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Abstract A certain vector-tensor (VT) theory of gravita-
tion was tested in previous papers. In the background uni-
verse, the vector field of the theory has a certain energy den-
sity, which is appropriate to play the role of vacuum energy
(cosmological constant). Moreover, this background and its
perturbations may explain the temperature angular power
spectrum of the cosmic microwave background (CMB) ob-
tained with WMAP (Wilkinson Map Anisotropy Probe), and
other observations, as e.g., the Ia supernova luminosities.
The parametrized post-Newtonian limit of the VT theory has
been proved to be identical to that of general relativity (GR),
and there are no quantum ghosts and classical instabilities.
Here, the stationary spherically symmetric solution, in the
absence of any matter content, is derived and studied. The
metric of this solution is formally identical to that of the
Reissner-Nordström-de Sitter solution of GR, but the role of
the electrical charge is played by a certain quantity Γ de-
pending on both the vector field and the parameters of the
VT theory. The black hole and cosmological horizons are
discussed. The radius of the VT black hole horizon deviates

B R. Dale
rdale@umh.es

M.J. Fullana
mfullana@mat.upv.es

D. Sáez
diego.saez@uv.es

1 Departament d’Estadísica, Matemàtiques i Informàtica,
Universitat Miguel Hernández, 03202 Elx, Alacant, Spain

2 Institut de Matemàtica Multicisciplinària, Universitat Politècnica
de València, 46022 València, Spain

3 Departamento de Astronomía y Astrofísica, Universidad de
Valencia, 46100 Burjassot, Valencia, Spain

4 Observatorio Astronómico, Universidad de Valencia,
46980 Paterna, Valencia, Spain

with respect to that of the Kottler-Schwarzschild-de Sitter
radius. Realistic relative deviations depend on Γ and reach
maximum values close to 30 per cent. For large enough Γ

values, there is no any black hole horizon, but only a cos-
mological horizon. The radius of this last horizon is almost
independent of the mass source, the vector field components,
and the VT parameters. It essentially depends on the cosmo-
logical constant value, which has been fixed by using cos-
mological observational data (CMB anisotropy, galaxy cor-
relations and so on).

Keywords Modified theories of gravity · Spherical
symmetry: horizons · Methods: numerical

1 Introduction

Recently, several vector-tensor (VT) theories—involving a
vector field, Aμ, and the metric tensor gμν—have been ap-
plied to cosmology (Dale et al. 2009; Dale and Sáez 2012a);
in these theories, the background energy density, ρA

B , of the
vector field Aμ plays the role of the dark energy (here-
after the subscript B stands for background); for example,
in Dale et al. (2009), where the theory of gravitation con-
sidered in this paper was proposed, the equation of state is
P A

B = WρA
B , where P A

B is the pressure due to the field Aμ

and W = −1; hence, the constant energy ρA
B plays the role

of vacuum energy. However, in the theory studied in Dale
and Sáez (2012a), which might be appropriate to explain the
anomalies observed in the angular spectrum of the cosmic
microwave background (CMB) for small � multipoles, the
equation of state is P A

B = W(a)ρA
B , where W(a) is negative

for any value of the scale factor a; hence, in this theory, we
have a sort of dynamical dark energy different from that as-
sociated to the cosmological constant (vacuum energy).
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Here, our attention is focused on the theory proposed by
Dale et al. (2009), which was applied to cosmology in Dale
and Sáez (2012b) and Dale and Sáez (2014). In this last ref-
erence, the VT theory under consideration was proved to be
viable in the sense that: (i) its post-Newtonian parametrized
limit is identical to that of general relativity (GR), and
(ii) the theory may simultaneously explain the seven year
WMAP data about the CMB temperature anisotropy and the
measurements of supernova Ia luminosities. Conclusion (ii)
was obtained by using the well-known Bardeen formalism
(Bardeen 1980) to write the evolution equations of the scalar
linear perturbations in VT theory, and also to find the initial
conditions at high redshift necessary to solve these equations
(see Ma and Bertschinger 1995). By using these elements,
a modified version of the code COSMOMC (Lewis and Bri-
dle 2002)—based on statistical techniques as the Markov
chains—was designed to fit the VT predictions with the ob-
servational data mentioned above. A model involving seven
free cosmological parameters was used. Results were en-
couraging (Dale and Sáez 2014) and the theory deserves at-
tention.

