigh(R) 191.6 74.4 24.4 7.9 2.9 33.9 2 0.5 0.1 0 2.5 0 0

For the stability measurement, (1,0,1)-repairability is used (see Definition 4.2), which measures
the number of variables that can be replaced by a value located at a distance of one from the value
assigned without modifying the rest of values in the solution. Stability results are shown in Figure
6(a). As mentioned, if a solution value is lost, the objective is to find the closest repairable values.
For this reason, our algorithm does not consider feasible starting-time values that are k time units
greater than the start time assigned, since this could result in future solutions where the Manhattan
distance between the new schedule and the original one would be exaggeratedly great (see Section
4). On the other hand, the technique that maximizes the (1,0)-repairability considers any future start
time as a repairable value. This fact represents a disadvantage when searching for repairable values
in ordered domains. This can be observed in Figure 6(a), where we can see the poor performance
of super-solutions for the (1,0,1)-repairability.

We would like to note that for CSPs that are very highly restricted, the stability and robustness
of the solutions obtained by all the evaluated methods are very similar. This is due to the fact that in
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Figure 6: Combined robustness-stability based on the tightness parameter (<
2, 25, 30, 200, tightness >).
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these cases the CSPs have very few solutions and consequently the distances of all solutions from
the bounds is very low. For most of these instances, the number of solutions is so low that the
solutions are scattered within the tuple-space, so the likelihood of a solution being located on the
bounds of the solution space is very high. For the same reason, the likelihood that a variable has a
feasible repairable value that is near-by is very low. It can even be the case that none of the solutions
has an assignment with feasible neighbours located at distance k. In this case, all the solutions are
equally robust and stable for this k value.

9.2 Scheduling Benchmarks Evaluation

In this section, we evaluate the approaches with scheduling benchmarks from the literature in order
to determine the robustness of schedules obtained over a wide range of k values. We analyzed five
sets of 10 job-shop CSP instances, studied in (Sadeh & Fox, 1996). Each instance is composed
of 10 jobs of five tasks each and there are five resources. Each job has a random linear sequence
of resources to visit, with the exception of the bottleneck resources, which are visited after a fixed
number of operations (in order to further increase resource contention).

Because this analysis deals with scheduling problems, (see Section 8) we have fixed the set of
operators for our search Algorithm 1 to ⊕ = {{>,+}} and value selection done with heuristic 1,
in which values are selected in lexicographical order. Regarding the other proactive technique eval-
uated, the author of the (1,0)-repairability approach made an extension to the concept of breakage
(the loss of an assigned value) for scheduling problems. A breakage for this kind of problem was
considered a delay of duration d in a task. Therefore, only values that are greater than the value
assigned in d time units are considered repairable values. For this reason, for the evaluation of
scheduling problems, we have incorporated this condition to the (1,0)-repairability approach. For a
proper comparison of this approach with our approach, we used the same values for k and d param-
eters. In the following, in order to avoid term repetition, we assume that d = k. Since the simple
solver does not use any of these parameters, it only obtains one schedule whatever the value of k/d
is.

For measuring the robustness of the schedules obtained, we used the robustness measures in-
troduced in Section 8.1. A first robustness measurement approximation is made by measuring the
total slack of the schedule, which is denoted as tS(k). In addition, a more accurate measure is also
used, Rs

slack(k) (see Equation 3), which measures the average of the slack of duration k, minus
the standard deviation multiplied by the α parameter. The α parameter was fixed to 0.25, which
is inside the interval that the authors consider appropriate for this parameter. Another robustness
measure used is based on the resistance of a schedule faced with perturbations, and is denoted as
Rs

F,Z (see Equation 4), where Z is the set of incidents that consist in delays of durations up to maxd
over the tasks. We have used 2 different values for maxd: 1 and k. In each case, we independently
simulated 500 delays up to maxd units with equal probability over the entire schedule and checked
if the schedule remained valid. For the stability measurement, again, (1,0,1)-repairability is used
(see Definition 4.2), which is equivalent to the measurement of the number of buffers of the sched-
ule, denoted as nbB. Note that the desired objective is that in cases where repairs are necessary, the
start time of a task is delayed for as short a time as possible.

