

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.scico.2015.06.001

http://hdl.handle.net/10251/61997

Elsevier

Cholewa, A.; Escobar Román, S.; Meseguer, J. (2015). Constrained narrowing for
conditional equational theories modulo axioms. Science of Computer Programming. 112:24-
57. doi:10.1016/j.scico.2015.06.001.

Constrained Narrowing for Conditional
Equational Theories Modulo Axioms

Andrew Cholewa1, Santiago Escobar2, José Meseguer1

Abstract

For an unconditional equational theory (Σ, E) whose oriented equations ~E are
confluent and terminating, narrowing provides an E-unification algorithm. This
has been generalized by various authors in two directions: (i) by considering un-

conditional equational theories (Σ, E∪B) where the ~E are confluent, terminating
and coherent modulo axioms B, and (ii) by considering conditional equational
theories. Narrowing for a conditional theory (Σ, E ∪ B) has also been studied,
but much less and with various restrictions. In this paper we extend these
prior results by allowing conditional equations with extra variables in their
conditions, provided the corresponding rewrite rules ~E are confluent, strictly
coherent, operationally terminating modulo B and satisfy a natural determin-
ism condition allowing incremental computation of matching substitutions for
their extra variables. We also generalize the type structure of the types and
operations in Σ to be order-sorted. The narrowing method we propose, called
constrained narrowing, treats conditions as constraints whose solution is post-
poned. This can greatly reduce the search space of narrowing and allows notions
such as constrained variant and constrained unifier that can cover symbolically
possibly infinite sets of actual variants and unifiers. It also supports a hierarchi-
cal method of solving constraints. We give an inference system for hierarchical
constrained narrowing modulo B and prove its soundness and completeness.

1. Introduction

Symbolic methods that describe infinite-state systems by means of con-
straints can be very useful in analyzing and verifying systems. Various kinds
of symbolic techniques such as: (i) automata and grammars, e.g., [1, 15, 13,
14, 38, 66, 5, 4, 3, 33]; (ii) SMT and other forms of constraint solving, e.g.,
[6, 20, 35, 36, 64, 73, 75, 39, 11]; and (iii) narrowing [72, 30, 31, 9, 10], have
been employed for this purpose. All are useful in their own way and can com-
plement each other; and there is great interest in combining the power of these

Email addresses: acholew2@illinois.edu (Andrew Cholewa), sescobar@dsic.upv.es
(Santiago Escobar), meseguer@illinois.edu (José Meseguer)

1University of Illinois at Urbana-Champaign, USA.
2DSIC-ELP, Universitat Politècnica de València, Spain.

Preprint submitted to Elsevier June 15, 2015

different symbolic approaches to handle a wider range of applications [59, 60]
(see, e.g., [70] and the survey [58] for combinations of this kind).

Narrowing, while generally less efficient that domain-specific approaches, is
particulary attractive for system analysis because of its very wide applicability.
Following the rewriting logic approach [56], a concurrent system can be naturally
specified by a rewrite theoryR = (Σ, E,R), where (Σ, E) is an equational theory
specifying the distributed states as an algebraic data type, and R are rewrite
rules specifying the system’s concurrent transitions. Assuming that we have an
E-unification algorithm, we can symbolically analyze by narrowing the behavior
of our system, under reasonable assumptions on R [72], as follows. Instead of
concrete system states, we can represent a possibly infinite set of such states
by a term t with logical variables. We can then use narrowing modulo E to
“symbolically execute” state transitions as narrowing steps t ;R,E t′, thus
obtaining a useful form of symbolic reachability analysis and model checking
with many applications [72, 30, 31, 9, 10] (see [58] for a survey of this work).

But where does the needed E-unification algorithm come from? Special-
purpose narrowing algorithms only exist for specific, commonly occurring theo-
ries E; but the equations E of a system specification R = (Σ, E,R) can easily
fall outside such specific theories. What we need is a general-purpose unifica-
tion algorithm that will apply to a wide range of theories. And such a need is
answered by narrowing itself ! [44, 46]. That is, if the equations E in the theory
(Σ, E) can be decomposed as E = E0] B, where B is a set of equational ax-
ioms for which we do have a unification algorithm, and the equations E0 can be
oriented as rewrite rules ~E0 so that the rewrite theory (Σ, B, ~E0) is convergent,

then narrowing with ~E0 modulo B provides the desired E-unification algorithm
[46]. Since the requirement that (Σ, B, ~E0) is convergent is de rigueur for the
equational part E = E0 ∪ B of executable rewrite theories R = (Σ, E,R), this
provides indeed a very general method of symbolic system analysis for R. Note
the interesting fact that narrowing then happens at two levels: at the concurrent
system level as narrowing modulo E with a relation t;R,E t′, and at the equa-
tional level to perform E-unification by narrowing with the relation t;~E0,B

t′.

Specifically, for narrowing at the equational level, folding variant narrowing [32]
is the most effective method currently available, is supported by the Maude tool,
and has been proved effective in the above-mentioned applications [30, 31, 9, 10].

However, as a generic unification method equational narrowing has two
strong limitations: (i) unification may not be finitary and in general is only
semi-decidable; and (ii) when a dedicated algorithm for the same theory exists,
the dedicated algorithm is usually more efficient than the narrowing one. Vari-
ant unification modulo [32] has significantly improved this situation, since we
currently have four, increasingly less efficient unification methods, and an associ-
ated way of gracefully trading off generality and efficiency, namely: (i) dedicated,
finitary unification algorithms for specific theories or theory classes, which can
be described by inference rules [45]; (ii) a generic, finitary unification algorithm
based on folding variant narrowing [32] for any theory (Σ, E) decomposable as a

convergent (including B-coherent) (Σ, B, ~E0) if it has the finite variant property

2

[19] (FVP) and B-unification is finitary (see [29] for experiments comparing the
performance of dedicated versus variant-based unification when E is FVP); (iii)
a generic, infinitary and semi-decidable unification algorithm by folding variant
narrowing for any equational theory as in (ii), but failing to be FVP (this can be
seen as a greediest possible strategy supporting the approach in [46]); and (iv)
when no confluence assumptions can be made on E, a generic, infinitary and
semi-decidable unification algorithm by the inference rules in [34], which can
be understood as a combination of (i) and [44] using a form of Knuth-Bendix
completion. In general, of course, an equational theory may fall outside the
“good” cases (i)-(ii). For example, in narrowing-based model checking applica-
tions, where we want to verify some temporal logic property of a rewrite theory
R = (Σ, E,R) using the relation t ;R,E t′, as already mentioned, E will typi-

cally have a decomposition (Σ, B, ~E0) falling within case (iii) above; but there
may not be any way of pushing E into cases (i) or (ii). This is just a fact of
life; actually, it can be viewed as an instance of the semi-decidability of general-
purpose theorem proving. But, like for theorem proving, it does not prevent us
from reasoning about our systems using complete methods.

There is, however, a further challenge, which we address in this paper. Even
though in virtually all applications of interest the rewrite theory (Σ, B, ~E0)
associated to the equations E of a rewrite theory R = (Σ, E,R) is convergent,

the equations ~E0 can often be conditional and, furthermore, the rules in ~E0

may have extra variables in their condition: the so-called strongly deterministic
rules. Although there has been extensive work on conditional narrowing without
axioms (i.e., B = ∅) (see, e.g., the survey of the literature in [63] and the
discussion of related work in Section 9), much less is known about conditional
narrowing modulo axioms B. This is further discussed in Section 9, but, for
example, one of the few papers on the subject, by Bockmayr [12], assumes that

there are no extra variables in the conditions of ~E0 and therefore leaves out
many applications. Furthermore, since, as already mentioned, folding variant
narrowing [32] seems at present the most effective approach for narrowing with

unconditional equations ~E0 modulo axioms B, there are additional questions
to be asked and answered, such as what a conditional notion of variant should
look like, and how should such conditional variants be computed by narrowing.
There is also a clear and present danger of combinatorial explosion, which can
be extreme in the conditional case. For example, the approach presented in
[12] and followed also by many other authors envisions narrowing not only on
the terms being narrowed, but also on the accumulated conditions added after
each narrowing step. After just a few steps this can lead to enormously big
search spaces. Therefore, another key question to answer is: are there ways
of postponing the evaluation of conditions so that we can obtain a much more
manageable search space?

This paper studies conditional narrowing modulo axioms B for a very general
class of convergent conditional rewrite theories (Σ, B, ~E0) as a first, necessary
step for applying the resulting variant and unification methods to the narrowing-
based analysis of concurrent systems specified by rewrite theories of the form

3

R = (Σ, E0∪B,R). And it addresses all the questions and challenges described
above. Specifically, its main contributions can be summarized as follows:

1. A new notion of constrained variant, generalizing to the conditional case
the notion of variant in [19, 32] and computed by a special type of con-
strained narrowing, is proposed. It shares constrained narrowing’s econ-
omy of description and state-reduction advantages, so that a single con-
strained variant may symbolically encompass a huge, possibly infinite
number of actual variants.

2. Likewise, a new notion of constrained unifier, also computed by a special
type of constrained narrowing, is proposed. Again, a single constrained
unifier may symbolically encompass a huge, possibly infinite number of
actual unifiers.

3. A new hierarchical method, called layered constrained narrowing, to solve
the accumulated conditions generated by constrained narrowing is also
proposed and proved sound and complete. In particular this provides
a method of extracting a complete set of actual variants (resp. actual
unifiers) from a given constrained variant (resp. constrained unifier).

4. A new notion of convergent conditional FPP rewrite theory with particu-
larly good executability properties, yet involving no real loss of generality
(see Ex. 3), is also proposed. This notion is of interest not just for nar-
rowing, but also for executable specification and equational programming.

5. Although an experimental evaluation of the narrowing algorithms devel-
oped in this work is beyond the scope of this paper, there are clear a priori
reasons supporting the claim that these algorithms avoid as much as pos-
sible the danger of combinatorial explosion and should outperform those
in previous approaches to conditional narrowing modulo. Specifically:

• We follow the general constrained-based approach, e.g., [51, 18], to
avoid evaluation of the accumulated conditions; this can yield a dras-
tically smaller search space than standard approaches such as [12],
where conditions are evaluated.

• The use of order-sorted unification, e.g., [62, 42] is well-known to lead
to search spaces that can be drastically smaller than those obtained
by unsorted unification [76].

• Even when after finding a constrained solution we wish to evaluate
the constraint to extract actual solutions, our layered constraint nar-
rowing method systematically exploits frozen operators [16] to dras-
tically reduce both the amount of computation and the search space
in condition evaluation.

• In the unconditional case, variant narrowing [32] is the only practi-
cal complete strategy known at present to perform narrowing mod-
ulo axioms such as AC, and the greediest possible [32]. This work

4

generalizes variant narrowing to the conditional case to make those
advantages available for conditional narrowing.

• The narrowing paths are further restricted by imposing irreducibility
conditions on the accumulated substitutions. This has been shown
to be a key search space reduction technique in real applications such
as cryptographic protocol analysis [28].

The rest of the paper is organized as follows. Preliminaries on order-sorted
rewrite theories are presented in Section 2. Conditional rewriting modulo ax-
ioms and several proof systems for it are presented in Section 3. The key theories
of current interest, namely, convergent rewrite theories are studied in Section
4. Section 5 contains core ideas such as: reachability problems and their so-
lutions, constrained narrowing, and proofs of its soundness and completeness.
Constrained variants and constrained unifiers are studied in Section 6. A useful
theory transformation essential for layered constrained narrowing, and layered
constrained narrowing itself are studied, respectively, in Sections 7 and 8. A
discussion of related work and concluding remarks are gathered in Section 9.

2. Preliminaries on Order-Sorted Rewrite Theories

We follow the standard terminology and notation of term rewriting (see,
e.g., [65, 7, 22, 71, 21]) order-sorted algebra [40, 57], and rewrite theories [56, 16].
Readers familiar with such terminology and notation can skip this section and
proceed to Section 3. Recall the notions of order-sorted signature, term, substi-
tution and equation. An order-sorted signature (Σ, S,≤) consists of a poset of
sorts (S,≤) and an S∗×S-indexed family of sets Σ = {Σs1...sn,s}(s1...sn,s)∈S∗×S
of function symbols. Throughout, Σ is assumed to be preregular, so that each
term t has a least sort, denoted ls(t) (see [40]). Σ is also assumed to be kind-
complete, that is, for each sort s ∈ S its connected component in the poset
(S,≤) has a top sort, denoted [s] and called the connected component’s kind,
and for each f ∈ Σs1...sn,s there is also an f ∈ Σ[s1]...[sn],[s]. An order-sorted
signature can always be extended to a kind-complete one. Maude automatically
checks preregularity and adds a new “kind” sort [s] at the top of the connected
component of each sort s ∈ S specified by the user, and automatically lifts each
operator to the kind level. Finally, Σ is also assumed to be sensible, in the sense
that for any two typings f : s1 . . . ss −→ s and f : s′1 . . . s

′
s −→ s′ of an n-

argument function symbol f , if si and s′i are in the same connected component
of (S,≤) for 1 ≤ i ≤ n, then s and s′ are also in the same connected component;
this provides the right notion of unambiguous signature at the order-sorted level.

Given an S-sorted set X = {Xs}s∈S of mutually disjoint countably infinite
sets of variables, TΣ(X)s denotes the set of Σ-terms of sort s with variables in
X , and TΣ(X) denotes, ambiguously, both the S-sorted set of all Σ-terms with
variables in X , and the free Σ-algebra on those variables. Similarly, TΣ denotes
both the S-sorted set of all ground Σ-terms that have no variables, and the
initial Σ-algebra. Σ is said to have non-empty sorts iff TΣ,s 6= ∅ for each sort s.
Var(t) denotes the set of variables appearing in term t.

5

A substitution is an S-sorted mapping σ : X −→ TΣ(X). We define its
domain, denoted Dom(σ), as the set Dom(σ) = {x ∈ X | σ(x) 6= x}, and its
range, denoted Ran(σ), as the set Ran(σ) = {y ∈ X | ∃x (x ∈ Dom(σ) ∧
y ∈ Var(σ(x)))}. σ can also be described more economically as the mapping
σ : Dom(σ) −→ TΣ(Ran(σ)). Given a subset ~x of sorted variables in X and
a substitution σ, σ|~x, called the restriction of σ to ~x, denotes the substitution
mapping each y ∈ X to σ(x) if y ∈ ~x and to y otherwise. Therefore, Dom(σ|~x) =
Dom(σ)∩ ~x. The homomorphic extension σ : TΣ(X) −→ TΣ(X) is also denoted
σ, and its application to a term t is denoted tσ. Composition of substitutions
σ1, σ2 is denoted by juxtaposition, i.e., for any term t, t(σ1σ2) = (tσ1)σ2.

Pos(t) denotes the set of positions (strings of naturals) of a Σ-term t, and
tp denotes the subterm of t at position p ∈ Pos(t). Similarly, PosΣ(t) denotes
the non-variable positions of t, that is, those p ∈ Pos(t) such that tp 6∈ Var(t).
A term t with its subterm tp replaced by the term t′ is denoted t[t′]p.

For a Σ-equation u = v to be well-formed, the sorts of u and v should be
in the same connected component of (S,≤). A conditional Σ-equation is an
implication

∧
i=1,...,n ui = vi ⇒ l = r between Σ-equations, denoted from now

on as: l = r if
∧
i=1,...,n ui = vi. A conditional equational theory is a pair (Σ, E)

with Σ an order-sorted signature and E a set of conditional Σ-equations. An
unconditional equation u = v is the special case of a conditional equation with
an empty condition >. For E a set of conditional Σ-equations, =E denotes the
provable E-equality relation [40, 57], and [t]E denotes the equivalence class of t
modulo =E .

Given a set E of Σ-equations, a substitution σ is an E-unifier of an equation
t = t′ iff tσ =E t′σ. Let CSUE(t, t′) denote a complete set of most general E-
unifiers of the equation t = t′, i.e., for any E-unifier ρ of t = t′, there is a
substitution σ ∈ CSUE(t, t′) and another substitution τ s.t. ρ|X =E (στ)|X
with X = Var(t) ∪ Var(t′). Likewise, a substitution σ is an E-match from t
to t′ iff t′ =E tσ. Given two substitutions σ, τ , we call them E-equal, denoted
σ =E τ , iff ∀x ∈ X σ(x) =E τ(x).

An unconditional equation u = v is called sort-preserving iff for each well-
sorted substitution θ we have ls(uθ) = ls(vθ). Using substitutions that special-
ize variables to smaller sorts it can be easily checked whether an equation is
sort-preserving (see [49]).

A conditional order-sorted rewrite theory is a triple R = (Σ, B,R), with Σ
an order-sorted signature, B a set of unconditional Σ-equations, and R a set
of conditional rewrite rules of the form l → r if

∧
i=1,...,n ui → vi, with no

restrictions on the variables of l, r, or those of the ui and vi.
In general, the rewrite rules of a conditional rewrite theory R have a non-

equational meaning as transition rules in a concurrent system [56, 58]. However,
in this work we will focus for the most part on rewrite theories with an equational
interpretation. That is, in the narrowing uses we study here, R will be of the
form, R = (Σ, B, ~E), where (Σ, E ∪B) is a conditional order-sorted equational
theory, where the equations B are unconditional and the equations E are pos-
sibly conditional; and where ~E are conditional rewrite rules that interpret each
conditional equation l = r if

∧
i=1,...,n ui = vi as the conditional rewrite rule

6

l→ r if
∧
i=1,...,n ui → vi. We call R = (Σ, B, ~E) the rewrite theory associated

to the order-sorted conditional equational theory (Σ, E ∪ B) by choosing the
equations B as axioms and orienting the conditional equations E as conditional
rewrite rules.

Thererefore, rewriting with ~E is achieved modulo the unconditional equa-
tions B. Since the practical interest is in implementable uses of rewriting mod-
ulo B, we will assume that the provable B-equality relation =B is decidable
and that B has a finitary B-matching algorithm; that is, an algorithm gener-
ating a complete finite set of B-matches from t to t′, denoted MatchB(t, t′);
that is, for any B-match σ there is a τ ∈ MatchB(t, t′) such that for all
x ∈ Var(t) σ(x) =B τ(x). For narrowing purposes we will also assume that
B has a B-unification algorithm that can generate a set of most general B-
unifiers CSUB(t, t′) for each equation t = t′.

3. Proof Systems for Conditional Rewrite Theories

We present several proof systems for conditional rewriting modulo axioms.
We also present basic notions and results from [61] on the strict coherence
property for conditional rewrite rules that allows the rewrite relation →R/B to
be (bi-)simulated by the much simpler relation →R,B .

3.1. Standard Proof Systems

Given a rewrite theory R = (Σ, B,R), we follow closely the treatment in [61]
to define the rewriting modulo B relation →R/B , and the easier to implement
relation→R,B , by appropriate inference systems. The inference system3 defining
both →R/B and →?

R/B when Σ has non-empty sorts is given as follows.

• Reflexivity. For each t, t′ ∈ TΣ(X) such that t =B t′, t→?
R/B t′

• Replacement. For l → r if u1 → v1 ∧ . . . ∧ un → vn a rule in R,
t, u, v ∈ TΣ(X), p ∈ Pos(t), and θ a substitution, such that u =B t[lθ]p
and v =B t[rθ]p,

u1θ →?
R/B v1θ . . . unθ →?

R/B vnθ

u→R/B v

3Modulo the fact that the relations →R/B and →?
R/B

are combined into a single relation,

denoted →, the inference system given here can easily be proved equivalent to the rewriting
logic inference system in [56] (which works directly with B-equivalence classes) for the un-
sorted case, and to the generalized rewriting logic inference system in [16] when order-sorted
equational logic is viewed as a sublogic of membership equational logic.

7

• Transitivity For t1, t2, t3 ∈ TΣ(X),

t1 →R/B t2 t2 →?
R/B t3

t1 →?
R/B t3

In general, the relation u →R/B v may be undecidable, since checking
whether u→R/B v holds involves searching through the possibly infinite equiv-
alence class [u]B to find a representative that can be rewritten with R and
checking, furthermore, that the result u′ of such rewriting belongs to the equiv-
alence class [v]B . For this reason, and for greater efficiency, a much simpler
relation →R,B is defined. The key idea about →R,B is to replace general B-
equalities of the form u =B t[lθ]p by a matching B-equality tp =B lθ with
the subterm actually being rewritten. This completely eliminates any need for
searching for a redex in the possibly infinite equivalence class [u]B . Here is the
inference system defining both →R,B and →?

