Integrated Computer-Aided Engineering 22 (2015) 343-360
DOI 10.3233/ICA-150493
108 Press

343

Reactive execution for solving plan failures in
planning control applications

Cesar Guzman?, Pablo Castejon®, Eva Onaindia®* and Jeremy Frank”

&Universitat Politecnica de Valencia, Valencia, Spain
PNASA Ames Research Center, Moffet Field, CA, USA

Abstract. We present a novel reactive execution model for planning control applications which repairs plan failures at runtime.
Our proposal is a domain-independent regression planning model which provides good-quality responses in a timely fashion.
The use of a regressed model allows us to work exclusively with the sufficient and necessary information to deal with the plan
failure. The model performs a time-bounded process that continuously operate on the plan to recover from incoming failures.
This process guarantees there always exists a plan repair for a plan failure at anytime. The model is tested on a simulation of a
real-world planetary space mission and on a well-known vehicle routing problem.

Keywords: Reactive planning, dynamic execution, monitoring plan execution, reactive execution agent, unpredictable environ-

ment

1. Introduction

The application of Artificial Intelligence AI plan-
ning techniques is helping industries to improve their
efficiency and performance in a great variety of ap-
plications: manufacturing and telecommunication net-
works [31437], education [20], route planning [10/41],
military and civilian coalition operations [36], space
exploration [9], etc.

In general, even though much of the research on Al
planning is aimed at generating domain-independent
planning technology, the application of planning to in-
dustry gives rise to special-purpose systems, which are
expensive to extend to other cases. On the other hand,
there exist few systems that integrate automated plan-
ning and plan execution and this is, perhaps, one of the
main causes of the relatively low deployment of auto-
mated planning applications [22]]. While the primary
focus of planning is on deliberative tools to calculate
plans that achieve operation goals, the focus of execu-

*Corresponding author: Eva Onaindia, Department de Sistemas
Informaticos y Computacién, Universitat Politecnica de Valéncia,
Spain. Tel.: 434 963 877 755; Fax: +34 963 877 359; E-mail:
onaindia@dsic.upv.es.

tion is on developing control methods over relatively
short time spans to ensure the plan actions are executed
stably [3]].

Most planning and execution (P&E) systems follow
an integrated approach in which the execution monitor-
ing system is integrated with the planner or vice versa.
Systems like IXTET-EXEC [29] or TPOPEXEC [46]
work under a continual planning approach [6], inter-
leaving planning and execution in a world under con-
tinual change. Another example can be found in [9],
where the planner of a spacecraft continuously oper-
ates on the plan execution to repair failures. IDEA (In-
telligent Distributed Execution Architecture) [1]] is a
real-time architecture that proposes a unified view of
deliberation and execution where the planner is em-
bedded within the executor; and T-REX [32](Teleo-
Reactive EXecutive) is a deliberative P&E system for
AUYV control inspired from IDEA. This type of unified
approaches allows only for a strict and controlled inter-
leaving of P&E, making it difficult to have a general-
purpose planner for different types of executor sys-
tems.

Some of the aforementioned P&E systems [29/46],
deal with temporal plans and focus on a unified ap-
proach that accommodates flexible plan executions, but

ISSN 1069-2509/15/$35.00 (©) 2015 — IOS Press and the author(s). All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.

344 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

they are not concerned with providing responses in a
timely fashion. In contrast, the works in [1132]], besides
generating plans over relatively long time periods, they
also introduce a reactive planner to allow robust per-
formance in dynamic environments. The term reactive
planning has been approached from different perspec-
tives [8]:

— Responding very quickly to changes in the envi-
ronment through a reactive plan library that stores
the best course of action to each possible contin-
gency.

— Choosing the immediate next action on the basis
of the current context; in this case, a deliberative
procedure can be used to specify the next act.

— Using more complex constructs in order to handle
execution failures or environmental changes.

The first approach, used by early P&E systems, im-
plies storing a plan for each possible state of the world,
an option which is not affordable in highly dynamic
environments. Hierarchical control structures provide a
mechanism to choose the immediate next action when
a quick response is required in unpredictable envi-
ronments [7]]. This is the approach followed by the
models that emphasize reactiveness, computing just
one next action in every instant, based on the cur-
rent context [32]. The use of more complex struc-
tures allow to consider more deliberative (long hori-
zon) responses rather than short-term reactiveness but,
in practice, none of these reactive frameworks have
ever exploited the idea of providing quick deliberative
responses. They react to a change or failure but they do
not guarantee a response within a limited time.

A key aspect of reactive planning is that it is not only
about providing quick responses to changes but also
preserving the plan stability [18] and guarantee that the
operation goals achieved by the plan are still reachable
after the plan repair. In contrast to control applications
that use condition monitoring for anticipating and re-
acting to faults [4/40], reactive planning is about re-
pairing a fault when is detected while trying to main-
tain the executability of the rest of the plan.

The focus of this work is on the development of a
reactive P&E system capable to provide fast deliber-
ative responses to repair a failed action without ex-
plicitly representing contingency branches and eligible
plans for each possible state of the world. Our system
does not simply return the immediate next executable
action but it operates over a planning horizon that is
longer than the minimum latency interval starting at the
current execution time. This idea was exposed, though
never exploited, in IDEA [13]], which in practice works

with the minimal planning horizon in order to reduce
the reactive planner’s search space; that is, the shorter
the planning horizon, the more reactivity, but also the
less contextual information to repair the failure. The
idea of planning horizon has been also exploited in
non-reactive dynamic planning applications [47]].

In this work, we propose a novel reactive P&E
model that keeps track of the execution of a plan and
repairs the incoming failures. The executor-repairing
system incorporates a reactive planning procedure
which is exclusively used for plan repair and it is inde-
pendent of the deliberative planner that computes the
solution plan for the problem. Unlike the integrated
P&E approaches mentioned before, ours is a highly
modular and reconfigurable P&E architecture. The re-
active planner is specialized in small plan repairs that
must be accomplished promptly. Additionally, it pre-
computes an initial search space which encodes solu-
tion plans for potential failures in a fragment of the
plan named plan window (we use this term equiva-
lently to the concept of planning horizon in IDEA [1]]).
The construction of the search space is a time-bounded
process subject to the agent’s execution latency and the
number of execution cycles in the plan window, whose
objective is to have a solution plan available when a
failure arises. Once the search space is built, the agent
proceeds with the plan execution, and simultaneously
the reactive planner computes the search space of the
next plan window. The reactive model is thus capable
to deduce strict limits to the length of the plan win-
dow and compute the largest search space within the
time limit. Then, if a failure occurs, the corresponding
search space is used to find a recovery plan. This gives
our reactive model an anytime-like behaviour.

Our model contributes with several novelties: (a) it
is a domain-independent P&E model that can be ex-
ploited in any application context; (b) it is indepen-
dent of the deliberative planner; (c) it trades off de-
liberative and reactive mechanisms to provide good-
quality responses in a timely fashion; (d) it avoids deal-
ing with unnecessary information from the world, han-
dling specifically the information relevant to the fail-
ure; and (e) it performs a time-bounded deliberative
process that permits to continuously operate on the
plan to repair problems during execution.

This paper is organized as follows. Section 2] pre-
sents some related work and Section [outlines the
general P&E architecture where the reactive model is
integrated. The two following sections present some
formal concepts and introduce the reactive planning
model to recover from plan failures. Section[@ presents

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 345

a motivation example on the Mars space mission. Sec-
tion [7] presents the model evaluation, Section [8] dis-
cusses some limitation of the model and, finally, the
last section concludes and outlines future research
lines.

2. Related work

Classical planning refers generically to planning for
state-transition systems that adopt a series of assump-
tions like that the system is deterministic and static,
that actions are instantaneous transitions and that the
planner is not concerned with any change that may oc-
cur in the system while it is planning [21]. In contrast,
reactive planning operates in a timely fashion with
highly dynamic, non-deterministic and unpredictable
environments, assuming uncertainty in the world and
the existence of multiple outcomes due to action fail-
ures or exogenous events [34]. Our reactive planner
is not a temporal planner but it is designed to return
timely responses in highly dynamic environments.

Regarding non-deterministic planning, the study of
finding the sequence of actions or events that explain
the current observed state of the world is called diagno-
sis. Most of the research on diagnosis put the emphasis
in malfunctioning components and obtaining a plan to
recover from the component failure rather than mon-
itoring a plan execution [5/43]. Particularly, the work
in [43] provides a formal characterization of diagno-
sis and its relation to planning and, in [5], authors pro-
pose an evolutionary strategy that successfully diag-
noses several types of component failures, such as the
separation of a body part or the complete failure of a
Sensor or motor.

Planning in non-deterministic environments has also
been addressed from a probabilistic perspective, rep-
resenting probabilities over the expected action out-
comes or belief state space. Planning based on Markov
Decision Processes is a well-known approach to deal
with non-determinism when an accurate probability
distribution on each state transition is available [27.33]].
In highly dynamic environments where exogenous
events frequently occur, it is not possible to have a
model of the uncertainty in the world. Likewise, a Fi-
nite State Machine (FSM) can also be used to imple-
ment a reactive behaviour [39]] but FSM requires an ex-
plicit modeling of a finite set of plans (states and tran-
sitions) and it is particularly aimed at choosing only
the immediate next action. When a plan is to be exe-
cuted in an unpredictable environment, it is impracti-

cal to have all potential repair plans explicitly repre-
sented and the emphasis is not only on short-term reac-
tivity but also on preserving the achievability of the op-
eration goals. For this reason, a time-bounded reactive
planner that calculates promptly recovery plans over a
planning horizon is the more suitable solution.