The following figures and tables show the evaluation for two of the Sadeh problem sets. For the
other problem sets we obtained similar results. We show results for the e0ddr1 and e0ddr2 bench-
marks in order to compare robustness and stability of schedules obtained with different numbers of
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bottlenecks in the problem (other parameters are fixed). Sadeh stated that the e0ddr1 benchmark
contained just one bottleneck and on the other hand, e0ddr2 benchmark contained two bottlenecks.
Tables 2 and 3 show the means for the robustness and stability measures for scheduling problems.
In addition, other measurements are showen, including the number of schedules obtained nbS, total
number of restarts done by the search algorithm nbR, the total number of nodes explored nbN and
the total number of failures nbF . Figure 7 shows the stability and robustness measurements (verti-
cal axis): the mean number of buffers and mean Rs

slack(k) for the e0ddr1. The horizontal axis of
the figures represents the value of the ratio of parameters k and d.

Table 2: Evaluation of ‘e0ddr1’ benchmark.
k Approach nbS nbR nbN nbF nbB tS(k) Rs

slack(k) Rs
F,Z(1) Rs

F,Z(k)

1 simple 1 3.1 208 85 16.1 16.1 0.208 0.328 0.338
super 9.1 3.1 7770.4 3043.7 21.4 21.4 0.308 0.434 0.43
neigh 12.7 3.1 10171.1 2465.9 27.8 27.8 0.436 0.562 0.555
neigh(R) 15.5 28.8 2820.4 628.1 31.3 31.3 0.509 0.628 0.618

3 simple 1 3.1 208 85 16.1 44.3 0.555 0.328 0.311
super 7.3 3.1 8138.2 2619.2 18.9 52.4 0.702 0.384 0.36
neigh 15.9 3.1 5880.5 2485.1 20.9 59.4 0.832 0.424 0.409
neigh(R) 15.5 27.7 2406.5 670.5 22.3 62.1 0.886 0.448 0.413

5 simple 1 3.1 208 85 16.1 67.8 0.832 0.328 0.288
super 7.1 3.1 8373.2 2654.2 19.1 82.9 1.101 0.388 0.343
neigh 19 3.1 3947.7 1674.7 19.5 86.3 1.159 0.396 0.364
neigh(R) 12.9 23.8 2082.3 517.8 20.2 87.3 1.182 0.406 0.35

7 simple 1 3.1 208 85 16.1 88.1 1.057 0.328 0.271
super 6.5 3.1 8319.1 3219.5 18.1 101.8 1.298 0.368 0.303
neigh 19.9 3.1 3205.9 1032.6 18.9 107.8 1.4 0.384 0.331
neigh(R) 11.5 21.2 1871.8 489.5 18.7 108.6 1.413 0.376 0.314

9 simple 1 3.1 208 85 16.1 105.7 1.242 0.328 0.257
super 5.7 3.1 8715.7 2620.7 17.6 117.6 1.452 0.358 0.277
neigh 20.8 3.1 2793.6 974.2 18.6 126.5 1.602 0.378 0.303
neigh(R) 11.4 19.7 1711.4 462.8 18.2 126 1.588 0.368 0.293

11 simple 1 3.1 208 85 16.1 120.5 1.389 0.328 0.244
super 6 3.1 8019.9 1775.8 18.2 133.6 1.629 0.37 0.256
neigh 19 3.1 2518.5 844.4 18.1 140.2 1.72 0.368 0.28
neigh(R) 7.9 16.9 1593.9 435.5 18.4 138.8 1.693 0.374 0.277

As expected, schedules obtained by all of the approaches for the e0ddr1 benchmark are more
robust and stable than those for the e0ddr2 benchmark (see Tables 2 and 3) From the robustness
analysis, we see that our algorithm for k = 11 (for both restarting options) increased the robustness
measure Rs

F,Z(k) by more than 0.5 units for problems with only one bottleneck. Therefore, as
expected, the fewer bottlenecks a scheduling problem has, the more robust the schedule obtained
by our algorithm. Detailed results for all robustness measures are found under columns tS(k),
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Table 3: Evaluation of ‘e0ddr2’ benchmark.
k Approach nbS nbR nbN nbF nbB tS(k) Rs

slack(k) Rs
F,Z(1) Rs

F,Z(k)

1 simple 0.9 4 227 98.89 14.11 14.11 0.17 0.28 0.28
super 6.5 3.9 8024.33 1975.67 19.89 19.89 0.28 0.4 0.41
neigh 10.1 4 11264.22 1865.22 24.33 24.33 0.37 0.49 0.49
neigh(R) 12.4 25.4 2555.67 709.33 27.44 27.44 0.43 0.55 0.55

