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Abstract

The nonlinear bending problem of a constant cross-section simply supported beam pinned at both ends and sub-

ject to a uniformly distributed loadq(x) is analyzed in detail. The numerical integration of the two-point boun-

dary value problem (BVP) derived for the nonlinear Timoshenko beam is tackled through two different linearization

schemes, the multi-step transversal linearization (MTrL)and the multi-step tangential linearization (MTnL), proposed

by Viswanath and Roy (2007). The fundamentals of these linearization techniques are to replace the nonlinear part

of the governing ODEs through a set of conditionally linearized ODE systems at the nodal grid points along the

neutral axis, ensuring the intersection between the solution manifolds (transversally in the MTrL and tangentially in

the MTnL). In this paper, the solution values are determinedat grid points by means of a centered finite differences

method withmultipoint linear constraints(Keller, 1969), and a simple iterative strategy. The analytical solution for

this kind of bending problem, including the extensional effects, can be worked out by integration of the governing

two-point BVP equations (Monleón et al., 2008). Finally, the comparison of analytical and numerical results shows

the better ability of MTnL with the proposed iterative strategy to reproduce the theoretical behavior of the beam for

each load step, because the restraint of equating derivatives in MTnL leads to further closeness between solution paths

of the governing ODEs and the linearized ones, in comparisonwith MTrL. This result is opposed to the conclusion

reached in Viswanath and Roy (2007), where the relative errors produced by MTrL are said to be smaller than the

MTnL ones for the simply supported beam and the tip-loaded cantilever beam problems.
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1. Introduction

The geometrically nonlinear analysis of flexible beams, as the obtention of its physically reasonable configura-

tions, constitutes an issue of broad technological and practical interest in scientific and engineering fields like robotics,

biomechanics and aeronautics. Bending of slender rods madeof steel or polymeric and plastic materials, are cases in

which fairly large displacements arise without exceeding the yield strength of the material.

The numerical solution of geometrically nonlinear beams orrods is often worked out by the finite element method

using, for example, lagrangian formulations (Zienkiewiczand Taylor, 1991),co-rotational approaches (Crisfield,

1991, 1997; Felippa and Haugen, 2005), or geometrically exact formulations (e.g. Cardona and Geradin (1988) or

Simo and Vu-Quoc (1986)).

An alternative to the numerical treatment is the direct integration of the governing boundary value problem (BVP).

The classical analytical solutions are usually based in thenon-extensible rod assumption. Such solutions may be ex-

pressed in terms of Jacobi elliptical integrals (Love, 1944, §263). If the rod is regarded as extensible, the magnitude

of displacements and strains has to be limited in order to geta explicit solution (Monleón et al., 2008).

Amongst the special cases which have been solved, we can find atip loaded cantilever beam with constant cross-

section (Bishopp and Drucker, 1945; Lee, 2002; Mattiason, 1981), a three-point or four-point loaded simply supported

beam (Ohtsuki, 1986a, 1986b) and square frames with rigid (Ohtsuki and Ellyin, 2000) or two-pinned (Mattiason,

1981) joints, diagonally loaded on two opposite corners. All of them are based on the non-extensibility assumption.

The difficulties which arise in the integration of nonlinear BVPs canbe overcome by carrying out a previous

treatment of the system by means of a semi-analytical technique. In this way the Multi-step Transversal Linearization

Method (MTrL), introduced by Ramachandra and Roy (2001a) (namely, Locally Transversal Linearization or LTL-

zeroth level), allows to simplify the ODE system by replacing the nonlinear vector field by a set of conditionally

linear ODE systems in grid points along the independent variable. This replacement is provided by the transversal

intersection produced between both solution manifolds in every grid point.

A scope to improve the LTL-zeroth level lies in deriving the initial ODE system and equating the solution paths

and its derivatives in grid points. The equality of derivatives increases the closeness between nonlinear and LTL-

based solution paths. This new scheme of linearization is called LTL-first level by Ramachandra and Roy (2001a) and

Tangential Linearization (MTnL) by Viswanath and Roy (2007). In the present study, a modified MTnL is applied

without performing the derivation of the ODE-s system.
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Later, Viswanath and Roy (2007) apply the MTrL y MTnL methodsto a tip loaded cantilever beam with constant

cross-section and compare the output results with the analytical ones (Mattiason, 1981). Likewise, they compare the

two linearization techniques on a constant cross-section beam pinned at both ends with a uniformly distributed load.