3. An architecture for planning and execution

Our work takes place in the context of PELEA [24]], a
single-agent architecture in which an agent is endowed
with capabilities for generating a plan, executing, plan
monitoring and, optionally, learning. Our ultimate goal
of extending this model to a multi-agent context is dis-
cussed in Section [§ Before addressing this issue, our
purpose is to have an agent equipped with a reactive
execution mechanism that enables the agent to repair
a plan at runtime, thus avoiding the need to resort to
the deliberative planner each time a failure occurs. In
the following, we will refer to the concept of agent,
specifically to execution agent, as an autonomous en-
tity capable of performing reasoning and communicat-
ing with other entities of the system like the delibera-
tive planner, which offers a planning service.

In our approach, a planning service provides execu-
tion agents with independent plans to be executed. An
agent, which is an extension of a PELE agent [24],
executes and monitors one action at a time and calls
its repairing mechanism for a recovery plan whenever
a failure arises. In case the agent is unable to solve the
failure by its own, it will request the planning service
a new plan.

The focus of this paper is on the repairing mecha-
nism of the execution agent. The planning module em-
bedded into the execution agent is a reactive planner,
which is used to recover from failures at runtime. The
components of an execution agent (see Fig.[I)) are:

— Execution module (EX). The EX is initialized
with a planning task, which current state is read
from the environment through the sensors. The
EX is responsible of reading and communicating
the current state to the rest of modules as well as
executing the actions of the plan in the environ-
ment.

— Monitoring module (MO). The main task of the
MO is to verify that the actions are executable in

LA more detailed description may be found at http://servergrps.
dsic.upv.es/pelea/.

346 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

- repairing structure
failure P g

A
Monitoring Reactive (RP)
(MO) (—H Planner

|
|
l
|
I
|
A l
l
l
l
|
|
|
l
|

Agent

action state
A

\

I

|

|

|

|
Lo
Execution |
|

|

I

|

I

|

I

1

- - = - —— \ ,,,,,,,,,,,,,,,,,, 7 ~ - — -
acting sensing l T

Environment
real world

Fig. 1. Flow of the reactive execution model.

the current state before sending them to the EX.
When the EX reports the MO the state resulting
from the execution of some action of the plan, the
MO checks whether the next action of the plan is
executable in the resulting state. This process is
called plan monitoring, verifying whether the val-
ues of the variables of the received state match the
expected values or not. Otherwise, the MO will
determine the existence of a plan failure.

— Reactive Planner module (RP). The RP is used
when a plan failure is detected by the MO
and a recovery is required. The RP uses a pre-
computed search space, called repairing struc-
ture, to promptly find a plan that brings the cur-
rent state to one from which the plan execution
can be resumed (see Section[3). In case the RP is
not able to find a plan with its repairing structure,
the MO requests the planning service a new plan.

The EX, MO, and RP modules of an execution
agent operate the Reactive Execution Model. The con-
trol flow of the reactive execution model is shown in
Fig.[[l An action plan II for solving a planning task is
calculated by the planning service. II consists of a se-
ries of actions to be executed at given time steps, each
of which makes a deterministic change to the current
world state. The elapsed time from one time step to
the next one defines an execution cycle; i.e., the mon-
itor/acting/sensing cycle of an action execution. The
model follows several execution cycles, performing the
scheduled action in each cycle until the plan execution
is completed.

Initially, the MO receives the plan II from the plan-
ning service and, before sending IT to execution, it per-
forms two operations:

1. Tt sends II to the RP, which creates a repairing
structure for a fragment of II of length [called
plan window, where [is the number of actions
or execution cycles in the plan window. The re-
pairing structure associated to the plan window
contains information, in the form of alternative
plans, to repair a failure that affects any of the [
actions included in the plan window.

2. When the time of the RP expires, and a repair-
ing structure has been calculated for a particular
plan window, the MO monitors the variables of
the first action of the window. If the sensed val-
ues of the action variables match the required val-
ues for the action to be executed, the MO sends
the scheduled action to the EX for its execution
(see Fig.[I). Otherwise, a failure is detected and
the MO calls the RP, which will make use of the
repairing structure to fix the failing action. No-
tice that a failure that occurs in the first action
of a window is due to an exogenous event (e.g.
other agents change the world state) and not due
to an erroneous execution of the preceding action
in the plan.

The MO receives the result of the sensing task from
the EX after executing the action, it updates the plan
window accordingly by eliminating the already exe-
cuted action and proceeds with the next action of the
plan window. For instance, assuming a plan of five ac-
tions and a repairing structure for a plan window of
I = 3 ([a1, az, as]), the plan window will be updated
to [az, as] after successfully executing a1, and the RP
will use the same repairing structure to fix a potential
failure in the remaining actions of the plan window,
thatis, as or as. Subsequently, the RP will create a new
repairing structure, for example, for the plan window
[a4, as). The flow goes on as long as no plan failures
are encountered. In case that a non-executable action is
found, the MO reports the failure to the RP. Then, the
RP uses the repairing structure associated to the plan
window of the non-executable action and obtains a new
plan IT" that solves the failure and replaces the old plan
11, attaining likewise the goals of the planning task.

The RP is constantly working while the EX is ex-
ecuting the actions of the plan. Hence, besides hav-
ing a repairing structure ready to attend a failure in
an action of the current plan window, the RP is also
generating the subsequent structure for the next plan
window. Typically, the time for the RP to compute
the repairing structure of the subsequent plan window
is the time that the EX will take to execute the ac-
tions included in the current window. Therefore, the

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 347

more actions in the current plan window, the more time
the RP will have to create the next repairing structure
and, consequently, the longer the window associated
to this repairing structure. This working scheme gives
our model an anytime behaviour, thus guaranteeing the
RP can be interrupted at anytime and will always have
a repairing structure available to attend an immediate
plan failure.

On the other hand, some similarities between our
model and the life cycle of a scientific workflow can
be found. Following [23]], we can do this analogy: the
modeling phase is equivalent to the planning task mod-
eling; the deployment phase amounts to the plan II cal-
culated by the planning service; and the execution and
monitoring phase would be the same in our model. Un-
like scientific workflow, our model does not include an
analysis phase; however, successively repetitions of the
deployment (repair plan) and execution phases happen
when a plan failure arises.

4. Formal model

In this section, we formalize the concept of planning
task, partial state and a solution plan for a task as a se-
quence of partial states [21]. Our planning formalism
is based on a multi-valued state-variable representation
where each variable is assigned a value from a mul-
tiple value domain (finite domain of a variable). For
modeling planning problems, we used PDDL3. 18 the
most recent version of the Planning Domain Definition
Language [17] (PDDL).

Definition 1. Planning task A planning task is given
by the 4-tuple P = (V,Z,G, A):

— Vs a finite set of state variables, each associated
to a finite domain, D,,, of mutually exclusive val-
ues that refer to objects in the world. v € V maps
a tuple of objects to an object p of the planning
task, which represents the value of v. For exam-
ple, in a planetary Mars rovers domainf a rover
(B) can be placed at any of the waypoints wy, wy or
ws3. Hence, the variable 1oc-B represents the loca-
tion of rover B, and Dyoc-p = {wy, w2, w3 }.

A variable assignment or fluent is a function f on
a variable v such that f(v) € D,,, wherever f(v)

2PDDL syntax definition introduced in 2008 by M. Helmert (http:
/fipc.informatik.uni-freiburg.de/Pdd1Extension/).

30ur PDDL specification of this domain can be found at http:/
servergrps.dsic.upv.es/planinteraction/resources/.

by regression from the goals

- - o

-
& S e

Navigate B wy wp
(com-r,true)

(loc-B,ws)

(link-w;-wp,true)

(com-r,true)

G’ G=¢

Fig. 2. Plan as a sequence of partial states. Variables are loc-B: lo-
cation of rover B; 1ink-wi-wo: map to travel from wq to wo; com-r:
communication of the results of analyzing the rock r. Underlined
variables are the preconditions of the action Navigate.

is defined. A fluent is represented as a tuple (v, p),
meaning that the variable v takes the value p.
A total variable assignment or state applies the
function f to all variables in V. A state is always
interpreted as a world state. A partial variable as-
signment or partial state over V applies the func-
tion f to some subset of V.

— 7 is a state that represents the initial state of the
planning task.

— G is a partial state over V called the problem goal
state.

— A is a finite set of actions over V. An action a
is defined as a partial variable assignment pair
a = (pre,eff) over V called preconditions and ef-
fects, respectively. If an action is executable in a
state, i.e. its preconditions hold in such a state,
the values of the state variables (fluents) change
as specified in the effects.

An action plan, II 4, that solves a planning task P is
a sequence of actions II4 = (a1, ..., a,) that applied
in the initial state 7 satisfies the goal state G. An ac-
tion a; € I14 is executable in a world state .S if the flu-
ents contained in S satisfy the preconditions of a;; i.e.
pre(a;) C S. The result of executing a; in a state S is
a new state S’ that contains the fluents of S which are
not modified by eff(a;) plus the fluents as specified in
eff(a;). Then, executing II 4 in the initial state Z results
in a sequence of states (S, ..., Sy) such that Sy is the
result of applying aq in Z, Sy is the result of applying
ag in S1,..., and S, is the result of applying a,, in
Sn—1. A plan I 4 is a solution plan iff G C S,, [21]].

