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Abstract

The nonlinear bending problem of a constant cross-sectioplg supported beam pinned at both ends and sub-
ject to a uniformly distributed load(x) is analyzed in detail. The numerical integration of the 4waint boun-
dary value problem (BVP) derived for the nonlinear Timodteeheam is tackled through twoftkrent linearization
schemes, the multi-step transversal linearization (Mard the multi-step tangential linearization (MTnL), prepd

by Viswanath and Roy (20J7). The fundamentals of these fiin&tion techniques are to replace the nonlinear part
of the governing ODEs through a set of conditionally linead ODE systems at the nodal grid points along the
neutral axis, ensuring the intersection between the swolutianifolds (transversally in the MTrL and tangentially in
the MTnL). In this paper, the solution values are determiaegrid points by means of a centered finit€eliences
method withmultipoint linear constraintgKeller, 1969), and a simple iterative strategy. The anedytsolution for

this kind of bending problem, including the extensioniditets, can be worked out by integration of the governing
two-point BVP equations (Monlebn et el.. 2008). Finallye ttomparison of analytical and numerical results shows
the better ability of MTnL with the proposed iterative sagy to reproduce the theoretical behavior of the beam for
each load step, because the restraint of equating deggati TnL leads to further closeness between solution paths
of the governing ODEs and the linearized ones, in compamigdnMTrL. This result is opposed to the conclusion
reached in Viswanath and Roy (2007), where the relativerepooduced by MTrL are said to be smaller than the
MTnL ones for the simply supported beam and the tip-loadedileser beam problems.
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1. Introduction

The geometrically nonlinear analysis of flexible beams hasdbtention of its physically reasonable configura-
tions, constitutes an issue of broad technological andipedtterest in scientific and engineering fields like robs,
biomechanics and aeronautics. Bending of slender rods ofasieel or polymeric and plastic materials, are cases in

which fairly large displacements arise without exceedmytield strength of the material.

The numerical solution of geometrically nonlinear beamsds is often worked out by the finite element method
using, for example, lagrangian formulations (Zienkiewacw Taylar, 1991)co-rotational approaches (Crisfield,
199, 1997; Felippa and Haugen, 2005), or geometricallgteiemulations (e.g. Cardona and Geradin (1.988) or
Simo and Vu-Quoc (1986)).

An alternative to the numerical treatment is the directgrddion of the governing boundary value problem (BVP).
The classical analytical solutions are usually based imtreextensible rod assumption. Such solutions may be ex-
pressed in terms of Jacobi elliptical integrals (Love, 1,3263). If the rod is regarded as extensible, the magnitude

of displacements and strains has to be limited in order tagedplicit solution (Monledn et al.. 2008).

Amongst the special cases which have been solved, we canfiimtbaded cantilever beam with constant cross-
section (Bishopp and Drucker, 1945; _ee, 2002; Mattias®81), a three-point or four-point loaded simply supported
beam (Ohtsu<i, 1985a, 1986b) and square frames with rigidsi@i and Ellvin, 20C0) or two-pinned (Mattiason,

198.) joints, diagonally loaded on two opposite cornersoAthem are based on the non-extensibility assumption.

The dfficulties which arise in the integration of nonlinear BVPs &@novercome by carrying out a previous
treatment of the system by means of a semi-analytical tgaieniln this way the Multi-step Transversal Linearization
Method (MTrL), introduced by Ramachandra and Roy (2001ajn@ly, Locally Transversal Linearization or LTL-
zeroth level), allows to simplify the ODE system by replacthe nonlinear vector field by a set of conditionally
linear ODE systems in grid points along the independentitei This replacement is provided by the transversal

intersection produced between both solution manifoldvenegrid point.

A scope to improve the LTL-zeroth level lies in deriving timitial ODE system and equating the solution paths
and its derivatives in grid points. The equality of derivasi increases the closeness between nonlinear and LTL-
based solution paths. This new scheme of linearizatiorliscthT L-first level by Ramachandra and Roy (2001a) and
Tangential Linearization (MTnL) by Viswanath and Roy (2P0 the present study, a modified MTnL is applied

without performing the derivation of the ODE-s system.



