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Abstract

In this paper a modi�cation of the method proposed in [1] for computing matrix sine and co-
sine based on Hermite matrix polynomial expansions is presented. An algorithm and illustrative
examples demonstrate the performance of the new proposed method.
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1 Introduction.

It is well known that the wave equation

v2
∂2ψ

∂x2
=
∂2ψ

∂t2
, (1.1)

plays an important role in many areas of engineering and applied sciences. The matrix di�erential
problem

Y ′′(t) +AY (t) = 0 , Y (0) = Y0 , Y
′(0) = Y1 , (1.2)

where A is a matrix and Y0 and Y1 are vectors, arises from spatially semi-discretization of the wave
equation (1.1), see [2]. Matrix problem (1.2) has the exact solution

Y (t) = cos
(√

At
)
Y0 +

(√
A
)−1

sin
(√

At
)
Y1, (1.3)

where
√
A denotes any square root of a non-singular matrix A (see e.g. equation 1.2 of [3]). More

general problems of type (1.2), with a forcing term F (t) on the right-hand side arise from mechanical
systems without damping, and their solutions can be expressed in terms of integrals involving the
matrix sine and cosine [4]. Thus, trigonometric matrix functions play an important role in second
order di�erential systems, similar to matrix exponentials in �rst order di�erential problems.

A general algorithm for computing the matrix cosine which uses rational approximations and
the double-angle formula cos (2A) = 2 cos2 (A)− I was proposed by Serbin and Blalock [2]. Higham
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in [3,5,6] developed a particular version of this algorithm based on the Padé approximation includ-
ing truncation and rounding error analysis.

In this paper, that may be regarded as a continuation of [1], we use Hermite matrix polyno-
mial expansions of the matrix cosine and sine in order to perform a very accurate and competitive
method for computing them compared to the results given by the function funm of MATLAB. The
implementations have been tested on an Intel Core 2 Duo T5600 with 2 GB main memory, using
7.5 (R2007b) MATLAB version.

This paper is organized as follows. Section 2 summarizes previous results of Hermite matrix
polynomials and includes a new Hermite series expansion of the matrix sine and cosine. Section 3
deals with the Hermite matrix polynomial series expansion of cos (At) and sin (At) for an arbitrary
matrix as well as with its �nite series truncation with a pre�xed accuracy in a bounded domain, and
an algorithm of the method is given. Section 4 deals with a selection of examples in order to inves-
tigate the accuracy of the new method proposed here. Finally, conclusions are presented in section 5.

Throughout this paper, [x] denotes the integer part of x. The matrices Ir and θr×r in Cr×r

denote the matrix identity and the null matrix of order r, respectively. Following [7], for a matrix
A in Cr×r, its in�nite-norm will be denoted by ∥A∥∞ and its 2-norm will be denoted by ∥A ∥2.
Finally, if A(k, n) are matrices in Cr×r for n ≥ 0, k ≥ 0, from [1] it follows that

∑
n≥0

∑
k≥0

A(k, n) =
∑
n≥0

n∑
k=0

A(k, n− k) . (1.4)

2 Hermite matrix polynomials series expansions of matrix sine and

matrix cosine.

For the sake of clarity in the presentation of the following results we recall some properties of
Hermite matrix polynomials which have been established in [1] and [8]. From (3.4) of [8, p. 25] the
nth Hermite matrix polynomial satis�es

Hn

(
x,

1

2
A2

)
= n!

[n
2
]∑

k=0

(−1)k (xA)n−2k

k!(n− 2k)!
, (2.1)

for an arbitrary matrix A in Cr×r. Taking into account the three-term recurrence relationship (3.12)
of [8, p. 26], it follows that

Hn

(
x, 12A

2
)
= xAHn−1

(
x, 12A

2
)
− 2(n− 1)Hn−2

(
x, 12A

2
)
, n ≥ 1

H−1(x,
1
2A

2) = θr×r , H0(x,
1
2A

2) = Ir

 , (2.2)

and from its generating function in (3.1) and (3.2) [8, p. 24] one gets

extA−t2I =
∑
n≥0

Hn

(
x,

1

2
A2

)
tn/n!, |t| <∞, (2.3)

where x, t ∈ C. The nth scalar Hermite polynomial is given by [9, p. 60]

Hn(x) = n!

[n
2
]∑

k=0

(−1)k (2x)n−2k

k!(n− 2k)!
, n ≥ 0 , (2.4)
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which coincide with the n−th matrix Hermite polynomial (2.1) when r = 1 and A = 2.