A plan can also be viewed from the point of view
of the world conditions (fluents) that are necessary for
the plan to be executed. That is, instead of viewing a
plan as the result of its execution, we can view a plan
as the necessary conditions for its execution. Thus, a
plan can also be defined as a sequence of partial states,
rather than world states, containing the minimal set of

348 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

underline variables = preconditions of action a1

(loc-B,ws)
(have-B,r)

(loc-r-wz,true)
(1ink-wi-wp,true)
(link-wy-ws,true)
(link-ws-wy,true)
(vis-wz-wa,true)
(loc-L,wy)

GU Gl

(loc-r-wz,true)
(link-wq-wp,true)
(link-wsz-wq,true)
(vis-wz-wy,true)
(loc-L,wy)

(loc-Lwy)

Go

(link-wq-wp,true)
(link-ws-wy,true)
(vis-wz-wp,true)

by regression from the goals

g ~<

{com-r,true)
(1link-wq-wp,true)
(link-wz-wq,true)

(loc-B,wz)

(com-r,true)
(link-wqi-wp,true)

(loc-Bwy)

(com-r,true)
(loc-Bwsy)

Gg G4

Fig. 3. Plan as a sequence of partial states for the plan IT 4. Variables are loc-B: location of rover B; loc-L: location of lander L; loc-r-ws:
location of the rock r; have-B: indicates if B has the rock r; 1ink-w;-wj: map to travel from w; to wj; vis-ws-wa: location wy is visible from ws.

com-r: results of analyzing the rock r are communicated.

fluents that must hold in the world for the plan to be
executable in such a world state.

In the example depicted in Fig. 2 the partial state
G is the goal state G of a planning task P, and it
contains two fluents. Let’s consider the last action of
a plan is (Navigate B w; wy), which achieves the ef-
fect (Loc-B, wa). Then, the necessary fluents to be able
to execute the action and achieve the fluents in G are
represented in state G'. We can observe that G’ does
not only contain the fluents that match the precon-
ditions of the action Navigate (i.e., (Loc-B,wy) and
(link-wy-wy, true), which represent that the location
of rover B must be the waypoint w; and a link between
wy and wo must exist, respectively) but also the fluent
(com-T, true). This is because this fluent (communi-
cating the results of analyzing the rocks r) is a goal
of G that is not achieved by the effects of the action
Navigate. Thereby, (com-r, true) is achieved earlier
in the plan and it must hold in G’ in order to guarantee
that it is satisfied in G.

The state G’ in Fig. Dlis called a regressed partial
state because it is calculated by regressing the goals in
G through the action Navigate. Likewise, the same re-
gression can be applied to the rest of actions of a given
plan IT4. Let a; be an action and G a goal state such
that P = pre(a;), E = ef f(a;) and E C G. The par-
tial state G’ in which a; can be applied is calculated by
the regressed transition function T'(G, a;), defined as:

G =T1(G,a;) =G\EUP (1)

G’ is a partial state that represents the minimal set of
fluents that must hold in the world state in order to
achieve G by means of the execution of a;. Notice that
G’ includes P, the preconditions of a;, plus the fluents
which are in G but are not produced by E (G \ E); i.e.,
the fluents that are achieved before G’ in the plan and
must keep their values until G.

The regressed partial state approach was first used
by PLANEX [L1] to supervise the execution of a se-

a1 | (Navigate B wy w3)
as | (Analyze r B w3)
II4 a3 | (Communicate r B L w3 wy)
ay | (Navigate B w3 wy)
as | (Navigate B wy wo)

Fig. 4. Plan II 4 for a planetary Mars rover domain.

quence of actions. Plans are represented by means of
a triangle table (this structure provides support for
plan monitoring) and the problem goals are regressed
from the last column of the table, including action
preconditions, through the remaining actions of the
plan. Roughly, the regression of a fluent over an action
(through the regressed transition function I') is a suffi-
cient and necessary condition for the satisfaction of the
fluent following the execution of the action. The work
in [19] formalizes this concept in the situation calculus
language whereas we apply the same formalization in
PDDL.

Definition 2. Solution plan as a sequence of partial
states Given a solution plan IT4 = {as,...,a,) for
a planning task P, the regressed plan for 11 4 is defined
as a chronologically ordered sequence of partial states

(Go, Gy, ...Gy), where:
G, =G
Gy CZT

Gifl = F(Gl, ai)

A regressed plan is denoted by I, _¢, , where G
is the initial partial state and G,, is the final partial
state of the plan II4. Definition 2 specifies the rele-
vant fluents at each time step for the successful execu-
tion of II 4, where each a; € Il is the relevant action
for achieving GG; from G;_1. Hence, a regressed plan
IIg,—q,, derived fromII 4 denotes the fluents that must
hold in the environment at each time step to success-
fully execute the actions in 1l 4. In other words, this
definition allows us to discern between the fluents that
are relevant for the execution of a plan and those ones
that are not. It exploits the idea of annotating plans

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 349

ag,’ a5
11 A

Qo
0
:

(@, (&)
az a6 4 k.as k.(ls
6‘@ ‘

|y ‘(L4Aa4‘a7

elelolele C@
@@@

a4 Aar

Aa7 (),5 115 A ar

repairing structure 71 1 |

repairing structure T2 '

Fig. 5. Repairing structures for a rover B in a Planetary Mars Domain. a: regressed plan Ilg,_q, for (a1, a2, a3, as,as), by: the repairing
structure of the plan window [a1,a2,a3], and ba: the repairing structure of the plan window [a4,a5].

with conditions that can be checked at execution time
to confirm the validity of a plan [[11]]. That is, if the
fluents of a partial state GG; hold in a world state .S
(G; C S) then the actions comprised in the plan frag-
ment Ilg, ¢, are executable in S, thus guaranteeing
the goals of the planning task are achieved.

Figure 3] shows the regressed plan Ilg,_ ¢, derived
from the solution plan shown in Fig. [and calculated
through the successive application of the regressed
transition function I'. The plan in Fig. @ shows the ac-
tions for a rover to gather a rock sample, communi-
cate the results of analyzing the rock and navigate back
to the initial position. Action aq, for instance, creates
the fluent (have-B,r) in G2; and the partial state G4
is the result from applying I'(G2, az), which includes
pre(az) (the fluents which are underlined in node G,
of Fig. B) plus the fluents that are in G but are not
produced by eff{az). Therefore, if the sensor reading
returns a world state in which all of the fluents in G4
hold, then action as is executable in such a world state;
if the fluents in G5 occur in the subsequent world state
then a3 is executable and so on. The last partial state,
G'5, comprises G, the goals of the planning task. In
terms of plan monitoring, G5 represents the fluents that

satisfy the preconditions of a fictitious final action, a y,
where pre(ay) = G and eff(ay) = 0, i.e. G is moni-
tored by checking the preconditions of a .

As a final remark, we note that the reactive execution
model is defined at the same granularity level than the
planning model, and both use PDDL as the specifica-
tion language. This eases the communication between
the planning service and execution agents and avoids
the overhead of translating a high-level planning spec-
ification into a low-level description as it happens in
other models [[14].

5. Reactive execution model

The key concept of our reactive execution model is
the repairing structure. Generally speaking, given a so-
lution plan I1 4, a repairing structure 7 is a partial-state
search tree that encodes recovery plans for a plan win-
dow of IT4. Since nodes in 7 are partial states, the re-
active execution model only handles the minimal data
set that is necessary to carry out a repairing task.

Figure [3] shows two repairing structures, 77 and 73,
for the regressed plan in Fig. 3] (for simplicity, we do

350 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

not show all the partial states that would be generated).
71 is the search tree associated to the plan window
[a1, a2, as), or, equivalently, to the regressed subplan
IIg,—q,- The length of the window is three (I = 3),
because it comprises three actions, and the partial state
Gj is called the root node (G,) of T;. A path in Ty
represents a (regressed) plan to reach the root node
G's. Specifically, a path in a repairing structure is inter-
preted as a recovery plan that leads the current world
state to another state from which the execution of the
plan II4 can be resumed. All recovery plans in 73
have one thing in common: they eventually guide the
execution of the plan towards ('3, the root node of
T1. For instance, suppose that S is the set of fluents
that represents the state of the world state such that

"6 € S (see Fig.[8l by). The application of the plan
II' = (a1, a4,as,a6) to S will reach the partial state
G3, from which the rest of the plan 114, (a4, as), can
be executed.

The tree 73 (see Fig. B by) is associated to the plan
window [a4, as], or to the regressed plan I, ¢, . The
number of repairing structures necessary to keep track
of the execution of a plan II 4 depends on the time limit
to create the search trees, which, in turn, delimits the
size of the tree. Two parameters determine the size of a
search space T, the length of the plan window associ-
ated to 7 (1), and the depth of the tree (d). In general,
the larger the value of [, the more alternatives to find
a recovery plan; and the deeper the tree, the longer the
recovery plans comprised in 7. The minimum value of
d must be [+ 1 in order to ensure that the tree com-
prises at least one action that repairs the first action of
the plan window associated to 7. On the other hand,
the maximum value of d is determined by the available
time to build 7. Particularly, in 77, d = 6, which re-
sults from { = 3 and the time limit to build 77 (Section
[5.3] explains in detail how to estimate the maximum
size of a repairing structure).