Later, Viswanath and Roy (2007) apply the MTrL y MTnL methdals tip loaded cantilever beam with constant
cross-section and compare the output results with the ticallpnes (Mattiason, 1981). Likewise, they compare the

two linearization techniques on a constant cross-sectamipinned at both ends with a uniformly distributed load.

The results included in this paper may be regarded as ansateof that obtained in Ramachandra and Roy
(2001a) and Viswanath and Roy (2007) for the simply suppldrézam problem, with special emphasis in its coherence
with the analytical solution. In the current approach, sajyprocedure has been modified by using a centered finite
difference method with multi-point linear constraints, introeld by Keller (19€9). This method has the following

advantages compared to the one used by Viswanath anc Ro¥) (200

1. It avoids the evaluation of the Magnus series expansibighis a time-consuming task, and

2. It makes unnecessary to solve a nonlinear system of eqsay the Newton-Raphson method, ensuring a

stable convergence process.

The paper is organized as follows: in section 2 the govereipgations of the beam pinned at both ends are
worked out. In section 3 the MTrL procedure is derived fosthioblem. Section 4 deals with the derivation of the
MTnL of the equations. In section 5 the algorithm for the nuga solution is explained. The analytical solution of
the problem can be found in section 6. Numerical resultslaoe/s in section 7, and the conclusions can be found in

section 8.

2. Simply supported beam analytical approach

In this section the governing nonlinear BVP for a constaasstsection beam pinned at both ends with uniformly
distributed load is analytically derived by means of a v#oizal technique. Horizontal and vertical displacemengs a

constrained in both ends. The axes and sign conventionsepted in figur= 1 will be taken.
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Figure 1: General diagram of simply supported beam
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The main assumptions are:

1. Therod is supposed to be extensible. Coupling betweemsixin and bending is taken into account.
2. The model includes transverse shear deformation (Tiemdahbeam) of the cross-sections.

3. Moderate (but not small) displacements and rotationksbeiregarded — refer to the definition of the strajnin
eq. (2).
The kinematics for the current problem can be written a®fes!:
u =u+ 2z (1a)
w=w (1b)

The non-linear terms of the Green-Lagrange strain tenspratéons (7.37) Monleon (1999)) are suitably simpli-

fied for the plane deformation of an initial straight be#im

ou 1 (6W
E

2
¢ / v 1 2
“=ox '3 W)””Hv*z“’
. ou ow'

VXZ=E+W=V\/+9y (2

Linear mechanical behavior is taken into account:

E O
0 G

o =De" = € )

whereo™ = {0} T3,}' is the stress vectoe; = {&}, y;,}' is the strain vector, anl andG are the Young's modulus
and shear modulus, respectively.

The general expression for the Lagrangian of the problewptath a variational approach (for more details, see
Viswanath and Roy (2007) and Monleon (1999)) will be:

L
L=U+F+G= % j\:e*To-*dV— j; qwdx— [faua + fiug] 4)

where:

L = Total potential energy (Lagrangian function)
U = Strain energy of the rod, calculated ﬁsudx

with U defined as the linear strain energy density along the nearigbf the rod
¥ = Potential of the uniformly distributed load

G = Potential of the end reactions (zero in current case).

1We denote with an asterisk (*) those variables related toneiige point on the cross-section. Generalized (modeljpées have no asterisk,
they are related to the neutral axis and depend onky of
2(y indicates a derivative with respect to x



In the equilibrium configuration the first variation of thedrangian will be zero:

L
0L =6U + 6F +6G = f [Uudu+ Uy du’ + UydW + Uy W + Ugd6y + U9/69;+
0

+ Fudu + Fyow + Feo6,]dx — [f;Ao‘uA + EA(SWA + MAéayA + f;B(SuB+ ()
+ EB‘SWB + MBégyB] =0

In this expression

Uy, Uy, Uw, Uw, Uy, Uy = are the partial derivatives of the strain energy linear dgnis (u, u’, w, w, 6y, 9)’,), with

respect to the generalized displacements.