Before writing any field or cosmological equation, let us
fix some notation criteria. Our signature is (−,+,+,+).
Latin (Greek) indexes run from 1 to 3 (0 to 3). The sym-
bol ∇ (∂) stands for a covariant (partial) derivative. The
antisymmetric tensor Fμν is defined by the relation Fμν =
∂μAν − ∂νAμ, in terms of the Aμ vector field. Quantities
Rμν , R, and g are the covariant components of the Ricci
tensor, the scalar curvature and the determinant of the ma-
trix gμν formed by the covariant components of the met-
ric, respectively. The gravitational constant is denoted G

and the speed of light c. Units are chosen in such a way
that c = G = 1; namely, we use geometrized units. The di-
mension of any quantity is Ln, n being an integer number.
Length unit is chosen to be the kilometer. Our coordinates
are denoted t , r , θ , and φ. Whatever the quantity ξ may be,
ξ ′ stands for a partial derivative with respect to the radial
coordinate r .

The two VT theories mentioned above correspond to dif-
ferent choices of the parameters ω, η, ε, and γ involved in
the action (Will 1993):

I =
∫ (

R/16π + ωAμAμR + ηRμνA
μAν

− εFμνF
μν + γ∇νAμ∇νAμ + Lm

)√−g d4x, (1)

where the tensor Fμν—defined above—is not the electro-
magnetic one. The VT theory studied in this paper (see
Dale et al. 2009) corresponds to the following choice of
the free dimensionless parameters involved in action (1):
ω = 0 and η = γ . In this theory of gravitation, it has been
proved that there are no ghosts and unstable modes for
2ε − γ > 0. Moreover, for a homogeneous and isotropic

Robertson-Walker background universe, the energy density
of the vector field ρA

B has been proved to be

ρA
B = γ (∇ · A)2

B, (2)

where (∇ · A)B = (∇μAμ)B . Therefore, constant γ must be
positive to have ρA

B > 0. The vector field equations, when
applied to Robertson-Walker cosmology, predict a constant
value for (∇ · A)B and, consequently, ρA

B is strictly constant
as the vacuum energy density. The viability of VT as a the-
ory of gravitation and its cosmological success require γ

and ε parameters satisfying the inequalities ε >
γ
2 > 0, but

their values cannot be fixed. In this situation, it is worth-
while the design of new applications of the VT theory with
the essential aim of fixing γ and ε and any other arbitrary
quantity related with our limited knowledge of the Aμ na-
ture and properties, which are being analyzed. Previous out-
comes (based on linearity) strongly suggest that the new ap-
plications should be nonlinear. On account of these consid-
erations, we have planed the study of various gravitational
physical systems as, for example: (a) the black hole horizons
of different sizes and their neighborhoods, (b) the cosmo-
logical evolution of nonlinear structures (galaxies, clusters,
superclusters and so on) by using either approximations or
simulations, and (c) binary stellar systems radiating gravita-
tional waves. Here, our attention is focused on the simplest
of these problems: the study of the VT horizons of outer
(no matter content) spherically symmetric stationary space-
times, which are fully characterized by the mass m (no elec-
trical charge and rotation) and the cosmological constant �.

According to its formulation, VT is a theory of pure grav-
itation. The field Aμ has nothing to do with the potential
vector of the electromagnetic field. It does not couple with
electrical currents. The U(1) gauge symmetry of Maxwell
theory is not required in VT. In other words, VT is a simple
and manageable theory of gravitation. The electromagnetic
interaction must be described in the standard way.

