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Abstract. 

The design, fabrication and validation of an optoelectronic sensor implemented in an 

easy-to-use portable device for the selective and sensitive detection of CO in air is 

reported herein. The system is based on the colour changes observed in the binuclear 

rhodium complex of formula [Rh2[(C6H4)P(C6H5)2]2(O2CCF3)2]· (CF3CO2H)2 (1) upon 

coordinating CO molecules in axial positions. Complex 1 is used supported on cellulose 

chromatography paper. In this support, colour changes to the naked eye are observed for 

CO concentrations above 50 ppm. The probe is also implemented in a simple portable 

optoelectronic device. The cellulose support containing probe 1 in this device is placed 

inside a small dark chamber, is illuminated with a tricolour LED emitting at 624, 525 

and 470 nm, respectively corresponding to red (R), green (G) and blue (B) light, and 

reflected light is detected by a photodiode. With a transimpedance amplifier, the current 

generated by the photodiode is transformed into a voltage compatible with the 10-bit 

analogue-to-digital converter (ADC) port. Colour changes are measured as the distance 

d between the R, G and B data of the blank (probe without CO) and that for a certain 

CO concentration. Typical calibration curves are fitted using a bi-exponential equation. 

This system offers a typical response time of a few minutes (ca. 7 min) and a limit of 

detection of 11 ppm. The probe in the cellulose supports is also highly reversible. The 

optoelectronic device is portable (dimensions 14 x 8.5 x 3.5; weighs approximately 270 
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g) and is powered by AA batteries. Additionally, no variations in experimental 

parameter d upon exposure to CO2, N2, O2, Ar, water-saturated air and vapours of 

chloroform, hexane, ethanol, acetone, methane, toluene or formaldehyde are observed. 

Besides, colour changes are found for acetonitrile vapour, NO and NO2, but only at high 

concentrations. For validation purposes, the device was used to determine the CO 

present in the 4-shed accumulated smoke of two cigarette types after passing smokers’ 

lungs. 

 

Keywords: Carbon monoxide, optical device, gas sensor, chromogenic, rhodium. 

 

1. Introduction. 

Carbon monoxide is a potentially deadly common substance which has no colour, 

odour or taste. This hazardous gas is invisible, toxic and notoriously difficult to detect, 

and is colloquially known as the silent killer [1]. The effects of CO exposure can vary 

greatly from person to person depending on age, overall health, and the concentration 

and length of exposure [2]. At low levels, CO causes mild flu-like symptoms, including 

headaches, dizziness, disorientation, nausea and fatigue. Moreover, high levels of CO or 

constant exposure can cause angina, impaired vision, reduced brain function, and 

eventually death. Although there is an increasing awareness of the effects and dangers 

of carbon monoxide poisoning, still thousands of people die worldwide each year and 

many people remain blissfully unaware that they are constantly exposed to a source of 

this deadly gas.  

In general, carbon monoxide exposure is produced as a result of the incomplete 

burning of natural gas or carbon-based fuels (i.e., propane, gasoline, kerosene, wood, 

coal, charcoal, etc.) in combination with improperly vented heaters and furnaces. In 

fact, in some of those places with systems that function improperly, the amount of 

carbon monoxide can reach dangerous levels. Moreover, small concentrations of carbon 

monoxide can be found, among others, in auto exhausts, tobacco smoke, kitchens, 

chimneys, fireplaces or central heating systems. Apart from these general sources, 

carbon monoxide poisoning is also an occupational hazard [3]. In particular, welders, 

mechanics, engine operators, forklift operators, fire fighters, marine workers, toll-booth 

attendants, customs inspectors, police officers, taxi drivers, and carbon-black makers are 

at constant risk of carbon monoxide poisoning. It is therefore vital to periodically check 
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that all appliances and ventilation systems in both the home and workplace function 

properly, and it is also important to be able to detect carbon monoxide leaks. 