Fu, Fw, Fg = are the partial derivatives of the uniformly distribute@dopotential linear densitlf, with respect to

the displacements.

Applying integration by parts and rearranging terms in &), the equilibrium equations in the Euler-Lagrange

form are:
Uy Uy OUy
Fu+ Uy - 6)(“]:0, FW+UW—6—):V}=O, F9+U9—a—;}=0, (6)
and the boundary conditions are:
(Ugla+Ma) =0 (Usle — Mg) = 0 (7)

In the present case, eqs. (6) can be written as:

HiU” + Hoff) + Hiww’ =0
Hiuw'w + Hiu'w” + How’ 6}, + Haw 8 + SHiw2w” + Hy(W’ +6) + q =0 (8)
HaU” + Ha) + Howw’ — Hy(W +6,) = 0

where constantsl; andH; have been defined as:

H; = EA H, = ES,
Hs = El, H; =GAq 9)

On the other hand, assuming that cross-section centradsnathe neutral axis, conditions (7) become the following

separated boundary conditions:

uQ)=w0)=0 ulL)=w(lL)=0
6,(0)=0 (L) =0 (10)



2.1. Matrix formulation of the boundary value problem

For the purpose of later linearization, the following veabgeneralized displacements is defined:

us
Eq. (&) may be transformed into:

1 00 0 0 0 ||y
010 0 0 0 |(w,
0 0 1 0 0 0|6,
0 0O Hy Hiw, H, LI'2
0 0 0 Hw, H Hw,||w,
0 0O H, Hows, Hs | 9'2

where
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Similarly, boundary conditions (:L0) take the form:
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where the matricell 1, M are defined like:

M
M, = 11

O }
. (18)
My
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The form (15) of the governing ODE system has the advantageofing all the nonlinearity in the matris(uy).

3. Multi-step Transversal Linearization Method (MTrL)

Multi-step Transversal Linearization Method (Ramacharadrd Roy, 200:1la, 2001b, 2002; Viswanath and Roy,
2007) consists of replacing the nonlinear vector field bytaeo§eonditionally linear ODE systems in such manner
that transversal intersections of the solution manifoldghe nonlinear problem and the linearized one are provided

on nodal points.
The [0 L] domain may be discretized drequal intervals split irp subintervals of the same step size slj+l - gj

Yi=12,---,kyV¥i=12,---,p(see figure 2).

1D domain (neutral
axis of the rod)

p subintervals

Figure 2: Discretizing of 1D domain

Equation (15) is replaced by a set of conditionally linearED§ystems in each nodal point in the so calieitly

{Ul} +(1-a) {Fl} (19)
V) F2

implicit form (refer to Viswanath and Rovy (2007)):
; 0 Ap
— =a
u; A21 Az
7




whereq is the so calledmplicitness parameteThe MTrL based solution at each nodal paihapproaches that

of the nonlinear problem;.

The equivalence of systems (15) and (19) in every nodal pedals to:

Uz = @A12U + (1 - a)Fy (20)

B ' Couuy + B 'Caalai + B 'q = aAzuTiy + aAzalz + (1 - a)Fz (21)

Forcing the transversal intersection of manifoldg,= u;; anduy = uy, and equating cdicients ofa we obtain
from (20)):

Fii = Uy (22)
Al —Fy=0—- Ao = | (23)
similarly, from (21):
B 'Coyuy + By 1Conuy + B lq = Fy (24)
Azl + Apgly — F2 =0 (25)

Equation (24) determines tlg; values on every grid point. Nonetheless, condition (25kddeallow to establish
with uniqueness every element in matrides; andA,5. In the current case, it is advisable to give them the same

structure as that @-1C»; andB~1Cy in eq. (15). In order to do that, we evaluate previously:

0 0 ¢13 0 w13 —¢12
B'Co1=Hi1|0 0 ¢z B'C2=H1|0 @3 —¢2 (26)
0 0 a3 0 ¢33 —p32

where the notatioB~! = [¢;;] is used for convenience. The following matrixes are defiwit six linearly indepen-

dent parameters in every grid point:

0 0 & 0 & &
Ay=l0 0 & An=l0 & & (27)
0 0 & 0 & &

Developing now eq. (24), we arrive easily to:

©13 ©12
Fai = Hi(B + Wa){ 0 ¢ — (H162 + Q) S ppo - (28)
¥33]. 0



We develop alsc (25) as:

&1 &1
(01 +Wai)3&xp + 623027 =Fai (29)
&), &),
Comparing (28) and (29), the following scheme is taken:
&= Hipis
&i= 0 (30)
&5 = Hipss
Consequently, it follows that:
& P12 ai= —(Hi+2)ena
Oalop = —(Hiba + D igoar > Za= —(Hi+ ) e2a (31)
&3] 0) &= 0

except ifd;; = 0. Such singularity will be avoided by taking:

Gi= —-Hipia
L= —Hipoa (32)
LHi= 0

Finally, the following coéicient matrixes are obtained:

0 0 Hipa 0 Hipra —(Hi+ 3)eia
Axi=|0 0 0 Az =|0 0 - (ﬁl + H%i)cpzz (33)
0 0 Higss 0 Higss 0

4. Multi-step Tangential Linearization Method (MTnL)

In this section the alternative Multi-step Tangential laneation Method (MTnL) (Viswanath and Roy, 2007), is
developed. The nonlinear system is replaced by a lineasgst&m which tangent space would be the same of the

first one, in such manner that both solution manifolds argeanto each other at pre-selected points.

The approach to develop MTnL is analogue to MTrL in the fulyplicit form. The left member in eq. (14) is

S
= + (34)
a'j_ZU,z + (1 - a/l)F [VP) q

Tangential intersection of manifolds in grid points copesds witht}; = uj, anduy = u’. Equivalence between

replaced by:
0 I

Co1 Cx»

(14) and (34) in nodal points leads to:

Biu/Zi = alZiU,Zi + (1 - al)Fi. (35)
9



Equating co#icients fora; gives:

Biu'Zi =F (36a)
0=ZiUy - Fi (36b)

And equating both conditions:
Z; = B (37)

Obviously the MTnL admits other alternative linearizagpalthough expressions (36a) and (37) provide a very

suitable formulation for its later numerical processing.

The tangential linearized expression of system (34) mayfiiteew as:

# SRS
= + , (38)
(A Uz)  (Z7'eq + (1-)F]

where we have taken a ngyarameter of implicitness = 1/a;.

0 I
a/ZflC21 a’271022

5. Numerical solution
5.1. Description of the iterative strategy

Numerical results are obtained by linearization of the et 15). An initial approach to the solution is evaluated
in nodal points. Then, the multi-point finitefference method (section 5.2, Keller (1969)) is applied omeinterval.
Taking into account continuity restraints between inttm’i‘z(ugﬂl = ujl+1 with j = 1,2,--- ,k - 1) and the boundary

conditions (17) a new solution is obtained and compared thighinitial one in order to verify convergence.
The iterative strategy adopted is outlined in the flow diagdepicted in figur= 3.

Convergence criteria is based on evaluating thiBedinces for all components of nodal displacements in two

consecutive steps and comparing the modulus of evdligrdihce vector with the absolute ereoe 1073,

5.2. Multi-point finite diference method

In order to obtain numerical values of the solution on grithin every step, the multi-point finite fiérence
method (Keller, 19€9) was adopted. It solves boundary vatoblems with “boundary” conditions written éinear

constraintsof solution values in nodal points and end points. The furetztals are outlined here.