3 simple 0.9 4 227 98.89 14.11 37.56 0.44 0.28 0.25
super 4.9 3.9 8602.67 1198.67 17.33 47.22 0.61 0.35 0.32
neigh 16.4 3.9 7141.78 1711.33 20.22 56 0.77 0.4 0.37
neigh(R) 11.9 22.2 2282.67 503.89 20.11 55.22 0.76 0.4 0.37

5 simple 0.9 4 227 98.89 14.11 55.11 0.63 0.28 0.22
super 4.4 3.9 9102.78 743.67 17.11 70.89 0.89 0.34 0.29
neigh 17.3 3.9 5755.22 1657.33 18.11 76.67 0.99 0.36 0.31
neigh(R) 8.6 18.9 2036.11 452.78 17.89 73.89 0.95 0.36 0.3

7 simple 0.9 4 227 98.89 14.11 68.22 0.75 0.28 0.2
super 3.8 3.9 9721.67 914.22 15.78 82.22 0.97 0.32 0.25
neigh 15.2 3.9 4903 1272.56 16.89 88.78 1.09 0.34 0.26
neigh(R) 7.7 17.5 1827.44 428.78 17.22 88.67 1.09 0.35 0.26

9 simple 0.9 4 227 98.89 14.11 78.67 0.84 0.28 0.18
super 3.1 3.9 9971 959.56 15.56 92.89 1.06 0.31 0.21
neigh 15.7 3.9 4344.44 1161.78 16.78 101.11 1.2 0.34 0.24
neigh(R) 6.4 16.2 1657.56 449.22 16.78 100.44 1.19 0.34 0.23

11 simple 0.9 4 227 98.89 14.11 87.44 0.91 0.28 0.16
super 2.3 3.9 10698.22 1090.44 15.22 98.89 1.08 0.3 0.19
neigh 14.7 3.9 4251.78 1223.56 16.22 109.67 1.25 0.32 0.21
neigh(R) 5.6 14.4 1588.89 390 16.11 107.67 1.22 0.32 0.2
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Figure 7: Combined robustness-stability for k, d parameters: mean measures for the e0ddr1 bench-
mark.

Rs
slack(k), R

s
F,Z(1) and Rs

F,Z(k) in the tables. For instance, for the largest k value analyzed (k =
11), the total sum of all the buffer times of duration up to k of the schedule obtained by Algorithm
1 for restarting-completion is 140.2 time units for the e0ddr1 benchmark and 109.67 time units for
the e0ddr2 benchmark (more than 30 time units difference). Regarding the stability analysis, our
algorithm for k = 1 restarting-scratch (differentiated with “R”) found schedules with four mean
number of buffers (nbB) more for the problems with one bottleneck than for the problems with two
bottlenecks for the best case. Therefore, as expected, the fewer bottlenecks a scheduling problem
has, the more stable the schedule obtained by our algorithm.

In both tables and the figure, we can see that Algorithm 1 with either restarting option outper-
formed both simple CSP solver and the technique that maximizes the (1,0)-repairability. Further-
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more, the analysis of the k/d parameters show that when these parameters have the lowest values,
the number of buffers of the schedules found by our algorithm are markedly greater than the sched-
ules obtained by the simple solver and the super-solution approach (see Figures 7(a)). In contrast,
the improvement in robustness for our algorithm with respect to the simple solver is a little more
marked for greater k values. The comparison with the (1,0)-repairability technique shows the same
tendency for the e0ddr2 benchmark (see nbB in Table 3).

Regarding the other robustness measures that are not plotted in the figure but are shown in
Tables 2 and 3, we see that there is a correlation between the Rs

F,Z(1) measure and the number
of buffers. This relation is expected, since the random incidents generated for measuring Rs

F,Z(1)
were delays of one unit time. Therefore, the more buffers there are (whatever is their duration) the
greater the likelihood that a schedule can absorb delays of one time unit. In addition, the tS(k),
Rs

slack(k) and Rs
F,Z(k) measures are correlated. Recall that tS(k) is the total sum of slack of

duration k and Rs
slack(k) is its average minus the standard deviation multiplied by an α parameter.