The results included in this paper may be regarded as an extension of that obtained in Ramachandra and Roy

(2001a) and Viswanath and Roy (2007) for the simply supported beam problem, with special emphasis in its coherence

with the analytical solution. In the current approach, solving procedure has been modified by using a centered finite

difference method with multi-point linear constraints, introduced by Keller (1969). This method has the following

advantages compared to the one used by Viswanath and Roy (2007):

1. It avoids the evaluation of the Magnus series expansion, which is a time-consuming task, and

2. It makes unnecessary to solve a nonlinear system of equations by the Newton-Raphson method, ensuring a

stable convergence process.

The paper is organized as follows: in section 2 the governingequations of the beam pinned at both ends are

worked out. In section 3 the MTrL procedure is derived for this problem. Section 4 deals with the derivation of the

MTnL of the equations. In section 5 the algorithm for the numerical solution is explained. The analytical solution of

the problem can be found in section 6. Numerical results are shown in section 7, and the conclusions can be found in

section 8.

2. Simply supported beam analytical approach

In this section the governing nonlinear BVP for a constant cross-section beam pinned at both ends with uniformly

distributed load is analytically derived by means of a variational technique. Horizontal and vertical displacements are

constrained in both ends. The axes and sign convention represented in figure 1 will be taken.

Figure 1: General diagram of simply supported beam
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The main assumptions are:

1. The rod is supposed to be extensible. Coupling between extension and bending is taken into account.

2. The model includes transverse shear deformation (Timoshenko beam) of the cross-sections.

3. Moderate (but not small) displacements and rotations will be regarded – refer to the definition of the strainε∗x in

eq. (2).

The kinematics for the current problem can be written as follows1:

u∗ = u+ zθy (1a)

w∗ = w (1b)

The non-linear terms of the Green-Lagrange strain tensor (equations (7.37) Monleón (1999)) are suitably simpli-

fied for the plane deformation of an initial straight beam2:

ε∗x =
∂u∗

∂x
+

1
2

(
∂w∗

∂x

)2

= u′ + zθ′y +
1
2

w′2

γ∗xz =
∂u∗

∂z
+
∂w∗

∂x
= w′ + θy (2)

Linear mechanical behavior is taken into account:

σ
∗
= Dǫ∗ =


E 0

0 G

 ǫ
∗ (3)

whereσ∗ = {σ∗x τ
∗
xz}

t is the stress vector,ǫ∗ = {ε∗x γ
∗
xz}

t is the strain vector, andE andG are the Young’s modulus

and shear modulus, respectively.

The general expression for the Lagrangian of the problem, adopting a variational approach (for more details, see

Viswanath and Roy (2007) and Monleón (1999)) will be:

L = U + F + G =
1
2

∫

V
ǫ
∗T
σ
∗dV−

∫ L

0
qwdx− [̃fT

AuA + f̃T
BuB] (4)

where:

L = Total potential energy (Lagrangian function)

U = Strain energy of the rod, calculated as
∫ L

0
Udx

with U defined as the linear strain energy density along the neutralaxis of the rod

F = Potential of the uniformly distributed load

G = Potential of the end reactions (zero in current case).

1We denote with an asterisk (*) those variables related to a generic point on the cross-section. Generalized (model) variables have no asterisk,
they are related to the neutral axis and depend only ofx.

2()’ indicates a derivative with respect to x
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In the equilibrium configuration the first variation of the Lagrangian will be zero:

δL =δU + δF + δG =

∫ L

0
[Uuδu+ Uu′δu

′
+ Uwδw+ Uw′δw

′
+ Uθδθy + Uθ′δθ

′
y+

+ Fuδu+ Fwδw+ Fθδθy]dx− [ f̃xAδuA + f̃zAδwA + M̃AδθyA + f̃xBδuB+

+ f̃zBδwB + M̃BδθyB] = 0

(5)

In this expression

Uu,Uu′ ,Uw,Uw′ ,Uθ,Uθ′ = are the partial derivatives of the strain energy linear density, U(u, u′,w,w′, θy, θ′y), with

respect to the generalized displacements.

Fu, Fw, Fθ = are the partial derivatives of the uniformly distributed load potential linear densityF, with respect to

the displacements.