There are many alternative theories which are being cur-
rently studied, some of these theories are only concerned
with gravitation; e.g., the so-called f (R) and f (T ) the-
ories, where T is the torsion scalar. In these theories the
electromagnetic field is treated in the standard way (mini-
mal coupling with the gravitational part of the Lagrangian).
In other theories the action is designed to describe both
the gravitational and the electromagnetic fields; interest-
ing cases may be found, e.g., in Novello and Perez Bergli-
affa (2008), where non-minimal couplings of the electro-
magnetic field with gravity are proposed. A very promis-
ing non-minimal coupling between the electromagnetic field
and a f (R) function is applied to cosmology in Bamba and
Odintsov (2008), where it is claimed that the theory is vi-
able, and also that inflation and late time acceleration may
be simultaneously explained. However, in VT theory, as well
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as in GR, it must be recognized that inflation is to be pro-
duced by additional fields. It is due to the fact that infla-
tion must lead to an isotropic universe, whereas the inflation
due to a vector field is expected to be anisotropic. Only a
triplet of orthogonal vector fields or N randomly oriented
vector fields might produce an isotropic enough expansion
(Golovnev et al. 2008), but this is not the case of the VT
theory.

In order to explain inflation we could replace R by an ap-
propriated function f (R) in the Lagrangian of the VT the-
ory; in this way, the field Aμ could explain the accelerated
late time expansion, whereas the scalar field, associated to
f (R) in the Einstein frame, could account for the required
inflation; hence, function f (R) would be chosen to achieve
a good inflation, without producing late time acceleration,
which implies less restrictions to be satisfied by f (R). Nev-
ertheless, we think that before any generalization, the VT
theory must be fully developed as a simple viable and man-
ageable gravitation theory, which explains many observa-
tions (see above) for arbitrary values of ε and γ .

This paper is structured as follows: The VT theory is de-
scribed in Sect. 2, the stationary spherically symmetric solu-
tions of the field equations are found in Sect. 3, the horizons
are studied in Sect. 4 and; finally, Sect. 5 contains a general
discussion and a summary of the main conclusions.

2 The VT theory: basic equations

Variational calculations based on action (1), with ω = 0 and
η = γ , lead to the following field equations (Dale and Sáez
2014):

Gμν = 8π
(
T μν

m + T
μν
V T

) + T
μν
� , (3)

where T
μν
m is the contribution of matter to the energy-

momentum tensor, which have the same form as in GR. Ten-
sor T

μν
V T is the contribution due to the Aμ field of the VT

theory, whose form is

T
μν
V T = 2(2ε − γ )

[
Fμ

αF να − 1

4
gμνFαβFαβ

]

− 2γ

[{
Aα∇α(∇ · A) + 1

2
(∇ · A)2

}
gμν

− Aμ∇ν(∇ · A) − Aν∇μ(∇ · A)

]
, (4)

and T
μν
� also have the same form as in GR; namely,

T
μν
� = −�gμν. (5)

Equation (3) are a generalization of the Einstein equa-
tions of GR.

Variations of the vector field Aμ in action (1) give

2(2ε − γ )∇νFμν = J
A

μ , (6)

where J
A

μ = −2γ∇μ(∇ ·A) plays the role of a fictitious cur-
rent.

From Eq. (6) one easily gets the relation

∇μJ
A

μ = 0, (7)

which may be seen as the conservation law of the fictitious
current J

A

μ defined above.
Since the parameters γ and ε are dimensionless, a di-

mensional analysis of Eqs. (3) and (4) leads to the important
conclusion that the dimension of the Aμ components is L0.
This fact will be important below. By using the chosen units
and the relation between the Einstein (Gμν ) and Ricci (Rμν )
tensors, Eq. (3) may be written as follows:

Rμ
ν − 1

2
Rδμ

ν = T μ
ν, (8)

where δ
μ
ν is the Kronecker delta, and

T μν = 8π
(
T μν

m + T
μν
V T

) + T
μν
� . (9)

Equation (8) may be easily rewritten in the form:

T μ
ν − 1

2
T δμ

ν = Rμ
ν, (10)

T being the scalar T μνgμν .
We have the basic equations to look for horizons in next

sections.