Therefore, unless the distribution of the slack is very poor, the two values must be proportional.
Note that the lower the α parameter for Rs

slack(k), the greater the proportionality with respect the
other 2 robustness measures. The Rs

F,Z(k) measure is calculated by generating random delays
up to duration k over the schedule. For this reason, this robustness measure is strongly related
with the two aforementioned. A example of the relation of all the aforementioned measurement
units can be observed in Table 2 for k = 11, where the schedules obtained with restarting-scratch
option (differentiated with “R”) have greater numbers of buffers and Rs

F,Z(1) values, and schedules
obtained with restarting-completion option have greater tS(k), Rs

slack(k) and Rs
F,Z(k) values. This

means that the latter has a greater total slack, but its distribution is more limited.
In Tables 2 and 3 we also observe measurements that are not correlated with robustness or

stability, but important information can still be extracted from them. For k > 1, the restarting-
completion for our algorithm finds the greater mean number of solutions (nbS). Only for k = 1
does the restarting-scratch (differentiated with “R”) find more solutions. The greater k is, the easier
it is to find new solutions whose objective function is better than the maximum one (if the instance
is not highly restricted). For this reason, the mean number of solutions found is greater for high
k values. For both restarting options, the mean number of solutions is considerably more than for
the super-solution technique. This effect is stronger for greater values of k/d because the condition
of a repairable value for the latter technique becomes more restrictive. Furthermore, the super
solutions technique considers all feasible values in the domains as repairable values; as a result,
feasibility checking is slower than for techniques that assume only k neighbours (as our technique
does). As expected, the mean number of restarts (nbR) is much greater for the restarting-scratch
option because the other techniques only restart until finding the first solution. As a consequence,
their mean number of nodes explored (nbN ) and mean number of failures (nbF ) is lower.

The schedules obtained by Algorithm 1 for the lowest k value had the highest number of buffers.
On the other hand, the robustness measures are greater for the greater k values. Depending on the
dynamic nature of the problem, it would be desirable to prioritize between a higher number of
buffers of short duration and a lower number of buffers of long duration (if the two features cannot
both be maximized). Thus, if there it is known that the possible future delays will have a duration
of at least d, it does not make sense to compute k values lower than d because the obtained time
buffers could not absorb the delay. On the other hand, if it is known that possible future delays
cannot have a duration greater than d, then it does not make sense to compute k values greater than
d because this may decrease the number of buffers. Hence, the more information about possible
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future changes we have, the better the robustness results we can obtain. However, even if this
information is unknown, we can obtain a schedule with certain level of both robustness and stability
by setting k to an intermediate value in Algorithm 1.
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Figure 8: Mean number of buffers over the time intervals for the e0ddr1 benchmark.

The above evaluation consists of analyzing the best results obtained for each technique for the
fixed cutoff time. However, we also wanted to analyze the change in degree of robustness and
stability of the schedules found over the time. For this evaluation, we used the e0ddr1 benchmark
and determined the mean for 50 instances for each interval of time with a discretization of 10
seconds. Figures 8(a) and 8(b) show the mean number of buffers found by each approach for k and
d values equal to one and seven. Other measures are not shown since similar trends were found in
these cases. We would like to note that after 20 seconds the simple solution technique does not find
better schedules because it only searches for one schedule for each instance (which is done in less or
equal to 20 seconds). The most remarkable aspect is that for k/d = 1 Algorithm 1 for both restarting
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options obtains a greater number of buffer times than super-solution technique for k/d = 1 for all
time intervals (see Figure 8(a)).

On the other hand, Figure 8(b), which represents k/d = 7, shows more unstable results. Since
it is difficult to find buffers with up to seven time units, it may happen than our algorithm sacrifices
some shorter buffers in order to find one buffer of seven time units. Thus, even if the overall
tendency is for the measure to increase over the time, it is not entirely uniform. On the other hand,
the upward shape of the trend for the super-solution technique is due to the fact that it considers
values as repairable if there is any possible alternative for the start time of a task that follows a
task sharing the same resource, which is not equivalent to slack in the schedule. For this reason,
schedules that are better for this technique may contain lower number of buffers. This feature is
more marked for greater values of d, since the repairable values have to be at least d unit times
greater than the assigned values, and therefore it is more unlikely to find repairable values that are
close to the assigned ones.