Traditionally, electrochemical cells, solid-state sensors and thermocouples have 

been used to measure CO with varying degrees of success. Some portable CO sensors 

are commercially available which can detect low CO concentrations in air at low 

temperature. They are mainly electrochemical sensors based on technologies of metal 

oxide semiconductors. These instruments consist of a set of three electrodes (working, 

auxiliary and reference electrodes) covered by a gas permeable membrane. Carbon 

monoxide is quantified through the semi-reactions that take place in the anode and 

cathode of an electrochemical cell, where the oxidation of CO to CO2 and the reduction 

of O2 to H2O occur [4]. With these electrochemical devices, good resolutions and 

measuring ranges (i.e., 0-2000 ± 5-10 ppm) are obtained. However, these technologies 

need periodical validations, are very sensitive to temperature (working temperatures 

between 5 and +45°C with signal drifts induced by variations of only ±0.1°C) and 

pressure (with signal drifts due to pressure variations lower than 10
-5

 bar). Furthermore, 

these systems do not withstand pressures above 1 atmosphere and cannot be used under 

vacuum conditions. Improved electrochemical CO sensors use very a low concentration 

of alkaline electrolyte, integrate an extremely small amount of noble metal catalyst into 

the catalyst layer and use a dry battery structure, thus avoiding the risk of electrolyte 

leakage [5]. Despite improvements, these portable devices for CO detection are likely to 

generate false alarms in the presence of other chemicals or interfering gases.  

Among solid-state CO gas sensors, ZnO and SnO2 [6,7] are two of the most studied 

materials given their chemical stability and high electron mobility. However, SnO2 is 

often operated at high temperatures, typically above 400ºC, to achieve a catalytic 

oxidation of the gas with high sensitivity. Some authors have reported that ZnO [8] and 

SnO2 [9-11], doped with Pt or Au nanoparticles, nanorods or nanowires, display 

catalytic CO spillover oxidation, thus improving gas sensitivity in semiconductors and 

requiring low practical temperatures. In recent years, other materials have been 

developed to improve CO sensing; such as, nanostructured BiOCl ribbons doped with 

Au nanoparticles [12] or nanostructured WO3 films doped with Fe [13]. With BiOCl/Au 

nanoparticles, the quantitative detection of CO has been demonstrated in the 100 to 400 

ppm range to work at temperatures of ca. 200-300ºC, while WO3/Fe films have 

responded to CO from 10 to 1000 ppm at a minimum temperature of 150ºC. These 
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working temperature ranges and the consequent high energy consumption required for 

these solid-state sensors restrict their use to certain applications.  

One alternative to these electrochemical systems is the design of optical CO 

sensors. Reported CO sensors are mainly based on two technologies: the use of 

spectrally narrowband lasers [14] (primarily diode electrodes) and the use of non-

dispersive infrared (broadband) systems. The non-dispersive infrared method (NDIR) is 

among the most reliable and accurate methods to measure carbon monoxide 

concentrations in urban air [15]. NDIR systems are commercially available with limits 

of detection of approximately 0.02 ppm. These optical CO measuring techniques are 

sensitive, but relatively low concentrations of other common gases, such as CO2, NOx, 

hydrocarbons or water vapour, may interfere.  

An alternative to these systems is the use of molecular-based probes for the design 

of opto-chemical devices for CO sensing, including fluorescent probes in living cells 

based in palladium [16] and iron compounds [17]. However, most existing CO-sensing 

probes based on the use of chromogenic probes, such as oxoacetatobridged triruthenium 

cluster complexes [18], rhodium complexes [19], polypyrrole functionalised with iron 

porphyrin derivatives [20], hybrid materials incorporating a cobalt(III) corrole complex 

[21], and iron compounds of diisopropylphosphinodiaminopyridine [22], either behave 

as CO probes only in solution or offer very limited colour changes, which hinder their 

application. In this field, we have recently reported a family of binuclear rhodium(II) 

compounds of the general formula [Rh2{(XC6H3)P(XC6H4)}n(O2CR)4-n]·L2 containing 

one or two metallated phosphines (in a head-to-tail arrangement) and different axial 

ligands as CO-sensing probes. Chloroform solutions of these complexes undergo rapid 

colour change, from purple to yellow, when air samples containing CO are bubbled 

through them. Moreover, the binuclear rhodium complexes were also adsorbed on silica 

and used as colorimetric probes for “naked eye” CO detection in the gas phase. [23,24]  

Based on these previous findings, we report herein the development and validation 

of an easy-to-use, robust and portable optoelectronic CO device capable of displaying a 

selective and sensitive optical response to carbon monoxide in air, which is based on the 

use of a binuclear rhodium(II) derivative.  

 

 

2. Experimental 

 

2.1. Chemicals and materials 
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The commercially available reagents [Rh2(O2CCH3)4], P(C6H5)3 and CF3CO2H 

carboxylic acid were used as purchased. All the solvents were of analytical grade. 