3Subscripts indicate the current point inside the interval superscripts the current interval inside the domaijh][0

10



Input data

Starting linear
solution assumption

Evaluation of matrice
B(uz), C21 andCy, (16)
on nodal points

U7

Definition of matrices
needed in MTrL o

MTnL

Application of Multi- Solution
point finite diferencq updating
method (Keller, 19€9)

|

Computation  of u,‘
nodal vectors of the new

solution
NO

YES

| Output and drawing result

Figure 3: lterative strategy employed in obtaining values

The discretization depicted in figure 2 is adopted. Theah#pproach to the solution in nodal points is denoted

byw; (j = 2,3,...,k). On intermediate points
Uj=u(Sj)=wj j=2,3,...,k. (39)
Addend to both members in eq. (17), we obtainlthear constraints
k-1 k-1
M1U1+ZUJ' + Myug = ij
=2 =2
k

k-1
MjUjZZ&)]Zﬁ (40)
j=1 j=2

11



where:

Mj=1 j=23...k-1 (41)

Equations (40) can not guarantee that the boundary condito’) are kept within the iterative procedure. There-

fore, the later equations had to be forced in every step.

The first order MTrL (19) or MTnL-linearized (34) ODE-s systés approached through the centered finite dif-

ference schentfz

uj — uj- 1 .
] h = - 5B(Si-12)(Uj + Uj-1) = F(Si-12) 1=2.3,....k (42)
where
h h .
Sj-1/2 = §j — E = Sj-1+ E ] = 2,3,....k
Taking now the definitions
h
Rj =l = 5B(Sj-112) (43)
h -1 h -1
Py =[l - EB(SH/Z)] [+ EB(SH/Z)] =Rj7[21 - Ry, (44)
eq. (42) becomes finally
uj = Pjuj_1 + hR}'F(si_12) | j=2.3,....k (45)

To compute the components in which are not included in boundary conditions (17), the rertatrices are

{ S =B (46)

recursively defined:

Sj_l =§j_1+Sij j=k,k—1,...,3,2

Handling suitably definitions (46), we may write

k
Si= ) Biz; (47)
=1

where

Z =1
! (48)
Z; =PiZj.1 j=23,...,k

Finally

Kk
ur = SQ - > hSRF(s;-112)] (49)
i=2

Expressions (49) and (45) lead to the new solution vectorsoolal points in every step.

4All values B(sj-1/2) andF(s;j_1/2) needed on intermediate points were evaluated by meansgo&ihge interpolation (see Viswanath and Roy
(2007), Rov and Kuma- (2005))

12



6. Theanalytical solution
6.1. Boundary value problem approach. Mixed formulation

Writing the total potential of the problern (4) in the form:
L —_—
L:f Fdx—[fiua + fug] (50)
0

where¥ is the potential linear density along the neutral axis, teeegal form of the equilibrium equations (Euler-

Lagrange form, see Monledn (1999)) can be written as a skaaiern ODE-s system:
Fo-2F -0 (51)
u ax u =
subject to the & boundary conditions:
~ — T ~ — 1T
[¢u’|x:x5 - fB] 5UB - [?_u"x:xA + fA] 5UA =0 (52)

Whereﬁ‘?u is a vector with componen%.

The energy definition of generalized stresses, ec|. (51)hedransformed in a first order system of QDE-s:

oF ., OF
6_u_]c =0 o

—f=0 (53)

By using the simplified expressions: (2) of the Green straisde the system becomes:

EA(u’ + %V\/Z) -Ny=0 (54a)
EA(u’ + %wz)w +GAQW +6,) - Q,=0 (54b)
Ox+ Ny =0 (54d)
q:+Q;=0 (54e)
GAQW +6) - M =0 (54f)

Similarly, boundary conditions (}2) become:

u@)=w0)=0 ulL)=w(L)=0
My(0) = 0 My(L) =0 (55)

It is convenient to point out that in system (54) displacetaarw, 6, and section forcelly, Q,, My are unknown
functions. This equation form will be referred to as thixed formulation of the BVBf a simply supported beam
pinned at both ends. The analytical solution of this forrtiafahas been adopted as a reference for comparing results

for the generalized displacementsw;, 6;.
13



6.2. Obtaining the analytical solution

Most of the analytical solutions for the pinned beam prohilethe moderately large displacements range (Ol tsuki,
19864, 198¢b) are based in the non-extensible rod assumptid they get as reference the solution formulated in
Love (1944) by means of Jacobi elliptic integrals. In thigpga we will adopt as starting point the solution of
Monleobn et al. (2008) for eqs. (54) which considers extamsif the rod, and will extend the results to the uniformly

distributed load case.