Applying integration by parts and rearranging terms in eq. (5), the equilibrium equations in the Euler-Lagrange

form are: [
Fu + Uu −

∂Uu′

∂x

]
= 0,

[
Fw + Uw −

∂Uw′

∂x

]
= 0,

[
Fθ + Uθ −

∂Uθ′

∂x

]
= 0, (6)

and the boundary conditions are:

uA = wA = 0 uB = wB = 0

(Uθ′ |A + M̃A) = 0 (Uθ′ |B − M̃B) = 0 (7)

In the present case, eqs. (6) can be written as:



H1u′′ + H2θ
′′
y + H1w′w′′ = 0

H1u′′w′ + H1u′w′′ + H2w′′θ′y + H2w′θ′′y +
3
2H1w′2w′′ + H1(w′′ + θ′y) + q = 0

H2u′′ + H3θ
′′
y + H2w′w′′ − H1(w′ + θy) = 0

(8)

where constantsHi andH1 have been defined as:

H1 = EA H2 = ESy

H3 = EIy H1 = GAQ (9)

On the other hand, assuming that cross-section centroids are on the neutral axis, conditions (7) become the following

separated boundary conditions:

u(0) = w(0) = 0 u(L) = w(L) = 0

θ′y(0) = 0 θ′y(L) = 0 (10)
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2.1. Matrix formulation of the boundary value problem

For the purpose of later linearization, the following vector of generalized displacements is defined:

u ,



u

w

θy

u′

w′

θ′y



=



u1

w1

θ1

u2

w2

θ2



. (11)

Eq. (8) may be transformed into:



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 H1 H1w2 H2

0 0 0 H1w2 H̃ H2w2

0 0 0 H2 H2w2 H3





u′1

w′1

θ′1

u′2

w′2

θ′2



=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 −H1

0 0 H1 0 H1 0





u1

w1

θ1

u2

w2

θ2



+



0

0

0

0

−q

0



, (12)

where

H̃ = H1 + H1u2 + H2θ2 +
3
2

H1w2
2. (13)

Grouping by blocks leads to:


I 0

0 B(u2)




u′1

u′2


=


0 I

C21 C22




u1

u2


+


0

q


(14)


u′1

u′2


=


0 I

B−1C21 B−1C22




u1

u2


+


0

B−1q


, (15)

where:

B(u2) =



H1 H1w2 H2

H1w2 H̃ H2w2

H2 H2w2 H3


C21 =



0 0 0

0 0 0

0 0 H1


C22 =



0 0 0

0 0 −H1

0 H1 0


. (16)

Similarly, boundary conditions (10) take the form:

M1u(0)+Mku(L) = 0 , (17)
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where the matricesM1,Mk are defined like:

M1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



=


M11

0

 Mk =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1



=


0

Mk2

 . (18)

The form (15) of the governing ODE system has the advantage ofgrouping all the nonlinearity in the matrixB(u2).

3. Multi-step Transversal Linearization Method (MTrL)

Multi-step Transversal Linearization Method (Ramachandra and Roy, 2001a, 2001b, 2002; Viswanath and Roy,

2007) consists of replacing the nonlinear vector field by a set of conditionally linear ODE systems in such manner

that transversal intersections of the solution manifolds of the nonlinear problem and the linearized one are provided

on nodal points.

The [0, L] domain may be discretized onk equal intervals split inp subintervals of the same step sizeh = sj
i+1− sj

i

∀ j = 1, 2, · · · , k y ∀i = 1, 2, · · · , p (see figure 2).

Figure 2: Discretizing of 1D domain

Equation (15) is replaced by a set of conditionally linear ODE systems in each nodal point in the so calledfully

implicit form (refer to Viswanath and Roy (2007)):


u′1

u′2


= α


0 A12

A21 A22




u1

u2


+ (1− α)


F1

F2


(19)
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whereα is the so calledimplicitness parameter. The MTrL based solution at each nodal pointui approaches that

of the nonlinear problemui .

The equivalence of systems (15) and (19) in every nodal pointleads to:

u2i = αA12iu2i + (1− α)F1i (20)

B−1
i C21iu1i + B−1

i C22iu2i + B−1
i q = αA21iu1i + αA22iu2i + (1− α)F2i (21)

Forcing the transversal intersection of manifolds,u1i = u1i andu2i = u2i , and equating coefficients ofα we obtain

from (20):

F1i = u2i (22)

A12iu2i − F1i = 0→ A12i = I (23)

similarly, from (21):

B−1
i C21iu1i + B−1

i C22iu2i + B−1
i q = F2i (24)

A21iu1i + A22iu2i − F2i = 0 (25)

Equation (24) determines theF2i values on every grid point. Nonetheless, condition (25) doesn’t allow to establish

with uniqueness every element in matricesA21i andA22i . In the current case, it is advisable to give them the same

structure as that ofB−1C21 andB−1C22 in eq. (15). In order to do that, we evaluate previously:

B−1C21 =H1



0 0 ϕ13

0 0 ϕ23

0 0 ϕ33


B−1C22 =H1



0 ϕ13 −ϕ12

0 ϕ23 −ϕ22

0 ϕ33 −ϕ32


(26)

where the notationB−1
= [ϕi j ] is used for convenience. The following matrixes are definedwith six linearly indepen-

dent parameters in every grid point:

A21 =



0 0 ξ1

0 0 ξ2

0 0 ξ3


A22 =



0 ξ1 ζ1

0 ξ2 ζ2

0 ξ3 ζ3


(27)

Developing now eq. (24), we arrive easily to:

F2i = H1(θ1i + w2i)



ϕ13

0

ϕ33


i

− (H1θ2i + q)



ϕ12

ϕ22

0


i

. (28)
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We develop also (25) as:

(θ1i + w2i)



ξ1

ξ2

ξ3


i

+ θ2i



ζ1

ζ2

ζ3


i

= F2i (29)

Comparing (28) and (29), the following scheme is taken:

ξ1i = H1ϕ13i

ξ2i = 0

ξ3i = H1ϕ33i

(30)

Consequently, it follows that:

θ2i



ζ1

ζ2

ζ3


i

= −(H1θ2i + q)



ϕ12

ϕ22

0


i

→

ζ1i = −
(
H1 +

q
θ2i

)
ϕ12i

ζ2i = −
(
H1 +

q
θ2i

)
ϕ22i

ζ3i = 0

, (31)

except ifθ2i = 0. Such singularity will be avoided by taking:

ζ1i = −H1ϕ12i

ζ2i = −H1ϕ22i

ζ3i = 0

(32)

Finally, the following coefficient matrixes are obtained:

A21i =



0 0 H1ϕ13i

0 0 0

0 0 H1ϕ33i


A22i =



0 H1ϕ13i −
(
H1 +

q
θ2i

)
ϕ12i

0 0 −
(
H1 +

q
θ2i

)
ϕ22i

0 H1ϕ33i 0


(33)

4. Multi-step Tangential Linearization Method (MTnL)

In this section the alternative Multi-step Tangential Linearization Method (MTnL) (Viswanath and Roy, 2007), is

developed. The nonlinear system is replaced by a linearizedsystem which tangent space would be the same of the

first one, in such manner that both solution manifolds are tangent to each other at pre-selected points.

The approach to develop MTnL is analogue to MTrL in the fully implicit form. The left member in eq. (14) is

replaced by: 
u′1

α1Zu′2 + (1− α1)F


=


0 I

C21 C22




u1

u2


+


0

q


(34)

Tangential intersection of manifolds in grid points corresponds withu′1i = u′1i andu′2i = u′2i . Equivalence between

(14) and (34) in nodal points leads to:

Biu′2i = α1Ziu
′
2i + (1− α1)Fi . (35)
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Equating coefficients forα1 gives:

Biu′2i = Fi (36a)

0 = Ziu
′
2i − Fi (36b)

And equating both conditions:

Zi = Bi (37)

Obviously the MTnL admits other alternative linearizations, although expressions (36a) and (37) provide a very

suitable formulation for its later numerical processing.

The tangential linearized expression of system (34) may be written as:


u′1

u′2


=


0 I

αZ−1C21 αZ−1C22




u1

u2


+


0

Z−1[αq + (1− α)F]


, (38)

where we have taken a newparameter of implicitnessα = 1/α1.

5. Numerical solution

5.1. Description of the iterative strategy

Numerical results are obtained by linearization of the problem (15). An initial approach to the solution is evaluated

in nodal points. Then, the multi-point finite difference method (section 5.2, Keller (1969)) is applied on every interval.

Taking into account continuity restraints between intervals 3 (u j
p+1 = u j+1

1 with j = 1, 2, · · · , k − 1) and the boundary

conditions (17) a new solution is obtained and compared withthe initial one in order to verify convergence.

The iterative strategy adopted is outlined in the flow diagram depicted in figure 3.

Convergence criteria is based on evaluating the differences for all components of nodal displacements in two

consecutive steps and comparing the modulus of every difference vector with the absolute errorε = 10−3.

5.2. Multi-point finite difference method

In order to obtain numerical values of the solution on grid points in every step, the multi-point finite difference

method (Keller, 1969) was adopted. It solves boundary valueproblems with “boundary” conditions written aslinear

constraintsof solution values in nodal points and end points. The fundamentals are outlined here.