In the following, we explain (1) the process to build
a repairing structure, (2) how to find a plan in a search
tree to repair a failure and (3) the analysis to estimate
the size of the search tree.

5.1. Building a repairing structure T

The construction of the repairing structure 7 starts
after estimating the size of 7'; i.e., when the values of [
and d are known. The generation process, shown in Al-
gorithm[I] consists in expanding 7 from the root node
G- via the application of the regressed transition func-
tion I'(G, a) following Eq. (1) (line 6 of Algorithm).

The algorithm is a classical backward construction of
a planning search space [21]], where a node G is ex-
panded until depth(G) = d; i.e., G reaches the max-
imum depth tree (line 4), or GG is superseded by an-
other node that exists in the tree (lines 7 to 13 define a
mechanism for the control of repeated states which is
detailed below).

Input: G,, d
Output: 7
I Q<+ {G-}, T« {G-}
2: while Q # 0 do
3: G < remove first node from Q
4: if depth(G) < d then
5: for all {a | a € Ais a relevant action to G} do
6: G+ T(G,a)
7 if G’ ¢ T then
8 if3G"e T|G"C G then
9: mark G’ as superset of G”'
10: else
11: Q«+ QUG
12: set transition (labeled a) from G’ to G
13: T+« TUudg
14: else
15: Q« 0
16: return 7T

Algorithm 1: Generating the repairing structure 7 .

The purpose of Algorithm [Ilis to generate multi-
ple regressed plans from G,.. Unlike the application of
I'(G, a) in Definition 2, which departs from a given so-
lution plan II 4, such a plan does not exist when build-
ing a tree 7. Actually, the aim of Algorithm[I]is pre-
cisely to find the relevant actions for a node G (line 5),
and eventually create a plan 1I 4 that links two particu-
lar partial states.

The operation of regressing a fluent f in a node G
over an action a checks whether a is a relevant action
to achieve f or not. An action a is relevant for f, and
originates an arc (G’, G) in T, if it does not cause any
conflict with the fluents in G and G’. The construction
of T has then to check two consistency restrictions: (1)
that e f f (a) does not conflict with the fluents in G, and
(2) that pre(a) does not conflict with the fluents in G'.

We define ®(G’,G) as the function that returns
whether or not a conflict between two sets of fluents
G’ and G exists. (G, G) holds if I(v,p) € G and
Hv,p’) € G'and p £ p'.

Definition 3. Relevant action Given a fluent f € G,
a is a relevant action for f if the following conditions
hold:

1) f € eff(a) and

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 351

2) =®(eff(a), G) and
3) G =T(G,a) A ~®(pre(a),G")

The construction of 7 follows the application of
Definition 3 for each fluent of a partial state G which
has not reached depth(G) = d (lines 4 and 5 of Algo-
rithm[I), and the expansion continues until no new par-
tial states are added to the tree. The search space 7T is
actually a graph due to the existence of multiple paths
that reach the same partial state from the root node dur-
ing the construction of 7. Multiple paths are originated
because of actions like (Communicate rock B L w3 wy)
and (Communicate soil B L w3 wy), which can be ex-
ecuted in either order, or the existence of reversible ac-
tions like (Navigate B wy wo) and (Navigate B wy wy).
Consequently, 7 may contain many redundant paths.
A set of state variables induce a state space that has
a size that is exponential in the set, and, for this rea-
son, planning, as well as many search problems, suf-
fer from a combinatorial explosion. Even though nodes
in T are partial states that contain far less fluents than
world states, the large size of the repairing structures
are sometimes unaffordable for a reactive system. With
the aim of reducing the size of 7, we only consider
for expansion the fluents of G that are related to the
relevant variables, that is, the variables involved in the
preconditions of the actions of the plan window. Thus,
given a plan window [a1, as, ag], we approximate 7 by
expanding only the fluents related to the relevant vari-
ables involved in the set pre(ay) U pre(as) U pre(as),
which is actually the set of fluents that might need to
be repaired. The time complexity of Algorithm [re-
sponds to the classical complexity of the generation of
a tree, that is O(b%), where b is the estimated branching
factor of T that is detailed in Section[5.3]

The generation process makes two nodes in 7 be
connected by a unique simple path. Since we are inter-
ested in keeping only the shortest (optimal) paths, the
construction of T prunes repeated states (line 7 in Al-
gorithm[I]) and avoids the expansion of superset nodes
(lines 8 and 9). Let’s assume that 7 contains a path
from a node G to the root node G, of 7. A node G’
such that G C G’ is said to be a superset of node G. In
this case:

— @ stands for the minimal set of fluents that must
hold in S in order to execute the actions of the
path that reaches G...

— The best recovery plan from G is also the best
path from G’ because the RP returns the shortest
plan to G

All in all, a repairing structure encodes the optimal
path between each pair of nodes for which a recovery
plan can be found. Once the RP has created 7T, it com-
municates the MO all the variables involved in 7.

5.2. Repairing a failure

When an action of the plan window associated to a
repairing structure 7 fails, the RP finds a way to keep
the plan going, either by reaching a partial state in 7
from which to execute the faulty action again or rather
another state from which to execute a later action of
the plan window.

Let 7 be a repairing structure of a regressed plan
IIg,—¢, associated to the plan window [ay, ..., a,] of
a plan IT 4. When an action in [a1, ..., a,] fails, a re-
pairing task defined as R = (S, G;) is activated, where
Sﬂ is the set of fluents of the current world state and G,
is the target state we want to reach in 7. The node G,
varies depending on the failed action and the particular
repairing task for such action. Since several recovery
plans can be found to fix a faulty action, the RP will
successively execute a repairing task until one of them
is successful for fixing the action. This way, if the er-
roneous action is aj, the RP will first try the repairing
task R = (S, Gy); otherwise, it will try R = (S, G1)
and so on until G; = G,; if the failure occurs in as,
the first attempt will be R = (S, G1) and the last at-
tempt will be for G; = G,; in the case that the fail-
ure affects a,., only two repairing tasks can be realized,
R =(5,Gr—1)and R = (S, G,).

More formally, given R = (S, G;) for a faulty ac-
tion a, the RP applies a modified breadth-first search
from G; until a node G that satisfies G, C S is found
in 7. G, is a consistent state with S, a state that com-
prises all the necessary fluents to execute in the cur-
rent world state the plan formed with the actions from
Gsto Gi. If G4 C S is found, the recovery plan from
G5 to Gy is concatenated with the plan from G to
G, (unless Gy = G,), and with the plan from G, to
G, where GG, is the last state of the original plan II4
which contains G, the problem goal state. If G5 C S
is not found, the RP will execute the subsequent re-
pairing task R = (5, G¢41) until one of them success-
fully retrieves a recovery plan or R is invoked with G
= G, and a plan is not found. In this latter case, 7
does not comprise the necessary information to find a

4Technically speaking, the MO does not communicate the RP all
of the fluents in S but only the values of the variables that appear in
T these variables were sent by the RP to the MO after building 7.

352 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

recovery plan and the planner service is invoked, which
performs a replanning task.

Let’s see how the repairing task procedure applies to
a particular example. Consider that a failure occurs in
the action a1, Navigate B wy w3, in the subplan IIg, .
of the repairing structure 77 of Fig.[3]b;y. Let’s assume
that the failure is due to a wrong location of rover B,
which is not at wy, but at wy.

— The first repairing task is R = (S, Gp), where
Go C GY,. The only two nodes that are reach-
able from G, are G|, and G%;. If none of these
two states match the current world state .S, that is
G'7 ¢ Sand Gy, ¢ S, then it means no plan re-
pair actually exists to reach G from S in 77, and,
hence, there is no way to return rover B to w, from
Wi,

— Assuming there is no solution to move rover B
back to w,, the RP attempts the next repairing task
R = (S,G1), where G; C G’ in Ty is a par-
tial state in which B analyzes the rock at location
wz and communicates the results to the lander.
Hence, for every descendant node G of G, (ex-
cluding G, and its descendent nodes which were
already explored in the previous repairing task),
the RP checks whether it holds G C S, in which
case the RP will return the plan from G5 to G
concatenated with the plan (as, as) and (ay, as).
Let’s assume that G5 C S holds, in which case
a path that reaches G, from S actually exists.
This path is formed of the action ag, Navigate
B wy; ws, that moves the rover B from wy; to ws,
where the rover has to analyze the rock. Then, the
RP returns the recovery plan {ag), concatenated
with (a2, as) (analyze the rock and communicate
the results, respectively) and concatenated with
(a4, as) (the rest of actions in I 4).