R,B when Σ has non-empty sorts.

• Reflexivity. For each t, t′ ∈ TΣ(X) such that t =B t′, t→?
R,B t′

• Replacement. For l → r if u1 → v1 ∧ . . . ∧ un → vn a rule in R,
t ∈ TΣ(X), p ∈ Pos(t), and θ a substitution, such that tp =B lθ,

u1θ →?
R,B v1θ . . . unθ →?

R,B vnθ

t→R,B t[rθ]p

• Transitivity For t1, t2, t3 ∈ TΣ(X),

t1 →R,B t2 t2 →?
R,B t3

t1 →?
R,B t3

For some applications, the above rewrite relation →R,B can be restricted by
a frozenness map4 [16] φ : Σ → P(N), mapping each function symbol f ∈ Σ
with n arguments to a subset φ(f) ⊆ {1, . . . , n} of the argument positions,
below which rewriting is forbidden. For example, for if an if-then-else operator
we may choose φ(if) = {2, 3} to forbid rewriting below the “then” and “else”
branches and force instead evaluation by rewriting of the first argument (the
Boolean condition). A frozenness map φ then defines the frozen positions of a
Σ-term, where rewriting is forbidden, as follows:

Definition 1. Let φ : Σ→ P(N) be a frozenness map. Given a Σ-term t, a po-
sition p ∈ Pos(t) is frozen by φ iff p can be decomposed as a string concatenation
of the form p = q · i · r, with tq = f(u1, . . . , un) and i ∈ φ(f).

4The notion of a frozenness map is dual to that of a restriction map µ : Σ → P(N) in
context-sensitive rewriting (see, e.g., [52]): if f has n-arguments, {1, . . . , n}− φ(f) defines an
associated context-sensitive restriction map.

8

The above inference system for →R,B and →?
R,B can be easily restricted

to obtain an inference system for rewrite relations →R,B,φ and →?
R,B,φ under

frozenness restrictions φ, just by imposing to the Replacement rule the addi-
tional requirement that the position p ∈ Pos(t) at which rewriting takes place
is not frozen by φ. See Sections 1, 8, and 9, to appreciate the search space
reduction uses of frozenness.

3.2. Strict Coherence of Conditional Rewrite Theories

Under suitable conditions of strict coherence on B and R explained below,
the relations →?

R/B and →?
R,B coincide. This is very useful, since we can focus

mostly on the much easier to implement rewrite relation →R,B . This will be
exploited later to define constrained narrowing with R modulo B as a suitable
generalization of the rewrite relation →R,B . In particular, the good properties
of the constrained narrowing relation modulo B depend crucially on the strict
coherence properties stated in Theorem 1 below.

Although the semantics of conditional ordered-sorted rewriting modulo B
has been defined in Section 3.1 with no restrictions on B, when the equations
B are non-linear and/or non-regular, the relations →R/B and →R,B , although
still relatable to each other under some conditions [47], lack a sufficiently good
correspondence. As shown in [61], a considerably better correspondence between
→R/B and →R,B , called strict coherence, can be achieved for a conditional
rewrite theory R = (Σ, B,R) if the axioms B are regular and linear and the
conditional rules R are closed under so-called B-extensions, a notion going back
to [67]. In this section we summarize some of the key notions and results from
[61].

An equation u = v is regular iff Var(u) = Var(v), that is, both sides have
the exact same variables. A term t is linear iff each of its variables occurs only
once (at a single position) in t. An equation u = v is linear iff both u and v are
linear. The nilpotency equation x ∗ x = 0 is neither regular nor linear.

To achieve the desired strict coherence property, from now on the equational
axioms B in a rewrite theory R = (Σ, B,R) will always be regular, linear, sort-
preserving, with =B decidable, have a finitary B-matching algorithm, and be
most general possible, in the sense that for any u = v ∈ B, each x ∈ Var(u = v)
has a “kind” sort [s] at the top of one the connected components in (S,≤). B
being sort-preserving is extremely useful for performing order-sorted rewriting
modulo B: when B-matching a subterm tp against a rule’s lefthand side to
obtain a matching substitution σ, we need to check that σ is well-sorted, that
is, that if a variable x has sort s, then some element in the B-equivalence
class [xσ]B has also sort s. But since B is sort-preserving, this is equivalent
to checking ls(xσ) ≤ s. Of course, in the many-sorted and unsorted cases
sort-preservation and greatest possible generality of the equations B are always
satisfied, and all the assumptions on Σ boil down to Σ being unambiguous.

Strict coherence is the following property of the relation →R,B :

Definition 2. [61] A rewrite theory R = (Σ, B,R) is called strictly coherent
iff for any Σ-terms u, u′, v if u =B u′ and u →R,B v, then there exists a term

9

v′ such that u′ →R,B v′ and v =B v′. Adopting the convention of expressing
existential quantifications by dotted lines, this property can be expressed by the
diagram:

u
R,B
//

B

v

B

u′
R,B
// v′

Under the above assumptions on B, R = (Σ, B,R) is strictly coherent if it
is closed under B-extensions, in the following sense:

Definition 3. [61] Let R = (Σ, B,R) be a conditional order-sorted rewrite the-
ory, and let l→ r if C be a rule in R, where C abbreviates the rule’s condition.
Without loss of generality we assume that Var(B) ∩ Var(l → r if C) = ∅. If
this is not the case, only the variables of B will be renamed; the variables of
l → r if C will never be renamed. We then define the set of B-extensions of
l→ r if C as the set5:

ExtB(l→r if C) = {u[l]p → u[r]p if C | u = v ∈ B∪B−1∧p ∈ PosΣ(u)−{ε}∧CSUB(l, up) 6= ∅}

where, by definition, B−1 = {v = u | u = v ∈ B}.
Given two rules l → r if C and l′ → r′ if C with the same condition C we

say that l → r if C B-subsumes6 l′ → r′ if C iff there is a substitution σ such
that: (i) Dom(σ) ∩ Var(C) = ∅, (ii) l′ =B lσ, and (iii) r′ =B rσ.

We call R = (Σ, B,R) closed under B-extensions iff for any rule l→ r if C
in R, each rule l′ → r′ if C in ExtB(l → r if C) is subsumed by some rule in
R.

A semi-algorithm to close a rewrite theoryR = (Σ, B,R) under B-extensions
under the above assumptions on B by computing for each rewrite rule l→ r if C
in R its extension closure ExtB(l→ r if C) is described in [61]. The main results
about the strict coherence of rewrite theories closed under B-extensions can be
summarized as follows:

Theorem 1. [61] Let R = (Σ, B,R) satisfy all the above assumptions on B and
Σ and be closed under B-extensions. Then R is strictly coherent. Furthermore:

1. →?
R/B =→?

R,B

5Note that, because of the assumptions that Σ is kind-complete and that all u = v ∈ B
are most general possible and have variables whose sorts are tops of connected components in
the sort poset (S,≤), the terms u[l]p and u[r]p are always well-formed Σ-terms.

6Note that for unconditional rules, since C is empty, we have var(C) = ∅, so that require-
ment (i) trivially holds for σ. Therefore, the conditional notion of subsumption yields the
usual unconditional notion as a special case.

10

2. if u =B u′ and u →R,B v at position p with a rule l′ → r′ if C ∈ R and
with substitution θ, then there exists a term v′ such that u′ →R,B v′ at
some position q with a rule l′′ → r′′ if C ∈ R and with a substitution θ′

such that: (i) v =B v′, and (ii) for all x ∈ Var(C) xθ = xθ′

3. Given any chain of n ≥ 0 R,B-rewrite steps followed by a B-equality step
of the form, u →R,B u1 →R,B u2 . . . un−1 →R,B un =B v, where at each
step a rule li → ri if Ci ∈ R has been applied with substitution θi, and
given any term u′ such that u =B u′, there is another chain of n ≥ 0
rewrite steps followed by a B-equality step of the form, u′ →R,B u′1 →R,B

u′2 . . . u
′
n−1 →R,B u′n =B v′, such that: (i) ui =B u′i, 1 ≤ i ≤ n and

v =B v′, where at each step a rule l′i → r′i if Ci ∈ R has been applied with
substitution θ′i such that for all x ∈ Var(Ci) xθi = xθ′i, 1 ≤ i ≤ n. 2

Remark 1. In the above Theorem, (1) is an easy consequence of strict coher-
ence because of the Reflexivity and Transitivity rules for →R,B. Note that
(3) follows easily from (2). The key property for conditional narrowing, used
crucially in the upcoming Lifting Lemma 4, is (2). It essentially means that
if u =B u′ and u can be rewritten to v with a conditional rule with a given
substitution, then u′ can also be rewritten to v′ with v =B v′ with the same
rule and with the same substitution when we both substitutions are restricted to
the variables in the condition. Because of the presence of extra variables in the
condition, property (2) is non-trivial, yet essential.

Not all frozenness maps φ are meaningful modulo a set of axioms B. The
following definition imposes a simple requirement on φ to make it well-behaved
when rewriting modulo axioms B:

Definition 4. Given a strictly coherent theory R = (Σ, B,R) and a frozeness
map φ : Σ → P(N), we say that φ is B-stable iff for any Σ-terms u, u′, v if
u =B u′ and u→R,B,φ v, then there exists a term v′ such that u′ →R,B,φ v

′ and
v =B v′. This property can be expressed by the diagram:

u
R,B,φ
//

B

v

B

u′
R,B,φ
// v′

For a simple example of a φ that is not B-stable, consider an unsorted theory
with constants a, b and binary function symbol +, B the commutativity axiom
x+ y = y + x, and R the rule a→ b. This theory is closed under B-extensions
(there are none) and therefore strictly coherent. The map φ with φ(+) = {2}
is not B-stable, because a+ b→R,B,φ b+ b, but b+ a cannot be rewriten with
frozenness restrictions φ because position 2 is frozen.

11

3.3. Layered Proofs

For later uses in connection with narrowing, it will be useful to consider
layered proofs of (conjunctions of) rewrites u→?

R,B v as an alternative inference
system, yet equivalent to the proof system for →R,B and →?

R,B in Section 3.1.
Given a conditional rewrite theory R = (Σ, B,R) we can be more general

and consider as proof goals finite conjunctions of reachability goals

C = t1 →?
R,B t′1 ∧ · · · ∧ tn →?

R,B t′n (1)

We will use letters C,D,C ′, D′, . . ., for such conjunctions.
Proofs of theR-reachability of such goals will be developed from left to right,

trying to build an actual full trace for each ti →?
R,B t′i of the form:

ti →R,B v1 →R,B v2 →R,B · · · vn−1 →R,B vn =B t′i (2)

by applying rules in R modulo B. However, substitution instances of each rule’s
condition in each rewrite attempt will generate new reachability goals one layer
up, which may, in turn, generate new such goals in a third layer, and so on. A
proof is then closed when all such goals have been developed into full traces.

Example 1. Let us consider a simple example with Σ having sorts Nat, NeList,
and List, and subsort NeList < List (where NeList represents a non-empty list
of natural numbers), a constructor list operator _;_ : Nat List → NeList, a list
element nil.List, and two defined operations head : NeList → Nat and rest :
NeList → List. For the naturals, consider two constructor symbols 0 : Nat and
s : Nat → Nat. Note that we implicitly assume all operators overloaded at the
kind sorts, i.e., [List] and [Nat] above List and Nat, respectively. There are no
axioms in this example, i.e., B = ∅. The set of rules R is:

first(L)→ N if L→ N ; L’

rest(L)→ L’ if L→ N ; L’

We then obtain the layered proof below for the reachability goal
first(rest(0;s(0);nil))→? s(0) where the reachability goals

0 ; s(0) ; nil→?
R,B 0 ; s(0) ; nil

s(0) ; nil→?
R,B s(0) ; nil

generated by the first and second rewrite rules as conditions of the bottom trace
can be proved just by reflexivity steps.

>
(0 ; s(0) ; nil) =B (0 ; s(0) ; nil) ∧ (s(0) ; nil) =B (s(0) ; nil)

first(rest(0 ; s(0) ; nil))→?
R,B first(s(0) ; nil)→R,B s(0) = s(0) (3)

12

Note the following about this example: (1) the fact that first and rest are
declared at the kind level —which is always understood as a sort for undefined
or error expressions [57]— elegantly solves the problem that these functions
are partial. For example, first(nil) has smallest sort [List] and is therefore
undefined; (2) each layer contains the rewrite proofs of the conditions generated
by the previous layer, but requires its upper layers to be proved as well; in our
example the conditions of the rewrites for the bottom layer do not themselves
generate conditions one level up, so we can close with the empty condition >.

Formally we represent layered proofs of this form as lists of lists, where each
list has as elements reachability goals, perhaps partially (or fully) developed
into traces. Each list is built with an associative binary conjunction operator
∧ with identity > (we represent an unconditional rule l→ r as the conditional

rule l→ r if >). The associative operator building layers is denoted by ↑ with
nil as its identity element. For example, the layered trace proof of Display (3)
can be represented as the list of lists below, where we have added markers # at
the beginning and end to emphasize the top and bottom:

#first(rest(0 ; s(0) ; nil))→R,B first(rest(s(0) ; nil))

→R,B s(0) =B s(0) ↑
(0 ; s(0) ; nil) =B (0 ; s(0) ; nil) ∧

(s(0) ; nil) =B (s(0) ; nil) ↑ > #

The details of the inference system for developing layered proofs, as well as
the proof of its equivalence with the standard inference system for conditional
narrowing presented in Section 3.1, can be found in Appendix A.

4. Convergent Conditional Rewrite Theories

As mentioned in Section 2, in this work we focus for the most part on rewrite
theories with an equational meaning, that is, theories whose rewrite rules have
been obtained by orienting the equations of a conditional equational theory.
Under suitable conditions on the rewrite rules, which we call convergence modulo
B (because they generalize to the conditional and modulo case a similar notion of
convergent rewrite rules), a very good correspondence exists between equational
deduction and rewriting modulo B, namely, the Church-Rosser property. In
particular, if E = E0 ∪ B, the Chuch-Rosser property is crucial to perform E-
unification by constrained narrowing with ~E0 modulo B. Since not all confluent
conditional rewite theories are Church-Rosser, suitable conditions have to be
studied. Furthermore, for narrowing purposes one further condition, the fresh
pattern property (FPP), is crucial.

We discuss below a series of conditions that, together, will give us the con-
vergence property. Of course, to ensure that→?

R/B =→?
R,B , so that we can use

the much easier to implement relation →R,B , the rewrite theory R = (Σ, B,R)
should always be closed under B-extensions. However, this is not enough for
implementation purposes.

13

We have so far not imposed any restrictions on the variables of a conditional
rule. In particular, such rules may have extra variables in both their righthand
side and their condition not appearing in its lefthand side. This can make the
choice of substitution θ used in an application of the Replacement inference
rule in Section 3.1 quite hard to implement, since, due to the extra variables in
a rule’s righthand side or condition, there can be an infinite number of possible
choices for such a θ. This problem can be avoided, while still allowing extra
variables in a rule’s righthand side and condition, by requiring rewrite theories
to be deterministic. When Σ is unsorted and B = ∅, this notion specializes to
that of a deterministic 3-CTRS [65].

Definition 5 (Deterministic Rewrite Theory). An order-sorted rewrite the-
ory R = (Σ, B,R) is called deterministic iff for each rule l → r if u1 →
v1 ∧ . . . ∧ un → vn in R and for each i, 1 ≤ i ≤ n, we have Var(ui) ⊆
Var(l) ∪

⋃i−1
j=1 Var(vj).

In other words, variables are only introduced in the righthand terms of the
condition, and the lefthand terms in the condition may only contain variables
that appear either in the lefthand side of the rule, or in the previous righthand
terms of the condition.

A deterministic rule l → r if u1 → v1 ∧ . . . ∧ un → vn allows a simple
algorithm for computing incrementally an expanded B-matching substitution
for the extra variables in its condition from a B-matching substitution for l
by solving the conditions one by one from left to right. Let t be the term to
be rewritten at position p by l → r if u1 → v1 ∧ . . . ∧ un → vn. We first
compute a B-match γ0 ∈ MatchB(l, tp). Then, we instantiate u1 with γ0 and
attempt to rewrite u1γ0 →∗R,B w1 so that we can find a B-match (instantiating
only the fresh variables in v1) γ1 ∈ MatchB(v1γ0, w1). Then, we instantiate u2

with γ0 ∪ γ1 and repeat this process, until the fresh variables of each vi in the
condition have an associated substitution γi. We then take γ =

⋃
0≤i≤n γi as

the extended matching substitution used to rewrite t.
Note that it is not necessary to rewrite uiγ to canonical form before attempt-

ing to match it against vi. One may stop rewriting as soon as one achieves a
match with vi. As we shall see later, this can lead to problems when attempting
to lift such rewrite sequences to narrowing. Furthermore, faithfully implement-
ing this algorithm can be very inefficient. Therefore, we will further restrict our
scope to strongly deterministic rewrite theories, and will present a much more
efficient rewrite strategy. However, before we can define strongly deterministic
rewrite theories, we need the notion of a strongly irreducible term.

Definition 6 (Irreducible and Strongly Irreducible). Let (Σ, B,R) be a
rewrite theory. A term t is R,B-irreducible iff there is no term u such that
t →R,B u. A substitution θ is R,B-irreducible iff for each x ∈ Dom(θ) the
term xθ is R,B-irreducible. A term t is strongly R,B-irreducible iff for every
R,B-irreducible substitution σ, the term tσ is R,B-irreducible.

14

Definition 7 (Strongly Deterministic Rewrite Theory). A deterministic
rewrite theory (Σ, B,R) is called strongly deterministic iff for each rule l →
r if u1 → v1 ∧ . . . ∧ un → vn in R, and for each i, 1 ≤ i ≤ n, vi is strongly
R,B-irreducible.

The next requirement on (Σ, B,R) is a termination requirement. Note, how-
ever, that for conditional theories the termination of the relation →R,B is not
enough, since looping can still happen when evaluating a rule’s condition. The
right notion for conditional theories is that of operational termination [24, 53].
The precise definition can be found in the just-cited papers, but the idea is in-
tuitively quite simple, namely, absence of infinite inference. We can think of an
interpreter, for example implementing R,B-rewriting for a strongly determinis-
tic rewrite theory (Σ, B,R), as a proof-building engine that tries to build a proof
tree using the inference system in Section 3.1 by trying to build proof trees from
left to right for each of the subgoals generated by an application of an inference
rule. At any intermediate point in the computation the interpreter will have
only a partial proof, called a well-formed proof tree. Operational termination
of (Σ, B,R) means that such an interpreter will never loop by trying to build
an infinite well-formed proof tree, because there are none. That is, any proof
attempt either succeeds in finite time, finding a proof, or fails in finite time for
all attempts. For methods and tools to prove the operational termination of an
order-sorted rewrite theory see, e.g., [24, 26, 25, 54].

The next requirement on (Σ, B,R) is sort-decreasingness. This requirement
is always satisfied if Σ is a many-sorted or unsorted signature. Intuitively, it
means that, as a term gets rewritten, more sort information becomes available.
R = (Σ, B,R) is called sort-decreasing modulo B iff whenever t→R,B t′ we have
ls(t) ≥ ls(t′). A checkable sufficient condition for sort-decreasingness is that:
(i) B is sort-preserving, and (ii) for all rules l→ r if

∧
i=1,...,n ui → vi in R and

all “sort specializations” ρ (i.e., sort-lowering substitutions ρ such that for all
x:s in Dom(ρ) we have ρ : x:s 7→ x′:s′ with s ≥ s′) the property ls(lρ) ≥ ls(rρ)
holds.

The last, yet most important, requirement is confluence modulo B, for which
we need the auxiliary notion of joinability modulo B. For simplicity let us
assume that R = (Σ, B,R) is closed under B-extensions, so that we can focus
on the simpler and easier to implement R,B-rewrite relation. Two terms u, v ∈
TΣ(X) are called R,B-joinable, denoted u ↓R,B v iff there exists w ∈ TΣ(X) such
that u→?

R/B w R/B
?← v. The relation→R,B is called confluent modulo B iff for

each u, v, t ∈ TΣ(X), u R,B
?← t→?