3 The stationary spherically symmetric case in the
VT theory

It is well known that, in the stationary spherically symmetric
case, the line element may be written as follows (see e.g.,
Stephani et al. 2003):

ds2 = −e2α(r)dτ 2 + e2β(r)dr2 + r2(dθ2 + sin2 θ dφ2),
(11)

and, moreover, the covariant components Aμ have the form:

Aμ ≡ [
A0(r),A1(r),0,0

]
. (12)

Accordingly, the nonvanishing Fαβ components are

F10 = −F01 = A′
0. (13)

We have the four unknown functions α(r), β(r), A0(r),
and A1(r) to be found from the field equations of Sect. 2.
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Hereafter, it is assumed that the matter tensor T
μν
m van-

ishes and, then, taking into account Eqs. (4), (5), (9), plus
Eqs. (11)–(13), one easily get that, in terms of the new di-
mensionless parameters γ̃ = 8πγ and ε̃ = 8πε, the nonva-
nishing T μν components are:

T 01 = T 10 = 2γ̃ g00g11A0(∇ · A)′, (14)

T 00 = g00{(2ε̃ − γ̃ )
[
g00g11(A′

0

)2]

− γ̃
[
2A1(∇ · A)′ + (∇ · A)2] − �

}
, (15)

T 11 = g11{(2ε̃ − γ̃ )
[
g00g11(A′

0

)2]

− γ̃
[−2A1(∇ · A)′ + (∇ · A)2] − �

}
, (16)

T 22 = g22{(γ̃ − 2ε̃)
[
g00g11(A′

0

)2]

− γ̃
[
2A1(∇ · A)′ + (∇ · A)2] − �

}
, (17)

T 33 = g33{(γ̃ − 2ε̃)
[
g00g11(A′

0

)2]

− γ̃
[
2A1(∇ · A)′ + (∇ · A)2] − �

}
. (18)

The line element (11) does not depend on time and,
consequently, it does not describe a cosmological space-
time. This is also valid in GR, where the same line ele-
ment leads to various metrics as those of Schwarzschild and
Kottler-Schwarzschild-de Sitter (see Kottler 1918). The re-
gion where these solutions are physically significant must be
determined in each case; e.g., regions where g00 > 0 must
be excluded. In VT, it has been claimed (see above) that the
cosmological constant is related with the value of ∇ ·A in the
background universe, but this value is different from that of
the same divergence in the stationary spherically symmetric
case; by this reason, in spite of its origin, the cosmological
constant is treated as in GR, and it is denoted �.

Let us now look for the stationary spherically symmetric
solutions of the VT field equations following various steps.

3.1 First step: proving that ∇ ·A is constant

The calculation of ∇ · A may be performed by solving the
tensor field equation (8) for μ = 1 and ν = 0. In this case,
since the components R1

0 and δ1
0 vanish, from Eq. (14) one

easily obtains: 2γ̃ g00g11A0(∇ · A)′ = 0; hence, for γ̃ �= 0,
g00 �= 0, g11 �= 0, and A0 �= 0, it follows that (∇ · A)′ van-
ishes and, consequently, a trivial integration gives

∇ · A = K0, (19)

where K0 is an integration constant.