Two issues related to the repairing task are worth
mentioning here. First, it is important to highlight that
the choices to find a recovery plan increase when the
target state is closer to the root node of the tree. This
can be graphically observed in Fig. [6l The top figure
shows a tree 7 of depth d associated to a plan window
of length [= 3. If the repairing task is R = (S, Gp),
actions a1, as and a3 must be included in the recov-
ery plan, and the path-finding algorithm restricts the
search to m levels of the tree, the shadowed portion of
the tree in the figure. If, however, our repairing task is
R = (S,G;) (bottom figure) then the recovery plan
must only comprise a2 and a3, and, the choices to find
a state that matches S increase as well as the recovery
plans to reach GG;. In conclusion, when the target state

plan window (I = 3)

iy
.@al .@ as .@ as .:a4.a5 '
1 @ @

1
; -

/’ ;A) \ m
/ A \
O

o

+O

|

|

e
TEREY

repairing structure 7~

plan window (I = 2)

v K
@O DR @)
1
I I
1 1 -
h A _

/ a3
/Q a2 \ l
ST 0" SRR |
GO OO L
/AN A A AN +
S00 O O :
x X X X
/S5O0 00 |n
A \
/ 00

repairing structure 7~

Fig. 6. Repairing structures abstract.

is one of the first states of the subplan, we find fewer
alternatives of repairing but the recovery plan guaran-
tees more stability with respect to the original plan. In
contrast, if the target state is closer to the root node
then there are more choices to find a recovery plan al-
though the plan found might not keep any of the ac-
tions in the original plan. Clearly, the more flexibility,
the less stability.

Secondly, it might happen that no recovery plan is
found for a repairing task. Notice that the tree has a
limited size in terms of [and d that is determined by
the available time to build the tree, and the informa-
tion included in the tree may not be sufficient to solve
all the potential contingencies. The principle underpin-
ning reactive systems is that of providing a prompt re-
ply, and this requires to work with bounded data struc-
tures. Moreover, reactive responses are applied when
slight deviations from the main course of actions occur.

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 353

A major fault that makes a variable take a value that is
not considered in the repairing structure would likely
need a more deliberative response.

5.3. Estimating the size of T

In order to ensure reactivity, we need some guaran-
tee that a repairing structure 7 is available when a fail-
ure arises and that the only operation that needs to be
done is to find a recovery plan in 7. In this section, we
explain the details of the time-bounded building of 7.

The time limit (¢5) to build some 7 is given by the
agent’s execution latency (the longest acceptable time
for the agent to start the execution of an action and re-
turn the world state resulting from such execution), and
the number of execution cycles (actions) in the plan
window of the preceding 7. The agent’s latency de-
pends on whether the system that is being observed is
simulated or real and the characteristics of the agent’s
domain. Some domains may require a relatively large
execution latency (e.g., 10 s.), but others may have a
much shorter latency (e.g., 10 ms.). In our experiments
(see Section[7) we assume a latency of 1000 ms.

Estimating variables that have a long range of val-
ues, like the time to generate 7 (¢7), with a multiple
linear regression model may produce highly inaccurate
predictions [26]. Therefore, our proposal is to estimate
the branching factor of 7 (b) instead of directly esti-
mating ¢7; the estimation of b is given by the Eq. (2a).
Our estimation model relies on several parameters that
affect the size of T, namely, the depth d of T (z1);
the number of fluents in (G, (x2); the number of rele-
vant variables associated to T (z3) as well as the sum
of the domain cardinalities of these variables (xz,); the
number of relevant actions that modify these variables
without removing duplicates (z5) as well as removing
them (xg); and the number of these variables that also
appear in G, (x7). The values from x2 to z7 depend
on the length (1) of the plan window, hence, our esti-
mation depends mainly on the depth d and the length
l of T. We preserve the value of d in our estimation
model to ensure that 7 will comprise at least one ac-
tion to repair the first action of the plan window. In or-
der to learn the weights w;, we designed a series of ex-
periments to generate random repairing structures for
different problems from diverse planning benchmarks
and obtain the value of b of the generated trees. Since

5Part of the benchmark suite and the training data set can be found
at http://servergrps.dsic.upv.es/planinteraction/resources/.

Table 1
Trace to calculate ! and d values with ¢ = 1000 ms
l,d 2,3 2,4 2,5 3,4 3,5 4,5
4(l,d) 255 637 1052 795 12306 1684
Selected v

these trees are irregularly shaped, we approximated the
value of b (b) through Eq. (an approximation to the
number of nodes N in a uniform tree). Finally, the time
to apply the regressed transition function I" to a G; (fr)
is computed as the average of the ratios between the
time of generating a tree and the number of nodes of
such a tree over the whole benchmark.

7
[;:w0+zwi*$i (23)
i=1
N = (b+0.34)¢ (2b)
tr =0(l,d) = N = tr (2¢)
{1,d} = arg max 5(1,d) (2d)
lLe[2,z],de[l+1,y]
5(1,d) < ts

Once the estimation model is trained, in the testing
stage we use the Eq. (2d) to find the values of [and d
that maximize £ within the time limit ¢,. Through this
maximization process we compute for every pair of [
and d: (1) the associated value of b, (2) the number of
partial states N , and (3) whether or not the t}, result of
Eq. (2d), is lower than t,. Table[Il shows a trace of this
process. The RP starts with the combination ! = 2 and
d = 3 and the value of d is progressively increased by
1 until §(I,d) > ts (see 6(2,5) in Table[I). Then, the
value of [is increased by 1 and d resets to [+ 1 = 4.
Since (I, d) is an increasing function with the values
of [and d, their upper boundaries, z and y, will be
limited according to the value of t4 (in Table [I] these
upper boundaries are 4 and 5, respectively). Finally,
the RP selects the closest combination to ¢5 (§(3,4) in
Table[I)) and the remaining time € = ¢, — £7 is added
to the t for the next structure.

6. Planetary Mars domain, a real-world
motivation example

The Mars planning domain stems from a real-world
problem that NASA is dealing with in some research
projects on space exploration [30]. In this domain, a
rover that works on the Martian surface may have dif-
ferent instruments (e.g. cameras, robotic arms, drills,
atmospheric sensors) to analyze rocks or soils, to take

354 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

images of the terrain, or perform atmospheric mea-
surements over many location types on the Mars sur-
face. Location types included soft sand, hard-packed
soil, rough rock fields, and combinations of these all.
In our domain, this data must be communicated to a
lander, which in turn sends the results to a control cen-
ter situated on Earth (current Mars rovers communicate
to Earth via orbital relays). The communication from
Mars to Earth has a long delay of at least 2.5 minutes,
and at most 22 minutes. The rover could perform re-
connaissance activities [12] to identify interesting tar-
gets and maps for future missions. After a long time,
the rover may lose capabilities [28/42]] (e.g. reduced
mobility due to wear and tear on motors or mechani-
cal systems, reduced power generation due to battery
degradation, accumulated dust on solar arrays), as hap-
pened with the Spirit and Opportunity rovers.

Our interest is providing rovers with on-board exe-
cution and reactive planning capabilities so that they
can repair plan failures by themselves in a timely fash-
ion and thus reduce the communication overhead with
the Earth. This capability is present in a limited way
on current rovers for navigation and hazard avoid-
ance [15]], and experiments have been conducted in-
volving replanning to perform opportunistic science.
These capabilities will be needed for future missions.
This future hypothetical Mars mission scenario is the
problem that has primarily motivated our work.

7. Test and evaluations

Our domain-independent reactive model has been
tested in a problem scenario that simulates the Mars
domain described in Section [6] as well as in other do-
mains such as supply-chain, manufacturing or vehi-
cle routing. All of the domains and problems are en-
coded in PDDL. For the Mars domain, we adapted
the PDDL files of the rovers domain from the Inter-
national Planning Competitiorﬁ (IPC) to endow rovers
with reconnaissance abilities like, for instance, the op-
erators (SeekSoil ?r 7w) or (SeekRock ?r 7w) that al-
lows a rover ?r to seek more samples in a waypoint
7w. The resulting files accurately reflect the size and
difficulty of the real problems except for the numeric
capabilities of the rovers.

In this section we show the results obtained for 12
problems of the Mars scenario and 10 problems of a

Shttp://ipc.icaps-conference.org/.

vehicle routing domain [45] adapted from the logis-
tics domain of the IPC, a significant problem in the in-
dustry of transportation. For both domains, we discuss
the accuracy of our approach to generate the repair-
ing structures within the given time; additionally, we
compare the average time to solve a plan failure in the
Mars domain with our approach and other replanning
and plan-adaptation mechanisms.

The reactive execution model was implemented in
Java and all tests were run on a GNU/Linux De-
bian computer with an Intel 7 Core i7-3770 CPU @
3.40 GHz x 8, and 8 GB RAM.

7.1. Time-bounded repairing structures

In order to test the timely generation of a repair-
ing structure, we executed several problems of diverse
complexity of the Mars exploration and vehicle do-
mains, and we gathered the results of the first three
generated 7; for each problem (see Table[2). The data
shown for every 7; are: 114, number of remaining ac-
tions of the plan when 7; was created; ¢, the time limit
to create 7;; the values of [and d selected by the esti-
mation model within ¢4; ¢, the real time used in the
construction of 7; and IV, the number of partial states
in 7;. All times are measured in seconds. Notice that
the value of ¢ for 7; is subject to the value of [in 7;_1,
except for 71, which is a fixed value of 1 sec. The num-
ber of locations, resources and goals contribute to in-
crease the complexity of each problem.