3Subscripts indicate the current point inside the interval and superscripts the current interval inside the domain [0, L]
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Input data

Starting linear
solution assumption

Evaluation of matrices
B(u2), C21 andC22 (16)
on nodal points

Definition of matrices
needed in MTrL or
MTnL

Application of Multi-
point finite difference
method (Keller, 1969)

Computation of u j
i ,

nodal vectors of the new
solution

Convergence?

Output and drawing results

Solution
updating

YES

NO

Figure 3: Iterative strategy employed in obtaining values

The discretization depicted in figure 2 is adopted. The initial approach to the solution in nodal points is denoted

byω j ( j = 2, 3, . . . , k). On intermediate points

u j = u(sj) = ω j j = 2, 3, . . . , k. (39)

Addend to both members in eq. (17), we obtain thelinear constraints:

M1u1 +

k−1∑

j=2

u j +Mkuk =

k−1∑

j=2

ω j

k∑

j=1

M ju j =

k−1∑

j=2

ω j = Ω̂ (40)
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where:

M j = I j = 2, 3, . . . , k− 1 (41)

Equations (40) can not guarantee that the boundary conditions (17) are kept within the iterative procedure. There-

fore, the later equations had to be forced in every step.

The first order MTrL (19) or MTnL-linearized (34) ODE-s system is approached through the centered finite dif-

ference scheme4:
u j − u j−1

h
−

1
2

B(sj−1/2)(u j + u j−1) = F(sj−1/2) j = 2, 3, . . . , k (42)

where

sj−1/2 = sj −
h
2
= sj−1 +

h
2

j = 2, 3, . . . , k.

Taking now the definitions

R j =I −
h
2

B(sj−1/2) (43)

P j =[I −
h
2

B(sj−1/2)]−1[I +
h
2

B(sj−1/2)] = R−1
j [2I − R j ], (44)

eq. (42) becomes finally

u j = P ju j−1 + hR−1
j F(sj−1/2) j = 2, 3, . . . , k. (45)

To compute the components inu1 which are not included in boundary conditions (17), the nextk matrices are

recursively defined: 
Sk = B̂k

S j−1 = B̂ j−1 + S jP j j = k, k− 1, . . . , 3, 2
(46)

Handling suitably definitions (46), we may write

S1 =

k∑

j=1

B̂ jZ j (47)

where 
Z1 = I

Z j = P jZ j−1 j = 2, 3, . . . , k
(48)

Finally

u1 = S−1
1 [Ω̂ −

k∑

j=2

hS jR−1
j F(sj−1/2)] (49)

Expressions (49) and (45) lead to the new solution vectors onnodal points in every step.

4All valuesB(sj−1/2) andF(sj−1/2) needed on intermediate points were evaluated by means of Lagrange interpolation (see Viswanath and Roy
(2007), Roy and Kumar (2005))
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6. The analytical solution

6.1. Boundary value problem approach. Mixed formulation

Writing the total potential of the problem (4) in the form:

L =

∫ L

0
F̃ dx− [̃fT

AuA + f̃T
BuB] (50)

whereF̃ is the potential linear density along the neutral axis, the general form of the equilibrium equations (Euler-

Lagrange form, see Monleón (1999)) can be written as a second ordern ODE-s system:

F̃u −
∂

∂x
F̃u′ = 0 (51)

subject to the 2n boundary conditions:

[
F̃u′ |x=xB − f̃B

]T
δuB −

[
F̃u′ |x=xA + f̃A

]T
δuA = 0 (52)

whereF̃u is a vector with components∂F̃
∂ui

.

The energy definition of generalized stresses, eq. (51), canbe transformed in a first order system of 2n ODE-s:

∂F̃

∂u
− f′ =0

∂F̃

∂u′
− f =0 (53)

By using the simplified expressions (2) of the Green strain tensor, the system becomes:

EA

(
u′ +

1
2

w′2
)
− Nx = 0 (54a)

EA

(
u′ +

1
2

w′2
)
w′ +GAQ(w′ + θy) − Qz = 0 (54b)

EIyθ
′
y − My = 0 (54c)

qx + N′x = 0 (54d)

qz + Q′z = 0 (54e)

GAQ(w′ + θy) − M′y = 0 (54f)

Similarly, boundary conditions (52) become:

u(0) = w(0) = 0 u(L) = w(L) = 0

My(0) = 0 My(L) = 0 (55)