R,B v implies u ↓R,B v. Checking of confluence
modulo regular and linear axioms B with a finitary unification algorithm under
the sort-decreasingness, operational termination and closure under B-extensions
assumptions, and a tool supporting such checking for various combinations of
associativity, commutativity and identity axioms have been documented in [27].
Indeed, such checking amounts to checking the confluence of conditional critical
pairs modulo the axioms B (for the conditional notions of local confluence and
critical pair see, e.g., [65, 27]).

We are now ready to define convergent theories.

15

Definition 8 (Convergent Rewrite Theory). An order-sorted rewrite the-
ory R = (Σ, B,R) is called convergent iff: (i) B satisfies all the requirements
at the beginning of Section 3.2; (ii) R is closed under B-extensions; (iii) R
is strongly deterministic; (iv) R is operationally terminating; (v) R is sort-
decreasing, and (vi) R is confluent modulo B.

An extremely useful property of convergent theories is that they satisfy the
Church-Rosser property modulo B, that is, the equivalence between provable
equality and joinability displayed in the following theorem:

Theorem 2 (Church Rosser modulo B with Decidable Equality). [61]

Let R = (Σ, B, ~E), associated to a conditional equational theory (Σ, E ∪ B),
satisfy conditions (i)–(v) in Definition 8. Then R is confluent modulo B iff for
any Σ-terms t, t′ we have the equivalence:

t =E∪B t′ ⇔ t ↓~E,B t′.

Furthermore, for R = (Σ, B, ~E) convergent and therefore Church-Rosser modulo
B, if E is finite the equality relation t =E∪B t′ is decidable by checking whether
t!~E,B =B t′!~E,B holds, where t!~E,B denotes the7 R,B-irreducible term →?

~E,B
-

reachable from t and called the ~E,B-canonical (or ~E,B-normal) form of t.

Note that we can easily move back and forth between convergent rewrite the-
ories and their corresponding equational theories. That is, given an equational
theory (Σ, E ∪ B), if (Σ, B, ~E) is convergent we have the above Church-Rosser

theorem. But any convergent (Σ, B,R) is of the form (Σ, B ∪ ~ER) for ER the
set of conditional equations

ER = {l = r if
∧

i=1,...,n

ui = vi | (l→ r if
∧

i=1,...,n

ui → vi) ∈ R}

so that (Σ, B,R) is the rewrite theory associated to the equational theory
(Σ, ER ∪B).

To express that we can reach from a term t an R,B-irreducible term u we
write t →!

R,B u. That is, t →!
R,B u means that: (i) t →?

R,B u, and (ii) u
is R,B-irreducible. As mentioned above, if R is convergent, then the R,B-
canonical form u is unique up to B-equality, is denoted u = t!R,B , and is called
the normal form of t. A term t is called R,B-normalized (or just normalized) iff
t =B t!R,B . Likewise, if θ is a substitution and R is convergent, there is up to
B-equality a unique R,B-irreducible substitution, denoted θ!R,B , where for each
x ∈ Dom(θ), θ!R,B(x) = θ(x)!R,B . A substitution θ is called R,B-normalized
(or just normalized) iff θ =B θ!R,B .

In a convergent rewrite theory (Σ, B,R) we can simplify and optimize the
algorithm for computing the expanded matching substitution by rewriting each
uiγ to its R,B-canonical form before attempting to match it against vi.

7By confluence, t′!~E,B is unique up to B-equality.

16

Such a simplified algorithm induces the following normalized-conditional
rewriting (NC-rewriting) relation:

Definition 9 (NC-Rewriting). Let (Σ, B,R) be a convergent order-sorted rewrite
theory and t be a Σ-term. We say that t rewrites with normalized condition (NC)
to t[rγ]p at position p ∈ Pos(t) with rule l → r if u1 → v1 ∧ . . . ∧ un → vn and

substitution γ, denoted t
NC−−→γ,R,B t[rγ]p, iff tp =B lγ, and for all i, 1 ≤ i ≤ n,

uiγ →!
R,B viγ.

Unfortunately, the NC -rewrite strategy is in general not complete, even when
R is convergent.

Example 2. Consider the following unsorted signature Σ and strongly deter-
ministic rules R:

Σ :

S = {s}
a : → s b : → s c : → s d : → s

f : s s→ s

[,] : s s→ s

R :

a→ b

c→ d

f(x, y)→ z if [x, y]→ [x, z]

which do not have any critical pairs and are therefore locally confluent, and are
also operationally terminating and therefore convergent. We can perform the
rewrite f(a, c) → c. However, f(a, c) is irreducible by NC-rewriting, because
[a, c]!R/B = [b, d], which does not match the term [a, z].

We can make NC -rewriting complete by adopting a slightly more restrictive
notion of strongly deterministic rewrite theory that we claim is the right notion
for efficient executability purposes. Furthermore, as we explain below, this slight
restriction involves no real loss of generality.

Definition 10 (Fresh Pattern Property). We say that a strongly determin-
istic order-sorted rewrite theory (Σ, B,R) has the fresh pattern property (FPP)
iff for each rule in R of the form l→ r if u1 → v1 ∧ . . .∧ un → vn, and for each
i, 1 ≤ i ≤ n, Var(vi) ∩ (Var(l) ∪

⋃
1≤j<i Var(vj)) = ∅.

In other words, if vi has any variables, they are all fresh with respect to
the variables in the lefthand side of the rule, and the variables appearing in the
previous terms of the condition.

The fresh pattern property involves no real loss of generality, because we can
easily transform any strongly deterministic theory that does not have the fresh

17

pattern property into one that does. To do so, first, we add a new connected
component, with a single fresh sort Truth to Σ. Then, for each top sort [s] in
every other connected component, we add the predicate ≡ : [s] [s]→ Truth.
We also add a constant tt :→ Truth, and the rule x ≡ x → tt. Then, for
each conditional rule l → r if

∧
1≤i≤n ui → vi, and each i ∈ {1, . . . , n} s.t.

it has a variable x ∈ vars(vi) − (vars(l) ∪
⋃

1≤j<i vars(vj)), we rename every
occurrence of x in vi by a fresh variable x′ in a new term v′i, obtaining in this
way a renamed condition ui → v′i, and add the condition x ≡ x′ → tt at the
end of the conditional part of the rule. NC -rewriting then ensures that the
substitution instance uiγi−1 of ui is normalized before being matched against
vi to obtain γi, and x ≡ x′ → tt ensures that x′ is properly bound to x. This
is a standard procedure in functional logic programming where there are no
reachability conditions but only equality conditions using a strict semantics,
i.e., both terms of a strict equality are normalized into constructor terms and
then checked for syntactic equality; see [41] and references therein.

Example 3. We can easily transform the theory in Example 2 to make it FPP
by just modifying the rule f(x, y)→ z if [x, y]→ [x, z] into the rule: f(x, y)→
z if [x, y]→ [x′, z] ∧ x ≡ x′ → tt.

If R is convergent and FPP, then NC-rewriting is complete for reaching
canonical forms, in the following sense:

Proposition 1 (Completeness of NC-Rewriting). Let R = (Σ, B,R) be

convergent and FPP. Then for each Σ-term t, if t →!
R,B v, then t

NC−−→!
R,B v,

where t
NC−−→!

R,B v denotes a sequence of n ≥ 0 NC-rewriting steps followed by
a step of B-equality.

Proof. The case when t =B v is trivial. Suppose, therefore, that t →R,B

u→!
R,B v. Since R is convergent, it is in particular operationally terminating,

so that the relation →R,B is well-founded. We can reason by well-founded
induction on →R,B . But t →R,B u means that there is a position p ∈ Pos(t),
a rule l → r if u1 → v1, . . . , un → vn in R and a substitution σ such that
tp =B lσ, ujσ →?

R,B vjσ for each 1 ≤ j ≤ n, and u = t[rσ]p. Since R is strongly

deterministic, we have ujσ →?
R,B vjσ →!

R,B vj(σ!R,B), and since it is FPP
and confluent, σ′ = σ|Var(l)] (σ!R,B)|Var(v1)∪···Var(vn) gives us an NC-rewrite

step t
NC−−→R,B t[rσ′]p. By confluence and well-founded induction we then have

t[rσ′]p
NC−−→!

R,B v, and therefore, t
NC−−→!

R,B v, as desired. 2

Note that, ifR is convergent and FPP, the above completeness result ensures
that one can reach a canonical form using exclusively NC rewriting, both in each
rewrite step, and in recursively evaluating the conditions of each such step to
canonical form. This is of course much more time- and space-efficient than
performing search when evaluating conditions.

18

5. Reachability Problems and Constrained Narrowing

Constrained terms are pairs u | C, with u a term and C a conjunction of
reachability goals. Semantically, u | C denotes the set of instances uθ (with θ
a normalized substitution), such the R ` Cθ. We say that v | D is R-reachable
from u | C if an instance of u | C can be rewritten to an instance of v | D. We
define constrained narrowing for convergent FPP theories, and prove it sound
and complete to find NC-solutions to reachability problems between constrained
terms.

5.1. Reachability Problems

Definition 11 (FPP Condition and Constrained Term). Given a rewrite
theory R = (Σ, B,R), a condition u1 →?

R,B v1 ∧ · · · ∧ un →?
R,B vn is called an

FPP condition over ~x iff:

1. all vi are strongly R,B-irreducible.

2. Var(u1) ⊆ ~x

3. ∀1 < j ≤ n, Var(uj) ⊆ ~x ∪ (
⋃

1≤i<j Var(vi))

4. ∀1 ≤ j ≤ n, Var(vj) ∩ (~x ∪ (
⋃

1≤i<j Var(vi))) = ∅.

We call
⋃

1≤i≤n Var(vi) the fresh variables of the FPP condition.
A constrained Σ-term is a pair u | C where u is a Σ-term, and C is a

conjunction of the form u1 →?
R,B v1 ∧ · · · ∧ un →?

R,B vn. A constrained term
u | C is called FPP iff C = (u1 →?

R,B u′1 ∧ · · · ∧ un →?
R,B u′n) is FPP over

Var(u).

Definition 12 (Reachability Problem and their Solutions). Given a con-
vergent FPP rewrite theory R = (Σ, B,R) and constrained terms (u | C) and
(v | D), we call (v | D) R-reachable from (u | C) with solution σ iff there is a
normalized substitution σ with Dom(σ) ⊆ Var(u | C) ∪ Var(v | D) such that:

• R ` Cσ and R ` Dσ

• uσ →?
R,B vσ.

A solution σ is called an NC solution iff there is an NC-rewrite sequence
uσ →?

R,B vσ.

We call the problem of whether v | D is reachable from u | C an R-
reachability problem, denoted u | C ;? v | D, and say that it is solvable (resp.
NC-solvable) iff there is a solution (resp. NC-solution) σ reaching v | D from
u | C. If a solution σ exists, we then write R ` u | C ;?

σ v | D, or just
R ` u | C ;? v | D.

The following lemma, showing that solutions exist up to B-equivalence is an
easy consequence of Theorem 1; its proof is left to the reader.

19

Lemma 1. Given a convergent FPP theory R = (Σ, B,R), constrained terms
u | C and v | D, and substitutions σ, τ with σ =B τ , then σ is a solution (resp.
NC-solution) of the reachability problem u | C ;? v | D iff τ is so. 2

Example 4. Note that some reachability problems may be solvable, but not NC-
solvable. Consider, for example, the convergent FPP theory of Example 3, and
the reachability problem f(x, c) | > ;? c | >. This reachability problem is triv-
ially solvable with solution the identity substitution id, since we have f(x, c)→ c.
However, no NC-solution exists.

The easy proof of the following lemma is left to the reader.

Lemma 2. Let R = (Σ, B,R) be a convergent FPP theory, and u | C ;? v | D
a reachability problem such that v is strongly R,B-irreducible. Then any solution
σ of such a problem is an NC-solution. 2

In Definition 12 the set of shared variables ~y = Var(u | C)∩Var(v | D) may
be non-empty. However, by adding to R a tupling constructor we can easily
reduce any R-reachability problem to one where ~y = ∅.

Lemma 3. Let R = (Σ, B,R) be a convergent FPP rewrite theory, and u | C ;?

v | D an R-reachability problem with u and v of sort [s] and ~y = Var(u | C) ∩
Var(v | D) = y1:s1, . . . , yn:sn with n ≥ 0.

Extend R to R<> by adding a new tupling constructor

<_, . . . ,_> : [s] [s1] · · · [sk]→ Tuple.[s].[s1].[sk]

which does not appear in Σ and where the new sort Tuple.[s].[s1].[sk] is in a
new connected component of the, thus extended, poset of sorts. Then:

1. R ` (u | C) ;? (v | D) iff

2. R<> ` (< u, y1, . . . , yn >| C) ;? (< vρ, y′1, . . . , y
′
n >| Dρ), where ~y′ =

y′1:s1, . . . , y
′
n:sn, Dom(ρ) = ~y, Ran(ρ) = ~y′, ρ(yi) = y′i for 1 ≤ i ≤ n, and

~y′ ∩ (Var(u | C) ∪ Var(v | D)) = ∅.

Furthermore, any solution θ of (1) extends to a solution θ of (2) with y′iθ = yiθ.
Conversely, for any solution γ of (2), ργ is a solution of (1).

Proof. Obviously, if R ` u | C ;?
θ v | D, since uθ →∗R,B vθ, we also have

< uθ, y1θ, . . . , ynθ >→∗R,B< vθ, y1θ, . . . , ynθ >, but extending θ to θ by defining

y′iθ = yiθ, we have < vθ, y1θ, . . . , ynθ >=< vρθ, y′1θ, . . . , y
′
nθ >, giving us a

solution θ of (2) as described.
Conversely, let γ be a solution of (2), so that we have < uγ, y1γ, . . . , ynγ >

→?
R,B< vργ, y1ργ, . . . , ynργ >. Since γ is R,B-irreducible and < , . . . , > is

a new constructor symbol, this forces: (i) uγ →?
R,B vργ, and (ii) yiγ =B yiργ,

1 ≤ i ≤ n. But since ρ is a sort-preserving bijective renaming of variables,

20

(ii) then gives us uργ =B uγ and Cργ =B Cγ, which by Theorem 1 gives us
uργ →?

R,B vργ and R ` Cργ, proving R ` u | C ;?
ργ v | D. 2

Because of the above lemma, from now on without loss of generality we will
assume that in all R-reachability problems of the form u | C ;∗ v | D we have
Var(u | C) ∩ Var(v | D) = ∅.

5.2. Constrained Narrowing

Given an R-reachability problem, is there a symbolic method to find an NC-
solution for it? As we shall see, when R is a convergent FPP theory, constrained
narrowing provides such a method when the reachability goals do not share vari-
ables. Furthermore, we shall show that this symbolic method is sound (produces
correct NC-solutions), and complete, in the sense that (up to B-equality) any
NC-solution of a reachability problem is an instance of a symbolic solution found
by constrained narrowing.

Given a convergent FPP theoryR = (Σ, B,R), by a rule of R being standard-
ized apart, denoted (l′ → r′ if C ′)� R, we mean that there is a variable renam-
ing ρ and a rule (l → r if C) ∈ R such that (l′ → r′ if C ′) = (l → r if C)ρ, and,
furthermore, the variables Var(l′ → r′ if C ′) are disjoint from all the variables
previously met during any computation. In our case, the “computations” will
be constrained narrowing sequences u | C ;α1

u1 | C1 ; · · · ;αn
un | Cn =γ

B

v | D, which are symbolic solutions of reachability goals u | C ;? v | D, where
the last step is a B-unification of un and v with B-unifier γ. Likewise, we say
that a substitution θ is standardized apart if the variables in Ran(θ) are disjoint
from all the variables previously met during any computation. Standardizing
rules (resp. substitutions) apart allows all variables in such rules (resp. intro-
duced by such substitutions) to always be fresh. Of course, over a computation,
rules in R may have to be standardized apart many times.

Definition 13. Let u | C be a constrained term, and R = (Σ, B,R) a conver-
gent FPP theory. A constrained narrowing step denoted

u | C ;α,q,R,B (u[r]q | C ∧D)α

with rule (l → r if D) � R at non-variable position q ∈ PosΣ(u) and with
substitution α is defined iff α ∈ CSUB(u|q, l) with Dom(α) = Var(u|q)] Var(l)
and α standardized apart; in particular this implies that Ran(α) ∩ (Var(u|C)]
Var(l → r if D)) = ∅. When q, R and B are understood, we abbreviate a
constrained narrowing step as: u | C ;α (u[r]q | C ∧D)α.

By a constrained narrowing sequence of length n ≥ 0 from u | C, we mean
either the 0-step sequence u | C or the n > 0 sequence of constrained narrowing
steps

u | C ;α1
u1 | C1 ;α2

u2 | C2 ; · · ·; un−1 | Cn−1 ;αn
un | Cn

with each αi standardized apart, 1 ≤ i ≤ n.
Like rewriting, narrowing can also be restricted by means of a frozenness

map φ : Σ→ P(N). We then obtain a relation u | C ;α,q,R,B,φ (u[r]q | C∧D)α
by imposing the extra condition that the position q is not frozen by φ.

21

The key result is the following Lifting Lemma, which shows that any NC-
rewriting step can be lifted to a narrowing step of which it is an instance. Since
unsorted unconditional rewriting is a special case of order-sorted conditional
rewriting modulo axioms B (namely, for Σ unsorted and B = ∅), this general-
izes well-known Lifting Lemmas for unsorted unconditional rewriting without
axioms [44], and modulo axioms B [46]. The main differences with the proofs
in the unsorted, unconditional case —making the proof details somewhat more
delicate— are: (i) the presence of extra variables in conditions; (ii) only NC-
rewriting steps can be lifted; and (iii) strict coherence properties are now essen-
tially needed to keep track of B-equivalent versions of NC-rewriting steps and
of their B-equivalent fully evaluated conditions.

Lemma 4 (Lifting Lemma). Let R = (Σ, B,R) be a convergent FPP rewrite
theory. Let u | C be a Σ-constrained term, and β a R,B-normalized substitution
with Dom(β) ⊆ Var(u | C) such that R ` Cβ. Let uβ →R,B uβ[rσ]q be an
NC-rewrite step with rule

l→ r if u1 → v1 ∧ · · · ∧ un → vn (4)

at position q with substitution σ. Then, there is a constrained narrowing step
u | C ;α,q,R,B (u[r]q | C∧u1 →?

R,B v1∧· · ·un →?
R,B vn)α using (4) and a R,B-

normalized substitution γ such that, assuming without loss of generality that (4)
is standardized apart, and defining the mutually disjoint sets of variables: ~x =
Var(u|q), ~y = Var(u | C) \ Var(u|q), ~z = Var(l), ~z′ = Var(v1) ∪ · · · ∪ Var(vn),

and ~z′′ = Ran(α), we have Dom(γ) ⊆ ~y] ~z′] ~z′′, and:

1. (αγ)|~x]~y =B β,

2. (αγ)|~z]~z′ =B σ,

3. There is an NC-rewrite uαγ →R,B u[r]qαγ with rule (4), substitution
(αγ)|~z]~z′ , and provable condition (u1 →?

R,B v1 ∧ · · ·un →?
R,B vn)αγ that

coincides up to B-equality with the NC-rewrite step uβ →R,B uβ[rσ]q with
same rule and provable condition (u1 →?

R,B v1 ∧ · · ·un →?
R,B vn)σ, in the

sense that:

• uαγ =B uβ and uβ[rσ]q =B (u[r]q)αγ, and

• for 1 ≤ i ≤ n, uiαγ =B uiσ, and viαγ =B viσ.

4. R ` (C ∧ u1 →?
R,B v1 ∧ · · · ∧ un →?

R,B vn)αγ.

Proof. Since β is normalized we must have q ∈ PosΣ(u); and since uqβ =B lσ,
there is a B-unifier α ∈ CSUB(uq, l) with domain ~x] ~z and a substitution γ0

with domain ~z′′ such that β|~x =B (αγ0)|~x and σ|~z =B (αγ0)|~z. Define γ as the
following extension of γ0:

γ = β|~y] γ0] σ|~z′
Note that γ is normalized since: (i) β is so, (ii) σ is the substitution associated
to an NC-rewrite, which forces σ|~z′ to be normalized, and, (iii) since B is regular

22

and uqα =B lα, we have Var(uqα) = Var(lα) = Ran(α) = ~z′′, so that β|~x =B

(αγ0)|~x and β normalized forces γ0 to be normalized. Note that (αγ)|~x]~y =
(αγ)|~x] (αγ)|~y =B β|~x] γ|~y = β|~x] β|~y = β, which is point (1). We also have
(αγ)|~z]~z′ = (αγ)|~z] (αγ)|~z′ =B σ|~z] γ|~z′ = σ|~z] σ|~z′ = σ, which is point (2).