Compounds [Rh2[(C6H4)P(C6H5)2]2(O2CCF3)2]· (CF3CO2H)2, (1) 

[Rh2[(C6H3CH3)P(C6H4CH3)2]2 (O2CCH3)2]· (CH3CO2H)2, (2), 

[Rh2[(C6H4)P(C6H5)2]2(O2CCH3)2]· (CH3CO2H)2, (3) 

[Rh2[(C6H4)P(C6H5)2]2(O2CC(CH3)3)2]· (C(CH3)3CO2H)2 (4) and [Rh2[(C6H4)P(C6H5)2] 

(O2CCH3)3]· (CH3CO2H)2, (5) were synthesised according to known procedures [24]. 

Cellulose paper (Whatman Grade No. 3MM Chromatography Paper) was purchased 

from VWR. Carbon monoxide was provided by the Abelló Linde Company. Dry air was 

obtained from a compressor (ATLAS COPCO, SF 4FF). The rest of the gases used in 

this work were generated in situ: carbon dioxide by adding chloride acid to sodium 

carbonate; nitrogen monoxide and nitrogen dioxide by oxidation of copper with nitric 

acid and sulphur dioxide by copper oxidation with sulphuric acid.  

 

2.2. Preparation of the probe. 

The probe was supported on cellulose paper for chromatographic use (Whatman 

Grade No. 3MM Chromatography Paper). Probes were prepared easily by dropping 0.2 

mL of a solution of the corresponding binuclear rhodium(II) complex in 

dichloromethane (40 mg/mL) on a piece of paper of 1 cm
2
 and further drying at air 

under ambient conditions.  

 

2.3. Characterisation of the probe response. 

Gas mixtures were prepared at 25ºC by a computer-driven gas mixing system 

composed of two mass flow controllers (model F-201CV, Bronkhorst High-Tech). 

Additionally, CO concentrations were validated with a Testo analyzer (315_2 model 

0632 0317), which was previously calibrated and certified by the Spanish Certification 

Agency (ENAC). The colorimetric response of the strips was studied by UV-Vis spectra 

in a Jasco V-650 spectrophotometer equipped with a diffuse reflectance sphere (model 

ISV-722, Sphere). Measurements were taken at room temperature over a wavelength 

range of 350-700 nm with a wavelength step of 1 nm.  

 

2.4. Electronic system. 
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Figure 1 shows the block diagram of the optical sensing device for CO detection. 

The system is controlled by a microcontroller (μC) Microchip PIC18F2550. It handles 

all the device’s functions, such as: sensor reading, communication with the computer, 

data storage control in the memory and real-time date and time monitoring. Data can be 

downloaded to a PC through the serial port using the UART protocol. A USB2.0 port 

can also be used, including an UART to USB2.0 converter. The LCD display is directly 

connected to the microcontroller, while the temperature sensor (MCP9803 of 

Microchip), real-time clock (RTC DS1307 of Maxim) and the EEPROM are included in 

the microcontroller through an I2C module.  

The equipment allows two inward airflow options: naturally or forced by a pump. 

All the experiments reported herein were carried out without using the intern pump. 

Hence the uptake of gas mixtures was not directly forced to pass through the probe. The 

equipment is also equipped with a buzzer to set alarms, if required. The device is 

portable (dimensions 14 x 8.5 x 3.5 and weighs approximately 270 g) and power is 

provided by two AA batteries that offers a battery duration of up to 72 h under 

continuous monitoring conditions (with the pump switched on). Battery duration can be 

prolonged substantially by reducing the measuring frequency and by switching off the 

air pump. Sampling times are configurable with ranks ranging from a few seconds to 30 

min. Apart from sporadic measurements, the system is equipped with a clock, and an 

internal memory that stores colour measurements and times. Finally, the device is 

completed with an alphanumerical LCD display for the configurations and readings of 

the CO concentrations and there are two front buttons to set the configuration options 

(i.e., alarm on/off, motor on/off, sampling time, intensity of each light emission in the 

triple-LED sensor, internal memory used or removing internal memory).  