3.2 Second step: deriving the relation α(r) = −β(r)

The trace T is first calculated by using the T μν components
calculated from Eqs. (14)–(18) and the gμν metric compo-

nents. The result is

T = −4γ̃
[
A1(∇ · A)′ + (∇ · A)2] − 4�, (20)

and, then, taking into account this result, Eq. (10), and
Eq. (19), one easily get the relation

R0
0 = R1

1 . (21)

From this equation and the nonvanishing components of the
Ricci tensor:

R00 = e2(α−β)
[
α′′ + (

α′)2 − α′β ′ + 2r−1α′], (22)

R11 = −α′′ − (
α′)2 + α′β ′ + 2r−1β ′, (23)

R22 = e−2β
[
r
(
β ′ − α′) − 1

] + 1, (24)

R33 = sin2 θR22, (25)

the following relation is easily obtained:

2r−1(α′ + β ′) = 0. (26)

The same equation is also obtained in GR. After integra-
tion, it leads to α = −β (see, e.g., Stephani et al. 2003).
Evidently, this relation implies that g00g11 = −1.

3.3 Third step: calculation of the A0 component

Function A0(r) may be calculated by solving Eq. (6) in the
stationary spherically symmetric case. Since ∇ · A has been
proved to be constant [see Eq. (19)], the vector J

A

μ vanishes
and, consequently, taking into account the relation 2ε �= γ ,
which must be satisfied (see Sect. 1), Eq. (6) reduces to
∇νFμν = 0. Moreover, taking into account Eqs. (12)–(13),
the covariant derivative ∇νFμν may be easily calculated to
get

A′′
0 + 2r−1A′

0 = 0. (27)

In terms of the new variable y = A′
0, the last equation re-

duces to y′ + 2r−1y = 0. The solution of this equation is
y = A′

0 = −R0/r2 and, then, a new integration gives

A0(r) = R0r
−1 + R1, (28)

where R0 and R1 are integration constants.

3.4 Fourth step: computing metric components

For μ = 1 and ν = 1, the tensor field equation (10) may be
easily written in the form

(γ̃ − 2ε̃)
(
A′

0

)2 − γ̃ (∇ · A)2 − � − T/2

= e2α
(−α′′ − 2

(
α′)2 − 2r−1α′), (29)
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where we have taken into account the relation g00g11 = −1
(see Sect. 3.1), the nonvanishing components of Rμν and
T μν listed in previous Sections, and Eq. (19). In the same
way, for μ = 2 and ν = 2, one finds

(2ε̃ − γ̃ )
(
A′

0

)2 − γ̃ (∇ · A)2 − � − T/2

= 1

r2

[
e2α

(−2α′r − 1
) + 1

]
. (30)

Subtracting Eqs. (29) and (30) and multiplying by the
factor e−2α , the following second order differential equation
is obtained:

α′′ +2
(
α′)2 +[

r−2 +2(γ̃ −2ε̃)
(
A′

0

)2]
e−2α − r−2 = 0. (31)

This equation can be solved by using the new variable w =
e2α . In terms of w, Eq. (31) reads as follows:

w′′ − 2r−2w = g(r), (32)

where g(r) = −2[r−2 + 2(γ̃ − 2ε̃)A′
0)

2] and A′
0 = −R0/r2

(see above in this section). The general solution of Eq. (32)
is w = wh + wp , where wh is the general solution of the
corresponding homogeneous equation, and wp is a particu-
lar solution of the complete inhomogeneous equation. The
general solution wh is:

wh = C1w1(r) + C2w2(r) = C1r
2 + C2r

−1, (33)

C1 and C2 being integration constants.
In order to obtain a particular solution, wp , we may ap-

ply the method of parameter variations; according to this
method, we must look for a solution of the following form:

wp = u1(r)w1(r) + u2(r)w2(r)

= u1(r)r
2 + u2(r)r

−1, (34)

where

u1(r) = −
∫

w2(r)g(r)

W(w1,w2)(r)
dr

u2(r) =
∫

w1(r)g(r)

W(w1,w2)(r)
dr,

(35)

and W(w1,w2)(r) is the Wronskian:

W(w1,w2)(r) =
∣∣∣∣w1(r) w2(r)

w′
1(r) w′

2(r)

∣∣∣∣
= w1(r)w

′
2(r) − w′

1(r)w2(r)

= −3. (36)