Since uqβ =B lσ, β|~x =B (αγ0)|~x = (αγ)|~x, and σ|~z =B (αγ0)|~z = (αγ)|~z, we
have uqαγ =B uqβ =B lσ =B lαγ. Furthermore, point (2) of Theorem 1, and
the fact that for each 1 ≤ i ≤ n we have uiσ →R,B !viσ gives us uiαγ →R,B !viαγ,
which gives us the claimed NC-rewrite uαγ →R,B u[r]qαγ, and the fact that
αγ|~z′ = γ|~z′ = σ|~z′ gives us the actual identities viαγ = viσ, which is (3).

Finally we have, (C ∧u1 →?
R,B v1∧ · · · ∧un →?

R,B vn)αγ = Cαγ ∧ (u1 →?
R,B

v1 ∧ · · · ∧ un →?
R,B vn)αγ =B Cβ ∧ (u1 →?

R,B v1 ∧ · · · ∧ un →?
R,B vn)αγ. Since

by hypothesis we have R ` Cβ, and we have just shown that R ` (u1 →?
R,B

v1 ∧ · · · ∧ un →?
R,B vn)αγ, again Theorem 1 gives (4), as desired. 2

Remark 2. For technical reasons that will become clear in Sections 7 and 8,
we will be interested in using also the above Lifting Lemma when the convergent
FPP rewrite theory comes with a B-stable frozenness map φ. If R = (Σ, B,R)
is such a theory and φ is a frozenness map, we write Rφ = (Σ, B,R, φ) to de-
note R enriched with the extra frozenness information φ. As already mentioned
in Section 3.1, the inference system defining the relation →R,B can be naturally
restricted to one defining the relation →R,B,φ, where rules are only applied at
non-frozen term positions. Of course, in Rφ this frozenness restriction also
applies to the evaluation of conditions by rewriting. However, in all the appli-
cations we will consider, Rφ will have particularly good properties, namely, it
will have: (i) a family of kinds {[si]}i∈I such that for each i ∈ I, any term t of
kind [si] has all its positions unfrozen; and (ii) for any rule l → r if D in R,
all terms appearing in the lefthand or righthand side of a condition in D have
their kind among the {[si]}i∈I . We call Rφ satisfying (i) and (ii) a theory with
unfrozen kinds {[si]}i∈I and unfrozen conditions.

The point, of couse, is that for terms t of kind [si], the relations →R,B and
→R,B,φ coincide. Therefore, notions such as normal form, normalized substi-
tution, and so on, do not change at all for such terms by the introduction of
the frozenness restrictions φ. Furthermore, for any term u whatsoever, which
may have frozen positions, the notion of an NC-rewrite u →R,B,φ v at a non-
frozen position makes perfect sense, since no frozenness restrictions can apply
to the evaluation of conditions, so that the entire evaluation of the NC-step
u →R,B,φ v, including the evaluation of its condition, can be performed with
Rφ.

We leave for the reader to check that the above Lifting Lemma also applies
to a theory Rφ with φ B-stable and with unfrozen kinds {[si]}i∈I and unfrozen
conditions provided: (i) the sorts of the variables Var(u | C) are all below some
unfrozen kind [si], and (ii) the position q at which the rewrite takes place is
non-frozen.

23

5.3. Solving Reachability Goals through Constrained Narrowing

Let u | C and v | D be constrained terms with Var(u | C)∩ Var(v | D) = ∅.
We can use constrained narrowing as a symbolic method to find an NC-solution
for the reachability problem u | C ;? v | D as follows.

Definition 14. Given a convergent FPP rewrite theory R and constrained terms
u0 | C0 and v | D with Var(u0 | C0)∩Var(v | D) = ∅, we call v | D symbolically
reachable by constrained narrowing from u0 | C0 with symbolic NC-solution
(α1 . . . αnδ)|Var(u0|C0)] δ|Var(v|D) iff there is a chain of constrained narrowing
steps with n ≥ 0 of the form:

u0 | C0 ;α1
u1 | C1 ;α2

u2 | C2 · · ·un−1 | Cn−1 ;αn
un | Cn

and a standardized apart unifier δ ∈ CSUB(un, v) with Dom(δ) = Var(un)]
Var(v) such that:

1. (α1 . . . αnδ)|Var(u0|C0) and δ are normalized

2. for each i, 1 ≤ i < n, (αi+1 . . . αnδ)|Var(ui) is normalized

3. for each i, 1 ≤ i ≤ n, let ~yi be the fresh variables of condition Di of the
rule li → ri if Di used in the narrowing step ui−1 | Ci−1 ;αi

ui | Ci,
then (αi . . . αnδ)|~yi is normalized.

We say that such a symbolic NC-solution (α1 . . . αnδ)|Var(u0|C0)] δ|Var(v|D) has
an actual NC-solution instance (α1 . . . αnδρ)|Var(u0|C0)]δρ|Var(v|D) iff there is a
normalized substitution ρ with Dom(ρ) ⊆ Var(u0α1 . . . αnδ)∪Var((v | Cn∧D)δ)
such that:

1. R ` (Cn ∧D)δρ.

2. (α1 . . . αnδρ)|Var(u0|C0) and δρ are normalized

3. for each i, 1 ≤ i < n, (αi+1 . . . αnδρ)|Var(ui) is normalized

4. for each i, 1 ≤ i ≤ n, (αi . . . αnδρ)|~yi is normalized.

Remark 3. For the reasons given in Remark 2, Definition 14 can be easily
adapted to a convergent FPP theory Rφ with B-stable frozenness map φ that
has a family of unfrozen kinds and with unfrozen conditions provided: (i) the
kinds of the terms in each condition of C0 ∧ D have unfrozen kinds; (ii) the
kinds of all variables in Var(u0 | C0)∪Var(v | B) have unfrozen kinds; and (iii)
the positions at which narrowing takes place in the narrowing sequence are all
unfrozen positions.

The correctness of constrained narrowing as a symbolic method to solve
reachability goals is expressed in the following theorem.

24

Theorem 3 (Soundness Theorem). Given a convergent FPP rewrite theory
R = (Σ, B,R) and constrained terms u0 | C0 and v | D with Var(u0 | C0) ∩
Var(v | D) = ∅, if v | D is symbolically reachable by constrained narrowing from
u0 | C0 with symbolic NC-solution (α1 . . . αnδ)|Var(u|C)] δ|Var(v|D), any actual
NC-solution instance (α1 . . . αnδρ)|Var(u|C)] δρ|Var(v|D) is an NC-solution of
the reachability goal u0 | C0 ;? v | D.

Proof. Suppose that (α1 . . . αnδρ)|Var(u|C)] δρ|Var(v|D) is an actual NC-
solution instance. This means that there are standardized apart rules li →
ri if Di in R, and positions pi ∈ Pos(ui−1), 1 ≤ i ≤ n such that:

1. αi ∈ CSUB(li, (ui−1)pi), 1 ≤ i ≤ n

2. ui = ui−1[ri]piαi, 1 ≤ i ≤ n

3. Ci = (Ci−1 ∧Di)αi. 1 ≤ i ≤ n.

But (3) implies that R ` (Cn ∧D)δρ exactly means that:

• R ` C0α1 . . . αnδρ

• R ` Diαi . . . αnδρ, 1 ≤ i ≤ n, and

• R ` Dδρ.

And since (αi . . . αnδρ)|~yi is normalized and R is FPP, (1) and (2) then mean
that there is an NC-rewrite step ui−1αi . . . αnδρ →R,B uiαi+1 . . . αnδρ, 1 ≤
i ≤ n. This, together with the fact that unδφ =B vδφ, shows that there is an
NC rewrite u0α1 . . . αnδρ→?

R,B vδφ, and therefore that (α1 . . . αnδρ)|Var(u|C)]
δρ|Var(v|D) is an NC-solution of the reachability goal u0 | C0 ;? v | D, as
desired. 2

Remark 4. For the reasons given in Remarks 2–3, the above Soundness Theo-
rem can be easily adapted to a convergent FPP theory Rφ with B-stable frozen-
ness map φ that has a family of unfrozen kinds and with unfrozen conditions
provided: (i) the kinds of the terms in each condition of C0 ∧D have unfrozen
kinds; (ii) the kinds of all variables in Var(u0 | C0) ∪ Var(v | D) have unfrozen
kinds; and (ii) the positions at which narrowing takes place in the narrowing
sequence are all unfrozen positions.

Note that Conditions (1)–(3) in Definition 14 can be very useful in weeding
out useless narrowing paths early on, thus making the symbolic search for NC
solutions more efficient. We already used this approach in [32] to drastically
reduce the number of narrowing steps in the variant narrowing strategy.

Example 5. Let Σ be an unsorted signature with constants a, b, binary associative-
commutative operator +, and unary symbols f, h and [], and with rules:

1. f(x)→ x+ y if h(x)→ [y]

25

2. z + a+ a→ z + b

3. h(x)→ [x].

It is not hard to show that this theory is convergent, and it is clearly FPP.
Consider the reachability problem

f(f(x0)) | >;? x′0 + b | >

We can find a symbolic NC-solution by constrained narrowing as follows: a first
constrained narrowing step

f(f(x0)) | >;α1 f(x1 + y) | h(x1)→? [y]

using rule (1) with substitution α1 = {x0 7→ x1, x 7→ x1}; a second constrained
narrowing step

f(x1 + y) | h(x1)→? [y] ;α2
x′1 + y′1 + y′ | h(x′1)→? [y′1] ∧ h(x′1 + y′1)→? [y′]

using rule (1) standardized apart as f(x′) → x′ + y′ if h(x′) → [y′] with sub-
stitution α2 = {x1 7→ x′1, y 7→ y′1, x

′ 7→ x′1 + y′1}; a third constrained narrowing
step

x′1+y
′
1+y

′ | h(x′1) →? [y′1]∧h(x′1+y′1) →? [y′] ;α3 z
′+b | h(a) →? [a]∧h(a+a) →? [z′]

using rule (2) with substitution α3 = {z 7→ x′, y′ 7→ z′, x′1 7→ a, y′1 7→ a}; and
a final substitution δ = {z′ 7→ x2, x

′
0 7→ x2} unifying z′ + b and the term to be

reached x′0 + b.
This symbolic solution has an actual NC-solution instance thanks to the sub-

stition ρ = {x2 7→ a+ a}, which instantiates the condition h(a)→? [a] ∧ h(a+
a)→? [x2] to a provable one and yields the actual solution {x0 7→ a, x′0 7→ a+a},
for which we have the NC-rewrite sequence:

f(f(a))→R,AC f(a+ a)→R,AC a+ a+ a+ a→R,AC b+ a+ a.

Other narrowing sequences can be rejected early on because they fail to satisfy
conditions (1)–(3) in Definition 14. For example, after the above first narrowing
step, there is a second, alternative narrowing step

f(x1 + y) | h(x1)→? [y] ;α′2
f(z1 + z2 + b) | h(z2)→? [a+ a+ z1]

using rule (2) with substitution α′2 = {x1 7→ z2, y 7→ a + a + z1, z 7→ z1 + z2}.
This alternative path can be immediately rejected, because α′2 maps the fresh
variable y in the condition of rule (1) to a term reducible by rule (2), violating
condition (3) in Definition 14.

Is constrained narrowing a complete method to symbolically describe NC-
solutions of reachability problems for R convergent and FPP? The positive
answer is made precise in the following theorem.

26

Theorem 4 (Completeness of Constrained Narrowing). Let R be con-
vergent and FPP, u0 | C0 and v | D two constrained terms with Var(u0 | C0) ∩
Var(v | D) = ∅, and β, η normalized substitutions, with Dom(β) ⊆ Var(u0 | C0)
and Dom(η) ⊆ Var(v | D), such that β] η is an NC-solution of the reachability
problem u0 | C0 ;? v | D with an NC-rewrite sequence u0β →R,B w1 →R,B

w2 · · ·wn−1 →R,B wn =B vη. Then there is a symbolic NC-solution with con-
strained narrowing sequence u0 | C0 ;α1 u1 | C1 ;α2 u2 | C2 · · ·un−1 | Cn−1 ;αn

un | Cn and B-unifier δ ∈ CSUB(un, v), and a substitution ρ with Dom(ρ) ⊆
Var(u0α1 . . . αnδ) ∪ Var((v | Cn ∧ D)δ) such that (α1 . . . αnδρ)|Var(u0|C0)]
δρ|Var(v|D) is an actual NC-solution instance and, furthermore:

1. β =B (α1 . . . αnδρ)|Var(u0|C0) and η =B δρ|Var(v|D)

2. the NC-rewrite sequence

u0α1 . . . αnδρ→R,B u1α2 . . . αnδρ . . . un−1αnδρ→R,B unδρ =B vδρ

ensured by the Soundness Theorem is such that: (i) u0β =B u0α1 . . . αnδρ,
(ii) for each i, 1 ≤ i ≤ n, wi =B uiαi+1 . . . αnδρ, and (iii) vη =B vδρ.

Proof. The proof is by induction on the number n of NC-rewrite steps in
the NC-rewrite sequence u0β →R,B w1 →R,B w2 · · ·wn−1 →R,B wn =B vη.
For n = 0 we have u0β =B vη and, since Var(u0) ∩ Var(v) = ∅, there is a
B-unifier δ ∈ CSUB(un, v) and a substitution ρ0 with Dom(ρ0) ⊆ Ran(δ) such
that β|Var(u0) =B δρ0|Var(u0), and η|Var(v) =B δρ0|Var(v). Extending ρ0 to ρ by
defining:

ρ = β|Var(C0)−Var(u0)] ρ0] η|Var(D)−Var(v)

gives us the desired NC-solution instance satisfying the requirements in the
theorem.

Suppose that the theorem holds for any NC-solutions of reachability prob-
lems with associated NC-rewrite sequences of length less than n and let β] η
be an NC-solution of the problem u0 | C0 ;? v | D with associated NC-rewrite
sequence u0β →R,B w1 →R,B w2 . . . wn−1 →R,B wn =B vη. In particular,
the NC-rewrite u0β →R,B w1 corresponds to a non-variable position p1, a rule
l1 → r1 if D1 and substitution σ such that w1 = u0β[r1σ]p1 and, by the Lifting
Lemma, there is a unifier α1, a constrained narrowing step u0 | C0 ;α1 u1 | C1

with u1 | C1 = (u0[r1]p1 | C0 ∧ D1)α1, and a normalized substitution γ such
that:

1. (α1γ)|Var(u0|C0) =B β

2. (α1γ)|Var(l1→r1 if D1) =B σ

3. there is an NC-rewrite u0α1γ →R,B u0[r1]p1α1γ with u0β =B u0α1γ, and
u0[r1]p1α1γ =B w1

4. R ` (C0 ∧D1)α1γ.

27

Therefore, by Theorem 1 there is an NC-rewrite sequence

u0α1γ →R,B u0[r1]p1α1γ →R,B w′2 . . . w
′
n−1 →R,B w′n =B vη

with wi =B w′i, 2 ≤ i ≤ n. This means that γ|Var(u1|C1)] η is an NC-solution
of the reachability problem u1 | C1 ;? v | D with n − 1 NC-rewrite steps.
Therefore, by the induction hypothesis there is a symbolic solution with nar-
rowing sequence8 u1 | C1 ;α2 u2 | C2 · · ·un−1 | Cn−1 ;αn nn | Cn and
B-unifier δ ∈ CSUB(un, v), and a normalized substitution ρ0 with Dom(ρ0) ⊆
Var(u1α2 . . . αnδ) ∪ Var((v | Cn ∧ D)δ) such that (α2 . . . αnδρ0)|Var(u1|C1)]
δρ0|Var(v|D) is an actual NC-solution instance and, furthermore:

1. γ|Var(u1|C1) =B (α2 . . . αnδρ0)|Var(u1|C1) and η =B δρ0|Var(v|D)

2. the NC-rewrite sequence

u1α2 . . . αnδρ0 →R,B u2α3 . . . αnδρ0 . . . un−1αnδρ→R,B unδρ0 =B vδρ0

is such that: (i) u1γ =B u1α2 . . . αnδρ0, (ii) for each i, 2 ≤ i ≤ n, w′i =B

uiαi+1 . . . αnδρ0, and (iii) vη =B vδρ0.

Since by the assumptions in Footnote 8 we have a narrowing sequence u0 |
C0 ;α1 u1 | C1 ;α2 u2 | C2 · · ·un−1 | Cn−1 ;αn nn | Cn and a B-unifier δ ∈
CSUB(un, v), the natural candidate for the desired NC-solution instance would
be (α1α2 . . . αnδρ0)|Var(u0|C0)] δρ0|Var(v|D). The problem, however, is that we
need a normalized substitution ρ with Dom(ρ) ⊆ Var(u0α1α2 . . . αnδ)∪Var((v |
Cn∧D)δ), which may properly contain Dom(ρ0) ⊆ Var(u1α2 . . . αnδ)∪Var((v |
Cn ∧ D)δ). This is because u1 = u0[r1]p1α1, and the righthand side r1 of the
rule l1 → r1 if D1 may drop some of the variables of l1. That is, the set
~z1 = Ran(α1)− Var(u1) may be non-empty. But by the standardization apart
assumptions in Footnote 8, ~z1∩Dom(α2 . . . αnδ) = ∅, so that ~z1α2 . . . αnδ = ~z1,
and our desired ρ has Dom(ρ) ⊆ Var(u0α1α2 . . . αnδ) ∪ Var((v | Cn ∧D)δ) =
~z1] Var(u1α2 . . . αnδ) ∪ Var((v | Cn ∧D)δ) = ~z1]Dom(ρ0). We can choose ρ
as the normalized substitution extending ρ0 as ρ = ρ0 ∪ γ| ~z1 . All we have left
is to prove that ρ yields an actual NC-solution instance satisfying conditions
(1)–(2) in the Theorem.

First of all note that, again, by the standardization apart, we have for each
i, 1 ≤ i < n, (αi+1 . . . αnδρ)|Var(ui) = (αi+1 . . . αnδρ0)|Var(ui), which is normal-
ized by the induction hypothesis, and for each i, 2 ≤ i ≤ n, αi . . . αnδρ|~yi =
αi . . . αnδρ0|~yi , which again is normalized by the induction hypothesis. Likewise,
(Cn ∧D)δρ = (Cn ∧D)δρ0, so that R ` (Cn ∧D)δρ. With respect to the fresh
variables ~y1 of D1, since ~y1α1 = ~y1 and ~y1 ⊆ Var(u1 | C1), the above equality

8 Since we will later use the longer narrowing sequence u0 | C0 ;α1 u1 | C1 ;α2 u2 |
C2 · · ·un−1 | Cn−1 ;αn nn | Cn, we furthermore assume that the rules and unifiers in the
subsequent steps are standardized apart with respect to the variables used in the initial step
u0 | C0 ;α1 u1 | C1.

28

γ|Var(u1|C1) =B (α2 . . . αnδρ0)|Var(u1|C1) and γ normalized means, using again
standardization apart, that (α1α2 . . . αnδρ)|~y1 is normalized. Also, δρ = γ| ~z1]
δρ0 and therefore is normalized. Furthermore, (δρ)|Var(v|D) = δ(ρ|Var((v|D)δ)) =
δ(ρ0|Var((v|D)δ)) = (δρ0)|Var(v|D) =B η, proving the second part of (1). So
we just need to prove that (α1α2 . . . αnδρ)|Var(u0|C0) is normalized, so that we
have an NC-solution, and that the first part of (1) and (2) hold. Since β =B

(α1γ)|Var(u0|C0), if we can prove (α1α2 . . . αnδρ)|Var(u0|C0) =B (α1γ)|Var(u0|C0),
we will prove both the first part of (1) and (α1α2 . . . αnδρ)|Var(u0|C0) normal-
ized. It is helpful to consider the following sets of variables: ~xp1 = Var((u0)p1),
~z0 = Var(u0 | C0) − ~xp1 , ~z2 = Ran(α1) − ~z1, and to recall that ~y1 are the
fresh variables of the FPP condition D1. We then get the following partitions of
variables: Var(u0 | C0) = ~xp1] ~z0, and Var(u1 | C1) = ~z2] ~y1] ~z0. Therefore,
(α1α2 . . . αnδρ)|Var(u0|C0) = (α1α2 . . . αnδρ)|~xp1

] (α1α2 . . . αnδρ)|~z0 . But, us-
ing standardization apart, the definition of ρ, and the equality γ|Var(u1|C1) =B

(α2 . . . αnδρ0)|Var(u1|C1), we get:

(α1α2 . . . αnδρ)|~xp1
= α1((α2 . . . αnδρ)|~z1]~z2) =B α1(γ|~z1] γ|~z2) = (α1γ)|~xp1

.