 

2.5. Optical system 

 

The optical detection of CO is achieved using a CO sensitive layer (a cellulose 

strip), a tricolour LED as the light source and a photodiode as the detector. The emissive 

part of the optical system is composed of a tricolour LED (PLCC6 Full-Colour SMD 

LED FCL-P5RR from Forge Europa) [25] which emits at 624, 525 and 470 nm, 

corresponding to red (R), green (G) and blue (B) light, respectively. A photodiode 

(BPX65 from Osram) was used for the detection of colour changes. Through 

illumination, the probe reflects the LED light that energises the photodiode. This signal 
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is adapted and captured by the analogue-to-digital converter (ADC) port available on 

the microcontroller. The intensities collected by the R, G and B LED wavelengths are 

stored in RAM as R, G and B values, respectively, which are subsequently processed 

for noise removal [26]. The resulting RGB data, along with the temperature, date and 

time of the experiment, are stored in the EEPROM. By taking the values obtained in the 

absence of CO (R0, G0 and B0) as a reference, the Euclidean distance d for a certain 

sample i (Ri, Gi and Bi) is calculated by Equation (1). This Euclidean distance is related 

to the concentration level of CO present in air.  

 

  √(     )  (     )  (     )                                (1) 

 

Colorimetric performance and the stability of the equipment over time were evaluated 

using a collection of strips of diverse colours, which were measured several times. In all 

cases, reproducible RGB values were obtained.  

 

3. Results and discussion. 

 

3.1. Optoelectronic sensor 

 

As mentioned above, we have recently reported that some cyclometallated 

binuclear rhodium complexes are capable of reacting reversibly with CO in air to result 

in colour changes that are visible to the naked eye [24]. Specifically for this work, five 

rhodium complexes of the formulas  [Rh2[(C6H4)P(C6H5)2]2(O2CCF3)2]· (CF3CO2H)2 

(1), [Rh2[(C6H3CH3)P(C6H4CH3)2]2 (O2CCH3)2]· (CH3CO2H)2 (2), 

[Rh2[(C6H4)P(C6H5)2]2(O2CCH3)2]· (CH3CO2H)2 (3), 

[Rh2[(C6H4)P(C6H5)2]2(O2CC(CH3)3)2]· (C(CH3)3CO2H)2 (4) and [Rh2[(C6H4)P(C6H5)2] 

(O2CCH3)3]· (CH3CO2H)2, (5) were synthesised according to known procedures [24]. 

These complexes have been reported to offer significant colour changes supported on 

silica, from purple to orange-salmon and yellow, in seconds when exposed to air 

containing carbon monoxide given the consecutive axial coordination of two CO 

molecules and the formation of the corresponding derivatives n·CO and n·(CO)2, 

respectively. Figure 2 shows a representation of the CO reaction with binuclear 

rhodium(II) complex 1.  

Despite the good colorimetric response recently observed by us for the 1-5 

complexes on silica in the presence of CO [24], we found that this support was not easy 

to handle and it was difficult to integrate it into the optoelectronic device. Therefore in a 
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first step, different supports were tested to incorporate binuclear rhodium(II) probes. 

Attempts were made with a number or organic (e.g., polymers) and inorganic supports. 

However most of them proved unsuitable because, in most cases, the probes displayed a 

considerable loss of sensing properties or loss of reversibility. The rhodium complexes 

retained clear and reversible naked-eye colour changes in only two supports: in silica 

gel plates for thin layer chromatography; in a cellulose paper for chromatographic use. 

Silica gel plates proved fragile and were also ruled out as supports. Conversely, 

chromatographic paper was flexible and it was easy to prepare reproducible 

homogeneous sensing systems by dropping 0.2 mL of a solution of the corresponding 

binuclear rhodium(II) complex in dichloromethane (40 mg/mL) on a piece of paper (1 

cm
2
) with further drying.  

As described in the Experimental Section, the chromatographic paper containing 

the rhodium probe was placed inside a small dark chamber, illuminated with a tricolour 

LED emitting at 624, 525 and 470 nm and reflected light was detected by a photodiode. 

Colour changes were then measured as the distance d between the RGB data of the 

blank (probe without CO) and that of the probe at a certain CO concentration (see 

Equation 1). 

 

3.2. Optical response of the probe and calibration of the optoelectronic device. 

 

By way of example of the response observed for the binuclear rhodium(II) 

complexes in the presence of CO, Figure 3 shows the evolution of the UV-Vis diffuse 

reflectance of the cellulose paper containing probe 1 in the presence of air containing 50 

and 500 ppm of CO. Apart from probe 1, the remaining binuclear rhodium(II) 

complexes 2-5 were also tested in the cellulose support. However the latter displayed a 

less sensitive colour change and poorer reversibility. Therefore, the remaining studies 

were carried out only with the films containing probe 1.  