Taking y = tx and µ = 1/t in (2.3) it follows that

eAy = e
1
µ2

∑
n≥0

1

µnn!
Hn

(
µy,

1

2
A2

)
, µ ∈ C, y ∈ C, A ∈ Cr×r . (2.5)

Now, we look for the Hermite matrix polynomials series expansion of the matrix cosine cos (Ax).
Given an arbitrary matrix A ∈ Cr×r, with

cos (Ay) =
eiAy + e−iAy

2

and using (2.5) in combination with [8, p. 25], it follows that

Hn (−x,A) = (−1)nHn (x,A) .

Thus, one gets

cos (Ay) = e
1
µ2

∑
n≥0

1

µ2n(2n)!
H2n

(
iyµ,

1

2
A2

)
. (2.6)

Taking λ = iµ in (2.6), we obtain the looked for expression:

cos (Ay) = e−
1
λ2

∑
n≥0

(−1)n

λ2n(2n)!
H2n

(
yλ,

1

2
A2

)
. (2.7)

In a similar form, taking into account that

sin (Ay) =
eiAy − e−iAy

2i
,

it follows that

sin (Ay) = e−
1
λ2

∑
n≥0

(−1)n

λ2n+1(2n+ 1)!
H2n+1

(
yλ,

1

2
A2

)
. (2.8)

Remark 2.1 Observe that when λ = 1, expressions (2.7) and (2.8) are formulae (19) and (20)
of [1, p. 109].

Denoting by CN (A, λ) the Nth partial sum of series (2.7) for y = 1, one gets

CN (λ,A) = e−
1
λ2

N∑
n=0

(−1)n

λ2n(2n)!
H2n

(
λ,

1

2
A2

)
≈ cos (A), λ ∈ C, A ∈ Cr×r. (2.9)

Observe that the case λ = 1 corresponds with the matrix cosine approximation C(A; 1;N) given
in [1]. Denoting by SN (A, λ) the Nth partial sum of series (2.8) for y = 1, one gets

SN (λ,A) = e−
1
λ2

N∑
n=0

(−1)n

λ2n+1(2n+ 1)!
H2n+1

(
λ,

1

2
A2

)
≈ sin (A), λ ∈ C, A ∈ Cr×r. (2.10)

In Section 4 we shall see that the introduction of the additional parameter λ will improve the results
given in [1].
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3 Accurate and error bounds for cosine and sine approximation.

Algorithm.

By (2.1) and (2.4), it follows that

∥∥∥∥Hn

(
x,

1

2
A2

)∥∥∥∥
2

≤
[n/2]∑
k=0

n! (|x| ∥A∥2)
n−2k

k!(n− 2k)!
, (3.1)

and thus ∥∥∥∥H2n

(
λ,

1

2
A2

)∥∥∥∥
2

≤
n∑

k=0

(2n)! (λ ∥A∥2)
2(n−k)

k!(2(n− k))!
. (3.2)

Using (1.4), the following expression holds

∑
n≥0

n∑
k=0

∥A∥2(n−k)
2

λ2kk! (2(n− k))!
= cosh (∥A∥2)e

1
λ2 . (3.3)

Taking the approximate value CN (λ,A) given by (2.9) and taking into account (3.2), it follows that

∥cos (A)− CN (λ,A)∥2 ≤ e−
1
λ2

∑
n≥N+1

1

λ2n(2n)!

∥∥∥∥H2n

(
λ,

1

2
A2

)∥∥∥∥
2

≤ e−
1
λ2

∑
n≥N+1

n∑
k=0

∥A∥2(n−k)
2

λ2kk!(2(n− k))!

= e−
1
λ2

∑
n≥0

n∑
k=0

∥A∥2(n−k)
2

λ2kk!(2(n− k))!
−

N∑
n=0

n∑
k=0

∥A∥2(n−k)
2

λ2kk!(2(n− k))!

 .

Considering the previous expression, one gets an error bound for approximation (2.9):

∥cos (A)− CN (λ,A)∥2 ≤ e−
1
λ2

[
cosh (∥A∥2)e

1
λ2 −

N∑
n=0

n∑
k=0

∥A∥2(n−k)
2

λ2kk!(2(n− k))!

]
. (3.4)

Now, let ε > 0 be an a priori error bound. Using (3.4), if N is the �rst positive integer so that

N∑
n=0

n∑
k=0

∥A∥2(n−k)
2

λ2kk!(2(n− k))!
≥ cosh (∥A∥2)e

1
λ2 − ε e

1
λ2 , (3.5)

from (3.4) and (3.5) one gets,
∥cos (A)− CN (λ,A)∥2 ≤ ε .