It is convenient to point out that in system (54) displacementsu,w, θy and section forcesNx,Qz,My are unknown

functions. This equation form will be referred to as themixed formulation of the BVPof a simply supported beam

pinned at both ends. The analytical solution of this formulation has been adopted as a reference for comparing results

for the generalized displacementsu1,w1, θ1.
13



6.2. Obtaining the analytical solution

Most of the analytical solutions for the pinned beam problemin the moderately large displacements range (Ohtsuki,

1986a, 1986b) are based in the non-extensible rod assumption, and they get as reference the solution formulated in

Love (1944) by means of Jacobi elliptic integrals. In this paper, we will adopt as starting point the solution of

Monleón et al. (2008) for eqs. (54) which considers extension of the rod, and will extend the results to the uniformly

distributed load case.

Replacing eq. (54a) in (54b) and regarding thatqx vanishes in (54d), the bending problem represented by eqs.

(54b), (54c), (54e) and (54f) (which form a linear system) may be decoupled from the axial one and solved indepen-

dently. Conversely, decoupling is not possible due to the setting of eq. (54a). We will say then, the bending problem

is partially decoupledof the axial problem.

The fundamental system matrix (FSM) of the bending problem is obtained by direct integration:

Eh(ξ) = G(ξ)E0 =



1 − L
ρω

sinhωξ L
N0ρω

(ρωξ − sinhωξ) 1
N0

(1− coshωξ)

0 coshωξ 1
N0

(coshωξ − 1) ρω

N0L sinhωξ

0 0 1 0

0 N0L
ρω

sinhωξ L
ρω

sinhωξ coshωξ





w0

θy0

Qz0

My0



(56)

with the following meaning for the variables:

Eh(ξ) state vector of the homogeneous bending problem,{w(ξ) θy(ξ) Qz(ξ) My(ξ)}t

E0 starting value for the state vector of the homogeneous bending problem

G(ξ) fundamental system matrix of the bending problem

ξ = x
L dimensionless variable

ρ =1+
N0

GAQ
ω =L

√
N0

ρEIy
(57)

The particular solution of the ODE system can be expressed as

Ep(ξ) = −
∫ ξ

τ=0
G(ξ − τ)F(τ)Ldτ (58)

whereF(τ) = {0 0 qz 0}T is the independent term of the bending problem, which contains the distributed loads

applied on the beam. Operating:

Ep(ξ) = −qzL



L
ρωN0

(
ρω
ξ2

2 +
1−coshωξ
ω

)

1
N0

(
sinhωξ
ω
− ξ

)

ξ

− L
ρω2 (1− coshωξ)



(59)
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Addition of (56) and (59) gives the analytical solution of the problem. In order to obtain values of all unknown

variables at one end, boundary conditions (55) will be applied as follows:

E(1) = G(1)E0 + Ep(1) (60)

obtaining the initial values:

Qz0 =
qzL
2

θx0 = −
qzL
N0

[
1
2
+

1− coshω
ω sinhω

]
(61)

For solving the extension problem, we replacew0(ξ) in (54a). After changing the variableξ = x
L and integrating,

the following expression of horizontal displacements is obtained:

u(ξ) =
N0L
EA
ξ −

1
2L


Q2

z0L2

N2
0

ξ +
q2

zL4

N2
0

ξ3

3
+

A2
0

2

(
ξ +

sinh 2ωξ
2ω

)
+

B2
0

2

(
sinh 2ωξ

2ω
− ξ

)
−

−
Qz0qzL3

N2
0

ξ2 +
2A0Q0L

N0

sinhωξ
ω

+
2B0Q0L

N0

coshωξ
ω

−
2A0qzL2

N0

(
ξ sinhωξ
ω

−
coshωξ
ω2

)
−

−
2B0qzL2

N0

(
ξ coshωξ
ω

−
sinhωξ
ω2

)
+ A0B0

sinh2ωξ

ω

]
+ Ĉu

(62)

where:

A0 = −
L
ρ

(
θx0 +

Qz0

N0

)
B0 =

(
qzL2

ρωN0
−

My0ω

N0

)
(63)

The constant̂Cu is determined by the conditionu0(0) = 0:

Ĉu =
1

2L

[
2B0Q0L
ωN0

+
2A0qzL2

ω2N0

]
(64)

The final obtention ofN0 requiresu0(L) = 0 in (62). This condition drives to a complicated implicit equation in

N0 which cannot be symbolically solved.