Likewise, (α1α2 . . . αnδρ)|~z0 = (α2 . . . αnδρ)|~z0 =B γ|~z0 = α1γ|~z0 , giving us
(α1α2 . . . αnδρ)|Var(u0|C0) =B (α1γ)|Var(u0|C0) and therefore both the first part
of (1) and its being normalized. For (2), note that: (i) u0β =B u0α1γ =B

u0α1α2 . . . αnδρ; (ii) for each i, 1 ≤ i ≤ n, wi =B w′i = uiαi+1 . . . αnδρ; and (iii)
unδρ =B vδρ =B vη. 2

Remark 5. Using Remarks 2, 3 and 4, the above Completeness Theorem can
be easily adapted to a convergent FPP theory Rφ with B-stable frozenness map
φ that has a family of unfrozen kinds and with unfrozen conditions provided:
(i) the kinds of the terms in each condition of C0 ∧D have unfrozen kinds; (ii)
the kinds of all variables in Var(u0 | C0) ∪ Var(v | B) have unfrozen kinds;
and (ii) the positions at which rewriting takes place in the NC-rewrite sequence
u0β →R,B w1 →R,B w2 · · ·wn−1 →R,B wn =B vη are all unfrozen positions.

The completeness of NC-rewriting immediately shows that, if v is strongly
irreducible, constrained narrowing is a complete method to find as instances all
solutions of a reachability problem u0 | C0 ;? v | D, and not just NC-solutions.

Corollary 1. If in Theorem 4 the term v is strongly irreducible, we can weaken
the assumption on β]η to just be a solution of the reachability problem u0 | C0 ;?

v | D. Since vη is normalized, the rewrite u0β →!
R,B vη has a description as an

NC-rewrite sequence, so that β] η is an NC-solution.

6. Constrained Variants and Constrained Unification

The completeness of constrained narrowing and Corollary 1 yield two useful
symbolic methods, one for describing symbolically all E-variants of a term in an
equational theory E = (Σ, E] B) by constrained narrowing with a convergent

29

FPP rewrite theory (Σ, B, ~E), and another for describing symbolically all E]B-

unifiers of two terms by constrained narrowing with such a theory (Σ, B, ~E).
The E-variants of a term have only been defined for unconditional equational

theories E [19, 32]. The following definition generalizes the variant notion to
the conditional case.

Definition 15 (Variants). Let E = (Σ, E]B) be an order-sorted conditional

equational theory such that RE = (Σ, B, ~E) is a convergent FPP rewrite theory.
Given a term t, an E-variant of t is a pair (u, θ) with u a Σ-term and θ a
substitution such that: (i) Dom(θ) ⊆ Var(t), (ii) θ = θ!~E,B, and (iii) u =B

(tθ)!~E,B.

Intuitively, we can think of the variants of a term t as the different patterns
in ~E,B-canonical form associated to instances of t.

As shown in [32], in the unconditional case the E-variants of a term can
be computed symbolically by folding variant narrowing. Can we have in the
conditional case a constrained notion of variant as a symbolic way and method
of describing all variants?

Definition 16 (Constrained Variant). Let E = (Σ, E] B) be an order-

sorted conditional equational theory such that RE = (Σ, B, ~E) is a convergent
FPP rewrite theory. A constrained E-variant of a term t is a pair
(unδ | Cnδ, (α1 · · ·αnδ)|Var(t)) such that the constrained narrowing sequence
t | > ;α1

u1 | C1 ; · · · ; un−1 | Cn−1 ;αn
un | Cn, n ≥ 0, together with

the B-unifier δ ∈ CSUB(un, x:s) is a symbolic NC-solution of the reachability
problem t | >;? x:s | >, where s = ls(t), and x is a fresh variable not appearing
in t.

Note that conditions (1)–(2) in Definition 14, plus the fact that unδ =B x:sδ
ensure that: (i) unδ is normalized, and (ii) α1 · · ·αnδ|Var(t) is a normalized
substitution. In summary, therefore, a constrained variant of t is a pair (v | C, θ)
obtained by constrained narrowing from t | > such that, if C were provable,
(v, θ) would be an actual variant of t. As we show below, the key point about
constrained variants is that they “cover” as instances all actual variants of t.

Note that x:s is a strongly irreducible term. Therefore, Corollary 1 applies,
and we get as an immediate consequence of the Completeness Theorem for con-
strained narrowing the following completeness result, showing that constrained
variants contain as instances all variantes up to B-equality.

Theorem 5 (Completeness of Constrained E-Variants). For RE as above,
let t be a term and let (w, θ) be an E-variant of t. Then there is a constrained
E-variant (v | C, γ) and a normalized substitution ρ such that:

1. vρ =B w

2. θ =B γρ

3. RE ` Cρ.

30

Let RE be as above, and consider an E-unification problem u
?
=E∪B v. Note

that, since RE is Church-Roser, θ is an E-unifier iff (uθ)!~E,B =B (vθ)!~E,B .
Furthermore, without loss of generality we may assume θ = θ!~E,B . Note that,

by assuming that for each top sort [s] in each connected component we add a
fresh new sort Pair.[s] in its own connected component and a pairing operator

< , >: [s] [s] → Pair.[s], we can recast an E-unification problem u
?
=E∪B v

as a reachability problem < u, v >;?< x, x > where x is a fresh variable not
appearing in u and v and having the top sort [s] of the connected component of
the sorts of u and v.

Definition 17 (Constrained E-Unifier). Let RE be as above. A constrained

E-unifier of a E-unification problem u
?
=E∪B v is a pair of the form

α1 · · ·αnδ | Cnγδ

such that < u, v >;α1
< u1, v1 >; · · · ;αn

< un, vn > together with the B-
unifier δ ∈ CSUB(< un, vn >,< x, x >) is a symbolic NC-solution of the reach-
ability problem < u, v >| >;?< x, x >| >.

Note that conditions (1)–(2) in Definition 14, plus the fact that
< un, vn > δ =B< x, x > δ ensure that: (i) α1 · · ·αnδ|Var(<u,v>) is a normalized
substitution, and (ii) unδ and vnδ are normalized.

Again, since < x, x > is strongly irreducible, Corollary 1 applies, and we
get as an immediate consequence of the Completeness Theorem for constrained
narrowing the completeness of constrained unifiers to describe symbolically all
(normalized) E-unifiers up to B-equality.

Theorem 6 (Completeness of Constrained E-unifiers). Let RE be as above,

and let θ = θ!~E,B be a unifier of u
?
=E∪B v. Then there is a constrained unifier

γ | D and a normalized substitution ρ such that:

1. γρ =B θ

2. RE ` Dρ.

Using a second tupling constructor, a simultaneous unification problem

u1
?
=E∪B v1 ∧ · · · ∧ un

?
=E∪B vn

can be reduced to the single unification problem

< u1, . . . , un >
?
=E∪B< v1, . . . , vn >

and be symbolically described by its constrained unifiers.
There is of course the alternative, already described after Definition 10, of

extending RE with a new sort Truth, with a constant tt :→ Truth, in a new
connected component, and adding for each top sort [s] in each connected com-
ponent of the sorts of RE the predicate ≡ : [s] [s] → Truth and the rule

31

x ≡ x→ tt. In this way we can, alternatively, reduce any E-unification problem

u
?
=E∪B v to the problem of computing the variants of the term u ≡ v that have

the form (tt, θ), which, by Theorem 5, can all be obtained as instances of con-
strained variants of the form (tt | C, γ). However, since all constrained unifiers
computed according to the treatment we have presented above are such that
unδ and vnδ are normalized, such a treatment may compute fewer constrained
unifiers and may be more efficient. We leave a detailed comparison between
both methods, including their experimental evaluation, as a subject for future
research.

The advantage of constrained variants and constrained unifiers is that they
can provide a more compact, yet complete, representation of, respectively, all

E-variants of a term and all E-unifiers of a unification problem u
?
=E∪B v. This

can have many advantages, including the following two. First, in some cases
there may be a finite set of constrained variants (resp. unifiers) when only an
infinite set of variants (resp. unifiers) exists. This would allow achieving a
finitely-braching search space instead of an infinitely-branching one, and post-
poning the possibly costly solution of the constrains until after some potential
symbolic solution is found. Second, in conditional theories appearing in actual
practice —particularly when sorts and subsorts are used— the set ~E1 of rules
needed to solve the constraints generated by narrowing may be a proper subset
of ~E, and may even be unconditional and have the finite variant property. More
generally, denoting ~E = ~E0, we may have a sequence of increasingly simpler sets
of equations ~E0 ⊃ ~E1 ⊃ . . . ~Ek, so that constraints generated using ~Ei can be
handled with fewer and simpler rules in ~Ei+1. This can make hierarchical, sym-
bolic methods such as the computation of constrained variants and constrained
unifiers quite effective. We illustrate these possibilities with an example.

Example 6. As pointed out in the Introduction, a rewrite theory has often a
non-equational meaning in which rules are viewed as transition rules in a concur-
rent system [56, 58]. We have developed, with K. Bae, a narrowing-based model
checking method and implementation for such concurrent systems in [31, 9],
called logical model checking, which allows rules to describe a concurrent system
while the equational theory describes both system properties and state predicates.
However, such logical model checking does not allow conditional transition rules
or conditional equations. The work developed in this paper can clearly contribute
to expanding the application of logical model checking by allowing conditional
equations both for the system properties and the state predicates. Specifically,
we are interested in performing model checking in a symbolic way with rewrite
theories (Σ, E ∪ B,R) such that (Σ, B, ~E) is a convergent FPP theory of the
kind considered in this paper, and where the rules R may be conditional, but
have only equational conditions that can be solved using the convergent FPP
theory (Σ, B, ~E).

Let us consider a simple protocol example involving a data structure for
messages exchanged between participants that is represented as a set. That is,
we consider a sort Dataset with a subsort Data and two operators, ∅ and an
associative-commutative union operator & with equations ∅ & y = y, x & x = x

32

and y & x & x = y & x using variables x, y:Dataset. Assuming that com-
munication channels may lose messages, the protocol repeats sending messages
indefinitely, and thus channels may have repeated messages. Let us assume a
very simple notion of state using symbol ; ; : DataSet DataSet DataSet, where
the left component originally contains the initial data, the second component
represents a unidirectional communication channel, and the third component
will store the final data. For S0 some specific data set to be sent, an initial
configuration would be S0; ∅; ∅, and the final configuration should be ∅; ∅;S0.

This protocol should satisfy an invariant asserting that all the information
spread out among the communication channels is always the same, i.e., if there
is an initial set of messages to be sent from sender participants to receiver partic-
ipants, the set of messages scattered through all the channels is the same modulo
repeated occurrences of messages. This is expressed with the following predicate
inv : DataSet State → Bool which can be defined by the following conditional
equation, oriented as the FPP rule:

inv(S0, S1;S2;S3)→ true if S1&S2&S3 → S4 ∧ S0 ≡ S4 → tt . (5)

The equational theory (Σ, B] E0] E1) associated to this example is a con-
vergent FPP rewrite theory by orienting equations E1 for symbol & and E0 con-
taining only Equation 5 into rules. Indeed, we have a hierarchical view of the
equational theory, as explained above, where B ⊂ (E1∪B) ⊂ (E1∪E0∪B). The
equational theory (Σ, B∪E1) has the finite variant property and the latest version
of the Maude tool can effectively generate variants and unifiers for it. Of course,
the communication protocol is specified by a rewrite theory (Σ, B] E0] E1, R)
where the rules R (not detailed here) specify the protocol transitions. We are in
the desired, more general situation, since the underlying conditional equational
theory (Σ, B] E0] E1) can be oriented as a convergent FPP rewrite theory

(Σ, B, ~E0] ~E1).
In logical model checking, equational unification is performed every time a

transition rule is applied by narrowing but this equational unification is restricted
to the system properties, in this case properties of symbol &. However, the gener-
ation of the logical state transition system requires instantiating every computed
symbolic state in the transition system to a version where predicates can be eval-
uated to either true or false. Therefore, variants of symbolic states are gen-
erated using the equations for the state predicates. For example, given an initial
data set m0&m1&m2 and a state St = (m1&X);m1; (m0&Y), the variants of
the term t = inv(m0&m1&m2, (m1&X);m1; (m0&Y)) would be generated using
constrained narrowing for the reachability goal t | > ;? x:s | >. In particular

33

we get:

inv(m0&m1&m2, (m1&X);m1; (m0&Y)) | >
;α1

true | m1&X&m1&m0&Y →? S4

∧
S4 ≡ m0&m1&m2 →? tt

Finally, as explained before, the equational theory (Σ, B, ~E1) has the finite vari-
ant property and tools such as Maude can effectively solve the variant E1 ∪ B-
unification problem

m1&X&m1&m0&Y = m0&m1&m2

whose more general solutions are σ1 = {X 7→ Z, Y 7→ m2&Z} and σ2 = {X 7→
m2&Z, Y 7→ Z}.

An important issue left for future research is how to detect that a constrained
variant (resp. constrained unifier) is more general than another (i.e., one sub-
sumes another). Semantically, (u | C,α) is more general than (v | D,β) iff there
is a γ such that:

1. uγ =B v, and

2. R ` (D ⇒ Cγ) (i.e., for each substitution θ such that R ` Dθ, we have
that R ` Cγθ).

Likewise, α | C is semantically more general than β | D (i.e., subsumes β | D)
iff there is a substitution γ such that

1. αγ =B β, and

2. R ` (D ⇒ Cγ)

Of course, in both cases determining whether R ` (D ⇒ Cγ) may in gen-

eral be undecidable. However, either because we can use simpler equations ~Ei
as described above, or by using a simple decidable condition, it may be possi-
ble to achieve checkable versions of subsumption for constrained variants and
constrained unifiers.

Constrained variants and constrained unifiers seem appealing for symboli-
cally and compactly representing all variants and unifiers of a conditional theory.
But we can ask the question:

Given a constrained variant (resp. unifier) is there a systematic way
to extract from it a complete family of the variants (resp. unifiers)
that it represents?

The answer, in the affirmative, is part of the more general method of layered
constrained narrowing explained in Section 8.

34

7. A Useful Theory Transformation

Let R be a convergent, strongly deterministic FPP conditional order-sorted
rewrite theory. In what follows it will be useful to bring to the object level
certain meta-level constraints involving the operators →? and ∧ . This can
be achieved by extending R (where S is its set of sorts) to a rewrite theory R̂
with the following new sorts:

• a sort Atom with a constant >, and for each top sort [s] in S a new operator
→? : [s] [s]→ Atom,

• a sort Cond with subsort Atom < Cond and a binary operator ∧ :
Atom Cond→ Cond.

R̂ contains the axioms B and rules R of R plus the additional rules:

1. (x →? x) → >, where x is a variable of the top sort [s] for each strongly
connected component of S.

2. (> ∧ C)→ C, where C is a variable of sort Cond

Since these rules are terminating and operate on a completely new connected
component, it is not hard to show that, since R is operationally terminating, R̂
is also operationally terminating. By construction, the above rules cannot have
any critical pairs with those in R, and do not themselves have any non-trivial
critical pairs. Therefore R̂ is itself also a convergent FPP rewrite theory. In
what follows, it will be useful to give to the new operators added to R in R̂ the
following frozenness information using a mapping φ:

φ(→?) = {2} φ(∧) = {2}

Instead, all operators f in R are unfrozen, i.e., φ(f) = ∅. Since the only
operators with frozenness restrictions obey no axioms, φ is clearly a B-stable
map. It is easy to check that, if S is the set of sorts in R, then R̂φ is such that

the kinds of S are unfrozen, with the conditions of the rules in R̂ also unfrozen.
What is the point of the transformation R 7→ Rφ? Why is it useful? The

answer is: efficiency, efficiency, efficiency. What kind of efficiency? A massive
reduction in the number of redexes where a conjunction of goals can be reduced:
the frozenness requirement makes sure that only the leftmost term in the leftmost
conjunct can be rewritten, as opposed to any possible redex in the conjunction.
And why should we care about this kind of reduction? Because combinatorial
explosion in narrowing search must be avoided like the plague, and in Section
8 we are going to solve the accumulated constrains obtained by constrained
narrowing by a form of narrowing called layered constrained narrowing that will
use Rφ instead of R precisely to cut down the narrowing search space.

Note that the notion of a layered proof for a rewrite theory R (see Section
3.3) extends naturally to that of a layered proof for a theory Rφ, with frozen-
ness information given by mapping φ, just by requiring that all rewrites take

35

place at non-φ-frozen positions. In our case, since the conditions in the theory
R̂φ are unfrozen, the restrictions imposed by φ can apply at most to the first
layer of such proofs: for all other layers the restrictions φ do not apply. A key
point about the above extension is that we have the following equivalence, which
ensures that the frozenness restrictions enforced in R̂φ, while massively reduc-
ing the possible redexes in a conjunction of goals, do not leave any condition
unevaluated, that is, they can accomplish just the same final results as those
obtained using the unrestricted theory R̂.

Theorem 7. Let u1 →?
R,B u′1 ∧ · · · ∧ un →?

R,B u′n be a conjunction of reacha-
bility goals, i.e., reachability problems, in R. Then for each layered trace proof
(resp. NC-proof9) #T ↑ TS ↑ ># in R of these reachability goals, there are:

1. a layered trace proof (resp. NC-proof) #T ′ ↑ TS ↑ ># of the following
transformed sequence of reachability goals (u1 →? v1)→? >∧· · ·∧(un →?

vn)→? > in R̂φ

2. a layered trace proof (resp. NC-proof) #T ′′ ↑ TS ↑ ># of the following
single reachability goal ((u1 →? v1) ∧ · · · ∧ (un →? vn))→? > in R̂φ

Conversely, for any layered trace proofs (resp. NC-proofs) #T ′ ↑ TS ↑ >#
and #T ′′ ↑ TS ↑ ># in R̂φ of, respectively, the transformed reachability goals
and the compact reachability goal above, there is a layered trace proof (resp.
NC-proof) #T ↑ TS ↑ ># in R.

Proof. We use throughout, without further mention, the fact that R̂φ has
unfrozen the kinds of R and unfrozen conditions. The layered trace proof #T ↑
TS ↑ ># of the given reachability goals in R is of the form:

#u1 → u1
1 → u2

1 → · · · → uk11 =B v1 ∧ · · · ∧
un → u1

n → u2
n → · · · → uknn =B vn ↑ TS ↑ >#

We can build a layered trace proof of the transformed reachability goals in R̂φ
of the form

(u1 →? v1)→ (u1
1 →? v1)→ (u2

1 →? v1)→ · · · → (uk11 →? v1)→ > =B >
∧ · · · ∧

(un →? vn)→ (u1
n →? vn)→ (u2

n →? vn)→ · · · → (uk1n →? vn)→ > =B >
↑ TS ↑ >#

9That is, a layered trace rewrite proof where all the rewrite steps (including those in
evaluations of conditions) are NC-rewrites.

36

and likewise a layered trace proof of the compact reachability goal in R̂φ of the
form

#((u1 →? v1) ∧ · · · (un →? vn))→? >
→ ((u1

1 →? v1) ∧ · · · (un →? vn))→? >
→ ((u2

1 →? v1) ∧ · · · (un →? vn))→? >
...

→ ((uk11 →? v1) ∧ · · · (un →? vn))→? >
→ (> ∧ · · · (un →? vn))→? >
→ ((u2 →? v2) ∧ · · · (un →? vn))→? >
...