So, the particular solution wp takes on the form:

wp(r) = 1 − 4

3
(γ̃ − 2ε̃)

[
r2

∫
r−1(A′

0(r)
)2

dr

− r−1
∫

r2(A′
0(r)

)2
dr

]
. (37)

Let us now use the explicit form of A′
0 (see above) to easily

find

wp(r) = 1 + (2ε̃ − γ̃ )R2
0r−2. (38)

Finally, Eqs. (33) and (38) allow us to write the general
form of function w = e2α , which directly leads to the metric
components

g00 = −[
1 + C1r

2 + C2r
−1 + (2ε̃ − γ̃ )R2

0r−2], (39)

and

g11 = −g−1
00 . (40)

3.5 Fifth step: calculation of the A1 component

The last step is the integration of Eq. (19)—derived in
Sect. 3.1—to get the function A1(r). This equation may be
easily rewritten as follows

∇ · A = e2α
[
2
(
α′ + r−1)A1 + A′

1

] = K0. (41)

This is a linear first order differential equation of the form
h(r)A′

1 = f1(r)A1 + K0, with h(r) = e2α and f1(r) =
−2e2α(α′ + r−1). The solution of this equation is:

A1(r) = eF(r)

(
K1 +

∫
e−F(r) K0

h(r)
dr

)
, (42)

where K1 is another integration constant, and F(r) =∫ [f1(r)/h(r)]dr . After performing these integrals, one ob-
tains:

A1(r) = K0r/3 + K1r
−2

1 + C1r2 + C2/r + (2ε̃ − γ̃ )R2
0r−2

. (43)

Equations (28) and (43) give the vector field Aμ, and
Eqs. (39) and (40) define the metric of the VT theory in the
stationary spherically symmetric case. The resulting met-
ric is a generalization of the Kottler-Schwarzschild-de Sit-
ter one, which is obtained for C1 = −�

3 , C2 = −2m = −RS

(RS being the Schwarzschild radius), and (2ε̃ − γ̃ ) = 0. In
the VT theory we have found a new term (2ε̃ − γ̃ )R2

0/r2,
which is positive due to the fact that the relation 2ε − γ > 0
must be satisfied (see Sect. 1). The metric obtained in the
framework of the VT theory is similar to the Reissner-
Nordström-de Sitter metric (Kayll 1979), which corresponds
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to a stationary spherically symmetric charged system in GR.
The form of this known metric is

g00 = −g−1
11 = −

[
1 − 2m

r
− �

3
r2 + Q2

r2

]
, (44)

it involves a positive term proportional to 1/r2 which de-
pends on the electrical charge Q; evidently, in Eqs. (39)
and (40), there is also a term of this kind, in which, the role
of Q2 is played by the constant (2ε̃ − γ̃ )R2

0 .

4 Horizons in the VT theory

In the stationary spherically symmetric case, outside the
matter distribution, and in the absence of electrical charge,
the solution of the VT field equations involves the integra-
tion constants R0, R1, K0, K1, C1, and C2. In this situa-
tion, the physical system under consideration is fully de-
scribed by the quantities m and �, whose dimensions—in
geometrized units—are L1 and L−2, respectively. Let us
now perform a dimensional analysis to predict the depen-
dence of the parameter R0 involved in the metric compo-
nents in terms of m and �.

The constants C1, and C2 also appear in GR. Since the
dimensions of gαβ are L0, the term C2/r involved in g00 is
dimensionless and, consequently, the dimension of C2 must
be L1; hence, C2 must be a dimensionless number, C̃2, mul-
tiplied by m; in this case, we have a well known criterion to
conclude that C̃2 = −2, a number leading to the well known
term −2m/r . In the same way, the dimensionless charac-
ter of C1r

2 leads to the conclusion that the dimension of
C1 is L−2; hence, this term must be the product of a di-
mensionless constant C̃1 by the factor �. In this case, there
are also arguments to conclude that C̃1 = −1/3, a number
which leads to the well known term −�r2/3 involved in the
Kottler-Schwarzschild-de Sitter metric.