The top part of Table[2Jshows the results for the Mars
exploration domain. Three repairing structures (71, 72
and 7T3) were collected for all the problems except for
problem 2, where 77 and 75 covered all the actions of
11 4. The first remark about these results is that almost
every 7; was generated within the deadline (t7; < t5),
excluding 73 of the problem 12 that slightly exceeded
its time limit. A second observation is that, for rela-
tively small problems, like 1-5, the value of ¢ is far
from t5 because the search space of these problems
is fairly small and the newly generated partial states
are all repeated nodes after a certain point. Hence, in
most of the simplest problems the entire state space is
quickly exhausted, in contrast to the problems 6—12. In
some problems, we can also observe that the values of
[, d and t, are the same but the values of 7 and N are
different. For instance, (I,d) = (3,4) and t; = 2 secs.
for problems 7, 8 and 9 but the values of {7 and N are
fairly different because of the increasing complexity of
these problems in the number of locations and goals,
which implies a higher branching factor in each pro-

355

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

LOST €L6V v 9°¢ VL IveEl LL6T € S¥ 8L 1S S65°0 S‘€ 18 €l S 4 S S S 01
£€9 SVOT v 9°C 9¢ 96T LV6'l T SV or ¥OIT LE€60 S°C (44 4! 14 I 14 14 14 6
(023 $890 € 9°¢ 144 GSET €08€ € 9°¢ Ly vrel 16071 S°€ 0S I 14 I 14 14 14 8 W
8¢ €90 v 9% 8¢ CI9T vI9C v 9 (44 ¥S0T 560 S°v 14 01 14 I 14 14 14 L &
179 €080 ¢ 97T 1€ LTyl €961 € 9T €€ Sl6 LTS0 S°€ 9¢ 6 € I € € € 9 2
€LS9 8I6% S 9°C €C 0L0C L¥9T € 9°C 8¢ 198 LSY0 S°€ 1€ 8 € I € € € S m
€CC 0910 € 9°C 1e 968 6v01T T 9°¢ 123 Iy 8¥v'0 9°C 9¢ L € I € € € 4 om
€89 80 T 9 1c 8¢ TI0 ¢ 97T €C 9¢ 1€1°0 9°C 94 9 [4 I [4 [4 [4 € &
eey LETO ¥ 9°¢ 0C 81y 6v1'0 € 9% e yie ori'0 9°¢ LT S [4 I [4 [4 [4 4 m
0cl €00 ¥ 9°C el 129 S6v0 € 9% Ll Ive §8T0 9°¢ 0C 14 4 I [4 4 [4 I =1
(soSexyoed)
s[eon Yonil, oueld AuD) suonedo] Modmy wajqoiq

99¢Tl STIT T ¥T 33 6Evl TLTO T VT LE 9SL 0ST0 S°C 6¢ € 4 € 0l 14 cl
gter SOI'T € +°C 0¢ 8679 60ST T P'¢ €e 9L 70 ST 53 € 14 [4 01 14 IT
6566 860 T ¥°T 1c 6LV6 €01I'l T ¥°T €C 108 0vc0 €°C 94 [4 € € 9 4 01
19¥8 0660 T Vv°€ 81 989% 19¥'0 T ST 0C 186€1 TV6'0 9°C C 1 € € 9 4 6 m
8LSS IE¥0 T P€ 4! I161 €20 T ST 14! €96€ €¥T0 9°C 91 ! 4 [4 S [4 8 &
8S¥1 L6TO0 T ¥'E I 86L 1220 € 97 €l §90T 6STO S°¢ 91 1 I € 14 4 L lml
6TPl LITO € 9T S T8e S9S0 € S¢€ 8 06T 1780 S°¢ 11 ! I [4 14 [4 9 m
9691 0IT'0 T S°¢ 6 ¥SET L9000 T 9T I 796 9800 S°C el 1 I 4 14 1 s g
oLyl 9010 T S°¢ S 9TLT 8600 T 9T L 86¢ 6€0°0 ¥°C 6 ! I ! 14 ! 14 w.
IL SI00 § €1 1 LLL 1600 ¥ 9°S 9 §29 €L00 S°v 0l 1 I ! € 1 € m

8¢C1 900 ¥ 9T [4 88 9200 S 9 ! 0 ! € ! 4 m.
(494 8500 T 9T [4 61¢C 900 T ST 14 ovl 1900 ¥°C 9 1 0 1 € 1 I
(sopou) () (s) (azis) (suonoe) (sopou) (S) (s) (dz1s) (suonoe) (sopou) (S) (dzIs) (suonoe) (e8ewr) (3yo01) ([108)

N 41 P V11 N 4 % ph V11 N 41 P V11 S[eoD SUONBOOT SI0AOY widqoid
€/ g/, s1=°%) 1L Arxordwoo 105 elRQ

surewop SunnoI 9[oIYA pue SIBA JO saxmonns Jurmedor o1y sy

C 9IqeL

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

356

=
—~ @
6v1 8¥1 991 Ov1 TL YL 69 89 LS 6S TS ¢S IS IS IS¢ 1S 6S TP v 1y 6¢ It 8¢ 6¢ e 9¢ 8¢ VS 6¢ 9¢ (sur) ouiLy, WW
o 6 g€ 9¢ LT 8C vC T 91 81 VI LT LT ¥I or ¢ sr &I 17T 11 ¢ 6 6 1T X ¥ 9 L 9 S AD Z m
6c 1T ST TC ¢ St v €1 ¥ v 0 o v ¢ I ¢ L 6 9 § ¢ v ¥ 9 X ¢ (S S VIIpesndy 23
[
S%
0§ TS ov IS 1S4 vy 95 V¥ €S ev LS 6 9S oF Sy 8y Sv <SS S €S €S & v St 1§ ¢ ¢S 8 S¥ PG (suowl], > i
Iv Sy LE O ST 8C ST ¢C 0c 61 vl 6l 81 VI ST €l ¢ €¢I (4 4 B 6 T €I X ¥ 9 6 6 S AD uav w
€€ 6C LT O0¢ 1C €C ol 8I vI SI Tl I €1 6 or TII O Ol L 6 ¥ 8 8 (011 X ¢ S 9 ¥ S VII pasnoy M S
PEO TLOEY0 8TY $6'T 8F01T0 SEET $2°0 LTOTI'T TI'0 6€T1S60 TTO9T08I0TTS 920 620SHT 010 1170 820 18001 T9S 910090 €01 (Swr)ouy, o
(3o01) (Joox) (3o01) (3001) (3o01) (3001) (3001) (3001) (1001) (3001) 3
6 1y S€ LE ST 9T T T 91 LT O9I 91 81 TII IT ¢TI €1 ¢I 6 O0I 9 6 01 6 X v 9 L 9 S ND W w”
8¢ 6¢ ¥¢ €€ €C §c 1C 1T ST 91 ¥1 ST vl 8 or TII 2r 11 8 6 9 8 6 8 X ¢ S 9 ¥ S VII pasnoy 5
8¢ 6¢£ ¥¢ €S¢ ¥ S 1Tt T ST 91 ¥1 SI 91 6 or TII 2@ ¢€I 8 6 L 8 6 (01 € 14 S 9 ¢ 9 Vi1
S0 V. VvV V \4 vV 94 V vV V V d VvV O vV V V V d V d vV V d vV V d V V q ediL
4 I ¢ 1 C I ¢ 1 C T ¢ [I ¢ 4 I ¢ 1 C I v € C 1 14 € 4 I ¢ [promfieq
1 11 0l 6 8 L 9 S ¥ € 4 1 wa[qoId

urewop uonero[dxa srejy o) ur Iy, yum syse) Suuredar 1o suerd £10A0591 pue Qwi],

€ 2IqEL

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 357

blem. In general, the branching factor also depends on
the relevant variables of each particular plan window
and, hence, a tree like 73 of problem 12 may result in
a smaller search space than 75 of problem 10.

The lower part of Table 2] shows the results obtained
for the vehicle domain, where the goal is to find opti-
mal routes for several vehicles which have to deliver a
number of packages. Most of the repairing structures
were generated within the time limit except in the case
of 71 and 75 of the problem 8, and 73 of the problem
10, due to the complexity of these problems. In gen-
eral, the trees in this domain are larger than those of
the Mars domain under the same value of t,. This is
because the branching factor in the vehicle domain is
much lower than in the Mars domain since trucks are
confined to move in a particular city and, hence, load-
ing a package in a truck will only ramify across the
trucks defined in the city where the package is located.
In contrast, in the Mars domain rovers are equipped
with all functionalities and therefore the branching fac-
tor is considerably higher.

All in all, the results corroborate the accuracy of the
predictive model and the timely generation of the re-
pairing structures. Overall, out of all of the experiments
carried out in the diverse domains, we can say that 95%
of the repairing structures are always generated within
the time limit. On the other hand, in contrast to most of
reactive planners [1/13]], our model is far more flexible
since it is capable of dealing with more than one action
(in the plan window) and multiple failure states with a
single repairing structure.

7.2. Repairing plan failures

This section shows the performance of the plan re-
covery search procedure when repairing a plan fail-
ure in the Mars domain. Specifically, failures were ran-
domly simulated in the plan window of the tree 77 for
the problems in the upper part of Table 2] Failures were
generated by changing the value of a fluent in the ini-
tial state and in the states resulting from the execution
of an action a;, thus provoking an erroneous execution
in the next action a;4; of the plan window. In other
words, the first failure affects action a; of I 4, the sec-
ond failure affects ay of 11 4 assuming a; was correctly
executed, the third failure affects a3 assuming the two
preceding actions were correctly executed and so on.