→ ((uk22 →? v2) ∧ · · · (un →? vn))→? >
→ (> ∧ · · · (un →? vn))→? >
→ ((u3 →? v3) ∧ · · · (un →? vn))→? >
...

→ (uknn →? vn)→? >
→ > →? >
→ > =B > ↑ TS ↑ >#

The converse proof follows easily from the frozenness restrictions φ, which force
the rewriting to be restricted to subterms of the form u1, u

1
1, . . . , u

k1
1 , . . . , un,

u1
n, . . . , u

kn
n . Finally, since the levels TS of all proofs are the same, it is obvious

by construction that NC rewriting proofs of the original reachability goals cor-
respond to the NC rewriting proofs of both the transformed reachability goals
and the compact reachability goal. 2

Lemma 5. Let u1 →?
R,B u′1 ∧ · · · ∧ un →?

R,B u′n be such that for each i,
1 ≤ i ≤ n, there is a strongly irreducible term vi and a normalized substitution
γi such that u′i =B viγi. Let θ be a substitution with Dom(θ) ⊆ Var(u1 →?

R,B

u′1 ∧ · · · ∧ un →?
R,B u′n) and such that for each i, 1 ≤ i ≤ n, (γiθ)|Var(vi) is

normalized. Then if (u1 →?
R,B u′1 ∧ · · · ∧ un →?

R,B u′n)θ →∗ > in R̂, there is
an NC rewriting sequence for it satisfying the frozenness restrictions φ.

Proof. First of all note that u′1θ =B v1γ1θ, . . . , u
′
nθ =B vnγnθ are normalized,

so no rewriting is possible for them. Second, it is easy to prove by induction on n
that the above rewrite sequence is possible iff u1θ!R,B =B v1γ1θ, . . . , unθ!R,B =B

vnγnθ. Let uiθ →∗ uiθ!R,B be NC rewrite sequences, 1 ≤ i ≤ n. We then obtain

37

the following NC rewrite sequence satisfying the frozenness condition φ:

(u1θ →? u′1θ ∧ · · · ∧ unθ →? u′nθ)

→∗ (u1θ!R,B →? u′1θ ∧ u2θ →? u′2θ ∧ · · · ∧ unθ →? u′nθ)

→ (> ∧ u2θ →? u′2θ ∧ · · · ∧ unθ →? u′nθ)

→ (u2θ →? u′2θ ∧ · · · ∧ unθ →? u′nθ)

→∗ (> ∧ · · · ∧ unθ →? u′nθ)
...

→ (unθ →? u′nθ)

→∗ >

2

8. Solving Constraints by Layered Constrained Narrowing

Constrained narrowing has an obvious advantage and an obvious limitation:

1. by not evaluating accumulated conditions and by the additional search
space reduction techniques mentioned in the Introduction, it can drasti-
cally cut down the search space; but

2. it only yields symbolic solutions, whose accumulated constraint might be
unsatisfiable; and how can we then know whether we have found an actual
solution?

The good news about point (1) is that we can postpone condition evaluation
until a symbolic solution has been found, thus avoiding wasteful searches that
can easily go nowhere. But how can we solve the limitation involved in point
(2)? That is, how can we pass from: (i) a complete set of symbolic NC-solutions
to a reachability problem u | C ;? v | D with u | C and v | D constrained
terms, and Var(u | C) ∩ Var(v | D) = ∅ —that is, symbolic solutions that
“cover” or “lift” all actual NC-solution β] η— to (ii) a set of most general
actual NC-solutions {βi] ηi}i∈I to the same reachability problem?

The answer is: continue doing constrained narrowing, but now on the ac-
cumultated condition regarded as a term. Technically, key idea making this
answer possible and search-efficient is to exploit the theory transformation in
Section 7 that allows us to recast the solution of a conjunction of reachability
goals in R

u1 →?
R,B u′1 ∧ · · · ∧ un →?

R,B u′n

as a single reachability goal

(u1 →?
R,B u′1 ∧ · · · ∧ un →?

R,B u′n)→? >

in R̂φ. We can apply this idea to solve by constrained narrowing the accumu-
lated condition (Cn∧D)δ computed by constrained narrowing when symbolically

38

solving a goal u | C ;? v | D. Indeed, we can do so by symbolically solving
the reachability goal (Cn ∧D)δ | >;? > | > by constrained narrowing in R̂φ.
Solving this goal will generate another accumulated condition goal, and so on.
Repeated application of this method then gives us a sound and complete method
to compute a set of most general NC-solutions {βi]ηi}i∈I of a reachability goal
u | C ;? v | D, provided u | C and v | D are FPP.

The method can be expressed by an inference system for layered constrained
narrowing which is analogous to the one in Appendix A based on layered traces:
here we have layered constrained narrowing traces. But, since we can gather
all conjunction into a single term in R̂, the inference system is simpler, since it
solves a single reachability goal in each layer.

Layered traces will be of the form:

#T1 ↑ T2 ↑ · · · ↑ Tn | G | >#

with n ≥ 0, the Ti fully expanded narrowing traces, and G a possibly partially
expanded reachability goal. A closed proof will have the form

#T1 ↑ T2 ↑ · · · ↑ Tn ↑ >#

so that fully expanded constrained narrowing proofs of all layers have been
developed and no more inference steps are possible.

Initially, we start with a reachability goal in R,

#u | C ;? v | D ↑ >#

with Var(u | C)∩Var(v | D) = ∅ (but see below for a more general possibility).
By a fully expanded narrowing trace T of a goal u0 | C0 ;? v0 | D0, where
all the variables of the goal, and each of the terms in the conditions C0 or D0,
belong to sorts in R, we mean a symbolic NC-solution of it in R̂φ, represented
as a sequence of normalized substitutions followed by the actual symbolic trace
as follows:

[γ, δ, ~µ, ~ν] : u | C ;α1,φ u1 | C1 ; · · ·; un−1 | Cn−1 ;αn,φ un | Cn =δ
B v | D

where γ = α1 . . . αnδ|Var(u|C)] δ|Var(v|D) is the symbolic NC-solution, which,
as δ, is normalized by definition; ~µ = {αi+1 . . . αnδ|Var(ui)}1≤i<n is the family
of substitutions also normalized by definition; and ~ν = {αi . . . αnδ|~yi}1≤i≤n is
the family of substitutions, normalized by definition, where ~yi are the fresh
variables of the condition Di in the rule li → ri if Di used in narrowing step
ui−1 | Ci−1 ;αi,φ ui | Ci. Note that, since all the sorts of R and all conditions

in its rules are unfrozen in R̂φ, we can trivially view each trace of a goal u | C ;?

v | D inR as a trace of a goal in R̂φ. This suggests widening our inference system
to deal not just with initial reachability goals in R, but with initial reachability
goals u | C ;? v | D in R̂φ such that: (i) Var(u | C) ∩ Var(v | D) = ∅, and
(ii) all the variables of the goal and each of the terms in the conditions C or D
have sorts in R.

39

TS, TS′, . . ., etc., will range over sequences T1 ↑ T2 ↑ · · · ↑ Tn of such fully-
expanded narrowing traces (called trace stacks), where n ≥ 0, i.e., TS can
also be the empty trace stack, denoted nil . The inference system for layered
constrained narrowing is quite simple. It is very similar to the layered proof
system in Section 3.3 and has just three inference rules, expressed as meta-level
rewrite rules that expand reachability goals:

Narrowing

TS ↑ (u0 | C0) ;α1,φ (u1 | C1) ; · · ·; (un | Cn) ;?
R,B (v | D) ↑ > #

→
TS ↑ (u0 | C0) ;α1,φ (u1 | C1)

; · · ·; (un | Cn) ;αn+1,φ (un+1 | Cn+1) ;?
R,B (v | D) ↑ > #

where n ≥ 0 and un|Cn ;αn+1,φ un+1|Cn+1 is a constrained narrowing step in R̂φ
Unification

TS ↑ (u0 | C0) ;α1 (u1 | C1) ; · · ·; (un | Cn) ;?
R,B (v | D) ↑ > #

→
TS ↑ [γ, δ, ~µ, ~ν] : (u0 | C0) ;α1

(u1 | C1) ; · · ·; (un | Cn) =δ
B (v | D) ↑ > #

if:

1. n ≥ 0, and δ ∈ CSUB(un = v)

2. the above trace is a symbolic solution of the reachability goal u0 | C0 ;?
R,B

v | D with [γ, δ, ~µ, ~ν] its associated sequence or normalized substitutions,
and

3. if TS = [γ1, δ1, ~µ1, ~ν1] : S1 ↑ . . . ↑ [γk, δk, ~µk, ~νk] : Sk, k ≥ 0, with the
Sj the actual narrowing sequences followed by their last unification step,
then, for each j, 1 ≤ j ≤ k, the substitutions

[γjγj+1 . . . γkγ, δjγj+1 . . . γkγ, ~µjγj+1 . . . γkγ, ~νjγj+1 . . . γkγ]

are all normalized.

Shift

TS ↑ [γ, δ, ~µ, ~ν] : (u | C) ;α1,φ (u1 | C1) ; · · ·; (un | Cn) =δ
B (v | D) ↑ > #

→
TS ↑ [γ, δ, ~µ, ~ν] : (u | C) ;α1,φ (u1 | C1) ; · · ·; (un | Cn) =δ

B (v | D) ↑
((Cn ∧D)δ | >) ;?

R,B (> | >) ↑ > #

if Cn 6= > or D 6= >.

Note that, because of condition (3) in the Unification rule, the normal-
ization conditions on the substitutions [γ, δ, ~µ, ~ν] associated to a symbolic NC-
solution at one layer according to Definition 14 are now inherited by previous

40

layers by composition. This can make the above inference system quite effective,
since many layered proofs will not even be developed when failure of normal-
ization is detected in the composed substitutions. In an actual implementation
it is of course not necessary to wait until a Unification step is taken to check
normalization of composed substitutions. As already pointed out in Example 5,
this can (and should) also be done after each step of Narrowing, to weed out
useless narrowing sequences at each layer.

The use of this inference system can be best illustrated with an example.

Example 7. Recall the reachability problem

f(f(x0)) | >;? x′0 + b | >

in Example 5. In the present inference system this becomes the initial goal

#f(f(x0)) | >;? x′0 + b | > ↑ >#

Three applications of the above Narrowing inference rule, with the rewrite
rules, positions, and substitutions in Example 5, give us:

#f(f(x0)) | > ;α1
f(x1 + y) | h(x1)→? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1)→? [y′1] ∧ h(x′1 + y′1)→? [y′]

;α3 z
′ + b | h(a)→? [a] ∧ h(a+ a)→? [z′]

;? x′0 + b | > ↑ >#

And then the unifier δ = {z′ 7→ x2, x
′
0 7→ x2} allows us to apply the Unify rule,

yielding:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | > ↑ >#

We can now apply the Shift rule, getting:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ h(a) →? [a] ∧ h(a+ a) →? [x2] | > ;? > | > ↑ >#

Using rule (3) standardized apart as h(x3)→ [x3] we can apply the Narrowing
inference rule with substitution α4 = {x3 7→ a} at non-frozen position 1.1 to
get:

41

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ h(a) →? [a] ∧ h(a+ a) →? [x2] | >
;α4 [a] →? [a] ∧ h(a+ a) →? [x2] | > ;? > | > ↑ >#

We can now apply Narrowing with standarized apart rule x4 →? x4 → > at
non-frozen position 1 with subsitution α5 = {x4 7→ a} to get:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ h(a) →? [a] ∧ h(a+ a) →? [x2] | >
;α4 [a] →? [a] ∧ h(a+ a) →? [x2] | >
;α5 > ∧ h(a+ a) →? [x2] | > ;? > | > ↑ >#

Applying Narrowing again with rule >∧C → C at non-frozen position ε with
subsitution α6 = {C 7→ h(a+ a)→? [x2]} we get:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ h(a) →? [a] ∧ h(a+ a) →? [x2] | >
;α4 [a] →? [a] ∧ h(a+ a) →? [x2] | >
;α5 > ∧ h(a+ a) →? [x2] | >
;α6 h(a+ a) →? [x2] | > ;? > | > ↑ >#

Applying Narrowing with standarized apart rule h(x5)→ [x5] and substitution
α7 = {x5 7→ a+ a} at non-frozen position 1 we then get:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ h(a) →? [a] ∧ h(a+ a) →? [x2] | >
;α4 [a] →? [a] ∧ h(a+ a) →? [x2] | >
;α5 > ∧ h(a+ a) →? [x2] | >
;α6 h(a+ a) →? [x2] | >
;α7 [a+ a] →? [x2] | > ;? > | > ↑ >#

42

Applying Narrowing with standarized apart rule x6 →? x6 → > at non-frozen
position ε with subsitution α8 = {x6 7→ a+ a, x2 7→ a+ a} we then get:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ h(a) →? [a] ∧ h(a+ a) →? [x2] | >
;α4 [a] →? [a] ∧ h(a+ a) →? [x2] | >
;α5 > ∧ h(a+ a) →? [x2] | >
;α6 h(a+ a) →? [x2] | >
;α7 [a+ a] →? [x2] | >
;α8 > | > ;? > | > ↑ >#

A final application of the Unification inference rule with identity substitution
id gives us the closed proof:

#[γ, δ, ~µ, ~ν] : f(f(x0)) | > ;α1 f(x1 + y) | h(x1) →? [y]

;α2 x
′
1 + y′1 + y′ | h(x′1) →? [y′1] ∧ h(x′1 + y′1) →? [y′]

;α3 z
′ + b | h(a) →? [a] ∧ h(a+ a) →? [z′]

=δAC x′0 + b | >
↑ [γ′, δ′, ~µ′, ~ν′] : h(a) →? [a] ∧ h(a+ a) →? [x2] | >
;α4 [a] →? [a] ∧ h(a+ a) →? [x2] | >
;α5 > ∧ h(a+ a) →? [x2] | >
;α6 h(a+ a) →? [x2] | >
;α7 [a+ a] →? [x2] | >
;α8 > | >
=id
AC > | > ↑ >#

The crucial point is that we can obtain from this closed proof an NC-solution
γγ′|{x0,x′0} of our original goal f(f(x0)) | >;? x′0 + b | >. Indeed, γγ′(x0) = a,
and γγ′(x′0) = a+ a, which gives us the NC-solution with NC-rewrite sequence:

f(f(a))→R,AC f(a+ a)→R,AC a+ a+ a+ a→R,AC a+ a+ b.

The two main theorems about this inference system for layered constrained
narrowing state its soundness and completeness for computing NC-solutions of
reachability goals.

Theorem 8 (Soundness of Layered Constrained Narrowing). Consider a

reachability goal u | C ;? v | D in R̂φ such that Var(u | C) ∩ Var(v | D) = ∅
and all the variables of the goal, and each of the terms in the conditions C or

43

D belong to sorts in R. If we can use the inference system for layered con-
strained narrowing to rewrite the initial goal #u | C ;? v | D ↑ ># to a closed
proof of the form #[γ0, δ0, ~µ0, ~ν0] : S0 ↑ . . . ↑ [γn, δn, ~µn, ~νn] : Sn ↑ >#, then

(γ0 . . . γn)|Var(u|C)]Var(v|D) is an NC-solution of such a goal in R̂φ.

Proof. First of all, note that the inference rules for layered constrained
narrowing will never produce from such a goal any constrained term w | Q
where the sorts of either the variables or of the terms in its condition Q will not
be in R. Clearly, neither Unification nor Shift can violate this invariant. And
Narrowing cannot either, for the following reasons: (i) the added condition in
a narrowing step has all terms having sorts in R, because all conditional rules
of R̂φ are rules in R; (ii) the only rule in R̂φ which has a variable whose sort is
not in R is rule (>∧C)→ C. But if we apply it to narrow a constrained term
w | Q where the sorts of the variables are in R, the unifier α must map C to a
term whose variables are all in R. Therefore, the narrowing step w | Q ;α,φ

(w[C]p | Q)α yields a new constrained term where the sorts of the variables and
of the terms in its condition Qα are all in R.

We prove the theorem by induction on n. If n = 0, the closed proof must
necessarily be of the form #[γ0, δ0, ~µ0, ~ν0] : u|> ;α1,φ . . . ; uk | > =δ0

B v |
> ↑ >#. But this means that ρ = id provides an actual NC-solution instance
γ0 = γ0id , which by the Soundness Theorem is an NC-solution of the goal, as
desired.

Suppose n > 0 and assume the theorem is true for n − 1. Then we must
have a closed proof of the form

#[γ0, δ0, ~µ0, ~ν0] : u|C ;α1,φ . . .; uk|Ck =δ0
B v | D ↑

[γ1, id , ~µ1, ~ν1] : ((Ck ∧D) | >)δ0 ;αk+1,φ . . .; >|Ck+h =id
B > | > ↑

. . . ↑ [γn, id , ~µn, ~νn] : Sn ↑ >#

But this means that

#[γ1, id , ~µ1, ~ν1] : ((Ck ∧D) | >)δ0 ;αk+1,φ . . .; >|Ck+h =id
B > | > ↑

. . . ↑ [γn, id , ~µn, ~νn] : Sn ↑ >#

is a closed proof for the goal #((Ck ∧ D) | >)δ0 ;? > | > ↑ >#. By the
induction hypothesis, (γ1 . . . γn)|Var((Ck∧D)δ0) is then an NC-solution of ((Ck ∧
D) | >)δ0 ;? > | > in R̂φ. But by Theorem 7, plus the layered irreducibility
conditions forced by the repeaded applications of the Unification inference rule,
this means that R ` (Ck∧D)δ0γ1 . . . γn (and of course R̂ ` (Ck∧D)δ0γ1 . . . γn),
and that (γ0 . . . γn)|Var(u|C)]Var(v|D) is an NC-solution of the goal u | C ;? v |
D in R̂φ , as desired. 2

The completeness of layered constrained narrowing depends crucially on our
ability to turn the accumulated condition (Cn ∧ D)δ at the end of one layer
of narrowing into a reachability goal ((Cn ∧ D)δ | >) ;?

R,B (> | >) one layer

44

up and solving it by constrained narrowing. But this, in turn, requires that if
the reachability goal ((Cn ∧D)δ | >) ;?

R,B (> | >) is solvable, then it has an
NC-solution. In general, however, this may not be the case.

Example 8. Consider the convergent FPP theory of Example 3, and recall from
Example 4 that the reachability problem f(x, c) | >;? c | > is solvable but has
no NC-solution in this theory. Consider now the following reachability problem:

f(x0, c) | f(x0, c)→?
R,B c;? d | >

We can easily find a symbolic NC-solution for it as follows:

f(x0, c) | f(x0, c)→? c;α z | f(x′′, c)→? c ∧ [x′′, c]→? [x′, z] ∧ x′′ ≡ x′ →? tt =δB d | >

where we have narrowed with the conditional rule in Example 3 with unifier
α = {x0 7→ x′′, x 7→ x′, y 7→ c}, and δ is the unifier δ = {z 7→ d}. This symbolic
NC-solution has an actual NC-solution instance, namely by taking ρ = {x′′ 7→
x′′′, x′ 7→ x′′′}, so that we get the NC-rewrite f(x′′′, c) → d. And of course ρ
solves the accumulated condition f(x′′, c)→? c ∧ [x′′, c]→? [x′, d] ∧ x′′ ≡ x′ →?

tt, which becomes the true condition f(x′′′, c)→? c ∧ [x′′′, c]→? [x′′′, d] ∧ x′′′ ≡
x′′′ →? tt. However, the accumulated condition is not NC-solvable, because
there is no NC-rewrite f(x′′, c) →?

R c for x′′ or any of its instances, although
we have f(x′′, c)→R c.

The moral of this story is that, although constrained narrowing is a com-
plete method for symbolically describing all NC-solutions, layered constrained
narrowing is not complete in general, since we cannot find an NC-solution for
the reachability goal

f(x′′, c)→?
R,B c ∧ [x′′, c]→?

R,B [x′, d] ∧ x′′ ≡ x′ →?
R,B tt | >;? > | >

that layered narrowing would generate one level up.