Summarizing, the next result, similar to theorem 3.1 of [1], has been proved:

Theorem 3.1 Let A be a matrix in Cr×r and let λ > 0. Let ε > 0. If N is the �rst positive integer
so that inequality (3.5) holds. Then

∥cos (A)− CN (λ,A)∥2 ≤ ε . (3.6)

Furthermore, using that relation sin (A) = cos
(
A− π

2 I
)
, it is possible avoid the computation of the

matrix sine. On the other hand, we can obtain a similar result to theorem 3.1 for the case of the
matrix sine:
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Theorem 3.2 Let A be a matrix in Cr×r and let λ > 0. Let ε > 0. If N is the �rst positive integer
so that inequality

N∑
n=0

n∑
k=0

∥A∥2(n−k)+1
2

λ2kk!(2(n− k) + 1)!
≥ sinh (∥A∥2)e

1
λ2 − ε e

1
λ2 ,

holds. Then, approximation SN (λ,A) given by (2.10) satis�es

∥sin (A)− SN (λ,A)∥2 ≤ ε . (3.7)

Starting with expressions (2.9) and (2.10), it is possible to simultaneously compute the matrix cosine
and sine using the following algorithm 1.

Algorithm 1 computes sine and cosine of a matrix by means of Hermite approximants.

Function [C, S] = sincosher(A,N, λ)
Inputs: Matrix A ∈ Rr×r; 2N + 1 is the order of the Hermite approximation (N ∈ N) of
sine/cosine function; parameter λ ∈ R
Output: Matrices C = cos(A) ∈ Rr×r and S = sin(A) ∈ Rr×r

1: H0 = Ir
2: H1 = λA
3: C = H0

4: S = H1/λ
5: aux = 1/λ
6: for n = 2 : 2N + 1 do
7: H = λAH1 − 2(n− 1)H0

8: H0 = H1;
9: H1 = H
10: aux = aux/(λn)
11: if mod (n, 4) < 2 then
12: if mod (n, 2) == 0 then
13: C = C + auxH;
14: else

15: C = C − auxH;
16: end if

17: else

18: if mod (n, 2) == 0 then
19: S = S + auxH;
20: else

21: S = S − auxH;
22: end if

23: end if

24: end for

25: C = e−1/l2C
26: S = e−1/l2S

4 Numerical examples.

In this section we provide results for numerical experimentation of the computational method based
on expansion (2.7) compared with the results given by the function funm of MATLAB. This function
allows to compute general matrix functions by the Schur-Parlett algorithm, [10], and it is the only
function that MATLAB has to compute matrix sine and cosine. The implementations have been
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tested on an Intel Core 2 Duo T5600 with 2 GB main memory, using 7.5 (R2007b) MATLAB version.

In the �rst example, we apply the computation of the matrix cosine of a matrix A treated in [1]
using the expansion (2.7). Note that there are di�erent possible choices for the parameter λ.

Example 4.1 Let A be a matrix de�ned by

A =

 3 −1 1
2 0 1
1 −1 2

 , (4.1)

with σ(A) = {1, 2}. Matrix A is non-diagonalizable. Using the minimal theorem [11, p. 571], see
also [1], the exact value of cos (A) is

cos (A) =

 cos (2)− sin (2) sin (2) − sin (2)
− cos (1) + cos (2)− sin (2) cos (1) + sin (2) − sin (2)

− cos (1) + cos (2) cos (1)− cos (2) cos (2)


=

 −1.325444263372824 0.909297426825682 −0.909297426825682
−1.865746569240964 1.449599732693821 −0.909297426825682
−0.956449142415282 0.956449142415282 −0.4161468365471424

 .

In [1], for an admissible error ε = 10−5, we need N = 15 to provide the required accuracy. In
practice, the number of terms required to obtain a pre�xed accuracy uses to be smaller than the one
provided by Theorem 3.1 of [1]. So for instance, taking N = 9 one gets:

C9(1, A) =

 −1.3254444650245485 0.9092974459509594 −0.9092974459509594
−1.8657468968644513 1.4495998777908623 −0.9092974459509594
−0.9564494509134919 0.9564494509134919 −0.4161470190735891

 ,

and
∥cos (A) − C9(1, A)∥2 = 7.995228661905607 × 10−7 .