It can be concluded that in general the super-solution approach finds solutions with lower ro-
bustness and stability (considering the closest repairable values) than our approach for the afore-
mentioned reason. Another disadvantage is that it only assumes that delays are of duration d. Thus,
only values greater than this value are considered as repairable values. However, we consider up
to k neighbours and therefore, slacks of duration lower than k/d are also valued by our objective
function in contrast to the (1,0)-repairability objective function.

On the basis of this evaluation, we can conclude that the difference in performance between the
two restarting options (restarting-completion and restarting-scratch) is not very significant. Some-
times, the time needed to restart from scratch after each solution makes this option less effective
than restarting-completion. In other cases, the restarting-completion option loses time in branches
in which there are no better solutions, while restarting-scratch explores other branches. For instance,
for the random experiments, restarting-completion provided slightly better results generally (see Ta-
ble 1 and Figure 6(b)), while for the scheduling problems, restarting-scratch obtained schedules that
were a bit more robust and stable for lower k values (see k/d ∈ [1, 5] in Figure 7). For greater k
values, both restarting options gave similar results.

10. Conclusions

In this paper we extend the concept of robustness and stability for CSPs with discrete and ordered
domains where only limited assumptions can be made about changes in these problems. In partic-
ular, there are no uncertainty statistics nor probabilities about the incidences that can occur in the
original problem. In this context, it is reasonable to assume that the original bounds of the solution
space may undergo restrictive modifications, such as introduced in (Climent et al., 2013). There-
fore, the main objective in searching for robust solutions is to find solutions located as far away as
possible from the bounds of the solution space. On the other hand, the main objective in searching
for stable solutions in terms of repairable variables is to find solutions whose repairable values are
as close as possible to the broken assignments.

In this paper, we present a new search algorithm that combines criteria for both robustness
and stability in this framework. The algorithm developed in this paper searches for a solution
that maximizes the sum of contiguous feasible surrounding neighbours at distances of k or less
from the values of the solution. The obtained solutions have a high probability of remaining valid
after possible future restrictive changes over the constraints and domains of the original problem
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(robustness criterion), and they also have a high number of variables that can be easily repaired with
a value at distance lower or equal to k if they undergo a value loss (stability criterion).

We have evaluated the new algorithm in experiments on well-known scheduling benchmarks
as well as random CSPs. We have shown that both versions of the new algorithm outperform
three other approaches evaluated: ordinary CSP solvers, the technique that maximizes the (1,0)-
repairability, and an approach that models CSPs as WCSPs under many conditions where there are
real differences in the robustness of solutions that might be obtained. The latter occurs when the
problem is not so constrained that there are only a few valid solutions. With respect to the two
restarting options developed for our algorithm, we found that their performance is not significantly
different, although in certain situations there is an advantage of one over the other.

For slightly constrained CSPs, our algorithm obtains solutions with the greatest (1,0,1)-repairability,
the greatest number of closer neighbour solutions, and highest values for specific measures of
scheduling robustness. Furthermore, we have shown that by increasing k for large problems, we
can also increase the robustness, although it may happen that (1,0,1)-repairability decreases. For
instance, with scheduling problems the schedules obtained with lower k values tend to maximize
the number of buffers even if their size is small. However, the computation of higher k values tends
to give priority to the sizes of the slack and as consequence, the number of buffers obtained is some-
times lower. Therefore, depending on the dynamic nature of the problem, it would be desirable to
prioritize between a higher number of small buffers or a lower number of great buffers (if it is not
possible to maximize both features).

The extension of the robustness and stability definition for CSPs with discrete and ordered
domains and the development of a search algorithm for finding robust and stable solutions in this
context, are useful and practical in many real-life situations where problems can undergo restrictive
changes and there is the added difficulty that information about the possible future changes is limited
or non-existent. Even under these difficult conditions, our search algorithm is able to provide stable
and robust solutions. Finding solutions located far from the bounds is important when we face
restrictive modifications over the bounds of the solution space. Moreover, in cases where a value is
lost, it is important to replace it by a nearby value in order to have a solution as similar as possible to
the original one. This closeness feature is handled by our algorithm but is not by the super-solution
technique.

In the future, we plan to extend the techniques proposed here to handle constraint satisfaction
and optimization problems (CSOP). Thus, our model could be extended by including other kinds
of optimization, as for instance, minimizing the time, maximizing the profit, etc. We think that this
would increase the versatility of our technique, since we could potentially find robust and stable
solutions while meeting several other optimality criteria.
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