What restrictions should we place on a reachability goal (u | C) ;? (v | D)
to make layered narrowing complete? A very simple and natural one, already
mentioned earlier, suffices, namely, requiring that (u | C) and (v | D) are FPP.
The restriction is not a strong one, since FPP conditions are the most attractive
and easy-to-compute way to place additional restrictions on a term. That is, if
(u | C) is FPP and θ is a normalized substitution for the variables of u, we can
use the exact same incremental method to test the FPP condition C of a rewrite
rule before a rewrite step to similarly test whether R ` Cθ′ holds, where θ′ is
a normalized substitution extending θ and obtained incrementally in the usual
way. For example, the reachability goal in Example 8 can be easily transformed
into the following one satisfying the FPP requirement:

f(x0, c) | f(x0, c) ≡ c→? tt ;? d | >

and this transformed goal is solvable by layered constrained narrowing.
The key reason why the FPP requirement allows layered constrained nar-

rowing, and in particular the Shift rule, to be effective in solving accumulated
conditions can be summarized as follows:

45

Lemma 6. Let (u | C) ;? (v | D) be a goal in R̂φ satisfying the requirements
in Theorem 8 and such that (u | C) and (v | D) are FPP. Then, if (Cn ∧D)δ
is the accumulated condition of a symbolic NC-solution γ found by constrained
narrowing with R̂φ, and γρ is an actual NC-solution instance, then there is an

NC-rewrite sequence (Cn ∧D)δρ→? > in R̂φ.

Proof. This follows by direct application of Lemma 5. All we need to do is
to make this obvious by “unpacking” (Cn∧D)δ. But this we have already done
in the proof of Theorem 3, namely,

(Cn ∧D)δ = C0α1 . . . αnδ ∧D1α1 . . . αnδ ∧ . . . ∧Dnαnδ ∧Dδ.

Then, conditions (1)–(3) on an actual NC-solution in Definition 14, plus the
assumption that (u | C) and (v | D) are FPP, ensure that ρ, which plays the
role of θ in Lemma 5, satisfies the requirements for θ in that lemma, thus yielding
the claimed result. 2

Another key observation is that if the original reachability goal (u | C) ;?

(v | D) satisfies the requirements in Lemma 6 above, and has a closed proof by
layered trace narrowing with NC-solution γ0γ1γn, then the existence of an NC-
rewrite sequence (Cn ∧D)δ0γ1 . . . γn →? > in R̂φ ensured Lemma 6 holds also
for the accumulated conditions (C ′n′∧>)δi at upper layers (i ≥ 1). That is, there

is an NC-rewrite sequence (C ′n′ ∧ >)δiγi+1 . . . γn →? > in R̂φ. This is because
the accumulated condition C ′n′δi is precisely a conjunction of conditions of the
form Djαj . . . αn′δi, with Dj the FPP condition of a rewrite rule in R, and then
the irreducibility conditions imposed on substitutions by the inference system
of layered constrained narrowing ensure that (C ′n′ ∧>)δiγi+1 . . . γn satisfies the
requirements in Lemma 5.

We are now ready to state and prove the key theorem about layered con-
strained narrowing, namely, its completeness.

Theorem 9 (Completeness of Layered Constrained Narrowing). Let
(u0 | C0) ;? (v | D) be a reachability goal in R̂φ satisfying the require-
ments in Theorem 8 and such that (u0 | C0) and (v | D) are FPP, and let
σ be an NC solution of this goal in R̂φ. Then there exists a closed proof of
the goal by layered constrained narrowing of the form #[γ0, δ0, ~µ0, ~ν0] : S0 ↑
. . . ↑ [γn, δn, ~µn, ~νn] : Sn ↑ >#, and a normalized substitution θ such that
σ =B (γ0 . . . γnθ)|Var(u|C)]Var(v|D).

Proof. The proof of the theorem will be by strong induction on h(σ, P)− 1,
where h(σ, P) is the height of a pair (σ, P), with σ an NC-solution of a goal
(u0 | C0) ;? (v | D), and P a partially developed layered proof of an NC-rewrite
trace

T = u0σ →R,B w1 →R,B · · ·wn−1 →R,B wn =B vσ (6)

having the form #T ↑ D1σ1 ∧ . . . Dnσn#, where each Di is the condition of the
rule used in the i-th rewrite step of T . h(σ, P) is defined in detail below. Define

46

first the height of a layered trace (rewrite) proof #T1 ↑ T2 ↑ · · · ↑ Tn ↑ ># to be
n. The height of the empty conjunction > of rewrite goals is 0 by convention.
Define then the height h(σ, P) for a solution σ of goal (u0 | C0) ;? (v | D) as
h(σ) = hC0

+ hP + hD, where hC0
(resp. hD) is the smallest height of a layered

NC-proof of C0σ (resp. Dσ) in R, and hP is the smallest height of a layered
NC-proof obtained by repeated application of inference rules to the partial proof
P of the trace T in 6.

Since by Lemma 1 solutions are closed under B-equivalence, we can use
the Completeness Theorem for constrained narrowing (Theorem 4) to assume,
without real loss of generality, that σ is an actual NC-solution instance of a
symbolic NC-solution of our goal by constrained narrowing. That is, there is
a symbolic NC-solution γ0 = (α1 . . . αnδ0)|Var(u0|C0)] δ0|Var(v|D) in R̂φ with
constrained narrowing proof

u0 | C0 ;α1
u1 | C1 ;α2

u2 | C2 · · ·un−1 | Cn−1 ;αn
un | Cn =δ0

B v | D

and a normalized substitition ρ with Dom(ρ) ⊆ Var(u0α1 . . . αnδ0) ∪ Var((v |
Cn ∧D)δ0) such that σ = (α1 . . . αnδ0ρ)|Var(u0|C0)] δ0ρ|Var(v|D).

In our definition of h(σ, P) for the above σ, the chosen trace T will be the
NC-rewrite sequence

T = u0α1 . . . αnδρ→R,B u1α2 . . . αnδρ . . . un−1αnδρ→R,B unδρ =B vδρ

in R̂φ, and P will then be the partial layered trace proof #T ↑ D1α1 . . . αnδ0ρ∧
. . . ∧Dnαnδ0ρ#, where Di is the condition of the rule used in the i-th step of
the narrowing sequence of which T is an instance.

Suppose that h(σ, P) − 1 = 0. This can only happen if C0 = D = > and
all the rules applied in the above narrowing sequence are unconditional, so that
C1 = . . . = Cn = >. But then #[γ0, δ0, ~µ0, ~ν0] : u0 | > ;α1 u1 | > ;α2 u2 |
> · · ·un−1 | > ;αn un | > =δ0

B v | > ↑ ># is a layered constrained narrowing
proof of the goal, and choosing θ = ρ we are done.

Suppose instead that h(σ, P) > 1. SinceR ` (Cn∧D)δ0ρ, the fact the u0 | C0

and v | D are FPP and Lemma 6 ensure that there is an NC-rewrite sequence

(Cn ∧ D)δ0ρ →? > in R̂φ. But this exactly means that ρ|Var((Cn∧D)δ0) is an

NC-solution of the reachability goal (Cn ∧D)δ0 | >;? > | > in R̂φ. Let now h
be the smallest possible height of a layered trace NC-proof of (Cn∧D)δ0ρ→? >.
Using Theorem 7, h is also the smallest possible height of a layered trace NC-
proof of C0α1 . . . αnδ0ρ ∧ D1α1 . . . αnδ0ρ ∧ . . . ∧ Dnαnδ0ρ ∧ Dδ0ρ. That is, of
C0σ∧D1α1 . . . αnδ0ρ∧. . .∧Dnαnδ0ρ∧Dσ. But if h(σ, P) = hC0 +hP +hD, with
corresponding layered trace NC-proofs #TSC0

#, #T ↑ TS#, #TSD#, then,
by Lemma 8, #TSC0

‖ #TS# ‖ #TSD# is a layered NC-proof of C0σ ∧
D1α1 . . . αnδ0ρ∧ . . .∧Dnαnδ0ρ∧Dσ, which has height max(hC0

, (hR−1), hD),
so that h ≤ max(hC0 , (hR − 1), hD) < h(σ, P); and by Theorem 7 this is also
the height of a layered NC-proof of (Cn ∧ D)δ0ρ →? >. Since the conditions

of the goal (Cn ∧ D)δ0 | > ;? > | > in R̂φ are both >, this means that we
can choose P ′ so that h = h(ρ|Var((Cn∧D)δ0), P

′) < h(σ, P), so that the strong
induction hypothesis applies.

47

Therefore, there exists a closed proof of the goal (Cn ∧ D)δ0 | > ;?

> | > by layered constrained narrowing of the form #[γ1, δ1, ~µ1, ~ν1] : S1 ↑
. . . ↑ [γn, δn, ~µn, ~νn] : Sn ↑ >#, and a normalized substitution θ0 such that
ρ|Var((Cn∧D)δ0) =B (γ1 . . . γnθ0)|Var((Cn∧D)δ0). Define ~z = Var(u0α1 . . . αnδ0)−
Var((Cn ∧D)δ0), and extend θ0 to θ = θ0] ρ|~z. This means that ρ =B ρ|~z]
(γ1 . . . γnθ)|Var((Cn∧D)δ0). But by the standardized apart assumption, we have
ρ|~z = (γ1 . . . γnθ)|~z, which shows that ρ =B (γ1 . . . γnθ)|Var(u0α1...αnδ0)∪Var((Cn∧D)δ0).
Therefore, σ = (α1 . . . αnδ0ρ)|Var(u0|C0)]δ0ρ|Var(v|D) = (γ0ρ)|Var(u0|C0)∪Var(v|D) =B

(γ0γ1 . . . γnθ)|Var(u0|C0)∪Var(v|D) is also an actual NC-solution instance of the
symbolic solution γ0 solving our original goal (u0 | C0) ;? (v | D) and is B-
equal to σ. Furthermore, it is easy to check that conditions (1)–(3) for an actual
NC-solution instance in Definition 14 ensure that #[γ0, δ0, ~µ0, ~ν0] : S0 ↑ . . . ↑
[γn, δn, ~µn, ~νn] : Sn ↑ ># is a closed proof of the goal by layered constrained
narrowing. This finishes the proof of the theorem. 2

In complete analogy to Corollary 1 we then obtain:

Corollary 2. If in Theorem 9 the term v is strongly irreducible, we can weaken
the assumption on σ to just be a solution of the reachability problem u0 | C0 ;?

v | D. Since vσ is normalized, the rewrite u0σ →!
R,B vσ has a description as

an NC-rewrite sequence, so that σ is an NC-solution.

This corollary has two important consequences:

1. Layered constrained narrowing gives us a method to extract from a con-
strained variant of a term a complete set of actual variant instances. More
generally, it gives us a method to generate a complete set of variants for
any term.

2. Layered constrained narrowing gives us a method to extract from a con-
strained unifier of an equation a complete set of actual unifier instances.
More generally, it gives us a method to generate a complete set of unifiers
for an equation, or set of equations.

9. Related Work and Conclusions

A good overview of (conditional) narrowing and its different completeness
results can be found in [63]. This work does not study narrowing modulo ax-
ioms, which is the main focus of this paper. It is remarkable that it has identified
several problems and wrong proofs in previous works on (conditional) narrow-
ing. The main results are restricted to 1-CTRS and 2-CTRS but the results
in this paper apply to convergent FPP theories, which fall into the 3-CTRS
characterization (for a detailed taxonomy classifying CTRSs into 1-, 2-, 3-, and
4-CTRSs see [65]). [63] provides a completeness result for conditional narrow-
ing in level-complete 3-CTRS, where the notion of level-confluence (used by the
notion of level-completeness) defines confluence separately for each theory in
the hierarchy of theories into which a theory is split. Level-complete theories

48

and convergent FPP theories are different, since FPP theories do not impose
any hierarchy. Furthermore, our work is within the more general context of
order-sorted rewriting modulo axioms. Indeed, the definition of convergent FPP
theories is an important contribution of our paper compared to previous work.
Also, most approaches for conditional narrowing rely on a set of equality con-
straints whose evaluation order is not stated. However, as pointed out in Section
4 and elsewhere in the paper, by adding an explicit equality predicate ≡ and
rules x ≡ x → tt for each kind, such unoriented conditions can be viewed as a
special case of our oriented conditional approach, which is the appropriate one
for strongly deterministic theories.

Unconditional narrowing modulo axioms B goes back to [46], which the cur-
rent work generalizes from an untyped and unconditional to an order-sorted and
conditional setting. However, nothing was known about terminating narrowing
strategies modulo axioms B until folding variant narrowing was introduced in
[32]. By proposing the notion of constrained variant, this work is a first step in
generalizing the ideas in [32] to the conditional case.

In [12], Bockmayr considered conditional rewriting modulo B with the R,B-
relation, but without requiring B-extensions, and only under the assumptions
of no extra variables in a rule’s condition (called 1-CTRS) and of the simplify-
ing termination [65] of R modulo B. Our work extends Bockmayr’s in several
ways: first by considering convergent FPP theories, which are 3-CTRS, second
by considering operational termination modulo axioms, and third by incorporat-
ing B-extensions. Bockmayr’s work also relies on a set of equality constraints,
instead of our approach of a list of reachability constraints. Another important
difference between Bockmayr’s work and ours is that ours is hierarchical (i.e.,
layered), and based on the systematic use of constraints, irreducibility condi-
tions and frozenness restrictions that, as argueed in the Introduction, should
drastically reduce the search space. Furthermore, notions like constrained vari-
ant and constrained unifier, which are important contributions of our work,
cannot be expressed in Bockmayr’s framework.

In [41], conditional narrowing is considered for a set of rules without axioms.
The rules do not have any restriction on the conditional part (are 4-CTRS) and
they do not restrict to convergent theories (and clearly, since no axioms B are
involved there are no B-extensions). However, this approach studies lazy nar-
rowing with non-determinism in the computations and with a call-time choice
semantics (in order to ensure all occurrences of a variable in the right-hand
side of a rule have the same actual term). In our work, we restrict ourselves to
convergent FPP theories and argue that this is actually the most useful defini-
tion for conditional rewriting in a convergent theory, since there is an intuitive
notion of deterministic functional computation that, when lifted to narrowing,
is easily expressible and useful in practice. Another interesting aspect of [41]
is the definition of conditions using strict equality, which normalizes terms to a
constructor term and performs checks for syntactic equality. We have reacha-
bility conditions instead of equality conditions and have somehow incorporated
this aspect of strict equality by requiring strongly irreducible terms in the des-
tination term of each reachability condition. This enjoys better properties for

49

lifting conditional rewriting to narrowing.
The work in [2] provides a calculus for conditional narrowing modulo axioms

in rewriting logic. They consider convergent 4-CTRS equational order-sorted
theories, with similar assumptions on operational termination and B-coherence
to ours. They provide weak-completeness and soundness results of conditional
narrowing for unification in these theories. An important difference is that that
work provides results for the relation →E/B instead of →E,B . Their work con-
siders membership equational logic, whereas ours does not consider membership
conditions. Their approach is based on a set of reachability constraints with no
order of evaluation of the constraints, while ours relies on the deterministic
evaluation features of a list of reachability constraints.

In [48], conditional narrowing modulo axioms is defined as a set of inference
rules for a set of conditional equality constraints, i.e., each equality constraint
may have its own set of conditions to be solved. This provides a very general
form of conditional narrowing for convergent theories, where a simplification
ordering is required for termination, confluence modulo axioms is also required,
and a notion of B-extension is also considered. They also consider an approach
similar in spirit to our constrained narrowing, where conditions are not solved
but checked for solvability. However, the focus of that work is the generation of
a saturated set of conditional equality constraints in order to be able to prove
properties in such a finitely saturated set. Besides [48], other related work on
constrained deduction and constrained narrowing includes, e.g., [51, 18, 50]. In
particular, from a theorem proving perspective, constrained conditional narrow-
ing modulo is closely related to paramodulation [68], superposition modulo [8],
and superposition with constraints [37, 43].

Furthermore, since rewriting logic is not only a semantic framework for con-
current systems, but also a logical framework [55], logical deduction in a logic L
can be both represented and implemented as deduction in an associated rewrite
theory RL = (Σ, E0 ∪B,R). What the distinction between the, in general non-
confluent and therefore non-deterministic, rules R modeling deduction in L and
the, convergent modulo B, oriented equations ~E0 captures is the enormously
useful difference between computation with ~E0 modulo B, which can be per-
formed very efficiently by normalization to canonical form, and deduction with
R modulo E0 ∪ B, which requires search and is more costly. This difference
can be exploited to make theorem proving much more efficient and has been
described by some authors by the name of theorem proving modulo [23, 17].
Since [74], it has been clearly understood that theorem proving modulo in a
logic L is just deduction in a rewrite theory RL = (Σ, E0 ∪ B,R) (see also the
more recent [69]). Therefore, the present work has connections with the theorem
proving modulo work in several ways. Firstly, it supports symbolic deduction in
a logic L represented as RL = (Σ, E0 ∪B,R) such that its “computation rules”
~E0 can be conditional. Second, it also opens up the possibility of having “de-
duction rules” R which can have equational conditions solvable by constrained
conditional narrowing with ~E0 modulo B.

In conclusion, the work presented here provides new concepts such as those

50

of: (i) convergent FPP conditional theory, which, while being very general,
allows very efficient implementation of conditional rewriting (by NC-rewriting),
because it avoids any need for search when evaluating a rule’s condition; (ii)
constrained narrowing, which allows symbolic solutions while postponing solving
the constraints and, as argued in the Introduction, should drastically reduce
the search space; (iii) constrained variant and constrained unifier, which allow
a simpler and more economic symbolic, yet complete description of all variants
and unifiers; and (iv) layered constrained narrowing, a new, hierarchical way of
performing conditional narrowing. It also provides soundness and completeness
results for constrained narrowing and layered constrained narrowing.

As pointed out in the Introduction, although no experimental evaluation is
yet available, there are good a priori reasons to expect the algorithms presented
here to outperform previous conditional narrowing modulo algorithms, because
of the combined seach space reduction effects of using: (i) constraints; (ii) order-
sorted unification; (iii) frozen operators; (iv) variants; and (v) irreducibility
conditions.

Much work remains ahead, particularly: (i) on implementing our approach,
for which we plan to rely on, and extend, the existing Maude infrastucture for
narrowing, variants, and unification (we have developed a preliminary design of
an implementation that relies on such a planned extensions of the Core Maude
infrastructure); (ii) on extending it from the equational case to, as mentioned in
the Introduction and in Section 6, the model checking analysis of concurrent sys-
tems specified as conditional rewrite theories; (iii) on experimentally evaluating
the effectiveness and performance of our approach, and comparing it with other
approaches using such an implementation; and (iv) on developing a substantial
body of case studies demonstrating the usefulness and effectiveness of our ap-
proach: at the purely equational level, case studies showing how finite complete
sets of constrained variants and constrained unifiers can represent infinite sets of
actual variants and actual unifiers would be particularly appealing; at the model
checking level mentioned in (ii) above, case studies showing how infinite-state
systems specified with conditional equations and rules can be model cheked in a
way that generalizes the current unconditional narrowing-based model checking
in [9, 10] would be very useful. All this will be the focus of our work in the near
future.

Acknowledgments. We thank the anonymous referees for their construc-
tive criticism and their very detailed and helpful suggestions for improving an
earlier version of this work. We also thank Luis Aguirre for kindly giving us
additional suggestions to improve the text. This work has been partially sup-
ported by NSF Grant CNS 13-19109 and by the EU (FEDER) and the Spanish
MINECO under grant TIN 2013-45732-C4-1-P, and by Generalitat Valenciana
PROMETEOII/2015/013.

References

[1] P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model
checking. In Computer Aided Verification, 14th International Conference,

51

CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, volume
2404 of Lecture Notes in Computer Science, pages 555–568. Springer, 2002.

[2] L. Aguirre, N. Mart́ı-Oliet, M. Palomino, and I. Pita. Conditional nar-
rowing modulo in rewriting logic and maude. In Rewriting Logic and Its
Applications - 10th International Workshop, WRLA 2014, Held as a Satel-
lite Event of ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected
Papers, volume 8663 of Lecture Notes in Computer Science, pages 80–96.
Springer, 2014.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid au-
tomata: an algorithmic approach to the specification and verification of
hybrid systems. In R. Grossman, A. Nerode, A. Ravn, and H. Rischel,
editors, Workshop on Theory of Hybrid Systems, pages 209–229. Springer
LNCS 739, 1993.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[5] R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM,
56(3), 2009.