A numerical strategy is adopted to obtainN0. The following iterative scheme is used:

Step 1. Input value ofN0

Step 2. Calculus ofu0(L) by using (62)

Step 3. Updating of sorts ofN′0 = N0 −
EA
L u0(L) until convergence (|u0(L)| < ε = 10−7)

Obtention of axial stress completes the definition of current problem analytical solution.
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7. Numerical results

For obtaining results, the following numerical values havebeen adopted:

L = 12m Length of beam

E = 2.1 · 108 Young’s Modulus

ν = 0.3 Poisson’s Coefficient

A = 0.1m2 Cross-section area

AQ = 0.083333m2 Cross-section shear area

I = 2.08333· 10−3m4 Cross-section moment of inertia

The non-dimensional control parameter represents the loadlevel:

ρ =
qL3

EI
(65)

Load levels which produce integer values of the control parameter (65) are adopted. The MTnL obtained kine-

matic response of the beam is depicted in figures 4(a), 4(c) and 4(e) and the MTrL results are represented in figures

4(b), 4(d) and 4(f). In the last case only load levels which produce suitable results are represented.

For this first comparison a discretization ofk = 6 andp = 1 has been adopted. It is the finest discretization

supported by MTrL. Finer discretizations lead to divergence of the solutions. On the other hand, values ofα = 1 in

MTnL andα = 0.6 in MTrL were taken. In both cases (MTrL y MTnL) iterations were interrupted when the modulus

of the difference vector of nodal displacements between two consecutive steps was smaller thanε = 10−3.

We outline next the representative values of each displacement referring to figure 4:

MTrL MTnL Analytical
ρ u(L/6) εr u(L/6) εr Solution
1 -0.0007 0.4000 -0.0004 0.2000 -0.0005
2 – – -0.0011 0.1538 -0.0013
3 – – -0.0018 0.1000 -0.0020
4 – – -0.0024 0.1429 -0.0028
5 – – -0.0030 0.1176 -0.0034
6 – – -0.0036 0.1220 -0.0041

Table 1: Horizontal displacementsu(L/6) in m. (k = 6, p = 1)
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Figure 4: Comparison of both linearization methods in simply supported beam problem (k = 6, p = 1)
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MTrL MTnL Analytical
ρ w(L/2) εr w(L/2) εr Solution
1 -0.1267 0.0261 -0.1262 0.0300 -0.1301
2 – – -0.2009 0.0262 -0.2063
3 – – -0.2538 0.0182 -0.2585
4 – – -0.2927 0.0207 -0.2989
5 – – -0.3263 0.0178 -0.3322
6 – – -0.3549 0.0164 -0.3608

Table 2: Deflectionsw(L/2) in m. (k = 6, p = 1)

MTrL MTnL Analytical
ρ θ(0) εr θ(0) εr Solution
1 0.0521 0.5058 0.0343 0.0087 0.0346
2 – – 0.0546 0.0460 0.0552
3 – – 0.0701 0.0086 0.0695
4 – – 0.0797 0.0112 0.0806
5 – – 0.0893 0.0067 0.0899
6 – – 0.0975 0.0051 0.0980

Table 3: Slopesθ(0) in rads. (k = 6, p = 1)

Figure 5 shows good agreement between the MTnL solution displacements (k = 10, p = 1 y α = 1) and the

analytical ones.

As we can see, MTnL produces much smaller relative errorεr with respect to analytical solution that MTrL. The

accuracy of MTnL withk = 10 (see figure 5) may be verified in the following table:

Horizontal MTnL Deflections MTnL Slopes MTnL Analytical solution
ρ u(L/5) εr w(L/2) εr θ(0) εr u(L/5) w(L/2) θ(0)
1 -0.0006 0.0000 -0.1295 0.0046 0.0347 0.0029 -0.0006 -0.1301 0.0346
2 -0.0013 0.0714 -0.2042 0.0102 0.0550 0.0036 -0.0014 -0.2063 0.0552
3 -0.0021 0.0454 -0.2579 0.0023 0.0691 0.0058 -0.0022 -0.2585 0.0695
4 -0.0028 0.0667 -0.2984 0.0017 0.0804 0.0025 -0.0030 -0.2989 0.0806
5 -0.0035 0.0541 -0.3317 0.0015 0.0900 0.0011 -0.0037 -0.3322 0.0899
6 -0.0042 0.0454 -0.3602 0.0017 0.0981 0.0010 -0.0044 -0.3608 0.0980

Table 4: Comparison displacements MTnL (m and rads), (k = 10, p = 1)