Replacing eq. (54a) in (54b) and regarding thavanishes in (54d), the bending problem represented by egs.
(54k), (54c), (54e) and (54f) (which form a linear systemyrha decoupled from the axial one and solved indepen-
dently. Conversely, decoupling is not possible due to thingeof eq. (542a). We will say then, the bending problem

is partially decoupledf the axial problem.

The fundamental system matrix (FSM) of the bending probobtained by direct integration:

1 —pr sinhwé W'/‘Jw(pwf - sinhwé) (1 - coshwé) | | wo
0  coshwé L (coshwé — 1) £9 sinhwé 6
En(¢) = G()Eo = E et ¢ (56)
0 0 1 0 Qo
0 M sinhw¢ L sinhw¢ coshwé Myo
with the following meaning for the variables:
En(¢) state vector of the homogeneous bending problerE) 6,(¢) Q&) My(é))
Eo starting value for the state vector of the homogeneous bgrmtoblem
G(¢) fundamental system matrix of the bending problem
&=1 dimensionless variable
3 No 3 No
p—l+GAQ w=L PEl, (57)
The particular solution of the ODE system can be expressed as
Ep(§) = - f OG(.f - 7)F(r)Ldr (58)

whereF(r) = {0 0 g, 0}7 is the independent term of the bending problem, which costtie distributed loads

applied on the beam. Operating:

L £ | 1-coshwé
pwNg (pa) 2 + w

sinhwé
e =-qt] B
&

—[)sz(l — coshwé)
14
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Addition of (5€) and (59) gives the analytical solution oétproblem. In order to obtain values of all unknown

variables at one end, boundary conditicns. (55) will be agujdis follows:

E(1) = G(1)Eo + Ep(2) (60)
obtaining the initial values:
_ad __ L[l 1-coshy
Qo= 0=~ [2 T osinhw (61)

For solving the extension problem, we replaeg¢) in (54a). After changing the variable= { and integrating,

the following expression of horizontal displacements itaoted:

2 |2 214 43 2 : 2
U(.f):%f—z—ll_[% §+qZL & +ﬁ(f+sthuf)Jrﬁ(sthuf_f)_

I\ N> 3 2 2w 2 2w
Qo0.L3 , 2A0QoL sinhwé  2BoQoL coshwé  2Agq,L? (ésinhwé  coshwé
- &+ + - - - (62)
NO No w No w No w a)2
2 . .
_ 2BogL (gcoshw_f _ smhw_f) .\ AOBOsth a)f] +E,
No w w? w
where:
L on qzl_2 Myoa)
=—— |00+ — Bo=[——— - 63
Ao p( o + No) 0 (prO No (63)
The constan€, is determined by the conditiam(0) = O:
~ 1 [2ByQoL = 2AoqL?
Cu=—= 64
ST [ woNo @?No (64)

The final obtention ofNg requiresug(L) = 0 in (62). This condition drives to a complicated implicitiegjion in
No which cannot be symbolically solved.
A numerical strategy is adopted to obt&p. The following iterative scheme is used:

Step 1. Input value dfly
Step 2. Calculus aifip(L) by using (6:2)
Step 3. Updating of sorts &; = No - %'\UO(L) until convergencdiio(L)| < & = 107)

Obtention of axial stress completes the definition of curpeablem analytical solution.

15



7. Numerical results

For obtaining results, the following numerical values hbgen adopted:

L =12m
E=21-10°

v =03
A=0.1nm?

Ag = 0.083333°

Length of beam

Young’s Modulus

Poisson’s Coicient

Cross-section area

Cross-section shear area

| =2.08333 103m* Cross-section moment of inertia

The non-dimensional control parameter represents thelévati

(65)

Load levels which produce integer values of the control petar (6'5) are adopted. The MTnL obtained kine-

matic response of the beam is depicted in figures 4(a), 4@t}éx and the MTrL results are represented in figures

4(b), 4(d) and 4(f). In the last case only load levels whiobdurce suitable results are represented.