It is worth mentioning that although the CO sensitivity of complex 1 decreased in 

the cellulose strip as compared to silica, the cellulose support proved suitable to detect 

carbon monoxide in a wide range of concentrations (vide infra). For instance, Figure 4 

shows the colour changes observed on the cellulose substrates of 1 for different CO 

concentrations in air. Clear changes can be seen by the naked eye at concentrations as 

low as 50 ppm. Moreover, Figure 4 suggests that these cellulose strips can be 

implemented as a suitable colour scale for CO sensing to the naked eye. In relation to 

the colour changes observed in the figure, it is interesting to note that the CO 
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concentrations of ca. 50 ppm are the concentration at which CO becomes toxic for 

healthy adults who are submitted to continuous exposure. Moreover, CO concentrations 

of ca. 300-400 ppm are the limit at which carbon monoxide starts to become highly 

toxic for adults over short exposure periods [27]. 

Figure 5 shows a typical calibration curve of the colour differences (d values, see 

Equation 1) measured using the optoelectronic above-described equipment when 

employing probe 1 on a cellulose support upon the addition of increasing concentrations 

of CO in air (0–7000 ppm). An almost linear dependence on the CO concentration of 

between 2 and 80 ppm was observed. However, d loses linearity when the concentration 

is increased and approaches saturation when the carbon monoxide concentration is of 

ca. 7000 ppm. An important issue relating to implementing the calibration curve in the 

optoelectronic sensing device is fitting the obtained d values in accordance with the CO 

concentration. In the first attempt made, the response was empirically fitted to a single 

exponential to obtain Equation 2 with a regression coefficient of 0.9759. Regardless of 

this relatively low regression coefficient, it was not possible to properly fit the resulting 

equation to the experimental data (see Figure 5a), especially at low CO concentrations. 

 

xey  001.000.5892.62                                               (2) 

 

In the equation, y is the value of d and x is the CO concentration in ppm. At this 

point it should be noted that, as expressed in Figure 1, the CO coordination to the 

binuclear rhodium compound, and therefore the colour change, is a two-step process 

given the presence of two consecutive CO molecules which coordinate at the axial 

positions of the probe. Thus by bearing this concept in mind, the optical response in 

Figure 5 was fitted to a bi-exponential equation (see Equation 3).  

 

xx eey   0184.00006.0 24.1307.5065.62                           (3) 

 

A regression coefficient of 0.9983 was calculated for the bi-exponential model in 

agreement with the excellent fit to the experimental values within the whole 

concentration range (see Figure 5b). Having programmed the bi-exponential equation, 

the opto-chemical device herein reported was able to determine CO concentrations from 

0 to 7000 ppm with an error of ± 4 ppm. Some additional information can be obtained 

from the fit parameters of the bi-exponential equation. By bearing into mind the 
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characteristic a·e
-bx

 structure for the exponential equations, values of 50.07 and 13.24 

were obtained for the “a” terms of the equation. These values correlated directly with 

the contribution of each term to the global d change. Conversely, “b” reflects the 

strength of the CO-ligand interaction, that is: the higher the value, the greater the 

strength and the lower the concentration needed to induce spectroscopic changes. Thus 

the exponential equation with the highest “b” value (0.0184) responds to low CO 

concentrations and is responsible for most colour variation (d) up to 500 ppm. We 

believe that this can be tentatively assigned to the coordination of the first CO molecule 

to probe 1 in agreement with the CO response range. 

 

3.3. Sensitivity, selectivity and reversibility studies. 

 

From the calibration curve, a limit of detection (LOD) as low as 11 ppm of CO in 

air was obtained using the experimental data (d) registered by the optoelectronic device 

with the cellulose strip containing probe 1. In comparison with the LOD of 0.8 ppm CO 

for complex 1 when adsorbed on silica gel, sensitivity was clearly affected when the 

probe was on the cellulose strip. Nevertheless, this did not hamper device performance 

since it was still lower than 50 ppm, which is the concentration at which CO becomes 

toxic for healthy adults who are continuously exposed beyond an 8-hour period. 

Moreover, typical response times of ca. 7 min were determined. 