A similar analysis may be performed for the constants
R0 and R1; in fact, according to Eq. (28), the dimensionless
component A0 is the sum of two terms of the form R0r

−1

and R1; hence, the dimensions of R0 and R1 are L1 and L0,
respectively and, consequently, we conclude that the con-
stant R0 must be the product of a dimensionless constant R̃0

by m; in this case, we have not any criterion to fix the di-
mensionless constant R̃0, which keeps arbitrary by the mo-
ment. This analysis does not give any information about the
dimensionless constant R1, but this information is not nec-
essary to look for the horizons, which follows from the fact
that—according to Eqs. (39) and (40)—the metric compo-
nents do not depend on R1.

The dimensional analysis in not extended to the compo-
nent A1, since the metric is also independent of the constants
K0 and K1 involved in Eq. (43).

After the above dimensional considerations we can write:

A0(r) = R̃0m/r, (45)

g00 = −g−1
11 = −

[
1 − �

3
r2 − 2m

r
+ (2ε̃ − γ̃ )R̃2

0
m2

r2

]
,

(46)

where R̃0 plays the role of a dimensionless arbitrary con-
stants, which should be fixed by studying appropriate non-
linear problems in the framework of the VT theory, as, e.g.,
the geodesic motion of proof particles close to possible hori-
zons.

In terms of the function f (r) = −g00(r), the horizons are
the hypersurfaces r = rh defined by the condition f (rh) = 0.
In the regions where the inequality f (r) > 0 is satisfied, our
description of the stationary spherically symmetric space-
time is physically consistent. Condition f (r) < 0 is not
compatible with the assumed metric signature.

In the standard �CDM cosmological model of GR, most
current observations are explained for values of the vacuum
energy density parameter Ω� close to 0.73, which corre-
sponds to � � 10−46 km−2. The same value also explains
current observations in the framework of the VT theory (see
Dale and Sáez 2014); hence, the above value of the cosmo-
logical constant is hereafter fixed.

The mass m is varied between 10 M� and 109 M�; so,
the masses of different types of black holes are considered.
From stellar black holes due to supernova explosions, to su-
permassive ones located in the galactic central regions.

Once a mass m has been fixed, function f (r) only in-
volves the unknown positive parameter Γ = (2ε − γ )R̃2

0 .
For Γ = 0, the metric reduces to the Kottler-Schwarzschild-
de Sitter one and, in such a case, there are two horizons, the
first (second) one is the black hole (cosmological) horizon,
whose radius is hereafter denoted rBH (rC ). In the region
limited by these two horizons, namely, for rBH < r < rC ,
function f (r) is positive and the Kottler-Schwarzschild-de
Sitter metric is physically admissible.

Kayll (1979) studied the horizons in the Reissner-Nord-
ström-de Sitter space-time. If the outcomes obtained in
that paper are rewritten in our case, by replacing Q2 by
(2ε̃ − γ̃ )m2R̃2

0 , it is straightforward to conclude that from
Γ = 0 to a certain Γ value, Γmax, which is greater than 1/8π

but very close to it, there are both a black hole horizon and a
cosmological one; however, for Γ > Γmax, there is an unique
horizon which is cosmological. Our calculations have veri-
fied all this.

For appropriate m values, the algebraic equation f (r) =
0 has been numerically solved for Γ = 0 and for many pos-
itive Γ values. For Γ > 1/8π and whatever m may be, we
have found only a root at rC � 1.73 × 1023 km (there is
no black hole horizon). However, for any Γ < 1/8π , apart
from the above rC radius for the cosmological horizon, we
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Fig. 1 Left panel shows the radius rBH of the black hole horizon as
a function of Γ . Right panel represents the relative deviations, D, be-
tween rBH(Γ = 0) and rBH(Γ ), in the Γ interval where there is a black
hole horizon. In both panels m = 10 M�

Fig. 2 Same as in Fig. 1 for m = 109 M�

have also obtained a black hole horizon with a rBH radius
depending on both m and Γ .