For this first comparison a discretization lof= 6 andp = 1 has been adopted. It is the finest discretization

supported by MTrL. Finer discretizations lead to divergeatthe solutions. On the other hand, valuesof 1 in

MTnL anda = 0.6 in MTrL were taken. In both cases (MTrL y MTnL) iterationseenterrupted when the modulus

of the diference vector of nodal displacements between two conseaiéips was smaller than= 1073,

We outline next the representative values of each displanereferring to figur2 4:

MTrL MTnL Analytical
o u(L/6) g u(L/6) & Solution
1 -0.0007 0.4000 -0.0004 0.2000 -0.0005
2 - - -0.0011 0.1538 -0.0013
3 - - -0.0018 0.1000 -0.0020
4 - - -0.0024 0.1429 -0.0028
5 - - -0.0030 0.1176 -0.0034
6 - - -0.0036 0.1220 -0.0041

Table 1: Horizontal displacemeng$L/6) inm. k=6, p=1)
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Figure 4: Comparison of both linearization methods in singpipported beam problerk € 6, p= 1)
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MTrL MTnL Analytical
o WwW(L/2) e w(L/2) & Solution
1 -0.1267 0.0261 -0.1262 0.0300 -0.1301
2 - - -0.2009 0.0262 -0.2063
3 - - -0.2538 0.0182 -0.2585
4 - - -0.2927 0.0207 -0.2989
5 - - -0.3263 0.0178 -0.3322
6 - — -0.3549 0.0164 -0.3608
Table 2: Deflectionsv(L/2)inm. k=6,p=1)
MTrL MTnL Analytical
o 6(0) & 6(0) & Solution
1 0.0521 0.5058 0.0343 0.0087 0.0346
2 - — 0.0546 0.0460 0.0552
3 - - 0.0701 0.0086 0.0695
4 - - 0.0797 0.0112 0.0806
5 - — 0.0893 0.0067 0.0899
6 - — 0.0975 0.0051 0.0980

Table 3: Slopeg(0) inrads. k=6, p=1)

Figure 5 shows good agreement between the MTnL solutioatismentsk = 10,p = 1y a = 1) and the

analytical ones.

As we can see, MTnL produces much smaller relative esrovith respect to analytical solution that MTrL. The

accuracy of MTnL withk = 10 (see figure 5) may be verified in the following table:

Horizontal MTnL  Deflections MTnL Slopes MTnL Analytical sdlon
o ulL/5) 2 w(L/2) &r 6(0) & ulL/s)  w(lL/2)  6(0)
1 -0.0006 0.0000 -0.1295 0.0046 0.0347 0.0029 -0.0006 ©6Q.130.0346
2 -0.0013 0.0714 -0.2042 0.0102 0.0550 0.0036 -0.0014 68.200.0552
3 -0.0021 0.0454 -0.2579 0.0023 0.0691 0.0058 -0.0022 88.250.0695
4 -0.0028 0.0667 -0.2984 0.0017 0.0804 0.0025 -0.0030 89.290.0806
5 -0.0035 0.0541 -0.3317 0.0015 0.0900 0.0011 -0.0037 2@.330.0899
6 -0.0042 0.0454 -0.3602 0.0017 0.0981 0.0010 -0.0044 068.360.0980

7.1. Estimation of the order of error

Table 4: Comparison displacements MTnL (m and rads}, 10, p = 1)

By successive evaluations of the numerical solution witfedent step sizes for the first load level£ 1) with

both kinds of linearization (MTrL and MTnL), the values fdret deflection at the central point of the rod expressed

in table 5 are obtained. The relative errors of the numesichition are evaluated using the analytical solution fer th

deflection obtained from egs. (56) and (58{1/2) = —0.1301, and are shown in tablz 5.
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Figure 5: Comparison of MTnLk(= 10, p = 1) and analytical solution of simply supported beam problem
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MTrL MTnL
k w(L/2) e w(lL/2) &
1 0.0000 1.0000 0.0000 1.0000
2 -0.0380 0.7079 -0.0902 0.3067
4
6

-0.1105 0.1507 -0.1206 0.0730
-0.1267 0.0260 -0.1262 0.0299
10 — — -0.1295 0.0046
20 — — -0.1303 0.0015

Table 5: Comparison of relative errors between MTrL and MT{pL= 1)

- o MTrL
N O  MTnL
\ y=-1.985x+0.1951
N

Relative error

y=-2.2594x+0.1104

10 10 10
K (number of intervals)

Figure 6: Comparison of relative errors between MTrL and MTjp = 1)

Double logarithmic plots of the errors are shown in figure e Torresponding one to the MTnL solution is

nearly a straight line with a slope around 2.