7.1. Estimation of the order of error

By successive evaluations of the numerical solution with different step sizes for the first load level (ρ = 1) with

both kinds of linearization (MTrL and MTnL), the values for the deflection at the central point of the rod expressed

in table 5 are obtained. The relative errors of the numericalsolution are evaluated using the analytical solution for the

deflection obtained from eqs. (56) and (59),w(1/2) = −0.1301, and are shown in table 5.
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Figure 5: Comparison of MTnL (k = 10, p = 1) and analytical solution of simply supported beam problem
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MTrL MTnL
k w(L/2) εr w(L/2) εr

1 0.0000 1.0000 0.0000 1.0000
2 -0.0380 0.7079 -0.0902 0.3067
4 -0.1105 0.1507 -0.1206 0.0730
6 -0.1267 0.0260 -0.1262 0.0299
10 — — -0.1295 0.0046
20 — — -0.1303 0.0015

Table 5: Comparison of relative errors between MTrL and MTnL, (ρ = 1)
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Figure 6: Comparison of relative errors between MTrL and MTnL, (ρ = 1)

Double logarithmic plots of the errors are shown in figure 6. The corresponding one to the MTnL solution is

nearly a straight line with a slope around 2.

On the other hand, MTrL is unable to support more thank = 6 steps of discretization, and it seems clear that

the average slope for this method is smaller than for MTnL. Therefore, it can be stated that MTnL with the proposed

iterative scheme has an order of error ofO(h2).

8. Discussion and concluding remarks

In this paper some new insights are provided in order to establish the best way of linearization for the nonlinear

bending problem of a simply supported beam pinned at both ends. The numerical integration of the governing BVP

of the problem is carried out by means of two kinds of linearization (MTnL - Multi step Tangential Linearization and

MTrL - Multi step Transversal Linearization). Numerical treatment has been done by a multi-point difference method

(Keller, 1969) inside of an iterative procedure. Finally, numerical results have been compared with the analytical

solution (Monleón et al., 2008).
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The adopted iterative strategy introduces some differences compared to the usual treatment (Ghosh and Roy, 2007;

Ramachandra and Roy, 2001a, 2001b; Roy and Kumar, 2005; Viswanath and Roy, 2007), which is based in convert-

ing the governing BVP in a nonlinear algebraic equations system and solving it through Newton-Raphson or fix

point method. The proposed strategy uses a centered finite difference method with multi-point linear constraints

(Keller, 1969), avoiding the evaluation of the Magnus series expansion and the use of the Newton-Raphson method

(Viswanath and Roy, 2007).

A further improvement of the proposed method in comparison with the one by Viswanath and Roy (2007) is found

in the treatment of the equations proposed in section 2.1: the ODE system (12) has been arranged in a way which

groups all nonlinear terms in the sub-matrixB(u2). Therefore, the linearization is only necessary for the lower equa-

tion block–refer to expression (34).

The low performance of MTrL (LTL-zeroth level) has been proved. It is only able to reproduce the actual solu-

tion suitably forρ = 1 level. Values ofρ > 1.5 cause divergence of the iterative process. On the other hand, great

agreement between results with MTnL (or LTL-first level) andthe analytical ones for all load levels (including values

until ρ = 10) has been found. Furthermore, we found the MTrL becomes unstable against slight variations of the

parameterα, beingα = 0.6 almost the unique value which enables the convergence of the process. Nonetheless, the

MTnL is able to produce acceptable solutions forα included in the range of values [0.9, 1]. This result contradicts

Viswanath and Roy (2007), where the better convergence by MTrL compared to MTnL, for all the possible values of

α is stated.

Although not included in this paper the integration has beenalso solved by means of other available techniques,

different from the multi-point finite difference method, as simple shooting or parallel shooting. They lead to similar

results, proving that the deficiencies observed in MTrL are not due to mismatch of the numerical technique.

It may be concluded that MTnL is able to reproduce the analytical solution for all load levels and works better

than MTrL for this particular problem. This result is opposed to the conclusion reached in Viswanath and Roy (2007),

where the relative errors produced by MTrL are said to be smaller than the MTnL ones for the simply supported beam

and the tip-loaded cantilever beam problems.

The different behavior between MTnL and MTrL can be explained by the higher closeness between solution

manifolds on intermediate points in MTnL compared to MTrL, because equating derivatives allows to achieve better

accuracy. Such conclusion in consistent with Ramachandra and Roy (2001a), where it is suggested that higher levels

of LTL systems can be deduced by means of successive derivation of the ODE-s system and correspondingly equating

the solution and its derivatives with the linearized ones inevery grid point.
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