[6] A. Armando, J. Mantovani, and L. Platania. Bounded model checking
of software using SMT solvers instead of SAT solvers. Model Checking
Software, pages 146–162, 2006.

[7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[8] L. Bachmair and H. Ganzinger. Associative-commutative superposition. In
N. Dershowitz and N. Lindenstrauss, editors, CTRS, volume 968 of Lecture
Notes in Computer Science, pages 1–14. Springer, 1994.

[9] K. Bae and J. Meseguer. Abstract Logical Model Checking of Infinite-
State Systems Using Narrowing. In Rewriting Techniques and Applications
(RTA’13), volume 21 of LIPIcs, pages 81–96. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

[10] K. Bae and J. Meseguer. Infinite-state model checking of LTLR formulas us-
ing narrowing. In Rewriting Logic and Its Applications - 10th International
Workshop, WRLA 2014, Held as a Satellite Event of ETAPS, Grenoble,
France, April 5-6, 2014, Revised Selected Papers, volume 8663 of Lecture
Notes in Computer Science, pages 113–129. Springer, 2014.

[11] T. A. Beyene, M. Brockschmidt, and A. Rybalchenko. CTL+FO verifi-
cation as constraint solving. In Proc. 2014 International Symposium on
Model Checking of Software, SPIN 2014, pages 101–104. ACM, 2014.

[12] A. Bockmayr. Conditional narrowing modulo of set of equations. Appl.
Algebra Eng. Commun. Comput., 4:147–168, 1993.

52

[13] A. Bouajjani. Languages, rewriting systems, and verification of infinite-
state systems. Automata, Languages and Programming, pages 24–39, 2001.

[14] A. Bouajjani and J. Esparza. Rewriting models of boolean programs. Term
Rewriting and Applications, pages 136–150, 2006.

[15] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model check-
ing. In Computer Aided Verification, pages 403–418. Springer, 2000.

[16] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite
theories. Theor. Comput. Sci., 360(1-3):386–414, 2006.

[17] G. Burel. Embedding deduction modulo into a prover. In Proc. Computer
Science Logic, 24th International Workshop, CSL, volume 6247 of Lecture
Notes in Computer Science, pages 155–169. Springer, 2010.

[18] H. Comon, C. Marché, and R. Treinen, editors. Constraints in Compu-
tational Logics: Theory and Applications, International Summer School,
CCL’99 Gif-sur-Yvette, France, September 5-8, 1999, Revised Lectures,
volume 2002 of Lecture Notes in Computer Science. Springer, 2001.

[19] H. Comon-Lundth and S. Delaune. The finite variant property: how to get
rid of some algebraic properties. In Proc RTA’05, Springer LNCS 3467,
294–307, 2005.

[20] L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model
checking for embedded ansi-c software. In ASE, pages 137–148. IEEE, 2009.

[21] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume Formal Models
and Sematics (B), pages 244–320. Elsevier, 1990.

[22] N. Dershowitz and D. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 9, pages 535–610. Elsevier, 2001.

[23] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. J.
Autom. Reasoning, 31(1):33–72, 2003.

[24] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving
operational termination of membership equational programs. Higher-Order
and Symbolic Computation, 21(1-2):59–88, 2008.

[25] F. Durán, S. Lucas, and J. Meseguer. Methods for proving termination of
rewriting-based programming languages by transformation. Electr. Notes
Theor. Comput. Sci., 248:93–113, 2009.

[26] F. Durán, S. Lucas, and J. Meseguer. Termination modulo combinations of
equational theories. In Frontiers of Combining Systems, 7th International
Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceed-
ings, volume 5749 of Lecture Notes in Computer Science, pages 246–262.
Springer, 2009.

53

[27] F. Durán and J. Meseguer. On the Church-Rosser and coherence prop-
erties of conditional order-sorted rewrite theories. J. Algebraic and Logic
Programming, 81:816–850, 2012.

[28] S. Erbatur, S. Escobar, D. Kapur, Z. Liu, C. Lynch, C. Meadows,
J. Meseguer, P. Narendran, S. Santiago, and R. Sasse. Effective symbolic
protocol analysis via equational irreducibility conditions. In S. Foresti,
M. Yung, and F. Martinelli, editors, ESORICS, volume 7459 of Lecture
Notes in Computer Science, pages 73–90. Springer, 2012.

[29] S. Erbatur, S. Escobar, D. Kapur, Z. Liu, C. Lynch, C. Meadows,
J. Meseguer, P. Narendran, S. Santiago, and R. Sasse. Asymmetric unifi-
cation: A new unification paradigm for cryptographic protocol analysis. In
M. P. Bonacina, editor, CADE, volume 7898 of Lecture Notes in Computer
Science, pages 231–248. Springer, 2013.

[30] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic
protocol analysis modulo equational properties. In Foundations of Security
Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, volume
5705 of Lecture Notes in Computer Science, pages 1–50. Springer, 2009.

[31] S. Escobar and J. Meseguer. Symbolic model checking of infinite-state sys-
tems using narrowing. In RTA, volume 4533 of Lecture Notes in Computer
Science, pages 153–168, 2007.

[32] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and
optimal variant termination. J. Algebraic and Logic Programming, 81:898–
928, 2012.

[33] A. Farzan, M. Heizmann, J. Hoenicke, Z. Kincaid, and A. Podelski. Auto-
mated program verification. In Language and Automata Theory and Appli-
cations - 9th International Conference, LATA 2015, Nice, France, March
2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science,
pages 25–46. Springer, 2015.

[34] J. H. Gallier and W. Snyder. Complete sets of transformations for general
E-unification. Theor. Comput. Sci., 67(2&3):203–260, 1989.

[35] M. Ganai and A. Gupta. Accelerating high-level bounded model checking.
In ICCAD, pages 794–801. ACM, 2006.

[36] M. Ganai and A. Gupta. Completeness in SMT-based BMC for software
programs. In DATE, pages 831–836. IEEE, 2008.

[37] H. Ganzinger and R. Nieuwenhuis. Constraints and theorem proving. In
Comon et al. [18], pages 159–201.

[38] T. Genet and V. Tong. Reachability analysis of term rewriting systems with
timbuk. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 695–706. Springer, 2001.

54

[39] S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories. In
Proc. Automated Reasoning, 5th International Joint Conference, IJCAR
2010, volume 6173 of Lecture Notes in Computer Science, pages 22–29.
Springer, 2010.

[40] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105:217–273, 1992.

[41] J. C. González-Moreno, M. T. Hortalá-González, F. J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on
a rewriting logic. Journal of Logic Programming, 40:47–87, 1999.

[42] J. Hendrix and J. Meseguer. Order-sorted equational unification revisited.
Electr. Notes Theor. Comput. Sci., 290:37–50, 2012.

[43] M. Horbach and V. Sofronie-Stokkermans. Locality transfer: From con-
strained axiomatizations to reachability predicates. In Proc. Automated
Reasoning - 7th International Joint Conference, IJCAR 2014, volume 8562
of Lecture Notes in Computer Science, pages 192–207. Springer, 2014.

[44] J.-M. Hullot. Canonical forms and unification. In W. Bibel and R. Kowal-
ski, editors, Proceedings, Fifth Conference on Automated Deduction, pages
318–334. Springer-Verlag, 1980. LNCS, Volume 87.

[45] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:
A rule-based survey of unification. In Computational Logic - Essays in
Honor of Alan Robinson, pages 257–321. MIT Press, 1991.

[46] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction
of unification algorithms in equational theories. In Proc. ICALP’83, pages
361–373. Springer LNCS 154, 1983.

[47] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a
set of equations. SIAM Journal of Computing, 15:1155–1194, November
1986.

[48] C. Kirchner and H. Kirchner. Rewriting Solving Proving. Technical report,
2006. Available at http://www.loria.fr/~ckirchne/=rsp/rsp.pdf.

[49] C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ3.
In T. Lepistö and A. Salomaa, editors, Proceedings, 15th Intl. Coll. on
Automata, Languages and Programming, Tampere, Finland, July 11-15,
1988, pages 287–301. Springer LNCS 317, 1988.

[50] H. Kirchner and C. Ringeissen. Constraint solving by narrowing in
combined algebraic domains. In Logic Programming, Proceedings of the
Eleventh International Conference on Logic Programming, pages 617–631.
MIT Press, 1994.

55

[51] K. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic
constraints. Revue d’intelligence artificielle, 4(3):9–52, 1990.

[52] S. Lucas. Context-sensitive computations in functional and functional logic
programs. J. Functl. and Log. Progr., 1(4):446–453, 1998.

[53] S. Lucas, C. Marché, and J. Meseguer. Operational termination of condi-
tional term rewriting systems. Information Processing Letters, 95(4):446–
453, 2005.

[54] S. Lucas and J. Meseguer. Strong and weak operational termination of
order-sorted rewrite theories. In Proc. WRLA 2014, volume 8663, pages
178–194. Springer LNCS, 2014.

[55] N. Mart́ı-Oliet and J. Meseguer. General logics and logical frameworks.
In D. Gabbay, editor, What is a Logical System?, pages 355–392. Oxford
University Press, 1994.

[56] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[57] J. Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61.
Springer LNCS 1376, 1998.

[58] J. Meseguer. Twenty years of rewriting logic. J. Algebraic and Logic Pro-
gramming, 81:721–781, 2012.

[59] J. Meseguer. Symbolic formal methods: Combining the power of rewriting,
narrowing, SMT solving and model checking. In F. Arbab and M. Sirjani,
editors, Fundamentals of Software Engineering – 5th International Confer-
ence, FSEN 2013, Tehran, Iran, April 24-26, 2013, volume 8161. Springer
LNCS, 2013.

[60] J. Meseguer. Extensible symbolic system analysis. In Proc.
Unification Workshop (UNIF 2014). Workshop papers available at:
http://www.loria.fr/ ringeiss/UNIF2014/UNIF2014-papers.html, 2014.

[61] J. Meseguer. Strict coherence of conditional rewriting modulo axioms.
Technical Report http://hdl.handle.net/2142/50288, C.S. Department,
University of Illinois at Urbana-Champaign, August 2014.

[62] J. Meseguer, J. Goguen, and G. Smolka. Order-sorted unification. J. Sym-
bolic Computation, 8:383–413, 1989.

[63] A. Middeldorp and E. Hamoen. Completeness results for basic narrowing.
Appl. Algebra Eng. Commun. Comput., 5:213–253, 1994.

[64] A. Milicevic and H. Kugler. Model checking using SMT and theory of lists.
NASA Formal Methods, pages 282–297, 2011.

56

[65] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer Verlag, 2002.

[66] H. Ohsaki, H. Seki, and T. Takai. Recognizing boolean closed a-tree lan-
guages with membership conditional rewriting mechanism. In Rewriting
Techniques and Applications, pages 483–498. Springer, 2003.

[67] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some
equational theories. Journal of the Association Computing Machinery,
28(2):233–264, 1981.

[68] G. A. Robinson and L. T. Wos. Paramodulation and theorem proving in
first order theories with equality. In Machine Intelligence, volume 4, pages
133–150. American Elsevier, 1969.

[69] C. Rocha and J. Meseguer. Theorem proving modulo based on boolean
equational procedures. In Proc. RelMiCS 2008, volume 4988, pages 337–
351. Springer LNCS, 2008.

[70] C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and
open system analysis. In Proc. Rewriting Logic and Its Applications - 10th
International Workshop, WRLA 2014, pages 247–262, 2014.

[71] TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

[72] P. Thati and J. Meseguer. Symbolic reachability analysis using narrowing
and its application to the verification of cryptographic protocols. J. Higher-
Order and Symbolic Computation, 20(1–2):123–160, 2007.

[73] M. Veanes, N. Bjørner, and A. Raschke. An SMT approach to bounded
reachability analysis of model programs. In FORTE, pages 53–68. Springer,
2008.

[74] P. Viry. Adventures in sequent calculus modulo equations. Electr. Notes
Theor. Comput. Sci., 15:21–32, 1998.

[75] D. Walter, S. Little, and C. Myers. Bounded model checking of analog
and mixed-signal circuits using an SMT solver. Automated Technology for
Verification and Analysis, pages 66–81, 2007.

[76] C. Walther. A mechanical solution of Schubert’s steamroller by many-
sorted resolution. Artif. Intell., 26(2):217–224, 1985.

Appendix A. Layered Proofs Inference System

Recall the list-of-lists representation of layered proofs already explained in
Section 3.3. Each list has as elements reachability goals, perhaps partially
(or fully) developed into traces. Each list is built with an associative binary
conjunction operator ∧ with identity > (we represent an unconditional rule

57

Replacement

TS ↑ T ∧ w →R,B w1 →R,B · · · →R,B wn−1 →R,B wn →?
R,B v ∧ C ↑ D #

→
TS ↑ T ∧ w →R,B w1 →R,B · · · →R,B wn →R,B wn[rθ]p →?

R,B v ∧ C ↑
D ∧ u1θ →?

R,B v1θ ∧ · · · ∧ ukθ →?
R,B vkθ #

where n ≥ 0, (l→ r if u1 → v1 ∧ · · · ∧ uk → vk) ∈ R, and θ s.t. lθ =B (wn)p.

Reflexivity

TS ↑ T ∧ w →R,B w1 →R,B · · · →R,B wn−1 →R,B wn →?
R,B v ∧ C ↑ D #

→
TS ↑ T ∧ w →R,B w1 →R,B · · · →R,B wn−1 →R,B wn =B v ∧ C ↑ D

if wn =B v (with n ≥ 0)

Shift

#TS ↑ D#→ #TS ↑ D ↑ ># if D 6= >

Figure A.1: Inference rules for layered trace proofs

l → r as the conditional rule l → r if >). The associative operator building
layers is denoted by ↑ with nil as its identity element.

Initially, any goal of the form:

C = t1 →?
R,B t′1 ∧ · · · ∧ tn →?

R,B t′n (A.1)

is represented as:

t1 →?
R,B t′1 ∧ · · · ∧ tn →?

R,B t′n ↑ > #

and a layered trace proof is built by application of the three inference rules
in Figure A.1, applied as meta-level rewrite rules to try to build a full proof.
Such inference rules perform, respectively: (i) one step of R,B-rewriting in
R = (Σ, B,R); (ii) one B-equality step; and (iii) shift one level up in the
proof. These inference rules are order-sorted, in the sense that any sequence
of the form in Display (A.1) has sort GoalSequence, represented with variables
C,D,C ′, D′, . . ., whereas any sequence which is a conjunction of full traces of
the form:

ti →R,B v1 →R,B v2 →R,B · · · vn−1 →R,B vn =B t′i (A.2)

has sort FullTraceSequence, represented with variables T, T ′,
We call a sequence of full trace sequences of the form T1 ↑ T2 ↑ · · · ↑ Tn a

trace stack, and represent such stacks with variables TS, TS′, Note that in
Figure A.1, no R,B-rewrite step can be performed in a trace stack TS.

58

first(rest(0;s(0);nil))→?
R,∅ s(0) ↑ >#

−→Replacement

first(rest(0;s(0);nil))→R,∅ first(s(0);nil)→?
R,∅ s(0)

↑ 0;s(0);nil→?
R,∅ 0;s(0);nil#

−→Replacement

first(rest(0;s(0);nil))→R,∅ first(s(0);nil)→R,∅ s(0)→?
R,∅ s(0)

↑ 0;s(0);nil→?
R,∅ 0;s(0);nil

∧ s(0);nil→?
R,∅ s(0);nil#

−→Reflexivity

first(rest(0;s(0);nil))→R,∅ first(s(0);nil)→R,∅ s(0) = s(0)

↑ 0;s(0);nil→?
R,∅ 0;s(0);nil

∧ s(0);nil→?
R,∅ s(0);nil#

−→Shift

first(rest(0;s(0);nil))→R,∅ first(s(0);nil)→R,∅ s(0) = s(0)

↑ 0;s(0);nil→?
R,∅ 0;s(0);nil

∧ s(0);nil→?
R,∅ s(0);nil ↑ >#

−→Reflexivity

first(rest(0;s(0);nil))→R,∅ first(s(0);nil)→R,∅ s(0) = s(0)

↑ 0;s(0);nil = 0;s(0);nil

∧ s(0);nil→?
R,∅ s(0);nil ↑ >#

−→Reflexivity

first(rest(0;s(0);nil))→R,∅ first(s(0);nil)→R,∅ s(0) = s(0)

↑ 0;s(0);nil = 0;s(0);nil

∧ s(0);nil = s(0);nil ↑ >#

Figure A.2: Inference steps for Example 1 in Section 3.3

59

For example, the proof of our running example is obtained by the inference
steps of Figure A.2.

A layered trace proof of a goal is an (obviously irreducible by the inference
rules) trace stack of the form: #TS ↑ >#, obtained by repeated application
of the Replacement, Reflexivity, and Shift inference rules from the initial
goal. That is, we obtain #TS ↑ ># by a sequence of inference steps from an
initial goal as the rewrite inference sequence:

#t1 →?
R,B t′1 ∧ · · · ∧ tn →?

R,B t′n ↑ ># −→∗ #TS ↑ >#

We then writeR `LT t1 →?
R,B t′1∧· · ·∧tn →?

R,B t′n, and call such a goal provable
with layered proof #TS ↑ >#. For example, the last step in the sequence of
rewrites of Figure A.2 give us a layered trace proof for the goal

first(rest(0;s(0);nil))→?
R s(0)

Of course, some initial goals may not be provable at all, so that such a fully
developed trace stack can never be reached.

The usefulness of layered trace proofs is that they are the natural proof
object to consider when analyzing layered constrained conditional narrowing
proofs and greatly help in reasoning about them. They are of course equivalent
to the standard proof system in the following sense:

Proposition 2. Denoting by R ` t1 →?
R,B t′1 ∧ · · · ∧ tn →?

R,B t′n the conjunc-
tion R ` t1 →?

R,B t′1 ∧ · · · ∧R ` tn →?
R,B t′n, with ` the proof system for →R,B

and →?
R,B in Section 3.1, we have the equivalence:

R ` t1 →?
R,B t′1∧· · ·∧ tn →?

R,B t′n ⇐⇒ R `LT t1 →?
R,B t′1∧· · ·∧ tn →?

R,B t′n

A useful fact about layered trace proofs that follows immediately from The-
orem 1 is the following.

Lemma 7. Let R = (Σ, B,R) be closed under B-extensions and let #T ↑ TS ↑
># be a layered trace proof of the goal t1 →?

R,B t′1 ∧ · · · ∧ tn →?
R,B t′n, and

u1 →?
R,B u′1 ∧ · · · ∧un →?

R,B u′n be such that ti =B ui and t′i =B u′i, 1 ≤ i ≤ n.
Then there exists a full trace sequence T ′ such that #T ′ ↑ TS ↑ ># is a layered
trace proof of the goal u1 →?

R,B u′1 ∧ · · · ∧ un →?
R,B u′n.

Another useful property of layered trace proofs is that they can be composed
in parallel in a very easy and natural way. We give below the definition and
state the obvious lemma, whose easy proof is left to the reader.

Definition 18. Let LTP = #T1 ↑ T2 ↑ · · · ↑ Tn ↑ ># and LTP ′ = #T ′1 ↑ T ′2 ↑
· · · ↑ T ′m ↑ ># be two layered trace proofs. Then their parallel composition,
denoted LTP ‖ LTP ′ is constructed as follows:

• If n > m, LTP ‖ LTP ′ = #T1 ∧ T ′1 ↑ · · ·Tm ∧ T ′m ↑ Tm+1 ↑ · · · ↑ Tn ↑ >#

• If n ≤ m, LTP ‖ LTP ′ = #T1 ∧ T ′1 ↑ · · ·Tn ∧ T ′n ↑ T ′n+1 ↑ · · · ↑ T ′m ↑ >#.

60

Lemma 8. Let LTP be a layered trace proof of the goal t1 →?
R,B t′1 ∧ · · · ∧

tn →?
R,B t′n, and LTP ′ a layered trace proof of the goal u1 →?

R,B u′1 ∧ · · · ∧
um →?

R,B u′m. Then LTP ‖ LTP ′ is a layered trace proof of the goal t1 →?
R,B

t′1 ∧ · · · ∧ tn →?
R,B t′n ∧ u1 →?

R,B u′1 ∧ · · · ∧ um →?
R,B u′m.

61