On the other hand, MTrL is unable to support more tkaa 6 steps of discretization, and it seems clear that
the average slope for this method is smaller than for MTnler&fore, it can be stated that MTnL with the proposed

iterative scheme has an order of erroQgh?).

8. Discussion and concluding remarks

In this paper some new insights are provided in order to &stathe best way of linearization for the nonlinear
bending problem of a simply supported beam pinned at both.ehlde numerical integration of the governing BVP
of the problem is carried out by means of two kinds of lineatitm (MTnL - Multi step Tangential Linearization and
MTrL - Multi step Transversal Linearization). Numericadatment has been done by a multi-poirffetience method
(Keller, 1969) inside of an iterative procedure. Finallynmerical results have been compared with the analytical

solution (Monleobn et al., 2008).
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The adopted iterative strategy introduces sonfiedinces compared to the usual treatment (Ghosh and Roy;, 2007
Ramachandra and Roy, 2001a, 2001b; Roy and Kumar, 2005a¥@iv and Roy. 2007), which is based in convert-
ing the governing BVP in a nonlinear algebraic equationsesysand solving it through Newton-Raphson or fix
point method. The proposed strategy uses a centered fifiitredice method with multi-point linear constraints
(Keller, 1969Y), avoiding the evaluation of the Magnus sedgpansion and the use of the Newton-Raphson method
(Viswanath and Roy, 2007).

A further improvement of the proposed method in comparisitim the one by Viswanath and Rcy (2007) is found
in the treatment of the equations proposed in section 24 ONE system (12) has been arranged in a way which
groups all nonlinear terms in the sub-matBi¢u,). Therefore, the linearization is only necessary for tiveeloequa-

tion block—refer to expression (34).

The low performance of MTrL (LTL-zeroth level) has been prdyv It is only able to reproduce the actual solu-
tion suitably forpo = 1 level. Values op > 1.5 cause divergence of the iterative process. On the othet, lyzeat
agreement between results with MTnL (or LTL-first level) dhe analytical ones for all load levels (including values
until p = 10) has been found. Furthermore, we found the MTrL becomsetahle against slight variations of the
parameterr, beinga = 0.6 almost the unique value which enables the convergencegfrticess. Nonetheless, the
MTnL is able to produce acceptable solutions doincluded in the range of values.f)1]. This result contradicts
Viswanath and Roy (2007), where the better convergence by.Mdmpared to MTnL, for all the possible values of

« is stated.

Although not included in this paper the integration has kedea solved by means of other available techniques,
different from the multi-point finite dierence method, as simple shooting or parallel shootingy Teaal to similar

results, proving that the deficiencies observed in MTrL aredue to mismatch of the numerical technique.

It may be concluded that MTnL is able to reproduce the ar@ysolution for all load levels and works better
than MTrL for this particular problem. This result is oppdse the conclusion reached in Viswanath and Roy (2007),
where the relative errors produced by MTrL are said to be lemtilan the MTnL ones for the simply supported beam

and the tip-loaded cantilever beam problems.

The diferent behavior between MTnL and MTrL can be explained by tigbdr closeness between solution
manifolds on intermediate points in MTnL compared to MTrechuse equating derivatives allows to achieve better
accuracy. Such conclusion in consistent with Ramachanmdt&ay (2001a), where it is suggested that higher levels
of LTL systems can be deduced by means of successive deriaftthe ODE-s system and correspondingly equating

the solution and its derivatives with the linearized onesvery grid point.
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