The cellulose strips of 1 exhibited very high selectivity towards CO. No variations 

in experimental parameter d upon exposure to CO2, N2, O2, Ar or water-saturated air 

were observed. Furthermore, no colour change was registered by the optoelectronic 

device in the presence of vapours of volatile organic compounds (VOCs), such as 

chloroform, hexane, ethanol, acetone, methane, toluene or formaldehyde. Reversible 

colour changes to yellow were observed in the presence of acetonitrile vapour, but only 

at concentrations of 4900 ppm. Studies with coordinating species, such as SO2, NO, and 

NO2, were also carried out. In these cases, no reaction between SO2 and the strips of 

probe 1 was observed. The presence of nitrogen oxides NO and NO2 induced a 

reversible orange-brown colour modulation of the binuclear rhodium(II) complex, 

which slightly differed from that observed in the presence of CO, but only when very 

high concentrations of NO or NO2 were being used (8900 ppm and 3162 ppm, 

respectively). All these results are consistent with the behaviour observed for the 

binuclear rhodium(II) complexes adsorbed on silica [24]. However, the interfering 
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concentrations of acetonitrile, NO and NO2 were even higher for probe 1 on cellulose 

strips since in silica, interfering concentrations for acetonitrile, NO and NO2 were 4600, 

4070 and 2700 ppm, respectively. 

Reversibility was also extensively evaluated for the cellulose strips contained in 

complex 1. The optoelectronic device was exposed to air containing 30 ppm of CO at 

room temperature for 7 min and then parameter d was determined. After measurements 

were taken, the device was placed in CO-free air for 7 min and the d value was 

determined again. This process was repeated several times and the results are shown in 

Figure 6. A basically reversible sensing process was clearly observed.  

 

3.4. Tests in real environments and samples. 

 

The response effectiveness of the opto-electronic device was tested in a chemistry 

laboratory environment, which was assumedly CO-free. As expected, the device 

registered concentrations of CO of ca. 0 ppm for days, thus the typical solvent vapours 

in a laboratory did not affect the optoelectronic device response. Finally the device was 

used to determine the CO present in the 4-shed accumulated smoke of two cigarette 

types after passing smokers’ lungs. In accordance with the values reported in previous 

studies, 9 and 25 ppm of CO were measured for normal and fine-cut tobacco cigarettes, 

respectively [28]. 

 

4. Conclusions 

An optoelectronic device for CO monitoring in air has been developed. It is based 

on the reversible reaction of CO with binuclear rhodium(II) complex 

[Rh2[(C6H4)P(C6H5)2]2(O2CCF3)2]· (CF3CO2H)2 (1) which is coupled with colour 

changes. Probe 1 is incorporated into a cellulose paper for chromatography and this 

simple system has proven to be suitable for the naked eye detection of CO in air at 

concentrations as low as 50 ppm. Moreover the cellulose strips containing probe 1 were 

used as the sensing part of an optoelectronic device for CO monitoring. The device 

illuminated the probe with a tricolour LED, which emits at 624, 525 and 470 nm, and 

the reflected light was detected by a photodiode. The electronic system is portable 

(dimensions 14 x 8.5 x 3.5, weighing approximately 270 g) and is powered by AA 

batteries, which offer good battery duration. Colour variations in this device were 

measured as the distance d between the RGB values of the blank (probe without CO) 
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and that of the probe with a certain CO concentration. A typical response time of 7 min 

and a limit of detection of 11 ppm were obtained using the optoelectronic device. 

Moreover, the system proved highly selective to the presence of CO and no changes 

were found in the presence of other common gases (CO2, N2, O2, Ar) and saturated 

vapour of common solvents (chloroform, hexane, ethanol, acetone, methane, toluene or 

formaldehyde). Only acetonitrile vapour, NO and NO2 were found to be interferents, but 

only at very high concentrations.  
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Figure captions 

 

Figure 1.- Block diagram of the CO optoelectronic equipment. 

 

Figure 2.- Complex of the general formula [Rh2[(C6H4)P(C6H5)2]2(O2CCF3)2]· 

(CF3CO2H)2 (1) and the corresponding 1·CO and 1·(CO)2 products obtained upon the 

coordination of carbon monoxide at axial positions. 

 

Figure 3.- Diffuse reflectance UV-Vis spectra of the cellulose paper probe containing 1 

(solid black line) and the changes observed in the presence of air containing 50 and 500 

ppm of CO (dashed line and grey line, respectively). 

 

Figure 4.- Colour scale for the semi-quantification of CO (from 0 to 900 ppm) using 

complex 1 on cellulose strips.    

 

Figure 5.- a) Simple exponential regression and b) double exponential regression of the 

d values of cellulose strips of 1 upon the addition of CO (0–8000 ppm).  The inset 

shows a magnification in the 0–100 ppm range. Square dots are experimental data, 

whereas the line depicts exponential fitting. 

 

Figure 6.- Colorimetric response of the cellulose strips of 1 upon four cyclic exposures 

to 30 ppm of CO and CO-free air.  
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