Figure 1 corresponds to a mass m = 10 M� (stellar black
hole). The left panel shows rBH as a function of Γ inside the
interval [0, 1/8π ]. The radius of the black hole horizon de-
creases as Γ separates from the zero value corresponding to
the Kottler-Schwarzschild-de Sitter solution of the GR field
equations. In the right panel, the relative deviation

D = 2[rBH(Γ = 0) − rBH(Γ )]
rBH(Γ = 0) + rBH(Γ )

(47)

is represented, as a function of Γ , in the same interval as in
the left panel. We see that these deviations reach values close
to 30 %, which are not very large deviations, but moderate
significant ones.

In Fig. 2, the mass is m = 109 M� (galactic supermassive
black hole) and, consequently, the radius rBH(Γ = 0) � 2m

is greater than in the top panels by a factor of 108; neverthe-
less, this proportionality factor is the same for any Γ and,
consequently, the form of the curves represented in the left
panels of Figs. 1 and 2 are identical. Moreover, the relative
deviations D defined in Eq. (47) reach the same values in
the right panels of the two figures, which means that these
deviations do not depend on m.

5 Conclusions

This paper has been devoted to the development of the VT
theory of gravitation proposed by Dale et al. (2009). Pre-
vious applications of this theory to both the solar system
and cosmology have given excellent results (Dale and Sáez
2014). Here, we have solved the field equations of the VT
theory, in the absence of matter and electrical charge, by as-
suming a stationary spherically symmetric space-time. It has
been proved that the resulting solution has the same form
as the Reissner-Nordström-de Sitter solution of GR, but the
role of the electrical charge is played by a quantity propor-
tional to the source mass m. After reaching this conclusion,
we have focused our attention on the horizons associated to
stellar and massive black holes.

In the absence of electrical charge, Nojiri and Odintsov
(2014) have proved that there are f (R) theories of gravi-
tation leading to Reissner-Nordström-de Sitter space-times,
but the authors recognize that—in these theories—the mean-
ing of the quantity playing the role of the electrical charge is
not clear.

Since the cosmological constant, �, is fixed by compar-
isons between predictions of the VT theory and current ob-
servations, the cosmological horizon is practically constant.
Its radius is almost independent of the mass, m, for any re-
alistic black hole. There is always a cosmological horizon
whatever the value of the parameter Γ defined in Sect. 4
may be.

In the VT theory, we have proved that, for a given
mass m, the radius of the black hole horizon is smaller than
the radius of the Kottler-Schwarzschild-de Sitter black hole
having the same mass. The relative deviations between these
two radius are small but significant, reaching values close to
30 %. This effect is important since it is similar to the ef-
fect due to the black hole rotation in GR, which leads to
a horizon radius smaller than that corresponding to J = 0.
For Γ > 1/8π there is no any black hole horizon in the VT
theory under consideration.

Various methods have been designed to estimate the mass
m and angular momentum J of a black hole from observa-
tions. If, in future, the mentioned methods become accurate
enough, and the estimated m and J quantities obey the re-
lation predicted by means of the Kerr solution of Einstein
equations, the contribution of the vector field to the hori-
zon radius will have to be considered negligible (Γ � 0);
however, if the Kerr relation is not satisfied by the observed
values of m and J , an appropriate Γ value could solve the
problem.

Let us finally mention two interesting extensions of this
paper: first of all, the motion of test particles in the neighbor-
hood of the above VT black hole deserves attention; so, ac-
cretion disks and other phenomena might be studied. After-
ward, the stationary axially symmetry line element, plus an
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appropriate vector field Aμ, should be considered to study
rotating black holes in the framework of the VT theory;
in this way, a relation between m and J could be found,
which might be satisfied by accurate future observed values
of these quantities.
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