Table [3] depicts the results of the repairing task in
the Mars domain with three approaches: our RP, the
LPG-ADAPT mechanism [18]], which repairs a given
plan adapting it to a new current state, and the classi-

cal planner LAMA [38]], used as a deliberative planner
to obtain a new plan from scratch (replanning) when
a failure is detected. Plan failures are classified as fol-
lows:

A. Failures originated by an error in the execution
of the actions (Navigate ?r 7w, ?wq). An error
of this type is because of: 1) the rover ?r is not
located in 7w, at the time of executing the action
or 2) the path from 7w, to 7wy is blocked and the
rover cannot traverse it.

B. Failures that prevent the rover from analyzing
the results or taking good pictures. This type of
failure is caused by: 1) the rover loses the sam-
ple (rock or soil) by an unexpected event when
it is about to analyze it, or 2) the camera loses
calibration before taking the picture.

C. Failures that are solved with the help of other
rovers when a hardware failure disables the de-
vice of a rover. Since fixing the damaged hard-
ware is not an eligible option in the NASA sce-
nario, the only possible way to repair this failure
is with the help of other rover, as long as this is
possible within the repairing structure.

D. Failures that positively affect the plan execution.

Table 3 also shows the number of remaining actions
of the plan II4 at the time of executing the repairing
task, the number of actions reused from 114, the total
number of actions of the recovery plan (IT'y) and the
time of the plan repair measured in milliseconds. The
parameter reused 114 represents the stability with re-
spect to I1 4; i.e. the number of actions of II 4 that are
reused in IT',. Finally, the failures labeled as root in the

', row denote that the recovery plans were calculated
up to the root node of 7;.

As we can see in Table[3] the three approaches were
able to find a plan except for failure 4 of problem 2. In
this case, the path from waypoint w; to ws is blocked
and there is no other possible way to navigate to wo;
that is, it does not exist a recovery plan for this failure.

Regarding stability, the solution plans found by the
RP can be classified as: (1) plans that benefit from pos-
itive failures of type D, and then contain fewer actions
than the original plan 11 4; (2) plans that reuse all the
actions in II4 (e.g. failure 1 of problems 2 and 6); and
(3) plans that reuse only some of the actions in II4
(e.g., failure 1 of problems 5 and 11).

The solutions to failures of type A are about rerout-
ing rovers through other paths using the available travel
maps. The recovery from failures of type B implies ei-
ther exploring the area again seeking a new sample of
rock or soil (e.g., failure 2 of problem 2) and then an-

358 C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

Table 4
Summary of statistics for RP, LPG-ADAPT and LAMA perfor-
mance

Stability (%) ATly Time (ms)

o o o o o o
RP 92 19 097 0.85 1.85 4.33
LPG-ADAPT 85 19 240 194 4947 4.72
LAMA 51 27 1.33 1.52 62.83 36.99

alyze it, or calibrating the rover’s camera again (e.g.,
failure 2 of problem 4). Failures of type C were found
in two cases, which could be repaired because their re-
spective 77 included paths involving the second rover
(e.g., failure 3 of problem 6). Here, a hardware failure
prevent the rover from analyzing the soil in a specific
location, our model repairs the failure using the second
rover that explores the area seeking for soils, analyzes
the soil and communicates the results to the lander. In
the failures of type D, the RP takes advantage of the
positive failure, which achieves the effects of the next
action to execute and, consequently, the RP proceeds
with the following action in 11 4.

The performance results in Table [3] and the sum-
mary of statistics in Table [4] show that our RP per-
forms admirably well in all the measured dimensions.
Regarding stability, RP outperfomrs LPG-ADAPT and
LAMA. LAMA is the approach with the worst rate
of stability (51%), which is reasonable since the plan-
ner does not repair a plan but it computes a new plan.
In Table [3] we can see that the plan quality or number
of actions of II’, is slightly higher with the RP than
with LAMA in some cases (e.g., failure 1 of prob-
lem 12 or failure 3 of problem 7), and lower in some
other cases (e.g. failure 2 of problem 12 or failures 1
and 2 of problem 10). LAMA is able to find shorter
plans in a few cases because it computes a plan for the
new situation without being subject to keep the actions
in IT4. Nevertheless, all in all, the RP returns plans
of better quality than LAMA as Table [shows (the
mean value in the increase of the number of actions
is 0.97 in RP against 1.33 in LAMA). The compari-
son between RP and LPG-ADAPT clearly benefits RP
in both stability and quality of the recovery plan, par-
ticularly in the most complex problems (10 to 12). As
for the computation time, finding a recovery path to
the root node is more costly since the repairing mech-
anism explores the entire search space. However, RP
shows outstanding results compared to LPG-ADAPT
and LAMA, which proves the benefit of using the RP
to repair plan failures in reactive environments besides
avoiding the overhead of communicating with a de-
liberative planner. In conclusion, we can affirm that
our model is a robust recovery mechanism for reactive
planning that also provides good-quality solutions.

8. Limitations and extensions of the model

The results in Section [7] show that our reactive ex-
ecution model meets the performance needs of a re-
active plan repair and that it also outperforms other
repairing mechanisms. However, the model presents
some limitations that we intend to overcome in the fu-
ture. One limitation is the machine dependency of the
estimation model explained in Section[3.3] In order to
reproduce the experiments, or to export them to other
systems, the training of the estimation model must be
repeated to adjust the value of tr for a particular pro-
Cessor.

Assuming several agents executing their plans in
a common environment, a repairing task of an agent
might cause conflicts in the plan of the others. Addi-
tionally, the occurrence of failures could restrict the ca-
pabilities of the agents, preventing them from achiev-
ing some goal. Therefore, a multi-agent approach
where execution agents act, coordinate and jointly re-
pair a failure is desirable [2l16/35]. A communica-
tion protocol that helps agents request, provide and
agree on a particular recovery plan is a desirable ap-
proach for a multi-agent repair system [25]]. Particu-
larly, the present work represents a first step towards
a multi-agent P&E system capable of coordinating
agents plans while minimizing crowd-effects [44].

Our model can be easily extended to parallel and
temporal planning. The parallel execution of several
actions of an agent is achievable by grouping together
the preconditions and effects of the parallel actions into
a new action. The existence of grouped actions would
avoid the duplicated states that arise from the multiple
serialization of the actions in the group. On the other
hand, handling durative actions in temporal planning
would involve creating a regressed partial state at each
relevant time point of an action and adding fluents to
represent the ongoing executing actions at each execu-
tion cycle.

9. Conclusions and future works

This paper presents a reactive execution model,
which comprises a RP, to recover from failures in plan-
ning control applications. The model is embedded into
a P&E system where an execution agent receives a
plan from a deliberative planner and its mission is to
monitor, execute and repair the given plan.

Providing time-bounded responses in reactive envi-
ronments is a difficult and sometimes unfeasible task

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications 359

due to the unpredictability of the environment and the
impossibility to guarantee a response within a given
time. An alternative solution to overcome this difficulty
is working with time-bounded data structures rather
than designing time-bounded reasoning processes. By
following this approach, our model ensures the avail-
ability of a repairing structure, or search tree, within a
given time, which is later used to fix the action failures
during the plan execution.

Several features have been considered in order to
have a search tree generated in due time: (1) the tree is
formed of partial states which contain far less fluents
than world states; (2) the tree is limited to a particular
fragment of the plan and tree depth that are calculated
by an estimation model; and (3) the expansion of the
tree only considers the relevant variables that might po-
tentially fail during the plan execution. Under these cri-
teria, we show the results obtained for two different do-
mains, a simulation of a real NASA space problem, and
a vehicle routing domain. The results corroborate that
there is a 95% likelihood to obtain a repairing struc-
ture in time. Additionally, the exhaustive experimen-
tation on the repairing tasks confirm that the repairing
structure together with the search recovery process is
a very suitable mechanism to fix failures that represent
slight deviations from the main course of action in a
planning control application. The results support sev-
eral conclusions: the accuracy of the model to gener-
ate repairing structures in time, the usefulness of a sin-
gle repairing structure to repair more than one action
in a plan fragment while reusing the original plan as
much as possible, and the reliability and performance
of our recovery search procedure in comparison with
other well-known classical planning mechanisms.

The current RP can be extended in several different
directions as, for instance, by including the necessary
machinery to deal with temporal plans. Our next future
work is to exploit this model for a multi-agent recovery
mechanism in which agents dynamically form a team-
work at execution time and work together in the repair
of a plan failure.

Acknowledgments

This work has been partly supported by the Spanish
MICINN under the projects TIN2014-55637-C2-2-R,
and the Valencian project PROMETEOII/2013/019.

References

[1] P. Aschwanden, V. Baskaran, S. Bernardini, C. Fry, M.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Moreno, N. Muscettola, C. Plaunt, D. Rijsman and P. Tomp-
kins, Model-unified planning and execution for distributed au-
tonomous system control, in: AAAI Fall Symposium on Space-
craft Autonomy, (2006).

R. Badawy, A. Yassine, A. Hefler, B. Hirsch and S. Albayrak,
A novel multi-agent system utilizing quantum-inspired evo-
lution for demand side management in the future smart grid,
Integrated Comp-Aided Engineering 20(2) (2013), 127-141.
A.G. Banerjee and S.K. Gupta, Research in automated plan-
ning and control for micromanipulation, IEEE Transactions
on Automation Science and Engineering 10(3) (2013), 485-
495.