We will compare these results obtained letting λ = 1 in Theorem 3.1 of [1] with the new Theorem
3.1. Taking λ = 2000, using Theorem 3.1 we need N = 10 to obtain the same pre�xed accuracy.
Again, the number of terms required to obtain a pre�xed accuracy uses to be smaller than the one
provided by (3.6). For instance, taking N = 7 one gets

C7(2000, A) =

 −1.3254442633775207 0.9092974268299509 −0.9092974268299509
−1.8657465692456603 1.4495997326980907 −0.9092974268299509
−0.9564491424157093 0.9564491424157093 −0.41614683654756973

 ,

and
∥cos (A) − C7(2000, A)∥2 = 7.717270333884585 × 10−8 .

The choice of parameter λ can still be re�ned. For example, taking λ = 4.1 one gets

∥cos (A) − C7(4.1, A)∥2 = 7.098351906265066 × 10−10 .

Figure 1 presents the error 2-norm of approximation (2.7) for N = 8 �xed and λ ∈]0, 25]. This
�gure illustrates how the error norm depends on the varying parameter λ and it becomes evident
that an adequate choice of λ may provide results with higher accuracy.

Figure 2 shows the 2−norm error bound of CN (λ,A) for the �xed value of λ = 4.1 varying N . For
N = 10, we obtain

∥cos (A) − C10(4.1, A)∥2 = 1.7763568394002505 × 10−15 .
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Figure 1: For N = 8 �xed and varying λ.

Example 4.2 In this experiment we consider 100 random matrices of the form

A = PDP−1, (4.2)

where D is a diagonal matrix with uniform random values in the interval [−5, 5] and P is a matrix
with uniform random values in the same interval. The dimensions of all matrices are 100×100. We
have computated the approximation of the matrix cosine CN (λ,A) and sine SN (λ,A) with N = 20
and the experimental value of λ was λ = 0.7936.

It is well known that the exact solutions are

cos (A) = P cos (D)P−1 , sin (A) = P sin (D)P−1 .

In the experiment each exact solution has been obtained at 256−digit precision using MATLAB's
Symbolic Math Toolbox.

Figure 3 shows the comparison between the relative errors of function funm of MATLAB and
series (2.7) with λ = 0.7936 using the in�nite norm:

Er(x
⋆) =

∥x− x⋆∥∞
∥x∥∞

. (4.3)

The mean processing time for funm was 0.114550 seconds and the mean processing time for the
Hermite approximation was 0.023535 seconds. The �rst average time corresponds only to the com-
putation of cos (A) using the function funm. The second value corresponds to the computation of
cos (A) and sin (A) using Hermite expansion. Our proposed implementation was 4.8672 times faster.
In the computation of cos (A), the Hermite method gave a smaller error than funm in 70% of the
test cases. In the computation of sin (A), the Hermite method gave a smaller error than funm in
67% of the test cases.

Example 4.3 We consider 100 randomly matrices in the same conditions as in experiment 4.2. We
have computed the approximation of the matrix cosine CN (λ,A) and sine SN (λ,A) with N = 25.
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Figure 2: Relative error of Hermite series (2.7) for example 4.1 for λ = 4.1.

We choose in this new experiment λ = 0.6175.

Figure 4 shows the comparison between the relative errors of function funm of MATLAB and
series (2.7) with λ = 0.6175 using in�nite norm (4.3).

Now, the mean processing time for funm was 0.113997 seconds and the mean processing time for
the Hermite approximation was 0.027875 seconds. The �rst average time corresponds only to the
computation of cos (A) using the function funm. The second value corresponds to the computation
of cos (A) and sin (A) using Hermite expansion. Our proposed implementation was 4.0896 times
faster. In the computation of cos (A), the Hermite method gave a smaller error than funm in 74%
of the test cases. In the computation of sin (A), the Hermite method gave a smaller error than funm

in 74% of the test cases.

5 Conclusions.

In this paper a modi�cation of the method proposed in [1] for computing matrix cosine and sine
based on Hermite matrix polynomial expansion is presented. Numerical tests and an algorithm are
given. The described method allows the simultaneous evaluation of the matrix sine and cosine and
it has been compared with the function funm of MATLAB. The method depends on the parameter
λ, whose impact on the numerical e�ciency is currently studied. Furthermore, pending work focuses
on the optimal scaling of the matrix and the study of the evaluation [12] of the approximations (2.9)
and (2.10). To do parallel implementation of the algorithms presented in this work in a distributed
memory platform, using the message passing paradigm, MPI and BLACS for communications, and
PBLAS and ScaLAPACK [13] for computations.
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Figure 3: Comparison between the relative errors for cosine and sine computation with N = 20 and
λ = 0.7936.
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