P. Baraldi, R. Canesi, E. Zio, R. Seraoui and R. Chevalier, Ge-
netic algorithm-based wrapper approach for grouping condi-
tion monitoring signals of nuclear power plant components,
Integrated Comp-Aided Engineering 18(3) (2011), 221-234.
J.C. Bongard and H. Lipson, Automated damage diagnosis
and recovery for remote robotics, in: IEEE Robotics and Au-
tomation 4 (2004), 3545-3550.

M. Brenner and B. Nebel, Continual planning and acting in
dynamic multiagent environments, Autonomous Agents and
Multi-Agent Systems 19(3) (2009), 297-331.

B. Browning, J. Bruce, M. Bowling and M. Veloso, STP:
Skills, tactics and plays for multi-robot control in adversar-
ial environments, IEEE Journal of Control and Systems Engi-
neering 219 (2005), 33-52.

J. Bryson and L.A. Stein, Modularity and design in reactive
intelligence, Intl Joint Conference on Artificial Intelligence
(2001), 1115-1120.

S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Cas-
tafio, R. Sherwood, D. Mandl, S. Frye, S. Shulman, J. Jones
and S. Grosvenor, An autonomous earth-observing sensor-
web, IEEE Intelligent Systems 20(2005), 16-24.

J.Y.J. Chow, Activity-based travel scenario analysis with rout-
ing problem reoptimization, Comp-Aided Civil and Infras-
truct Engineering 29(2) (2014), 91-106.

R.E. Fikes, P.E. Hart and N.J. Nilsson, Learning and executing
generalized robot plans, Artificial Intelligence 3 (1972), 251—
288.

W. Fink, J.M. Dohm, M. A. Tarbell, T.M. Hare and V.R. Baker,
Next-generation robotic planetary reconnaissance missions: A
paradigm shift, Planetary and Space Science 53(14) (2005),
1419-1426.

A. Finzi, F. Ingrand and N. Muscettola, Model-based execu-
tive control through reactive planning for autonomous rovers,
in: IEEE Intelligent Robots Systems 1 (2004), 879-884.

L. Fliickiger and H. Utz, Service oriented robotic architecture
for space robotics: Design, testing, and lessons learned, J of
Field Robotics 31(1) (2014), 176-191.

T.W. Fong, M. Bualat, M. Deans, M. Allan, X. Bouys-
sounouse, M. Broxton, L. Edwards, R. Elphic, L. Fluckiger,
J. Frank, L. Keely, L. Kobayashi, P. Lee, S.Y. Lee, D. Lees,
E. Pacis, E. Park, L. Pedersen, D. Schreckenghost, T. Smith,
V. To and H. Utz, Field testing of utility robots for lunar sur-
face operations, in: AIAA Space Conference and Exposition
(2008), 22-217.

A. Fougeres and E. Ostrosi, Fuzzy agent-based approach for
consensual design synthesis in product configuration, Inte-
grated Comp-Aided Engineering 20(3) (2013), 259-274.

M. Fox and D. Long, PddI2.1: An extension to pddl for ex-
pressing temporal planning domains, Journal of Artificial In-
telligence Research, 20 (2003), 61-124.

M. Fox, A. Gerevini, D. Long and I. Serina, Plan stability:
Replanning versus plan repair, in: Automated Planning and

360

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

C. Guzman et al. / Reactive execution for solving plan failures in planning control applications

Scheduling (2006), 212-221.

C. Fritz and S.A. Mcllraith, Monitoring plan optimality
during execution, in: Automated Planning and Scheduling
(2007), 144-151.

A. Garrido and E. Onaindia, Assembling learning objects for
personalized learning: An ai planning perspective, IEEE In-
telligent Systems 28(2) (2013), 64-73.

M. Ghallab, D. Nau and P. Traverso, Automated Planning:
Theory & Practice, Elsevier, 2004.

M. Ghallab, D.S. Nau and P. Traverso, The actor’s view of
automated planning and acting: A position paper, Artificial
Intelligence Journal 208 (2014), 1-17.

K. Gorlach, M. Sonntag, D. Karastoyanova, F. Leymann and
M. Reiter, Conventional workflow technology for scientific
simulation, in: Guide to e-Science (2011), 323-352.

C. Guzman, V. Alcazar, D. Prior, E. Onaindia, D. Bor-
rajo, J. Fdez-Olivares and E. Quintero, PELEA: A domain-
independent architecture for planning, execution and learn-
ing, in: Scheduling and Planning Applications woRKshop 12
(2012), 38-45.

C. Guzmdn, P. Castejon, E. Onaindia and J. Frank, Multi-
agent reactive planning for solving plan failures, in: Hybrid
Artificial Intelligent Systems — Sth International Conference,
Lecture Notes in Computer Science 8073 (2013), 530-539.
M.R. Hagerty and V. Srinivasan, Comparing the predictive
powers of alternative multiple regression models, Psychome-
trika 56(1) (1991), 77-85.

R. Haijema and E.M.T. Hendrix, Traffic responsive control of
intersections with predicted arrival times: A markovian ap-
proach, Comp-Aided Civil and Infrastruct Engineering 29(2)
(2014), 123-139.

Y. Kuwata, A. Elfes, M. Maimone, A. Howard, M. Pivtoraiko,
T.M. Howard and A. Stoica, Path planning challenges for
planetary robots, in: IEEE Intelligent Robots Systems (2008),
22-27.

S. Lemai and F. Ingrand, Interleaving temporal planning and
execution in robotics domains, in: Innovative Applications of
Artificial Intelligence (2004), 617-622.

M.W. Maimone, P.C. Leger and J.J. Biesiadecki, Overview of
the mars exploration rovers’ autonomous mobility and vision
capabilities, in: IEEE Robotics and Automation, Jet Propul-
sion Laboratory, NASA (2007).

M.G. Marchetta and R. Forradellas, An artificial intelli-
gence planning approach to manufacturing feature recogni-
tion, Comp-Aided Design 42(3) (2010), 248-256.

C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn and R.
McEwen, A deliberative architecture for auv control, in: IEEE
Robotics and Automation (2008), 1049-1054.

N. Meuleau and D.E. Smith, Optimal limited contingency

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

planning, Uncertainty in Artificial Intelligence (2003), 417—
426.

A. Milani and V. Poggioni, Planning in reactive environments,
Computational Intelligence 23(4) (2007), 439-463.

1. Montalvo, J. Izquierdo, R. Pérez-Garcia and M. Herrera,
Water distribution system computer-aided design by agent
swarm optimization, Comp-Aided Civil and Infrastruct Engi-
neering 29(6) (2014), 433-448.

J. Patel, M.C. Dorneich, D.H. Mott, A. Bahrami and C. Gi-
ammanco, Improving coalition planning by making plans
alive, IEEE Intelligent Systems 28(1) (2013), 17-25.

C. Piacentini, V. Alimisis, M. Fox and D. Long, Combining a
temporal planner with an external solver for the power balanc-
ing problem in an electricity network, in: the 23th Automated
Planning and Scheduling, AAAI (2013), 398-406.

S. Richter and M. Westphal, The LAMA planner: Guiding
cost-based anytime planning with landmarks, Journal of Arti-
ficial Intelligence Research 39(1) (2010), 127-177.

A. Rodriguez and J.A. Reggia, Collective-movement teams
for cooperative problem solving, Integrated Comp-Aided En-
gineering 12(3) (Jul 2005), 217-235.

M. Santofimia, X. del Toro, P. Roncero-Sanchez, F. Moya, M.
Martinez and J. Lépez, A qualitative agent-based approach
to power quality monitoring and diagnosis, Integrated Comp-
Aided Engineering 17(4) (2010), 305-319.

J. Sedano, C. Chira, J. Villar and E. Ambel, An intelligent
route management system for electric vehicle charging, Inte-
grated Comp-Aided Engineering 20(4) (2013), 321-333.

M. Smart, B. Ratnakumar, L. Whitcanack, F. Puglia, S. Santee
and R. Gitzendanner, Life verification of large capacity yard-
ney li-ion cells and batteries in support of nasa missions, Intl
Journal of Energy Research 34(2) (2010), 116-132.

S. Sohrabi, J.A. Baier and S.A. Mcllraith, Diagnosis as plan-
ning revisited, in: 21st Intl Workshop on the Principles of Di-
agnosis (2010),

Q. Sun and S. Wu, A configurable agent-based crowd
model with generic behavior effect representation mecha-
nism, Comp-Aided Civil and Infrastruct Engineering 29(7)
(2014), 531-545.

P. Toth and D. Vigo, The Vehicle Routing Problem, Philadel-
phia, PA, USA: Society for Industrial and Applied Mathemat-
ics, 2001.

C. uise, J.C. Beck and S.A. Mcllraith, Flexible execution of
partial order plans with temporal constraints, in: the 23th Intl
Joint Conference on Artificial Intelligence, AAAI, (2013),
2328-2335.

W. Xie and Y. Ouyang, Dynamic planning of facility locations
with benefits from multitype facility colocation, Comp-Aided
Civil and Infrastruct Engineering 28(9) (2013), 666-678.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

